src/glpscf.c
changeset 1 c445c931472f
equal deleted inserted replaced
-1:000000000000 0:2a9d3d5a18f0
       
     1 /* glpscf.c (Schur complement factorization) */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
       
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
       
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
       
     9 *  E-mail: <mao@gnu.org>.
       
    10 *
       
    11 *  GLPK is free software: you can redistribute it and/or modify it
       
    12 *  under the terms of the GNU General Public License as published by
       
    13 *  the Free Software Foundation, either version 3 of the License, or
       
    14 *  (at your option) any later version.
       
    15 *
       
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    19 *  License for more details.
       
    20 *
       
    21 *  You should have received a copy of the GNU General Public License
       
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    23 ***********************************************************************/
       
    24 
       
    25 #include "glpenv.h"
       
    26 #include "glpscf.h"
       
    27 #define xfault xerror
       
    28 
       
    29 #define _GLPSCF_DEBUG 0
       
    30 
       
    31 #define eps 1e-10
       
    32 
       
    33 /***********************************************************************
       
    34 *  NAME
       
    35 *
       
    36 *  scf_create_it - create Schur complement factorization
       
    37 *
       
    38 *  SYNOPSIS
       
    39 *
       
    40 *  #include "glpscf.h"
       
    41 *  SCF *scf_create_it(int n_max);
       
    42 *
       
    43 *  DESCRIPTION
       
    44 *
       
    45 *  The routine scf_create_it creates the factorization of matrix C,
       
    46 *  which initially has no rows and columns.
       
    47 *
       
    48 *  The parameter n_max specifies the maximal order of matrix C to be
       
    49 *  factorized, 1 <= n_max <= 32767.
       
    50 *
       
    51 *  RETURNS
       
    52 *
       
    53 *  The routine scf_create_it returns a pointer to the structure SCF,
       
    54 *  which defines the factorization. */
       
    55 
       
    56 SCF *scf_create_it(int n_max)
       
    57 {     SCF *scf;
       
    58 #if _GLPSCF_DEBUG
       
    59       xprintf("scf_create_it: warning: debug mode enabled\n");
       
    60 #endif
       
    61       if (!(1 <= n_max && n_max <= 32767))
       
    62          xfault("scf_create_it: n_max = %d; invalid parameter\n",
       
    63             n_max);
       
    64       scf = xmalloc(sizeof(SCF));
       
    65       scf->n_max = n_max;
       
    66       scf->n = 0;
       
    67       scf->f = xcalloc(1 + n_max * n_max, sizeof(double));
       
    68       scf->u = xcalloc(1 + n_max * (n_max + 1) / 2, sizeof(double));
       
    69       scf->p = xcalloc(1 + n_max, sizeof(int));
       
    70       scf->t_opt = SCF_TBG;
       
    71       scf->rank = 0;
       
    72 #if _GLPSCF_DEBUG
       
    73       scf->c = xcalloc(1 + n_max * n_max, sizeof(double));
       
    74 #else
       
    75       scf->c = NULL;
       
    76 #endif
       
    77       scf->w = xcalloc(1 + n_max, sizeof(double));
       
    78       return scf;
       
    79 }
       
    80 
       
    81 /***********************************************************************
       
    82 *  The routine f_loc determines location of matrix element F[i,j] in
       
    83 *  the one-dimensional array f. */
       
    84 
       
    85 static int f_loc(SCF *scf, int i, int j)
       
    86 {     int n_max = scf->n_max;
       
    87       int n = scf->n;
       
    88       xassert(1 <= i && i <= n);
       
    89       xassert(1 <= j && j <= n);
       
    90       return (i - 1) * n_max + j;
       
    91 }
       
    92 
       
    93 /***********************************************************************
       
    94 *  The routine u_loc determines location of matrix element U[i,j] in
       
    95 *  the one-dimensional array u. */
       
    96 
       
    97 static int u_loc(SCF *scf, int i, int j)
       
    98 {     int n_max = scf->n_max;
       
    99       int n = scf->n;
       
   100       xassert(1 <= i && i <= n);
       
   101       xassert(i <= j && j <= n);
       
   102       return (i - 1) * n_max + j - i * (i - 1) / 2;
       
   103 }
       
   104 
       
   105 /***********************************************************************
       
   106 *  The routine bg_transform applies Bartels-Golub version of gaussian
       
   107 *  elimination to restore triangular structure of matrix U.
       
   108 *
       
   109 *  On entry matrix U has the following structure:
       
   110 *
       
   111 *        1       k         n
       
   112 *     1  * * * * * * * * * *
       
   113 *        . * * * * * * * * *
       
   114 *        . . * * * * * * * *
       
   115 *        . . . * * * * * * *
       
   116 *     k  . . . . * * * * * *
       
   117 *        . . . . . * * * * *
       
   118 *        . . . . . . * * * *
       
   119 *        . . . . . . . * * *
       
   120 *        . . . . . . . . * *
       
   121 *     n  . . . . # # # # # #
       
   122 *
       
   123 *  where '#' is a row spike to be eliminated.
       
   124 *
       
   125 *  Elements of n-th row are passed separately in locations un[k], ...,
       
   126 *  un[n]. On exit the content of the array un is destroyed.
       
   127 *
       
   128 *  REFERENCES
       
   129 *
       
   130 *  R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming
       
   131 *  Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */
       
   132 
       
   133 static void bg_transform(SCF *scf, int k, double un[])
       
   134 {     int n = scf->n;
       
   135       double *f = scf->f;
       
   136       double *u = scf->u;
       
   137       int j, k1, kj, kk, n1, nj;
       
   138       double t;
       
   139       xassert(1 <= k && k <= n);
       
   140       /* main elimination loop */
       
   141       for (k = k; k < n; k++)
       
   142       {  /* determine location of U[k,k] */
       
   143          kk = u_loc(scf, k, k);
       
   144          /* determine location of F[k,1] */
       
   145          k1 = f_loc(scf, k, 1);
       
   146          /* determine location of F[n,1] */
       
   147          n1 = f_loc(scf, n, 1);
       
   148          /* if |U[k,k]| < |U[n,k]|, interchange k-th and n-th rows to
       
   149             provide |U[k,k]| >= |U[n,k]| */
       
   150          if (fabs(u[kk]) < fabs(un[k]))
       
   151          {  /* interchange k-th and n-th rows of matrix U */
       
   152             for (j = k, kj = kk; j <= n; j++, kj++)
       
   153                t = u[kj], u[kj] = un[j], un[j] = t;
       
   154             /* interchange k-th and n-th rows of matrix F to keep the
       
   155                main equality F * C = U * P */
       
   156             for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
       
   157                t = f[kj], f[kj] = f[nj], f[nj] = t;
       
   158          }
       
   159          /* now |U[k,k]| >= |U[n,k]| */
       
   160          /* if U[k,k] is too small in the magnitude, replace U[k,k] and
       
   161             U[n,k] by exact zero */
       
   162          if (fabs(u[kk]) < eps) u[kk] = un[k] = 0.0;
       
   163          /* if U[n,k] is already zero, elimination is not needed */
       
   164          if (un[k] == 0.0) continue;
       
   165          /* compute gaussian multiplier t = U[n,k] / U[k,k] */
       
   166          t = un[k] / u[kk];
       
   167          /* apply gaussian elimination to nullify U[n,k] */
       
   168          /* (n-th row of U) := (n-th row of U) - t * (k-th row of U) */
       
   169          for (j = k+1, kj = kk+1; j <= n; j++, kj++)
       
   170             un[j] -= t * u[kj];
       
   171          /* (n-th row of F) := (n-th row of F) - t * (k-th row of F)
       
   172             to keep the main equality F * C = U * P */
       
   173          for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
       
   174             f[nj] -= t * f[kj];
       
   175       }
       
   176       /* if U[n,n] is too small in the magnitude, replace it by exact
       
   177          zero */
       
   178       if (fabs(un[n]) < eps) un[n] = 0.0;
       
   179       /* store U[n,n] in a proper location */
       
   180       u[u_loc(scf, n, n)] = un[n];
       
   181       return;
       
   182 }
       
   183 
       
   184 /***********************************************************************
       
   185 *  The routine givens computes the parameters of Givens plane rotation
       
   186 *  c = cos(teta) and s = sin(teta) such that:
       
   187 *
       
   188 *     ( c -s ) ( a )   ( r )
       
   189 *     (      ) (   ) = (   ) ,
       
   190 *     ( s  c ) ( b )   ( 0 )
       
   191 *
       
   192 *  where a and b are given scalars.
       
   193 *
       
   194 *  REFERENCES
       
   195 *
       
   196 *  G.H.Golub, C.F.Van Loan, "Matrix Computations", 2nd ed. */
       
   197 
       
   198 static void givens(double a, double b, double *c, double *s)
       
   199 {     double t;
       
   200       if (b == 0.0)
       
   201          (*c) = 1.0, (*s) = 0.0;
       
   202       else if (fabs(a) <= fabs(b))
       
   203          t = - a / b, (*s) = 1.0 / sqrt(1.0 + t * t), (*c) = (*s) * t;
       
   204       else
       
   205          t = - b / a, (*c) = 1.0 / sqrt(1.0 + t * t), (*s) = (*c) * t;
       
   206       return;
       
   207 }
       
   208 
       
   209 /*----------------------------------------------------------------------
       
   210 *  The routine gr_transform applies Givens plane rotations to restore
       
   211 *  triangular structure of matrix U.
       
   212 *
       
   213 *  On entry matrix U has the following structure:
       
   214 *
       
   215 *        1       k         n
       
   216 *     1  * * * * * * * * * *
       
   217 *        . * * * * * * * * *
       
   218 *        . . * * * * * * * *
       
   219 *        . . . * * * * * * *
       
   220 *     k  . . . . * * * * * *
       
   221 *        . . . . . * * * * *
       
   222 *        . . . . . . * * * *
       
   223 *        . . . . . . . * * *
       
   224 *        . . . . . . . . * *
       
   225 *     n  . . . . # # # # # #
       
   226 *
       
   227 *  where '#' is a row spike to be eliminated.
       
   228 *
       
   229 *  Elements of n-th row are passed separately in locations un[k], ...,
       
   230 *  un[n]. On exit the content of the array un is destroyed.
       
   231 *
       
   232 *  REFERENCES
       
   233 *
       
   234 *  R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming
       
   235 *  Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */
       
   236 
       
   237 static void gr_transform(SCF *scf, int k, double un[])
       
   238 {     int n = scf->n;
       
   239       double *f = scf->f;
       
   240       double *u = scf->u;
       
   241       int j, k1, kj, kk, n1, nj;
       
   242       double c, s;
       
   243       xassert(1 <= k && k <= n);
       
   244       /* main elimination loop */
       
   245       for (k = k; k < n; k++)
       
   246       {  /* determine location of U[k,k] */
       
   247          kk = u_loc(scf, k, k);
       
   248          /* determine location of F[k,1] */
       
   249          k1 = f_loc(scf, k, 1);
       
   250          /* determine location of F[n,1] */
       
   251          n1 = f_loc(scf, n, 1);
       
   252          /* if both U[k,k] and U[n,k] are too small in the magnitude,
       
   253             replace them by exact zero */
       
   254          if (fabs(u[kk]) < eps && fabs(un[k]) < eps)
       
   255             u[kk] = un[k] = 0.0;
       
   256          /* if U[n,k] is already zero, elimination is not needed */
       
   257          if (un[k] == 0.0) continue;
       
   258          /* compute the parameters of Givens plane rotation */
       
   259          givens(u[kk], un[k], &c, &s);
       
   260          /* apply Givens rotation to k-th and n-th rows of matrix U */
       
   261          for (j = k, kj = kk; j <= n; j++, kj++)
       
   262          {  double ukj = u[kj], unj = un[j];
       
   263             u[kj] = c * ukj - s * unj;
       
   264             un[j] = s * ukj + c * unj;
       
   265          }
       
   266          /* apply Givens rotation to k-th and n-th rows of matrix F
       
   267             to keep the main equality F * C = U * P */
       
   268          for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
       
   269          {  double fkj = f[kj], fnj = f[nj];
       
   270             f[kj] = c * fkj - s * fnj;
       
   271             f[nj] = s * fkj + c * fnj;
       
   272          }
       
   273       }
       
   274       /* if U[n,n] is too small in the magnitude, replace it by exact
       
   275          zero */
       
   276       if (fabs(un[n]) < eps) un[n] = 0.0;
       
   277       /* store U[n,n] in a proper location */
       
   278       u[u_loc(scf, n, n)] = un[n];
       
   279       return;
       
   280 }
       
   281 
       
   282 /***********************************************************************
       
   283 *  The routine transform restores triangular structure of matrix U.
       
   284 *  It is a driver to the routines bg_transform and gr_transform (see
       
   285 *  comments to these routines above). */
       
   286 
       
   287 static void transform(SCF *scf, int k, double un[])
       
   288 {     switch (scf->t_opt)
       
   289       {  case SCF_TBG:
       
   290             bg_transform(scf, k, un);
       
   291             break;
       
   292          case SCF_TGR:
       
   293             gr_transform(scf, k, un);
       
   294             break;
       
   295          default:
       
   296             xassert(scf != scf);
       
   297       }
       
   298       return;
       
   299 }
       
   300 
       
   301 /***********************************************************************
       
   302 *  The routine estimate_rank estimates the rank of matrix C.
       
   303 *
       
   304 *  Since all transformations applied to matrix F are non-singular,
       
   305 *  and F is assumed to be well conditioned, from the main equaility
       
   306 *  F * C = U * P it follows that rank(C) = rank(U), where rank(U) is
       
   307 *  estimated as the number of non-zero diagonal elements of U. */
       
   308 
       
   309 static int estimate_rank(SCF *scf)
       
   310 {     int n_max = scf->n_max;
       
   311       int n = scf->n;
       
   312       double *u = scf->u;
       
   313       int i, ii, inc, rank = 0;
       
   314       for (i = 1, ii = u_loc(scf, i, i), inc = n_max; i <= n;
       
   315          i++, ii += inc, inc--)
       
   316          if (u[ii] != 0.0) rank++;
       
   317       return rank;
       
   318 }
       
   319 
       
   320 #if _GLPSCF_DEBUG
       
   321 /***********************************************************************
       
   322 *  The routine check_error computes the maximal relative error between
       
   323 *  left- and right-hand sides of the main equality F * C = U * P. (This
       
   324 *  routine is intended only for debugging.) */
       
   325 
       
   326 static void check_error(SCF *scf, const char *func)
       
   327 {     int n = scf->n;
       
   328       double *f = scf->f;
       
   329       double *u = scf->u;
       
   330       int *p = scf->p;
       
   331       double *c = scf->c;
       
   332       int i, j, k;
       
   333       double d, dmax = 0.0, s, t;
       
   334       xassert(c != NULL);
       
   335       for (i = 1; i <= n; i++)
       
   336       {  for (j = 1; j <= n; j++)
       
   337          {  /* compute element (i,j) of product F * C */
       
   338             s = 0.0;
       
   339             for (k = 1; k <= n; k++)
       
   340                s += f[f_loc(scf, i, k)] * c[f_loc(scf, k, j)];
       
   341             /* compute element (i,j) of product U * P */
       
   342             k = p[j];
       
   343             t = (i <= k ? u[u_loc(scf, i, k)] : 0.0);
       
   344             /* compute the maximal relative error */
       
   345             d = fabs(s - t) / (1.0 + fabs(t));
       
   346             if (dmax < d) dmax = d;
       
   347          }
       
   348       }
       
   349       if (dmax > 1e-8)
       
   350          xprintf("%s: dmax = %g; relative error too large\n", func,
       
   351             dmax);
       
   352       return;
       
   353 }
       
   354 #endif
       
   355 
       
   356 /***********************************************************************
       
   357 *  NAME
       
   358 *
       
   359 *  scf_update_exp - update factorization on expanding C
       
   360 *
       
   361 *  SYNOPSIS
       
   362 *
       
   363 *  #include "glpscf.h"
       
   364 *  int scf_update_exp(SCF *scf, const double x[], const double y[],
       
   365 *     double z);
       
   366 *
       
   367 *  DESCRIPTION
       
   368 *
       
   369 *  The routine scf_update_exp updates the factorization of matrix C on
       
   370 *  expanding it by adding a new row and column as follows:
       
   371 *
       
   372 *             ( C  x )
       
   373 *     new C = (      )
       
   374 *             ( y' z )
       
   375 *
       
   376 *  where x[1,...,n] is a new column, y[1,...,n] is a new row, and z is
       
   377 *  a new diagonal element.
       
   378 *
       
   379 *  If on entry the factorization is empty, the parameters x and y can
       
   380 *  be specified as NULL.
       
   381 *
       
   382 *  RETURNS
       
   383 *
       
   384 *  0  The factorization has been successfully updated.
       
   385 *
       
   386 *  SCF_ESING
       
   387 *     The factorization has been successfully updated, however, new
       
   388 *     matrix C is singular within working precision. Note that the new
       
   389 *     factorization remains valid.
       
   390 *
       
   391 *  SCF_ELIMIT
       
   392 *     There is not enough room to expand the factorization, because
       
   393 *     n = n_max. The factorization remains unchanged.
       
   394 *
       
   395 *  ALGORITHM
       
   396 *
       
   397 *  We can see that:
       
   398 *
       
   399 *     ( F  0 ) ( C  x )   ( FC  Fx )   ( UP  Fx )
       
   400 *     (      ) (      ) = (        ) = (        ) =
       
   401 *     ( 0  1 ) ( y' z )   ( y'   z )   ( y'   z )
       
   402 *
       
   403 *        ( U   Fx ) ( P  0 )
       
   404 *     =  (        ) (      ),
       
   405 *        ( y'P' z ) ( 0  1 )
       
   406 *
       
   407 *  therefore to keep the main equality F * C = U * P we can take:
       
   408 *
       
   409 *             ( F  0 )           ( U   Fx )           ( P  0 )
       
   410 *     new F = (      ),  new U = (        ),  new P = (      ),
       
   411 *             ( 0  1 )           ( y'P' z )           ( 0  1 )
       
   412 *
       
   413 *  and eliminate the row spike y'P' in the last row of new U to restore
       
   414 *  its upper triangular structure. */
       
   415 
       
   416 int scf_update_exp(SCF *scf, const double x[], const double y[],
       
   417       double z)
       
   418 {     int n_max = scf->n_max;
       
   419       int n = scf->n;
       
   420       double *f = scf->f;
       
   421       double *u = scf->u;
       
   422       int *p = scf->p;
       
   423 #if _GLPSCF_DEBUG
       
   424       double *c = scf->c;
       
   425 #endif
       
   426       double *un = scf->w;
       
   427       int i, ij, in, j, k, nj, ret = 0;
       
   428       double t;
       
   429       /* check if the factorization can be expanded */
       
   430       if (n == n_max)
       
   431       {  /* there is not enough room */
       
   432          ret = SCF_ELIMIT;
       
   433          goto done;
       
   434       }
       
   435       /* increase the order of the factorization */
       
   436       scf->n = ++n;
       
   437       /* fill new zero column of matrix F */
       
   438       for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)
       
   439          f[in] = 0.0;
       
   440       /* fill new zero row of matrix F */
       
   441       for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)
       
   442          f[nj] = 0.0;
       
   443       /* fill new unity diagonal element of matrix F */
       
   444       f[f_loc(scf, n, n)] = 1.0;
       
   445       /* compute new column of matrix U, which is (old F) * x */
       
   446       for (i = 1; i < n; i++)
       
   447       {  /* u[i,n] := (i-th row of old F) * x */
       
   448          t = 0.0;
       
   449          for (j = 1, ij = f_loc(scf, i, 1); j < n; j++, ij++)
       
   450             t += f[ij] * x[j];
       
   451          u[u_loc(scf, i, n)] = t;
       
   452       }
       
   453       /* compute new (spiked) row of matrix U, which is (old P) * y */
       
   454       for (j = 1; j < n; j++) un[j] = y[p[j]];
       
   455       /* store new diagonal element of matrix U, which is z */
       
   456       un[n] = z;
       
   457       /* expand matrix P */
       
   458       p[n] = n;
       
   459 #if _GLPSCF_DEBUG
       
   460       /* expand matrix C */
       
   461       /* fill its new column, which is x */
       
   462       for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)
       
   463          c[in] = x[i];
       
   464       /* fill its new row, which is y */
       
   465       for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)
       
   466          c[nj] = y[j];
       
   467       /* fill its new diagonal element, which is z */
       
   468       c[f_loc(scf, n, n)] = z;
       
   469 #endif
       
   470       /* restore upper triangular structure of matrix U */
       
   471       for (k = 1; k < n; k++)
       
   472          if (un[k] != 0.0) break;
       
   473       transform(scf, k, un);
       
   474       /* estimate the rank of matrices C and U */
       
   475       scf->rank = estimate_rank(scf);
       
   476       if (scf->rank != n) ret = SCF_ESING;
       
   477 #if _GLPSCF_DEBUG
       
   478       /* check that the factorization is accurate enough */
       
   479       check_error(scf, "scf_update_exp");
       
   480 #endif
       
   481 done: return ret;
       
   482 }
       
   483 
       
   484 /***********************************************************************
       
   485 *  The routine solve solves the system C * x = b.
       
   486 *
       
   487 *  From the main equation F * C = U * P it follows that:
       
   488 *
       
   489 *     C * x = b  =>  F * C * x = F * b  =>  U * P * x = F * b  =>
       
   490 *
       
   491 *     P * x = inv(U) * F * b  =>  x = P' * inv(U) * F * b.
       
   492 *
       
   493 *  On entry the array x contains right-hand side vector b. On exit this
       
   494 *  array contains solution vector x. */
       
   495 
       
   496 static void solve(SCF *scf, double x[])
       
   497 {     int n = scf->n;
       
   498       double *f = scf->f;
       
   499       double *u = scf->u;
       
   500       int *p = scf->p;
       
   501       double *y = scf->w;
       
   502       int i, j, ij;
       
   503       double t;
       
   504       /* y := F * b */
       
   505       for (i = 1; i <= n; i++)
       
   506       {  /* y[i] = (i-th row of F) * b */
       
   507          t = 0.0;
       
   508          for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)
       
   509             t += f[ij] * x[j];
       
   510          y[i] = t;
       
   511       }
       
   512       /* y := inv(U) * y */
       
   513       for (i = n; i >= 1; i--)
       
   514       {  t = y[i];
       
   515          for (j = n, ij = u_loc(scf, i, n); j > i; j--, ij--)
       
   516             t -= u[ij] * y[j];
       
   517          y[i] = t / u[ij];
       
   518       }
       
   519       /* x := P' * y */
       
   520       for (i = 1; i <= n; i++) x[p[i]] = y[i];
       
   521       return;
       
   522 }
       
   523 
       
   524 /***********************************************************************
       
   525 *  The routine tsolve solves the transposed system C' * x = b.
       
   526 *
       
   527 *  From the main equation F * C = U * P it follows that:
       
   528 *
       
   529 *     C' * F' = P' * U',
       
   530 *
       
   531 *  therefore:
       
   532 *
       
   533 *     C' * x = b  =>  C' * F' * inv(F') * x = b  =>
       
   534 *
       
   535 *     P' * U' * inv(F') * x = b  =>  U' * inv(F') * x = P * b  =>
       
   536 *
       
   537 *     inv(F') * x = inv(U') * P * b  =>  x = F' * inv(U') * P * b.
       
   538 *
       
   539 *  On entry the array x contains right-hand side vector b. On exit this
       
   540 *  array contains solution vector x. */
       
   541 
       
   542 static void tsolve(SCF *scf, double x[])
       
   543 {     int n = scf->n;
       
   544       double *f = scf->f;
       
   545       double *u = scf->u;
       
   546       int *p = scf->p;
       
   547       double *y = scf->w;
       
   548       int i, j, ij;
       
   549       double t;
       
   550       /* y := P * b */
       
   551       for (i = 1; i <= n; i++) y[i] = x[p[i]];
       
   552       /* y := inv(U') * y */
       
   553       for (i = 1; i <= n; i++)
       
   554       {  /* compute y[i] */
       
   555          ij = u_loc(scf, i, i);
       
   556          t = (y[i] /= u[ij]);
       
   557          /* substitute y[i] in other equations */
       
   558          for (j = i+1, ij++; j <= n; j++, ij++)
       
   559             y[j] -= u[ij] * t;
       
   560       }
       
   561       /* x := F' * y (computed as linear combination of rows of F) */
       
   562       for (j = 1; j <= n; j++) x[j] = 0.0;
       
   563       for (i = 1; i <= n; i++)
       
   564       {  t = y[i]; /* coefficient of linear combination */
       
   565          for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)
       
   566             x[j] += f[ij] * t;
       
   567       }
       
   568       return;
       
   569 }
       
   570 
       
   571 /***********************************************************************
       
   572 *  NAME
       
   573 *
       
   574 *  scf_solve_it - solve either system C * x = b or C' * x = b
       
   575 *
       
   576 *  SYNOPSIS
       
   577 *
       
   578 *  #include "glpscf.h"
       
   579 *  void scf_solve_it(SCF *scf, int tr, double x[]);
       
   580 *
       
   581 *  DESCRIPTION
       
   582 *
       
   583 *  The routine scf_solve_it solves either the system C * x = b (if tr
       
   584 *  is zero) or the system C' * x = b, where C' is a matrix transposed
       
   585 *  to C (if tr is non-zero). C is assumed to be non-singular.
       
   586 *
       
   587 *  On entry the array x should contain the right-hand side vector b in
       
   588 *  locations x[1], ..., x[n], where n is the order of matrix C. On exit
       
   589 *  the array x contains the solution vector x in the same locations. */
       
   590 
       
   591 void scf_solve_it(SCF *scf, int tr, double x[])
       
   592 {     if (scf->rank < scf->n)
       
   593          xfault("scf_solve_it: singular matrix\n");
       
   594       if (!tr)
       
   595          solve(scf, x);
       
   596       else
       
   597          tsolve(scf, x);
       
   598       return;
       
   599 }
       
   600 
       
   601 void scf_reset_it(SCF *scf)
       
   602 {     /* reset factorization for empty matrix C */
       
   603       scf->n = scf->rank = 0;
       
   604       return;
       
   605 }
       
   606 
       
   607 /***********************************************************************
       
   608 *  NAME
       
   609 *
       
   610 *  scf_delete_it - delete Schur complement factorization
       
   611 *
       
   612 *  SYNOPSIS
       
   613 *
       
   614 *  #include "glpscf.h"
       
   615 *  void scf_delete_it(SCF *scf);
       
   616 *
       
   617 *  DESCRIPTION
       
   618 *
       
   619 *  The routine scf_delete_it deletes the specified factorization and
       
   620 *  frees all the memory allocated to this object. */
       
   621 
       
   622 void scf_delete_it(SCF *scf)
       
   623 {     xfree(scf->f);
       
   624       xfree(scf->u);
       
   625       xfree(scf->p);
       
   626 #if _GLPSCF_DEBUG
       
   627       xfree(scf->c);
       
   628 #endif
       
   629       xfree(scf->w);
       
   630       xfree(scf);
       
   631       return;
       
   632 }
       
   633 
       
   634 /* eof */