|
1 /* glpscf.c (Schur complement factorization) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpenv.h" |
|
26 #include "glpscf.h" |
|
27 #define xfault xerror |
|
28 |
|
29 #define _GLPSCF_DEBUG 0 |
|
30 |
|
31 #define eps 1e-10 |
|
32 |
|
33 /*********************************************************************** |
|
34 * NAME |
|
35 * |
|
36 * scf_create_it - create Schur complement factorization |
|
37 * |
|
38 * SYNOPSIS |
|
39 * |
|
40 * #include "glpscf.h" |
|
41 * SCF *scf_create_it(int n_max); |
|
42 * |
|
43 * DESCRIPTION |
|
44 * |
|
45 * The routine scf_create_it creates the factorization of matrix C, |
|
46 * which initially has no rows and columns. |
|
47 * |
|
48 * The parameter n_max specifies the maximal order of matrix C to be |
|
49 * factorized, 1 <= n_max <= 32767. |
|
50 * |
|
51 * RETURNS |
|
52 * |
|
53 * The routine scf_create_it returns a pointer to the structure SCF, |
|
54 * which defines the factorization. */ |
|
55 |
|
56 SCF *scf_create_it(int n_max) |
|
57 { SCF *scf; |
|
58 #if _GLPSCF_DEBUG |
|
59 xprintf("scf_create_it: warning: debug mode enabled\n"); |
|
60 #endif |
|
61 if (!(1 <= n_max && n_max <= 32767)) |
|
62 xfault("scf_create_it: n_max = %d; invalid parameter\n", |
|
63 n_max); |
|
64 scf = xmalloc(sizeof(SCF)); |
|
65 scf->n_max = n_max; |
|
66 scf->n = 0; |
|
67 scf->f = xcalloc(1 + n_max * n_max, sizeof(double)); |
|
68 scf->u = xcalloc(1 + n_max * (n_max + 1) / 2, sizeof(double)); |
|
69 scf->p = xcalloc(1 + n_max, sizeof(int)); |
|
70 scf->t_opt = SCF_TBG; |
|
71 scf->rank = 0; |
|
72 #if _GLPSCF_DEBUG |
|
73 scf->c = xcalloc(1 + n_max * n_max, sizeof(double)); |
|
74 #else |
|
75 scf->c = NULL; |
|
76 #endif |
|
77 scf->w = xcalloc(1 + n_max, sizeof(double)); |
|
78 return scf; |
|
79 } |
|
80 |
|
81 /*********************************************************************** |
|
82 * The routine f_loc determines location of matrix element F[i,j] in |
|
83 * the one-dimensional array f. */ |
|
84 |
|
85 static int f_loc(SCF *scf, int i, int j) |
|
86 { int n_max = scf->n_max; |
|
87 int n = scf->n; |
|
88 xassert(1 <= i && i <= n); |
|
89 xassert(1 <= j && j <= n); |
|
90 return (i - 1) * n_max + j; |
|
91 } |
|
92 |
|
93 /*********************************************************************** |
|
94 * The routine u_loc determines location of matrix element U[i,j] in |
|
95 * the one-dimensional array u. */ |
|
96 |
|
97 static int u_loc(SCF *scf, int i, int j) |
|
98 { int n_max = scf->n_max; |
|
99 int n = scf->n; |
|
100 xassert(1 <= i && i <= n); |
|
101 xassert(i <= j && j <= n); |
|
102 return (i - 1) * n_max + j - i * (i - 1) / 2; |
|
103 } |
|
104 |
|
105 /*********************************************************************** |
|
106 * The routine bg_transform applies Bartels-Golub version of gaussian |
|
107 * elimination to restore triangular structure of matrix U. |
|
108 * |
|
109 * On entry matrix U has the following structure: |
|
110 * |
|
111 * 1 k n |
|
112 * 1 * * * * * * * * * * |
|
113 * . * * * * * * * * * |
|
114 * . . * * * * * * * * |
|
115 * . . . * * * * * * * |
|
116 * k . . . . * * * * * * |
|
117 * . . . . . * * * * * |
|
118 * . . . . . . * * * * |
|
119 * . . . . . . . * * * |
|
120 * . . . . . . . . * * |
|
121 * n . . . . # # # # # # |
|
122 * |
|
123 * where '#' is a row spike to be eliminated. |
|
124 * |
|
125 * Elements of n-th row are passed separately in locations un[k], ..., |
|
126 * un[n]. On exit the content of the array un is destroyed. |
|
127 * |
|
128 * REFERENCES |
|
129 * |
|
130 * R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming |
|
131 * Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */ |
|
132 |
|
133 static void bg_transform(SCF *scf, int k, double un[]) |
|
134 { int n = scf->n; |
|
135 double *f = scf->f; |
|
136 double *u = scf->u; |
|
137 int j, k1, kj, kk, n1, nj; |
|
138 double t; |
|
139 xassert(1 <= k && k <= n); |
|
140 /* main elimination loop */ |
|
141 for (k = k; k < n; k++) |
|
142 { /* determine location of U[k,k] */ |
|
143 kk = u_loc(scf, k, k); |
|
144 /* determine location of F[k,1] */ |
|
145 k1 = f_loc(scf, k, 1); |
|
146 /* determine location of F[n,1] */ |
|
147 n1 = f_loc(scf, n, 1); |
|
148 /* if |U[k,k]| < |U[n,k]|, interchange k-th and n-th rows to |
|
149 provide |U[k,k]| >= |U[n,k]| */ |
|
150 if (fabs(u[kk]) < fabs(un[k])) |
|
151 { /* interchange k-th and n-th rows of matrix U */ |
|
152 for (j = k, kj = kk; j <= n; j++, kj++) |
|
153 t = u[kj], u[kj] = un[j], un[j] = t; |
|
154 /* interchange k-th and n-th rows of matrix F to keep the |
|
155 main equality F * C = U * P */ |
|
156 for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++) |
|
157 t = f[kj], f[kj] = f[nj], f[nj] = t; |
|
158 } |
|
159 /* now |U[k,k]| >= |U[n,k]| */ |
|
160 /* if U[k,k] is too small in the magnitude, replace U[k,k] and |
|
161 U[n,k] by exact zero */ |
|
162 if (fabs(u[kk]) < eps) u[kk] = un[k] = 0.0; |
|
163 /* if U[n,k] is already zero, elimination is not needed */ |
|
164 if (un[k] == 0.0) continue; |
|
165 /* compute gaussian multiplier t = U[n,k] / U[k,k] */ |
|
166 t = un[k] / u[kk]; |
|
167 /* apply gaussian elimination to nullify U[n,k] */ |
|
168 /* (n-th row of U) := (n-th row of U) - t * (k-th row of U) */ |
|
169 for (j = k+1, kj = kk+1; j <= n; j++, kj++) |
|
170 un[j] -= t * u[kj]; |
|
171 /* (n-th row of F) := (n-th row of F) - t * (k-th row of F) |
|
172 to keep the main equality F * C = U * P */ |
|
173 for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++) |
|
174 f[nj] -= t * f[kj]; |
|
175 } |
|
176 /* if U[n,n] is too small in the magnitude, replace it by exact |
|
177 zero */ |
|
178 if (fabs(un[n]) < eps) un[n] = 0.0; |
|
179 /* store U[n,n] in a proper location */ |
|
180 u[u_loc(scf, n, n)] = un[n]; |
|
181 return; |
|
182 } |
|
183 |
|
184 /*********************************************************************** |
|
185 * The routine givens computes the parameters of Givens plane rotation |
|
186 * c = cos(teta) and s = sin(teta) such that: |
|
187 * |
|
188 * ( c -s ) ( a ) ( r ) |
|
189 * ( ) ( ) = ( ) , |
|
190 * ( s c ) ( b ) ( 0 ) |
|
191 * |
|
192 * where a and b are given scalars. |
|
193 * |
|
194 * REFERENCES |
|
195 * |
|
196 * G.H.Golub, C.F.Van Loan, "Matrix Computations", 2nd ed. */ |
|
197 |
|
198 static void givens(double a, double b, double *c, double *s) |
|
199 { double t; |
|
200 if (b == 0.0) |
|
201 (*c) = 1.0, (*s) = 0.0; |
|
202 else if (fabs(a) <= fabs(b)) |
|
203 t = - a / b, (*s) = 1.0 / sqrt(1.0 + t * t), (*c) = (*s) * t; |
|
204 else |
|
205 t = - b / a, (*c) = 1.0 / sqrt(1.0 + t * t), (*s) = (*c) * t; |
|
206 return; |
|
207 } |
|
208 |
|
209 /*---------------------------------------------------------------------- |
|
210 * The routine gr_transform applies Givens plane rotations to restore |
|
211 * triangular structure of matrix U. |
|
212 * |
|
213 * On entry matrix U has the following structure: |
|
214 * |
|
215 * 1 k n |
|
216 * 1 * * * * * * * * * * |
|
217 * . * * * * * * * * * |
|
218 * . . * * * * * * * * |
|
219 * . . . * * * * * * * |
|
220 * k . . . . * * * * * * |
|
221 * . . . . . * * * * * |
|
222 * . . . . . . * * * * |
|
223 * . . . . . . . * * * |
|
224 * . . . . . . . . * * |
|
225 * n . . . . # # # # # # |
|
226 * |
|
227 * where '#' is a row spike to be eliminated. |
|
228 * |
|
229 * Elements of n-th row are passed separately in locations un[k], ..., |
|
230 * un[n]. On exit the content of the array un is destroyed. |
|
231 * |
|
232 * REFERENCES |
|
233 * |
|
234 * R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming |
|
235 * Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */ |
|
236 |
|
237 static void gr_transform(SCF *scf, int k, double un[]) |
|
238 { int n = scf->n; |
|
239 double *f = scf->f; |
|
240 double *u = scf->u; |
|
241 int j, k1, kj, kk, n1, nj; |
|
242 double c, s; |
|
243 xassert(1 <= k && k <= n); |
|
244 /* main elimination loop */ |
|
245 for (k = k; k < n; k++) |
|
246 { /* determine location of U[k,k] */ |
|
247 kk = u_loc(scf, k, k); |
|
248 /* determine location of F[k,1] */ |
|
249 k1 = f_loc(scf, k, 1); |
|
250 /* determine location of F[n,1] */ |
|
251 n1 = f_loc(scf, n, 1); |
|
252 /* if both U[k,k] and U[n,k] are too small in the magnitude, |
|
253 replace them by exact zero */ |
|
254 if (fabs(u[kk]) < eps && fabs(un[k]) < eps) |
|
255 u[kk] = un[k] = 0.0; |
|
256 /* if U[n,k] is already zero, elimination is not needed */ |
|
257 if (un[k] == 0.0) continue; |
|
258 /* compute the parameters of Givens plane rotation */ |
|
259 givens(u[kk], un[k], &c, &s); |
|
260 /* apply Givens rotation to k-th and n-th rows of matrix U */ |
|
261 for (j = k, kj = kk; j <= n; j++, kj++) |
|
262 { double ukj = u[kj], unj = un[j]; |
|
263 u[kj] = c * ukj - s * unj; |
|
264 un[j] = s * ukj + c * unj; |
|
265 } |
|
266 /* apply Givens rotation to k-th and n-th rows of matrix F |
|
267 to keep the main equality F * C = U * P */ |
|
268 for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++) |
|
269 { double fkj = f[kj], fnj = f[nj]; |
|
270 f[kj] = c * fkj - s * fnj; |
|
271 f[nj] = s * fkj + c * fnj; |
|
272 } |
|
273 } |
|
274 /* if U[n,n] is too small in the magnitude, replace it by exact |
|
275 zero */ |
|
276 if (fabs(un[n]) < eps) un[n] = 0.0; |
|
277 /* store U[n,n] in a proper location */ |
|
278 u[u_loc(scf, n, n)] = un[n]; |
|
279 return; |
|
280 } |
|
281 |
|
282 /*********************************************************************** |
|
283 * The routine transform restores triangular structure of matrix U. |
|
284 * It is a driver to the routines bg_transform and gr_transform (see |
|
285 * comments to these routines above). */ |
|
286 |
|
287 static void transform(SCF *scf, int k, double un[]) |
|
288 { switch (scf->t_opt) |
|
289 { case SCF_TBG: |
|
290 bg_transform(scf, k, un); |
|
291 break; |
|
292 case SCF_TGR: |
|
293 gr_transform(scf, k, un); |
|
294 break; |
|
295 default: |
|
296 xassert(scf != scf); |
|
297 } |
|
298 return; |
|
299 } |
|
300 |
|
301 /*********************************************************************** |
|
302 * The routine estimate_rank estimates the rank of matrix C. |
|
303 * |
|
304 * Since all transformations applied to matrix F are non-singular, |
|
305 * and F is assumed to be well conditioned, from the main equaility |
|
306 * F * C = U * P it follows that rank(C) = rank(U), where rank(U) is |
|
307 * estimated as the number of non-zero diagonal elements of U. */ |
|
308 |
|
309 static int estimate_rank(SCF *scf) |
|
310 { int n_max = scf->n_max; |
|
311 int n = scf->n; |
|
312 double *u = scf->u; |
|
313 int i, ii, inc, rank = 0; |
|
314 for (i = 1, ii = u_loc(scf, i, i), inc = n_max; i <= n; |
|
315 i++, ii += inc, inc--) |
|
316 if (u[ii] != 0.0) rank++; |
|
317 return rank; |
|
318 } |
|
319 |
|
320 #if _GLPSCF_DEBUG |
|
321 /*********************************************************************** |
|
322 * The routine check_error computes the maximal relative error between |
|
323 * left- and right-hand sides of the main equality F * C = U * P. (This |
|
324 * routine is intended only for debugging.) */ |
|
325 |
|
326 static void check_error(SCF *scf, const char *func) |
|
327 { int n = scf->n; |
|
328 double *f = scf->f; |
|
329 double *u = scf->u; |
|
330 int *p = scf->p; |
|
331 double *c = scf->c; |
|
332 int i, j, k; |
|
333 double d, dmax = 0.0, s, t; |
|
334 xassert(c != NULL); |
|
335 for (i = 1; i <= n; i++) |
|
336 { for (j = 1; j <= n; j++) |
|
337 { /* compute element (i,j) of product F * C */ |
|
338 s = 0.0; |
|
339 for (k = 1; k <= n; k++) |
|
340 s += f[f_loc(scf, i, k)] * c[f_loc(scf, k, j)]; |
|
341 /* compute element (i,j) of product U * P */ |
|
342 k = p[j]; |
|
343 t = (i <= k ? u[u_loc(scf, i, k)] : 0.0); |
|
344 /* compute the maximal relative error */ |
|
345 d = fabs(s - t) / (1.0 + fabs(t)); |
|
346 if (dmax < d) dmax = d; |
|
347 } |
|
348 } |
|
349 if (dmax > 1e-8) |
|
350 xprintf("%s: dmax = %g; relative error too large\n", func, |
|
351 dmax); |
|
352 return; |
|
353 } |
|
354 #endif |
|
355 |
|
356 /*********************************************************************** |
|
357 * NAME |
|
358 * |
|
359 * scf_update_exp - update factorization on expanding C |
|
360 * |
|
361 * SYNOPSIS |
|
362 * |
|
363 * #include "glpscf.h" |
|
364 * int scf_update_exp(SCF *scf, const double x[], const double y[], |
|
365 * double z); |
|
366 * |
|
367 * DESCRIPTION |
|
368 * |
|
369 * The routine scf_update_exp updates the factorization of matrix C on |
|
370 * expanding it by adding a new row and column as follows: |
|
371 * |
|
372 * ( C x ) |
|
373 * new C = ( ) |
|
374 * ( y' z ) |
|
375 * |
|
376 * where x[1,...,n] is a new column, y[1,...,n] is a new row, and z is |
|
377 * a new diagonal element. |
|
378 * |
|
379 * If on entry the factorization is empty, the parameters x and y can |
|
380 * be specified as NULL. |
|
381 * |
|
382 * RETURNS |
|
383 * |
|
384 * 0 The factorization has been successfully updated. |
|
385 * |
|
386 * SCF_ESING |
|
387 * The factorization has been successfully updated, however, new |
|
388 * matrix C is singular within working precision. Note that the new |
|
389 * factorization remains valid. |
|
390 * |
|
391 * SCF_ELIMIT |
|
392 * There is not enough room to expand the factorization, because |
|
393 * n = n_max. The factorization remains unchanged. |
|
394 * |
|
395 * ALGORITHM |
|
396 * |
|
397 * We can see that: |
|
398 * |
|
399 * ( F 0 ) ( C x ) ( FC Fx ) ( UP Fx ) |
|
400 * ( ) ( ) = ( ) = ( ) = |
|
401 * ( 0 1 ) ( y' z ) ( y' z ) ( y' z ) |
|
402 * |
|
403 * ( U Fx ) ( P 0 ) |
|
404 * = ( ) ( ), |
|
405 * ( y'P' z ) ( 0 1 ) |
|
406 * |
|
407 * therefore to keep the main equality F * C = U * P we can take: |
|
408 * |
|
409 * ( F 0 ) ( U Fx ) ( P 0 ) |
|
410 * new F = ( ), new U = ( ), new P = ( ), |
|
411 * ( 0 1 ) ( y'P' z ) ( 0 1 ) |
|
412 * |
|
413 * and eliminate the row spike y'P' in the last row of new U to restore |
|
414 * its upper triangular structure. */ |
|
415 |
|
416 int scf_update_exp(SCF *scf, const double x[], const double y[], |
|
417 double z) |
|
418 { int n_max = scf->n_max; |
|
419 int n = scf->n; |
|
420 double *f = scf->f; |
|
421 double *u = scf->u; |
|
422 int *p = scf->p; |
|
423 #if _GLPSCF_DEBUG |
|
424 double *c = scf->c; |
|
425 #endif |
|
426 double *un = scf->w; |
|
427 int i, ij, in, j, k, nj, ret = 0; |
|
428 double t; |
|
429 /* check if the factorization can be expanded */ |
|
430 if (n == n_max) |
|
431 { /* there is not enough room */ |
|
432 ret = SCF_ELIMIT; |
|
433 goto done; |
|
434 } |
|
435 /* increase the order of the factorization */ |
|
436 scf->n = ++n; |
|
437 /* fill new zero column of matrix F */ |
|
438 for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max) |
|
439 f[in] = 0.0; |
|
440 /* fill new zero row of matrix F */ |
|
441 for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++) |
|
442 f[nj] = 0.0; |
|
443 /* fill new unity diagonal element of matrix F */ |
|
444 f[f_loc(scf, n, n)] = 1.0; |
|
445 /* compute new column of matrix U, which is (old F) * x */ |
|
446 for (i = 1; i < n; i++) |
|
447 { /* u[i,n] := (i-th row of old F) * x */ |
|
448 t = 0.0; |
|
449 for (j = 1, ij = f_loc(scf, i, 1); j < n; j++, ij++) |
|
450 t += f[ij] * x[j]; |
|
451 u[u_loc(scf, i, n)] = t; |
|
452 } |
|
453 /* compute new (spiked) row of matrix U, which is (old P) * y */ |
|
454 for (j = 1; j < n; j++) un[j] = y[p[j]]; |
|
455 /* store new diagonal element of matrix U, which is z */ |
|
456 un[n] = z; |
|
457 /* expand matrix P */ |
|
458 p[n] = n; |
|
459 #if _GLPSCF_DEBUG |
|
460 /* expand matrix C */ |
|
461 /* fill its new column, which is x */ |
|
462 for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max) |
|
463 c[in] = x[i]; |
|
464 /* fill its new row, which is y */ |
|
465 for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++) |
|
466 c[nj] = y[j]; |
|
467 /* fill its new diagonal element, which is z */ |
|
468 c[f_loc(scf, n, n)] = z; |
|
469 #endif |
|
470 /* restore upper triangular structure of matrix U */ |
|
471 for (k = 1; k < n; k++) |
|
472 if (un[k] != 0.0) break; |
|
473 transform(scf, k, un); |
|
474 /* estimate the rank of matrices C and U */ |
|
475 scf->rank = estimate_rank(scf); |
|
476 if (scf->rank != n) ret = SCF_ESING; |
|
477 #if _GLPSCF_DEBUG |
|
478 /* check that the factorization is accurate enough */ |
|
479 check_error(scf, "scf_update_exp"); |
|
480 #endif |
|
481 done: return ret; |
|
482 } |
|
483 |
|
484 /*********************************************************************** |
|
485 * The routine solve solves the system C * x = b. |
|
486 * |
|
487 * From the main equation F * C = U * P it follows that: |
|
488 * |
|
489 * C * x = b => F * C * x = F * b => U * P * x = F * b => |
|
490 * |
|
491 * P * x = inv(U) * F * b => x = P' * inv(U) * F * b. |
|
492 * |
|
493 * On entry the array x contains right-hand side vector b. On exit this |
|
494 * array contains solution vector x. */ |
|
495 |
|
496 static void solve(SCF *scf, double x[]) |
|
497 { int n = scf->n; |
|
498 double *f = scf->f; |
|
499 double *u = scf->u; |
|
500 int *p = scf->p; |
|
501 double *y = scf->w; |
|
502 int i, j, ij; |
|
503 double t; |
|
504 /* y := F * b */ |
|
505 for (i = 1; i <= n; i++) |
|
506 { /* y[i] = (i-th row of F) * b */ |
|
507 t = 0.0; |
|
508 for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++) |
|
509 t += f[ij] * x[j]; |
|
510 y[i] = t; |
|
511 } |
|
512 /* y := inv(U) * y */ |
|
513 for (i = n; i >= 1; i--) |
|
514 { t = y[i]; |
|
515 for (j = n, ij = u_loc(scf, i, n); j > i; j--, ij--) |
|
516 t -= u[ij] * y[j]; |
|
517 y[i] = t / u[ij]; |
|
518 } |
|
519 /* x := P' * y */ |
|
520 for (i = 1; i <= n; i++) x[p[i]] = y[i]; |
|
521 return; |
|
522 } |
|
523 |
|
524 /*********************************************************************** |
|
525 * The routine tsolve solves the transposed system C' * x = b. |
|
526 * |
|
527 * From the main equation F * C = U * P it follows that: |
|
528 * |
|
529 * C' * F' = P' * U', |
|
530 * |
|
531 * therefore: |
|
532 * |
|
533 * C' * x = b => C' * F' * inv(F') * x = b => |
|
534 * |
|
535 * P' * U' * inv(F') * x = b => U' * inv(F') * x = P * b => |
|
536 * |
|
537 * inv(F') * x = inv(U') * P * b => x = F' * inv(U') * P * b. |
|
538 * |
|
539 * On entry the array x contains right-hand side vector b. On exit this |
|
540 * array contains solution vector x. */ |
|
541 |
|
542 static void tsolve(SCF *scf, double x[]) |
|
543 { int n = scf->n; |
|
544 double *f = scf->f; |
|
545 double *u = scf->u; |
|
546 int *p = scf->p; |
|
547 double *y = scf->w; |
|
548 int i, j, ij; |
|
549 double t; |
|
550 /* y := P * b */ |
|
551 for (i = 1; i <= n; i++) y[i] = x[p[i]]; |
|
552 /* y := inv(U') * y */ |
|
553 for (i = 1; i <= n; i++) |
|
554 { /* compute y[i] */ |
|
555 ij = u_loc(scf, i, i); |
|
556 t = (y[i] /= u[ij]); |
|
557 /* substitute y[i] in other equations */ |
|
558 for (j = i+1, ij++; j <= n; j++, ij++) |
|
559 y[j] -= u[ij] * t; |
|
560 } |
|
561 /* x := F' * y (computed as linear combination of rows of F) */ |
|
562 for (j = 1; j <= n; j++) x[j] = 0.0; |
|
563 for (i = 1; i <= n; i++) |
|
564 { t = y[i]; /* coefficient of linear combination */ |
|
565 for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++) |
|
566 x[j] += f[ij] * t; |
|
567 } |
|
568 return; |
|
569 } |
|
570 |
|
571 /*********************************************************************** |
|
572 * NAME |
|
573 * |
|
574 * scf_solve_it - solve either system C * x = b or C' * x = b |
|
575 * |
|
576 * SYNOPSIS |
|
577 * |
|
578 * #include "glpscf.h" |
|
579 * void scf_solve_it(SCF *scf, int tr, double x[]); |
|
580 * |
|
581 * DESCRIPTION |
|
582 * |
|
583 * The routine scf_solve_it solves either the system C * x = b (if tr |
|
584 * is zero) or the system C' * x = b, where C' is a matrix transposed |
|
585 * to C (if tr is non-zero). C is assumed to be non-singular. |
|
586 * |
|
587 * On entry the array x should contain the right-hand side vector b in |
|
588 * locations x[1], ..., x[n], where n is the order of matrix C. On exit |
|
589 * the array x contains the solution vector x in the same locations. */ |
|
590 |
|
591 void scf_solve_it(SCF *scf, int tr, double x[]) |
|
592 { if (scf->rank < scf->n) |
|
593 xfault("scf_solve_it: singular matrix\n"); |
|
594 if (!tr) |
|
595 solve(scf, x); |
|
596 else |
|
597 tsolve(scf, x); |
|
598 return; |
|
599 } |
|
600 |
|
601 void scf_reset_it(SCF *scf) |
|
602 { /* reset factorization for empty matrix C */ |
|
603 scf->n = scf->rank = 0; |
|
604 return; |
|
605 } |
|
606 |
|
607 /*********************************************************************** |
|
608 * NAME |
|
609 * |
|
610 * scf_delete_it - delete Schur complement factorization |
|
611 * |
|
612 * SYNOPSIS |
|
613 * |
|
614 * #include "glpscf.h" |
|
615 * void scf_delete_it(SCF *scf); |
|
616 * |
|
617 * DESCRIPTION |
|
618 * |
|
619 * The routine scf_delete_it deletes the specified factorization and |
|
620 * frees all the memory allocated to this object. */ |
|
621 |
|
622 void scf_delete_it(SCF *scf) |
|
623 { xfree(scf->f); |
|
624 xfree(scf->u); |
|
625 xfree(scf->p); |
|
626 #if _GLPSCF_DEBUG |
|
627 xfree(scf->c); |
|
628 #endif |
|
629 xfree(scf->w); |
|
630 xfree(scf); |
|
631 return; |
|
632 } |
|
633 |
|
634 /* eof */ |