src/glpscf.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
/* glpscf.c (Schur complement factorization) */
alpar@1
     2
alpar@1
     3
/***********************************************************************
alpar@1
     4
*  This code is part of GLPK (GNU Linear Programming Kit).
alpar@1
     5
*
alpar@1
     6
*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@1
     7
*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
alpar@1
     8
*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@1
     9
*  E-mail: <mao@gnu.org>.
alpar@1
    10
*
alpar@1
    11
*  GLPK is free software: you can redistribute it and/or modify it
alpar@1
    12
*  under the terms of the GNU General Public License as published by
alpar@1
    13
*  the Free Software Foundation, either version 3 of the License, or
alpar@1
    14
*  (at your option) any later version.
alpar@1
    15
*
alpar@1
    16
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@1
    17
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@1
    18
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@1
    19
*  License for more details.
alpar@1
    20
*
alpar@1
    21
*  You should have received a copy of the GNU General Public License
alpar@1
    22
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@1
    23
***********************************************************************/
alpar@1
    24
alpar@1
    25
#include "glpenv.h"
alpar@1
    26
#include "glpscf.h"
alpar@1
    27
#define xfault xerror
alpar@1
    28
alpar@1
    29
#define _GLPSCF_DEBUG 0
alpar@1
    30
alpar@1
    31
#define eps 1e-10
alpar@1
    32
alpar@1
    33
/***********************************************************************
alpar@1
    34
*  NAME
alpar@1
    35
*
alpar@1
    36
*  scf_create_it - create Schur complement factorization
alpar@1
    37
*
alpar@1
    38
*  SYNOPSIS
alpar@1
    39
*
alpar@1
    40
*  #include "glpscf.h"
alpar@1
    41
*  SCF *scf_create_it(int n_max);
alpar@1
    42
*
alpar@1
    43
*  DESCRIPTION
alpar@1
    44
*
alpar@1
    45
*  The routine scf_create_it creates the factorization of matrix C,
alpar@1
    46
*  which initially has no rows and columns.
alpar@1
    47
*
alpar@1
    48
*  The parameter n_max specifies the maximal order of matrix C to be
alpar@1
    49
*  factorized, 1 <= n_max <= 32767.
alpar@1
    50
*
alpar@1
    51
*  RETURNS
alpar@1
    52
*
alpar@1
    53
*  The routine scf_create_it returns a pointer to the structure SCF,
alpar@1
    54
*  which defines the factorization. */
alpar@1
    55
alpar@1
    56
SCF *scf_create_it(int n_max)
alpar@1
    57
{     SCF *scf;
alpar@1
    58
#if _GLPSCF_DEBUG
alpar@1
    59
      xprintf("scf_create_it: warning: debug mode enabled\n");
alpar@1
    60
#endif
alpar@1
    61
      if (!(1 <= n_max && n_max <= 32767))
alpar@1
    62
         xfault("scf_create_it: n_max = %d; invalid parameter\n",
alpar@1
    63
            n_max);
alpar@1
    64
      scf = xmalloc(sizeof(SCF));
alpar@1
    65
      scf->n_max = n_max;
alpar@1
    66
      scf->n = 0;
alpar@1
    67
      scf->f = xcalloc(1 + n_max * n_max, sizeof(double));
alpar@1
    68
      scf->u = xcalloc(1 + n_max * (n_max + 1) / 2, sizeof(double));
alpar@1
    69
      scf->p = xcalloc(1 + n_max, sizeof(int));
alpar@1
    70
      scf->t_opt = SCF_TBG;
alpar@1
    71
      scf->rank = 0;
alpar@1
    72
#if _GLPSCF_DEBUG
alpar@1
    73
      scf->c = xcalloc(1 + n_max * n_max, sizeof(double));
alpar@1
    74
#else
alpar@1
    75
      scf->c = NULL;
alpar@1
    76
#endif
alpar@1
    77
      scf->w = xcalloc(1 + n_max, sizeof(double));
alpar@1
    78
      return scf;
alpar@1
    79
}
alpar@1
    80
alpar@1
    81
/***********************************************************************
alpar@1
    82
*  The routine f_loc determines location of matrix element F[i,j] in
alpar@1
    83
*  the one-dimensional array f. */
alpar@1
    84
alpar@1
    85
static int f_loc(SCF *scf, int i, int j)
alpar@1
    86
{     int n_max = scf->n_max;
alpar@1
    87
      int n = scf->n;
alpar@1
    88
      xassert(1 <= i && i <= n);
alpar@1
    89
      xassert(1 <= j && j <= n);
alpar@1
    90
      return (i - 1) * n_max + j;
alpar@1
    91
}
alpar@1
    92
alpar@1
    93
/***********************************************************************
alpar@1
    94
*  The routine u_loc determines location of matrix element U[i,j] in
alpar@1
    95
*  the one-dimensional array u. */
alpar@1
    96
alpar@1
    97
static int u_loc(SCF *scf, int i, int j)
alpar@1
    98
{     int n_max = scf->n_max;
alpar@1
    99
      int n = scf->n;
alpar@1
   100
      xassert(1 <= i && i <= n);
alpar@1
   101
      xassert(i <= j && j <= n);
alpar@1
   102
      return (i - 1) * n_max + j - i * (i - 1) / 2;
alpar@1
   103
}
alpar@1
   104
alpar@1
   105
/***********************************************************************
alpar@1
   106
*  The routine bg_transform applies Bartels-Golub version of gaussian
alpar@1
   107
*  elimination to restore triangular structure of matrix U.
alpar@1
   108
*
alpar@1
   109
*  On entry matrix U has the following structure:
alpar@1
   110
*
alpar@1
   111
*        1       k         n
alpar@1
   112
*     1  * * * * * * * * * *
alpar@1
   113
*        . * * * * * * * * *
alpar@1
   114
*        . . * * * * * * * *
alpar@1
   115
*        . . . * * * * * * *
alpar@1
   116
*     k  . . . . * * * * * *
alpar@1
   117
*        . . . . . * * * * *
alpar@1
   118
*        . . . . . . * * * *
alpar@1
   119
*        . . . . . . . * * *
alpar@1
   120
*        . . . . . . . . * *
alpar@1
   121
*     n  . . . . # # # # # #
alpar@1
   122
*
alpar@1
   123
*  where '#' is a row spike to be eliminated.
alpar@1
   124
*
alpar@1
   125
*  Elements of n-th row are passed separately in locations un[k], ...,
alpar@1
   126
*  un[n]. On exit the content of the array un is destroyed.
alpar@1
   127
*
alpar@1
   128
*  REFERENCES
alpar@1
   129
*
alpar@1
   130
*  R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming
alpar@1
   131
*  Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */
alpar@1
   132
alpar@1
   133
static void bg_transform(SCF *scf, int k, double un[])
alpar@1
   134
{     int n = scf->n;
alpar@1
   135
      double *f = scf->f;
alpar@1
   136
      double *u = scf->u;
alpar@1
   137
      int j, k1, kj, kk, n1, nj;
alpar@1
   138
      double t;
alpar@1
   139
      xassert(1 <= k && k <= n);
alpar@1
   140
      /* main elimination loop */
alpar@1
   141
      for (k = k; k < n; k++)
alpar@1
   142
      {  /* determine location of U[k,k] */
alpar@1
   143
         kk = u_loc(scf, k, k);
alpar@1
   144
         /* determine location of F[k,1] */
alpar@1
   145
         k1 = f_loc(scf, k, 1);
alpar@1
   146
         /* determine location of F[n,1] */
alpar@1
   147
         n1 = f_loc(scf, n, 1);
alpar@1
   148
         /* if |U[k,k]| < |U[n,k]|, interchange k-th and n-th rows to
alpar@1
   149
            provide |U[k,k]| >= |U[n,k]| */
alpar@1
   150
         if (fabs(u[kk]) < fabs(un[k]))
alpar@1
   151
         {  /* interchange k-th and n-th rows of matrix U */
alpar@1
   152
            for (j = k, kj = kk; j <= n; j++, kj++)
alpar@1
   153
               t = u[kj], u[kj] = un[j], un[j] = t;
alpar@1
   154
            /* interchange k-th and n-th rows of matrix F to keep the
alpar@1
   155
               main equality F * C = U * P */
alpar@1
   156
            for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
alpar@1
   157
               t = f[kj], f[kj] = f[nj], f[nj] = t;
alpar@1
   158
         }
alpar@1
   159
         /* now |U[k,k]| >= |U[n,k]| */
alpar@1
   160
         /* if U[k,k] is too small in the magnitude, replace U[k,k] and
alpar@1
   161
            U[n,k] by exact zero */
alpar@1
   162
         if (fabs(u[kk]) < eps) u[kk] = un[k] = 0.0;
alpar@1
   163
         /* if U[n,k] is already zero, elimination is not needed */
alpar@1
   164
         if (un[k] == 0.0) continue;
alpar@1
   165
         /* compute gaussian multiplier t = U[n,k] / U[k,k] */
alpar@1
   166
         t = un[k] / u[kk];
alpar@1
   167
         /* apply gaussian elimination to nullify U[n,k] */
alpar@1
   168
         /* (n-th row of U) := (n-th row of U) - t * (k-th row of U) */
alpar@1
   169
         for (j = k+1, kj = kk+1; j <= n; j++, kj++)
alpar@1
   170
            un[j] -= t * u[kj];
alpar@1
   171
         /* (n-th row of F) := (n-th row of F) - t * (k-th row of F)
alpar@1
   172
            to keep the main equality F * C = U * P */
alpar@1
   173
         for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
alpar@1
   174
            f[nj] -= t * f[kj];
alpar@1
   175
      }
alpar@1
   176
      /* if U[n,n] is too small in the magnitude, replace it by exact
alpar@1
   177
         zero */
alpar@1
   178
      if (fabs(un[n]) < eps) un[n] = 0.0;
alpar@1
   179
      /* store U[n,n] in a proper location */
alpar@1
   180
      u[u_loc(scf, n, n)] = un[n];
alpar@1
   181
      return;
alpar@1
   182
}
alpar@1
   183
alpar@1
   184
/***********************************************************************
alpar@1
   185
*  The routine givens computes the parameters of Givens plane rotation
alpar@1
   186
*  c = cos(teta) and s = sin(teta) such that:
alpar@1
   187
*
alpar@1
   188
*     ( c -s ) ( a )   ( r )
alpar@1
   189
*     (      ) (   ) = (   ) ,
alpar@1
   190
*     ( s  c ) ( b )   ( 0 )
alpar@1
   191
*
alpar@1
   192
*  where a and b are given scalars.
alpar@1
   193
*
alpar@1
   194
*  REFERENCES
alpar@1
   195
*
alpar@1
   196
*  G.H.Golub, C.F.Van Loan, "Matrix Computations", 2nd ed. */
alpar@1
   197
alpar@1
   198
static void givens(double a, double b, double *c, double *s)
alpar@1
   199
{     double t;
alpar@1
   200
      if (b == 0.0)
alpar@1
   201
         (*c) = 1.0, (*s) = 0.0;
alpar@1
   202
      else if (fabs(a) <= fabs(b))
alpar@1
   203
         t = - a / b, (*s) = 1.0 / sqrt(1.0 + t * t), (*c) = (*s) * t;
alpar@1
   204
      else
alpar@1
   205
         t = - b / a, (*c) = 1.0 / sqrt(1.0 + t * t), (*s) = (*c) * t;
alpar@1
   206
      return;
alpar@1
   207
}
alpar@1
   208
alpar@1
   209
/*----------------------------------------------------------------------
alpar@1
   210
*  The routine gr_transform applies Givens plane rotations to restore
alpar@1
   211
*  triangular structure of matrix U.
alpar@1
   212
*
alpar@1
   213
*  On entry matrix U has the following structure:
alpar@1
   214
*
alpar@1
   215
*        1       k         n
alpar@1
   216
*     1  * * * * * * * * * *
alpar@1
   217
*        . * * * * * * * * *
alpar@1
   218
*        . . * * * * * * * *
alpar@1
   219
*        . . . * * * * * * *
alpar@1
   220
*     k  . . . . * * * * * *
alpar@1
   221
*        . . . . . * * * * *
alpar@1
   222
*        . . . . . . * * * *
alpar@1
   223
*        . . . . . . . * * *
alpar@1
   224
*        . . . . . . . . * *
alpar@1
   225
*     n  . . . . # # # # # #
alpar@1
   226
*
alpar@1
   227
*  where '#' is a row spike to be eliminated.
alpar@1
   228
*
alpar@1
   229
*  Elements of n-th row are passed separately in locations un[k], ...,
alpar@1
   230
*  un[n]. On exit the content of the array un is destroyed.
alpar@1
   231
*
alpar@1
   232
*  REFERENCES
alpar@1
   233
*
alpar@1
   234
*  R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming
alpar@1
   235
*  Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */
alpar@1
   236
alpar@1
   237
static void gr_transform(SCF *scf, int k, double un[])
alpar@1
   238
{     int n = scf->n;
alpar@1
   239
      double *f = scf->f;
alpar@1
   240
      double *u = scf->u;
alpar@1
   241
      int j, k1, kj, kk, n1, nj;
alpar@1
   242
      double c, s;
alpar@1
   243
      xassert(1 <= k && k <= n);
alpar@1
   244
      /* main elimination loop */
alpar@1
   245
      for (k = k; k < n; k++)
alpar@1
   246
      {  /* determine location of U[k,k] */
alpar@1
   247
         kk = u_loc(scf, k, k);
alpar@1
   248
         /* determine location of F[k,1] */
alpar@1
   249
         k1 = f_loc(scf, k, 1);
alpar@1
   250
         /* determine location of F[n,1] */
alpar@1
   251
         n1 = f_loc(scf, n, 1);
alpar@1
   252
         /* if both U[k,k] and U[n,k] are too small in the magnitude,
alpar@1
   253
            replace them by exact zero */
alpar@1
   254
         if (fabs(u[kk]) < eps && fabs(un[k]) < eps)
alpar@1
   255
            u[kk] = un[k] = 0.0;
alpar@1
   256
         /* if U[n,k] is already zero, elimination is not needed */
alpar@1
   257
         if (un[k] == 0.0) continue;
alpar@1
   258
         /* compute the parameters of Givens plane rotation */
alpar@1
   259
         givens(u[kk], un[k], &c, &s);
alpar@1
   260
         /* apply Givens rotation to k-th and n-th rows of matrix U */
alpar@1
   261
         for (j = k, kj = kk; j <= n; j++, kj++)
alpar@1
   262
         {  double ukj = u[kj], unj = un[j];
alpar@1
   263
            u[kj] = c * ukj - s * unj;
alpar@1
   264
            un[j] = s * ukj + c * unj;
alpar@1
   265
         }
alpar@1
   266
         /* apply Givens rotation to k-th and n-th rows of matrix F
alpar@1
   267
            to keep the main equality F * C = U * P */
alpar@1
   268
         for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
alpar@1
   269
         {  double fkj = f[kj], fnj = f[nj];
alpar@1
   270
            f[kj] = c * fkj - s * fnj;
alpar@1
   271
            f[nj] = s * fkj + c * fnj;
alpar@1
   272
         }
alpar@1
   273
      }
alpar@1
   274
      /* if U[n,n] is too small in the magnitude, replace it by exact
alpar@1
   275
         zero */
alpar@1
   276
      if (fabs(un[n]) < eps) un[n] = 0.0;
alpar@1
   277
      /* store U[n,n] in a proper location */
alpar@1
   278
      u[u_loc(scf, n, n)] = un[n];
alpar@1
   279
      return;
alpar@1
   280
}
alpar@1
   281
alpar@1
   282
/***********************************************************************
alpar@1
   283
*  The routine transform restores triangular structure of matrix U.
alpar@1
   284
*  It is a driver to the routines bg_transform and gr_transform (see
alpar@1
   285
*  comments to these routines above). */
alpar@1
   286
alpar@1
   287
static void transform(SCF *scf, int k, double un[])
alpar@1
   288
{     switch (scf->t_opt)
alpar@1
   289
      {  case SCF_TBG:
alpar@1
   290
            bg_transform(scf, k, un);
alpar@1
   291
            break;
alpar@1
   292
         case SCF_TGR:
alpar@1
   293
            gr_transform(scf, k, un);
alpar@1
   294
            break;
alpar@1
   295
         default:
alpar@1
   296
            xassert(scf != scf);
alpar@1
   297
      }
alpar@1
   298
      return;
alpar@1
   299
}
alpar@1
   300
alpar@1
   301
/***********************************************************************
alpar@1
   302
*  The routine estimate_rank estimates the rank of matrix C.
alpar@1
   303
*
alpar@1
   304
*  Since all transformations applied to matrix F are non-singular,
alpar@1
   305
*  and F is assumed to be well conditioned, from the main equaility
alpar@1
   306
*  F * C = U * P it follows that rank(C) = rank(U), where rank(U) is
alpar@1
   307
*  estimated as the number of non-zero diagonal elements of U. */
alpar@1
   308
alpar@1
   309
static int estimate_rank(SCF *scf)
alpar@1
   310
{     int n_max = scf->n_max;
alpar@1
   311
      int n = scf->n;
alpar@1
   312
      double *u = scf->u;
alpar@1
   313
      int i, ii, inc, rank = 0;
alpar@1
   314
      for (i = 1, ii = u_loc(scf, i, i), inc = n_max; i <= n;
alpar@1
   315
         i++, ii += inc, inc--)
alpar@1
   316
         if (u[ii] != 0.0) rank++;
alpar@1
   317
      return rank;
alpar@1
   318
}
alpar@1
   319
alpar@1
   320
#if _GLPSCF_DEBUG
alpar@1
   321
/***********************************************************************
alpar@1
   322
*  The routine check_error computes the maximal relative error between
alpar@1
   323
*  left- and right-hand sides of the main equality F * C = U * P. (This
alpar@1
   324
*  routine is intended only for debugging.) */
alpar@1
   325
alpar@1
   326
static void check_error(SCF *scf, const char *func)
alpar@1
   327
{     int n = scf->n;
alpar@1
   328
      double *f = scf->f;
alpar@1
   329
      double *u = scf->u;
alpar@1
   330
      int *p = scf->p;
alpar@1
   331
      double *c = scf->c;
alpar@1
   332
      int i, j, k;
alpar@1
   333
      double d, dmax = 0.0, s, t;
alpar@1
   334
      xassert(c != NULL);
alpar@1
   335
      for (i = 1; i <= n; i++)
alpar@1
   336
      {  for (j = 1; j <= n; j++)
alpar@1
   337
         {  /* compute element (i,j) of product F * C */
alpar@1
   338
            s = 0.0;
alpar@1
   339
            for (k = 1; k <= n; k++)
alpar@1
   340
               s += f[f_loc(scf, i, k)] * c[f_loc(scf, k, j)];
alpar@1
   341
            /* compute element (i,j) of product U * P */
alpar@1
   342
            k = p[j];
alpar@1
   343
            t = (i <= k ? u[u_loc(scf, i, k)] : 0.0);
alpar@1
   344
            /* compute the maximal relative error */
alpar@1
   345
            d = fabs(s - t) / (1.0 + fabs(t));
alpar@1
   346
            if (dmax < d) dmax = d;
alpar@1
   347
         }
alpar@1
   348
      }
alpar@1
   349
      if (dmax > 1e-8)
alpar@1
   350
         xprintf("%s: dmax = %g; relative error too large\n", func,
alpar@1
   351
            dmax);
alpar@1
   352
      return;
alpar@1
   353
}
alpar@1
   354
#endif
alpar@1
   355
alpar@1
   356
/***********************************************************************
alpar@1
   357
*  NAME
alpar@1
   358
*
alpar@1
   359
*  scf_update_exp - update factorization on expanding C
alpar@1
   360
*
alpar@1
   361
*  SYNOPSIS
alpar@1
   362
*
alpar@1
   363
*  #include "glpscf.h"
alpar@1
   364
*  int scf_update_exp(SCF *scf, const double x[], const double y[],
alpar@1
   365
*     double z);
alpar@1
   366
*
alpar@1
   367
*  DESCRIPTION
alpar@1
   368
*
alpar@1
   369
*  The routine scf_update_exp updates the factorization of matrix C on
alpar@1
   370
*  expanding it by adding a new row and column as follows:
alpar@1
   371
*
alpar@1
   372
*             ( C  x )
alpar@1
   373
*     new C = (      )
alpar@1
   374
*             ( y' z )
alpar@1
   375
*
alpar@1
   376
*  where x[1,...,n] is a new column, y[1,...,n] is a new row, and z is
alpar@1
   377
*  a new diagonal element.
alpar@1
   378
*
alpar@1
   379
*  If on entry the factorization is empty, the parameters x and y can
alpar@1
   380
*  be specified as NULL.
alpar@1
   381
*
alpar@1
   382
*  RETURNS
alpar@1
   383
*
alpar@1
   384
*  0  The factorization has been successfully updated.
alpar@1
   385
*
alpar@1
   386
*  SCF_ESING
alpar@1
   387
*     The factorization has been successfully updated, however, new
alpar@1
   388
*     matrix C is singular within working precision. Note that the new
alpar@1
   389
*     factorization remains valid.
alpar@1
   390
*
alpar@1
   391
*  SCF_ELIMIT
alpar@1
   392
*     There is not enough room to expand the factorization, because
alpar@1
   393
*     n = n_max. The factorization remains unchanged.
alpar@1
   394
*
alpar@1
   395
*  ALGORITHM
alpar@1
   396
*
alpar@1
   397
*  We can see that:
alpar@1
   398
*
alpar@1
   399
*     ( F  0 ) ( C  x )   ( FC  Fx )   ( UP  Fx )
alpar@1
   400
*     (      ) (      ) = (        ) = (        ) =
alpar@1
   401
*     ( 0  1 ) ( y' z )   ( y'   z )   ( y'   z )
alpar@1
   402
*
alpar@1
   403
*        ( U   Fx ) ( P  0 )
alpar@1
   404
*     =  (        ) (      ),
alpar@1
   405
*        ( y'P' z ) ( 0  1 )
alpar@1
   406
*
alpar@1
   407
*  therefore to keep the main equality F * C = U * P we can take:
alpar@1
   408
*
alpar@1
   409
*             ( F  0 )           ( U   Fx )           ( P  0 )
alpar@1
   410
*     new F = (      ),  new U = (        ),  new P = (      ),
alpar@1
   411
*             ( 0  1 )           ( y'P' z )           ( 0  1 )
alpar@1
   412
*
alpar@1
   413
*  and eliminate the row spike y'P' in the last row of new U to restore
alpar@1
   414
*  its upper triangular structure. */
alpar@1
   415
alpar@1
   416
int scf_update_exp(SCF *scf, const double x[], const double y[],
alpar@1
   417
      double z)
alpar@1
   418
{     int n_max = scf->n_max;
alpar@1
   419
      int n = scf->n;
alpar@1
   420
      double *f = scf->f;
alpar@1
   421
      double *u = scf->u;
alpar@1
   422
      int *p = scf->p;
alpar@1
   423
#if _GLPSCF_DEBUG
alpar@1
   424
      double *c = scf->c;
alpar@1
   425
#endif
alpar@1
   426
      double *un = scf->w;
alpar@1
   427
      int i, ij, in, j, k, nj, ret = 0;
alpar@1
   428
      double t;
alpar@1
   429
      /* check if the factorization can be expanded */
alpar@1
   430
      if (n == n_max)
alpar@1
   431
      {  /* there is not enough room */
alpar@1
   432
         ret = SCF_ELIMIT;
alpar@1
   433
         goto done;
alpar@1
   434
      }
alpar@1
   435
      /* increase the order of the factorization */
alpar@1
   436
      scf->n = ++n;
alpar@1
   437
      /* fill new zero column of matrix F */
alpar@1
   438
      for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)
alpar@1
   439
         f[in] = 0.0;
alpar@1
   440
      /* fill new zero row of matrix F */
alpar@1
   441
      for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)
alpar@1
   442
         f[nj] = 0.0;
alpar@1
   443
      /* fill new unity diagonal element of matrix F */
alpar@1
   444
      f[f_loc(scf, n, n)] = 1.0;
alpar@1
   445
      /* compute new column of matrix U, which is (old F) * x */
alpar@1
   446
      for (i = 1; i < n; i++)
alpar@1
   447
      {  /* u[i,n] := (i-th row of old F) * x */
alpar@1
   448
         t = 0.0;
alpar@1
   449
         for (j = 1, ij = f_loc(scf, i, 1); j < n; j++, ij++)
alpar@1
   450
            t += f[ij] * x[j];
alpar@1
   451
         u[u_loc(scf, i, n)] = t;
alpar@1
   452
      }
alpar@1
   453
      /* compute new (spiked) row of matrix U, which is (old P) * y */
alpar@1
   454
      for (j = 1; j < n; j++) un[j] = y[p[j]];
alpar@1
   455
      /* store new diagonal element of matrix U, which is z */
alpar@1
   456
      un[n] = z;
alpar@1
   457
      /* expand matrix P */
alpar@1
   458
      p[n] = n;
alpar@1
   459
#if _GLPSCF_DEBUG
alpar@1
   460
      /* expand matrix C */
alpar@1
   461
      /* fill its new column, which is x */
alpar@1
   462
      for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)
alpar@1
   463
         c[in] = x[i];
alpar@1
   464
      /* fill its new row, which is y */
alpar@1
   465
      for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)
alpar@1
   466
         c[nj] = y[j];
alpar@1
   467
      /* fill its new diagonal element, which is z */
alpar@1
   468
      c[f_loc(scf, n, n)] = z;
alpar@1
   469
#endif
alpar@1
   470
      /* restore upper triangular structure of matrix U */
alpar@1
   471
      for (k = 1; k < n; k++)
alpar@1
   472
         if (un[k] != 0.0) break;
alpar@1
   473
      transform(scf, k, un);
alpar@1
   474
      /* estimate the rank of matrices C and U */
alpar@1
   475
      scf->rank = estimate_rank(scf);
alpar@1
   476
      if (scf->rank != n) ret = SCF_ESING;
alpar@1
   477
#if _GLPSCF_DEBUG
alpar@1
   478
      /* check that the factorization is accurate enough */
alpar@1
   479
      check_error(scf, "scf_update_exp");
alpar@1
   480
#endif
alpar@1
   481
done: return ret;
alpar@1
   482
}
alpar@1
   483
alpar@1
   484
/***********************************************************************
alpar@1
   485
*  The routine solve solves the system C * x = b.
alpar@1
   486
*
alpar@1
   487
*  From the main equation F * C = U * P it follows that:
alpar@1
   488
*
alpar@1
   489
*     C * x = b  =>  F * C * x = F * b  =>  U * P * x = F * b  =>
alpar@1
   490
*
alpar@1
   491
*     P * x = inv(U) * F * b  =>  x = P' * inv(U) * F * b.
alpar@1
   492
*
alpar@1
   493
*  On entry the array x contains right-hand side vector b. On exit this
alpar@1
   494
*  array contains solution vector x. */
alpar@1
   495
alpar@1
   496
static void solve(SCF *scf, double x[])
alpar@1
   497
{     int n = scf->n;
alpar@1
   498
      double *f = scf->f;
alpar@1
   499
      double *u = scf->u;
alpar@1
   500
      int *p = scf->p;
alpar@1
   501
      double *y = scf->w;
alpar@1
   502
      int i, j, ij;
alpar@1
   503
      double t;
alpar@1
   504
      /* y := F * b */
alpar@1
   505
      for (i = 1; i <= n; i++)
alpar@1
   506
      {  /* y[i] = (i-th row of F) * b */
alpar@1
   507
         t = 0.0;
alpar@1
   508
         for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)
alpar@1
   509
            t += f[ij] * x[j];
alpar@1
   510
         y[i] = t;
alpar@1
   511
      }
alpar@1
   512
      /* y := inv(U) * y */
alpar@1
   513
      for (i = n; i >= 1; i--)
alpar@1
   514
      {  t = y[i];
alpar@1
   515
         for (j = n, ij = u_loc(scf, i, n); j > i; j--, ij--)
alpar@1
   516
            t -= u[ij] * y[j];
alpar@1
   517
         y[i] = t / u[ij];
alpar@1
   518
      }
alpar@1
   519
      /* x := P' * y */
alpar@1
   520
      for (i = 1; i <= n; i++) x[p[i]] = y[i];
alpar@1
   521
      return;
alpar@1
   522
}
alpar@1
   523
alpar@1
   524
/***********************************************************************
alpar@1
   525
*  The routine tsolve solves the transposed system C' * x = b.
alpar@1
   526
*
alpar@1
   527
*  From the main equation F * C = U * P it follows that:
alpar@1
   528
*
alpar@1
   529
*     C' * F' = P' * U',
alpar@1
   530
*
alpar@1
   531
*  therefore:
alpar@1
   532
*
alpar@1
   533
*     C' * x = b  =>  C' * F' * inv(F') * x = b  =>
alpar@1
   534
*
alpar@1
   535
*     P' * U' * inv(F') * x = b  =>  U' * inv(F') * x = P * b  =>
alpar@1
   536
*
alpar@1
   537
*     inv(F') * x = inv(U') * P * b  =>  x = F' * inv(U') * P * b.
alpar@1
   538
*
alpar@1
   539
*  On entry the array x contains right-hand side vector b. On exit this
alpar@1
   540
*  array contains solution vector x. */
alpar@1
   541
alpar@1
   542
static void tsolve(SCF *scf, double x[])
alpar@1
   543
{     int n = scf->n;
alpar@1
   544
      double *f = scf->f;
alpar@1
   545
      double *u = scf->u;
alpar@1
   546
      int *p = scf->p;
alpar@1
   547
      double *y = scf->w;
alpar@1
   548
      int i, j, ij;
alpar@1
   549
      double t;
alpar@1
   550
      /* y := P * b */
alpar@1
   551
      for (i = 1; i <= n; i++) y[i] = x[p[i]];
alpar@1
   552
      /* y := inv(U') * y */
alpar@1
   553
      for (i = 1; i <= n; i++)
alpar@1
   554
      {  /* compute y[i] */
alpar@1
   555
         ij = u_loc(scf, i, i);
alpar@1
   556
         t = (y[i] /= u[ij]);
alpar@1
   557
         /* substitute y[i] in other equations */
alpar@1
   558
         for (j = i+1, ij++; j <= n; j++, ij++)
alpar@1
   559
            y[j] -= u[ij] * t;
alpar@1
   560
      }
alpar@1
   561
      /* x := F' * y (computed as linear combination of rows of F) */
alpar@1
   562
      for (j = 1; j <= n; j++) x[j] = 0.0;
alpar@1
   563
      for (i = 1; i <= n; i++)
alpar@1
   564
      {  t = y[i]; /* coefficient of linear combination */
alpar@1
   565
         for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)
alpar@1
   566
            x[j] += f[ij] * t;
alpar@1
   567
      }
alpar@1
   568
      return;
alpar@1
   569
}
alpar@1
   570
alpar@1
   571
/***********************************************************************
alpar@1
   572
*  NAME
alpar@1
   573
*
alpar@1
   574
*  scf_solve_it - solve either system C * x = b or C' * x = b
alpar@1
   575
*
alpar@1
   576
*  SYNOPSIS
alpar@1
   577
*
alpar@1
   578
*  #include "glpscf.h"
alpar@1
   579
*  void scf_solve_it(SCF *scf, int tr, double x[]);
alpar@1
   580
*
alpar@1
   581
*  DESCRIPTION
alpar@1
   582
*
alpar@1
   583
*  The routine scf_solve_it solves either the system C * x = b (if tr
alpar@1
   584
*  is zero) or the system C' * x = b, where C' is a matrix transposed
alpar@1
   585
*  to C (if tr is non-zero). C is assumed to be non-singular.
alpar@1
   586
*
alpar@1
   587
*  On entry the array x should contain the right-hand side vector b in
alpar@1
   588
*  locations x[1], ..., x[n], where n is the order of matrix C. On exit
alpar@1
   589
*  the array x contains the solution vector x in the same locations. */
alpar@1
   590
alpar@1
   591
void scf_solve_it(SCF *scf, int tr, double x[])
alpar@1
   592
{     if (scf->rank < scf->n)
alpar@1
   593
         xfault("scf_solve_it: singular matrix\n");
alpar@1
   594
      if (!tr)
alpar@1
   595
         solve(scf, x);
alpar@1
   596
      else
alpar@1
   597
         tsolve(scf, x);
alpar@1
   598
      return;
alpar@1
   599
}
alpar@1
   600
alpar@1
   601
void scf_reset_it(SCF *scf)
alpar@1
   602
{     /* reset factorization for empty matrix C */
alpar@1
   603
      scf->n = scf->rank = 0;
alpar@1
   604
      return;
alpar@1
   605
}
alpar@1
   606
alpar@1
   607
/***********************************************************************
alpar@1
   608
*  NAME
alpar@1
   609
*
alpar@1
   610
*  scf_delete_it - delete Schur complement factorization
alpar@1
   611
*
alpar@1
   612
*  SYNOPSIS
alpar@1
   613
*
alpar@1
   614
*  #include "glpscf.h"
alpar@1
   615
*  void scf_delete_it(SCF *scf);
alpar@1
   616
*
alpar@1
   617
*  DESCRIPTION
alpar@1
   618
*
alpar@1
   619
*  The routine scf_delete_it deletes the specified factorization and
alpar@1
   620
*  frees all the memory allocated to this object. */
alpar@1
   621
alpar@1
   622
void scf_delete_it(SCF *scf)
alpar@1
   623
{     xfree(scf->f);
alpar@1
   624
      xfree(scf->u);
alpar@1
   625
      xfree(scf->p);
alpar@1
   626
#if _GLPSCF_DEBUG
alpar@1
   627
      xfree(scf->c);
alpar@1
   628
#endif
alpar@1
   629
      xfree(scf->w);
alpar@1
   630
      xfree(scf);
alpar@1
   631
      return;
alpar@1
   632
}
alpar@1
   633
alpar@1
   634
/* eof */