|
1 /* glpspx02.c (dual simplex method) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpspx.h" |
|
26 |
|
27 #define GLP_DEBUG 1 |
|
28 |
|
29 #if 0 |
|
30 #define GLP_LONG_STEP 1 |
|
31 #endif |
|
32 |
|
33 struct csa |
|
34 { /* common storage area */ |
|
35 /*--------------------------------------------------------------*/ |
|
36 /* LP data */ |
|
37 int m; |
|
38 /* number of rows (auxiliary variables), m > 0 */ |
|
39 int n; |
|
40 /* number of columns (structural variables), n > 0 */ |
|
41 char *type; /* char type[1+m+n]; */ |
|
42 /* type[0] is not used; |
|
43 type[k], 1 <= k <= m+n, is the type of variable x[k]: |
|
44 GLP_FR - free variable |
|
45 GLP_LO - variable with lower bound |
|
46 GLP_UP - variable with upper bound |
|
47 GLP_DB - double-bounded variable |
|
48 GLP_FX - fixed variable */ |
|
49 double *lb; /* double lb[1+m+n]; */ |
|
50 /* lb[0] is not used; |
|
51 lb[k], 1 <= k <= m+n, is an lower bound of variable x[k]; |
|
52 if x[k] has no lower bound, lb[k] is zero */ |
|
53 double *ub; /* double ub[1+m+n]; */ |
|
54 /* ub[0] is not used; |
|
55 ub[k], 1 <= k <= m+n, is an upper bound of variable x[k]; |
|
56 if x[k] has no upper bound, ub[k] is zero; |
|
57 if x[k] is of fixed type, ub[k] is the same as lb[k] */ |
|
58 double *coef; /* double coef[1+m+n]; */ |
|
59 /* coef[0] is not used; |
|
60 coef[k], 1 <= k <= m+n, is an objective coefficient at |
|
61 variable x[k] */ |
|
62 /*--------------------------------------------------------------*/ |
|
63 /* original bounds of variables */ |
|
64 char *orig_type; /* char orig_type[1+m+n]; */ |
|
65 double *orig_lb; /* double orig_lb[1+m+n]; */ |
|
66 double *orig_ub; /* double orig_ub[1+m+n]; */ |
|
67 /*--------------------------------------------------------------*/ |
|
68 /* original objective function */ |
|
69 double *obj; /* double obj[1+n]; */ |
|
70 /* obj[0] is a constant term of the original objective function; |
|
71 obj[j], 1 <= j <= n, is an original objective coefficient at |
|
72 structural variable x[m+j] */ |
|
73 double zeta; |
|
74 /* factor used to scale original objective coefficients; its |
|
75 sign defines original optimization direction: zeta > 0 means |
|
76 minimization, zeta < 0 means maximization */ |
|
77 /*--------------------------------------------------------------*/ |
|
78 /* constraint matrix A; it has m rows and n columns and is stored |
|
79 by columns */ |
|
80 int *A_ptr; /* int A_ptr[1+n+1]; */ |
|
81 /* A_ptr[0] is not used; |
|
82 A_ptr[j], 1 <= j <= n, is starting position of j-th column in |
|
83 arrays A_ind and A_val; note that A_ptr[1] is always 1; |
|
84 A_ptr[n+1] indicates the position after the last element in |
|
85 arrays A_ind and A_val */ |
|
86 int *A_ind; /* int A_ind[A_ptr[n+1]]; */ |
|
87 /* row indices */ |
|
88 double *A_val; /* double A_val[A_ptr[n+1]]; */ |
|
89 /* non-zero element values */ |
|
90 #if 1 /* 06/IV-2009 */ |
|
91 /* constraint matrix A stored by rows */ |
|
92 int *AT_ptr; /* int AT_ptr[1+m+1]; |
|
93 /* AT_ptr[0] is not used; |
|
94 AT_ptr[i], 1 <= i <= m, is starting position of i-th row in |
|
95 arrays AT_ind and AT_val; note that AT_ptr[1] is always 1; |
|
96 AT_ptr[m+1] indicates the position after the last element in |
|
97 arrays AT_ind and AT_val */ |
|
98 int *AT_ind; /* int AT_ind[AT_ptr[m+1]]; */ |
|
99 /* column indices */ |
|
100 double *AT_val; /* double AT_val[AT_ptr[m+1]]; */ |
|
101 /* non-zero element values */ |
|
102 #endif |
|
103 /*--------------------------------------------------------------*/ |
|
104 /* basis header */ |
|
105 int *head; /* int head[1+m+n]; */ |
|
106 /* head[0] is not used; |
|
107 head[i], 1 <= i <= m, is the ordinal number of basic variable |
|
108 xB[i]; head[i] = k means that xB[i] = x[k] and i-th column of |
|
109 matrix B is k-th column of matrix (I|-A); |
|
110 head[m+j], 1 <= j <= n, is the ordinal number of non-basic |
|
111 variable xN[j]; head[m+j] = k means that xN[j] = x[k] and j-th |
|
112 column of matrix N is k-th column of matrix (I|-A) */ |
|
113 #if 1 /* 06/IV-2009 */ |
|
114 int *bind; /* int bind[1+m+n]; */ |
|
115 /* bind[0] is not used; |
|
116 bind[k], 1 <= k <= m+n, is the position of k-th column of the |
|
117 matrix (I|-A) in the matrix (B|N); that is, bind[k] = k' means |
|
118 that head[k'] = k */ |
|
119 #endif |
|
120 char *stat; /* char stat[1+n]; */ |
|
121 /* stat[0] is not used; |
|
122 stat[j], 1 <= j <= n, is the status of non-basic variable |
|
123 xN[j], which defines its active bound: |
|
124 GLP_NL - lower bound is active |
|
125 GLP_NU - upper bound is active |
|
126 GLP_NF - free variable |
|
127 GLP_NS - fixed variable */ |
|
128 /*--------------------------------------------------------------*/ |
|
129 /* matrix B is the basis matrix; it is composed from columns of |
|
130 the augmented constraint matrix (I|-A) corresponding to basic |
|
131 variables and stored in a factorized (invertable) form */ |
|
132 int valid; |
|
133 /* factorization is valid only if this flag is set */ |
|
134 BFD *bfd; /* BFD bfd[1:m,1:m]; */ |
|
135 /* factorized (invertable) form of the basis matrix */ |
|
136 #if 0 /* 06/IV-2009 */ |
|
137 /*--------------------------------------------------------------*/ |
|
138 /* matrix N is a matrix composed from columns of the augmented |
|
139 constraint matrix (I|-A) corresponding to non-basic variables |
|
140 except fixed ones; it is stored by rows and changes every time |
|
141 the basis changes */ |
|
142 int *N_ptr; /* int N_ptr[1+m+1]; */ |
|
143 /* N_ptr[0] is not used; |
|
144 N_ptr[i], 1 <= i <= m, is starting position of i-th row in |
|
145 arrays N_ind and N_val; note that N_ptr[1] is always 1; |
|
146 N_ptr[m+1] indicates the position after the last element in |
|
147 arrays N_ind and N_val */ |
|
148 int *N_len; /* int N_len[1+m]; */ |
|
149 /* N_len[0] is not used; |
|
150 N_len[i], 1 <= i <= m, is length of i-th row (0 to n) */ |
|
151 int *N_ind; /* int N_ind[N_ptr[m+1]]; */ |
|
152 /* column indices */ |
|
153 double *N_val; /* double N_val[N_ptr[m+1]]; */ |
|
154 /* non-zero element values */ |
|
155 #endif |
|
156 /*--------------------------------------------------------------*/ |
|
157 /* working parameters */ |
|
158 int phase; |
|
159 /* search phase: |
|
160 0 - not determined yet |
|
161 1 - search for dual feasible solution |
|
162 2 - search for optimal solution */ |
|
163 glp_long tm_beg; |
|
164 /* time value at the beginning of the search */ |
|
165 int it_beg; |
|
166 /* simplex iteration count at the beginning of the search */ |
|
167 int it_cnt; |
|
168 /* simplex iteration count; it increases by one every time the |
|
169 basis changes */ |
|
170 int it_dpy; |
|
171 /* simplex iteration count at the most recent display output */ |
|
172 /*--------------------------------------------------------------*/ |
|
173 /* basic solution components */ |
|
174 double *bbar; /* double bbar[1+m]; */ |
|
175 /* bbar[0] is not used on phase I; on phase II it is the current |
|
176 value of the original objective function; |
|
177 bbar[i], 1 <= i <= m, is primal value of basic variable xB[i] |
|
178 (if xB[i] is free, its primal value is not updated) */ |
|
179 double *cbar; /* double cbar[1+n]; */ |
|
180 /* cbar[0] is not used; |
|
181 cbar[j], 1 <= j <= n, is reduced cost of non-basic variable |
|
182 xN[j] (if xN[j] is fixed, its reduced cost is not updated) */ |
|
183 /*--------------------------------------------------------------*/ |
|
184 /* the following pricing technique options may be used: |
|
185 GLP_PT_STD - standard ("textbook") pricing; |
|
186 GLP_PT_PSE - projected steepest edge; |
|
187 GLP_PT_DVX - Devex pricing (not implemented yet); |
|
188 in case of GLP_PT_STD the reference space is not used, and all |
|
189 steepest edge coefficients are set to 1 */ |
|
190 int refct; |
|
191 /* this count is set to an initial value when the reference space |
|
192 is defined and decreases by one every time the basis changes; |
|
193 once this count reaches zero, the reference space is redefined |
|
194 again */ |
|
195 char *refsp; /* char refsp[1+m+n]; */ |
|
196 /* refsp[0] is not used; |
|
197 refsp[k], 1 <= k <= m+n, is the flag which means that variable |
|
198 x[k] belongs to the current reference space */ |
|
199 double *gamma; /* double gamma[1+m]; */ |
|
200 /* gamma[0] is not used; |
|
201 gamma[i], 1 <= i <= n, is the steepest edge coefficient for |
|
202 basic variable xB[i]; if xB[i] is free, gamma[i] is not used |
|
203 and just set to 1 */ |
|
204 /*--------------------------------------------------------------*/ |
|
205 /* basic variable xB[p] chosen to leave the basis */ |
|
206 int p; |
|
207 /* index of the basic variable xB[p] chosen, 1 <= p <= m; |
|
208 if the set of eligible basic variables is empty (i.e. if the |
|
209 current basic solution is primal feasible within a tolerance) |
|
210 and thus no variable has been chosen, p is set to 0 */ |
|
211 double delta; |
|
212 /* change of xB[p] in the adjacent basis; |
|
213 delta > 0 means that xB[p] violates its lower bound and will |
|
214 increase to achieve it in the adjacent basis; |
|
215 delta < 0 means that xB[p] violates its upper bound and will |
|
216 decrease to achieve it in the adjacent basis */ |
|
217 /*--------------------------------------------------------------*/ |
|
218 /* pivot row of the simplex table corresponding to basic variable |
|
219 xB[p] chosen is the following vector: |
|
220 T' * e[p] = - N' * inv(B') * e[p] = - N' * rho, |
|
221 where B' is a matrix transposed to the current basis matrix, |
|
222 N' is a matrix, whose rows are columns of the matrix (I|-A) |
|
223 corresponding to non-basic non-fixed variables */ |
|
224 int trow_nnz; |
|
225 /* number of non-zero components, 0 <= nnz <= n */ |
|
226 int *trow_ind; /* int trow_ind[1+n]; */ |
|
227 /* trow_ind[0] is not used; |
|
228 trow_ind[t], 1 <= t <= nnz, is an index of non-zero component, |
|
229 i.e. trow_ind[t] = j means that trow_vec[j] != 0 */ |
|
230 double *trow_vec; /* int trow_vec[1+n]; */ |
|
231 /* trow_vec[0] is not used; |
|
232 trow_vec[j], 1 <= j <= n, is a numeric value of j-th component |
|
233 of the row */ |
|
234 double trow_max; |
|
235 /* infinity (maximum) norm of the row (max |trow_vec[j]|) */ |
|
236 int trow_num; |
|
237 /* number of significant non-zero components, which means that: |
|
238 |trow_vec[j]| >= eps for j in trow_ind[1,...,num], |
|
239 |tcol_vec[j]| < eps for j in trow_ind[num+1,...,nnz], |
|
240 where eps is a pivot tolerance */ |
|
241 /*--------------------------------------------------------------*/ |
|
242 #ifdef GLP_LONG_STEP /* 07/IV-2009 */ |
|
243 int nbps; |
|
244 /* number of breakpoints, 0 <= nbps <= n */ |
|
245 struct bkpt |
|
246 { int j; |
|
247 /* index of non-basic variable xN[j], 1 <= j <= n */ |
|
248 double t; |
|
249 /* value of dual ray parameter at breakpoint, t >= 0 */ |
|
250 double dz; |
|
251 /* dz = zeta(t = t[k]) - zeta(t = 0) */ |
|
252 } *bkpt; /* struct bkpt bkpt[1+n]; */ |
|
253 /* bkpt[0] is not used; |
|
254 bkpt[k], 1 <= k <= nbps, is k-th breakpoint of the dual |
|
255 objective */ |
|
256 #endif |
|
257 /*--------------------------------------------------------------*/ |
|
258 /* non-basic variable xN[q] chosen to enter the basis */ |
|
259 int q; |
|
260 /* index of the non-basic variable xN[q] chosen, 1 <= q <= n; |
|
261 if no variable has been chosen, q is set to 0 */ |
|
262 double new_dq; |
|
263 /* reduced cost of xN[q] in the adjacent basis (it is the change |
|
264 of lambdaB[p]) */ |
|
265 /*--------------------------------------------------------------*/ |
|
266 /* pivot column of the simplex table corresponding to non-basic |
|
267 variable xN[q] chosen is the following vector: |
|
268 T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q], |
|
269 where B is the current basis matrix, N[q] is a column of the |
|
270 matrix (I|-A) corresponding to xN[q] */ |
|
271 int tcol_nnz; |
|
272 /* number of non-zero components, 0 <= nnz <= m */ |
|
273 int *tcol_ind; /* int tcol_ind[1+m]; */ |
|
274 /* tcol_ind[0] is not used; |
|
275 tcol_ind[t], 1 <= t <= nnz, is an index of non-zero component, |
|
276 i.e. tcol_ind[t] = i means that tcol_vec[i] != 0 */ |
|
277 double *tcol_vec; /* double tcol_vec[1+m]; */ |
|
278 /* tcol_vec[0] is not used; |
|
279 tcol_vec[i], 1 <= i <= m, is a numeric value of i-th component |
|
280 of the column */ |
|
281 /*--------------------------------------------------------------*/ |
|
282 /* working arrays */ |
|
283 double *work1; /* double work1[1+m]; */ |
|
284 double *work2; /* double work2[1+m]; */ |
|
285 double *work3; /* double work3[1+m]; */ |
|
286 double *work4; /* double work4[1+m]; */ |
|
287 }; |
|
288 |
|
289 static const double kappa = 0.10; |
|
290 |
|
291 /*********************************************************************** |
|
292 * alloc_csa - allocate common storage area |
|
293 * |
|
294 * This routine allocates all arrays in the common storage area (CSA) |
|
295 * and returns a pointer to the CSA. */ |
|
296 |
|
297 static struct csa *alloc_csa(glp_prob *lp) |
|
298 { struct csa *csa; |
|
299 int m = lp->m; |
|
300 int n = lp->n; |
|
301 int nnz = lp->nnz; |
|
302 csa = xmalloc(sizeof(struct csa)); |
|
303 xassert(m > 0 && n > 0); |
|
304 csa->m = m; |
|
305 csa->n = n; |
|
306 csa->type = xcalloc(1+m+n, sizeof(char)); |
|
307 csa->lb = xcalloc(1+m+n, sizeof(double)); |
|
308 csa->ub = xcalloc(1+m+n, sizeof(double)); |
|
309 csa->coef = xcalloc(1+m+n, sizeof(double)); |
|
310 csa->orig_type = xcalloc(1+m+n, sizeof(char)); |
|
311 csa->orig_lb = xcalloc(1+m+n, sizeof(double)); |
|
312 csa->orig_ub = xcalloc(1+m+n, sizeof(double)); |
|
313 csa->obj = xcalloc(1+n, sizeof(double)); |
|
314 csa->A_ptr = xcalloc(1+n+1, sizeof(int)); |
|
315 csa->A_ind = xcalloc(1+nnz, sizeof(int)); |
|
316 csa->A_val = xcalloc(1+nnz, sizeof(double)); |
|
317 #if 1 /* 06/IV-2009 */ |
|
318 csa->AT_ptr = xcalloc(1+m+1, sizeof(int)); |
|
319 csa->AT_ind = xcalloc(1+nnz, sizeof(int)); |
|
320 csa->AT_val = xcalloc(1+nnz, sizeof(double)); |
|
321 #endif |
|
322 csa->head = xcalloc(1+m+n, sizeof(int)); |
|
323 #if 1 /* 06/IV-2009 */ |
|
324 csa->bind = xcalloc(1+m+n, sizeof(int)); |
|
325 #endif |
|
326 csa->stat = xcalloc(1+n, sizeof(char)); |
|
327 #if 0 /* 06/IV-2009 */ |
|
328 csa->N_ptr = xcalloc(1+m+1, sizeof(int)); |
|
329 csa->N_len = xcalloc(1+m, sizeof(int)); |
|
330 csa->N_ind = NULL; /* will be allocated later */ |
|
331 csa->N_val = NULL; /* will be allocated later */ |
|
332 #endif |
|
333 csa->bbar = xcalloc(1+m, sizeof(double)); |
|
334 csa->cbar = xcalloc(1+n, sizeof(double)); |
|
335 csa->refsp = xcalloc(1+m+n, sizeof(char)); |
|
336 csa->gamma = xcalloc(1+m, sizeof(double)); |
|
337 csa->trow_ind = xcalloc(1+n, sizeof(int)); |
|
338 csa->trow_vec = xcalloc(1+n, sizeof(double)); |
|
339 #ifdef GLP_LONG_STEP /* 07/IV-2009 */ |
|
340 csa->bkpt = xcalloc(1+n, sizeof(struct bkpt)); |
|
341 #endif |
|
342 csa->tcol_ind = xcalloc(1+m, sizeof(int)); |
|
343 csa->tcol_vec = xcalloc(1+m, sizeof(double)); |
|
344 csa->work1 = xcalloc(1+m, sizeof(double)); |
|
345 csa->work2 = xcalloc(1+m, sizeof(double)); |
|
346 csa->work3 = xcalloc(1+m, sizeof(double)); |
|
347 csa->work4 = xcalloc(1+m, sizeof(double)); |
|
348 return csa; |
|
349 } |
|
350 |
|
351 /*********************************************************************** |
|
352 * init_csa - initialize common storage area |
|
353 * |
|
354 * This routine initializes all data structures in the common storage |
|
355 * area (CSA). */ |
|
356 |
|
357 static void init_csa(struct csa *csa, glp_prob *lp) |
|
358 { int m = csa->m; |
|
359 int n = csa->n; |
|
360 char *type = csa->type; |
|
361 double *lb = csa->lb; |
|
362 double *ub = csa->ub; |
|
363 double *coef = csa->coef; |
|
364 char *orig_type = csa->orig_type; |
|
365 double *orig_lb = csa->orig_lb; |
|
366 double *orig_ub = csa->orig_ub; |
|
367 double *obj = csa->obj; |
|
368 int *A_ptr = csa->A_ptr; |
|
369 int *A_ind = csa->A_ind; |
|
370 double *A_val = csa->A_val; |
|
371 #if 1 /* 06/IV-2009 */ |
|
372 int *AT_ptr = csa->AT_ptr; |
|
373 int *AT_ind = csa->AT_ind; |
|
374 double *AT_val = csa->AT_val; |
|
375 #endif |
|
376 int *head = csa->head; |
|
377 #if 1 /* 06/IV-2009 */ |
|
378 int *bind = csa->bind; |
|
379 #endif |
|
380 char *stat = csa->stat; |
|
381 char *refsp = csa->refsp; |
|
382 double *gamma = csa->gamma; |
|
383 int i, j, k, loc; |
|
384 double cmax; |
|
385 /* auxiliary variables */ |
|
386 for (i = 1; i <= m; i++) |
|
387 { GLPROW *row = lp->row[i]; |
|
388 type[i] = (char)row->type; |
|
389 lb[i] = row->lb * row->rii; |
|
390 ub[i] = row->ub * row->rii; |
|
391 coef[i] = 0.0; |
|
392 } |
|
393 /* structural variables */ |
|
394 for (j = 1; j <= n; j++) |
|
395 { GLPCOL *col = lp->col[j]; |
|
396 type[m+j] = (char)col->type; |
|
397 lb[m+j] = col->lb / col->sjj; |
|
398 ub[m+j] = col->ub / col->sjj; |
|
399 coef[m+j] = col->coef * col->sjj; |
|
400 } |
|
401 /* original bounds of variables */ |
|
402 memcpy(&orig_type[1], &type[1], (m+n) * sizeof(char)); |
|
403 memcpy(&orig_lb[1], &lb[1], (m+n) * sizeof(double)); |
|
404 memcpy(&orig_ub[1], &ub[1], (m+n) * sizeof(double)); |
|
405 /* original objective function */ |
|
406 obj[0] = lp->c0; |
|
407 memcpy(&obj[1], &coef[m+1], n * sizeof(double)); |
|
408 /* factor used to scale original objective coefficients */ |
|
409 cmax = 0.0; |
|
410 for (j = 1; j <= n; j++) |
|
411 if (cmax < fabs(obj[j])) cmax = fabs(obj[j]); |
|
412 if (cmax == 0.0) cmax = 1.0; |
|
413 switch (lp->dir) |
|
414 { case GLP_MIN: |
|
415 csa->zeta = + 1.0 / cmax; |
|
416 break; |
|
417 case GLP_MAX: |
|
418 csa->zeta = - 1.0 / cmax; |
|
419 break; |
|
420 default: |
|
421 xassert(lp != lp); |
|
422 } |
|
423 #if 1 |
|
424 if (fabs(csa->zeta) < 1.0) csa->zeta *= 1000.0; |
|
425 #endif |
|
426 /* scale working objective coefficients */ |
|
427 for (j = 1; j <= n; j++) coef[m+j] *= csa->zeta; |
|
428 /* matrix A (by columns) */ |
|
429 loc = 1; |
|
430 for (j = 1; j <= n; j++) |
|
431 { GLPAIJ *aij; |
|
432 A_ptr[j] = loc; |
|
433 for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next) |
|
434 { A_ind[loc] = aij->row->i; |
|
435 A_val[loc] = aij->row->rii * aij->val * aij->col->sjj; |
|
436 loc++; |
|
437 } |
|
438 } |
|
439 A_ptr[n+1] = loc; |
|
440 xassert(loc-1 == lp->nnz); |
|
441 #if 1 /* 06/IV-2009 */ |
|
442 /* matrix A (by rows) */ |
|
443 loc = 1; |
|
444 for (i = 1; i <= m; i++) |
|
445 { GLPAIJ *aij; |
|
446 AT_ptr[i] = loc; |
|
447 for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next) |
|
448 { AT_ind[loc] = aij->col->j; |
|
449 AT_val[loc] = aij->row->rii * aij->val * aij->col->sjj; |
|
450 loc++; |
|
451 } |
|
452 } |
|
453 AT_ptr[m+1] = loc; |
|
454 xassert(loc-1 == lp->nnz); |
|
455 #endif |
|
456 /* basis header */ |
|
457 xassert(lp->valid); |
|
458 memcpy(&head[1], &lp->head[1], m * sizeof(int)); |
|
459 k = 0; |
|
460 for (i = 1; i <= m; i++) |
|
461 { GLPROW *row = lp->row[i]; |
|
462 if (row->stat != GLP_BS) |
|
463 { k++; |
|
464 xassert(k <= n); |
|
465 head[m+k] = i; |
|
466 stat[k] = (char)row->stat; |
|
467 } |
|
468 } |
|
469 for (j = 1; j <= n; j++) |
|
470 { GLPCOL *col = lp->col[j]; |
|
471 if (col->stat != GLP_BS) |
|
472 { k++; |
|
473 xassert(k <= n); |
|
474 head[m+k] = m + j; |
|
475 stat[k] = (char)col->stat; |
|
476 } |
|
477 } |
|
478 xassert(k == n); |
|
479 #if 1 /* 06/IV-2009 */ |
|
480 for (k = 1; k <= m+n; k++) |
|
481 bind[head[k]] = k; |
|
482 #endif |
|
483 /* factorization of matrix B */ |
|
484 csa->valid = 1, lp->valid = 0; |
|
485 csa->bfd = lp->bfd, lp->bfd = NULL; |
|
486 #if 0 /* 06/IV-2009 */ |
|
487 /* matrix N (by rows) */ |
|
488 alloc_N(csa); |
|
489 build_N(csa); |
|
490 #endif |
|
491 /* working parameters */ |
|
492 csa->phase = 0; |
|
493 csa->tm_beg = xtime(); |
|
494 csa->it_beg = csa->it_cnt = lp->it_cnt; |
|
495 csa->it_dpy = -1; |
|
496 /* reference space and steepest edge coefficients */ |
|
497 csa->refct = 0; |
|
498 memset(&refsp[1], 0, (m+n) * sizeof(char)); |
|
499 for (i = 1; i <= m; i++) gamma[i] = 1.0; |
|
500 return; |
|
501 } |
|
502 |
|
503 #if 1 /* copied from primal */ |
|
504 /*********************************************************************** |
|
505 * invert_B - compute factorization of the basis matrix |
|
506 * |
|
507 * This routine computes factorization of the current basis matrix B. |
|
508 * |
|
509 * If the operation is successful, the routine returns zero, otherwise |
|
510 * non-zero. */ |
|
511 |
|
512 static int inv_col(void *info, int i, int ind[], double val[]) |
|
513 { /* this auxiliary routine returns row indices and numeric values |
|
514 of non-zero elements of i-th column of the basis matrix */ |
|
515 struct csa *csa = info; |
|
516 int m = csa->m; |
|
517 #ifdef GLP_DEBUG |
|
518 int n = csa->n; |
|
519 #endif |
|
520 int *A_ptr = csa->A_ptr; |
|
521 int *A_ind = csa->A_ind; |
|
522 double *A_val = csa->A_val; |
|
523 int *head = csa->head; |
|
524 int k, len, ptr, t; |
|
525 #ifdef GLP_DEBUG |
|
526 xassert(1 <= i && i <= m); |
|
527 #endif |
|
528 k = head[i]; /* B[i] is k-th column of (I|-A) */ |
|
529 #ifdef GLP_DEBUG |
|
530 xassert(1 <= k && k <= m+n); |
|
531 #endif |
|
532 if (k <= m) |
|
533 { /* B[i] is k-th column of submatrix I */ |
|
534 len = 1; |
|
535 ind[1] = k; |
|
536 val[1] = 1.0; |
|
537 } |
|
538 else |
|
539 { /* B[i] is (k-m)-th column of submatrix (-A) */ |
|
540 ptr = A_ptr[k-m]; |
|
541 len = A_ptr[k-m+1] - ptr; |
|
542 memcpy(&ind[1], &A_ind[ptr], len * sizeof(int)); |
|
543 memcpy(&val[1], &A_val[ptr], len * sizeof(double)); |
|
544 for (t = 1; t <= len; t++) val[t] = - val[t]; |
|
545 } |
|
546 return len; |
|
547 } |
|
548 |
|
549 static int invert_B(struct csa *csa) |
|
550 { int ret; |
|
551 ret = bfd_factorize(csa->bfd, csa->m, NULL, inv_col, csa); |
|
552 csa->valid = (ret == 0); |
|
553 return ret; |
|
554 } |
|
555 #endif |
|
556 |
|
557 #if 1 /* copied from primal */ |
|
558 /*********************************************************************** |
|
559 * update_B - update factorization of the basis matrix |
|
560 * |
|
561 * This routine replaces i-th column of the basis matrix B by k-th |
|
562 * column of the augmented constraint matrix (I|-A) and then updates |
|
563 * the factorization of B. |
|
564 * |
|
565 * If the factorization has been successfully updated, the routine |
|
566 * returns zero, otherwise non-zero. */ |
|
567 |
|
568 static int update_B(struct csa *csa, int i, int k) |
|
569 { int m = csa->m; |
|
570 #ifdef GLP_DEBUG |
|
571 int n = csa->n; |
|
572 #endif |
|
573 int ret; |
|
574 #ifdef GLP_DEBUG |
|
575 xassert(1 <= i && i <= m); |
|
576 xassert(1 <= k && k <= m+n); |
|
577 #endif |
|
578 if (k <= m) |
|
579 { /* new i-th column of B is k-th column of I */ |
|
580 int ind[1+1]; |
|
581 double val[1+1]; |
|
582 ind[1] = k; |
|
583 val[1] = 1.0; |
|
584 xassert(csa->valid); |
|
585 ret = bfd_update_it(csa->bfd, i, 0, 1, ind, val); |
|
586 } |
|
587 else |
|
588 { /* new i-th column of B is (k-m)-th column of (-A) */ |
|
589 int *A_ptr = csa->A_ptr; |
|
590 int *A_ind = csa->A_ind; |
|
591 double *A_val = csa->A_val; |
|
592 double *val = csa->work1; |
|
593 int beg, end, ptr, len; |
|
594 beg = A_ptr[k-m]; |
|
595 end = A_ptr[k-m+1]; |
|
596 len = 0; |
|
597 for (ptr = beg; ptr < end; ptr++) |
|
598 val[++len] = - A_val[ptr]; |
|
599 xassert(csa->valid); |
|
600 ret = bfd_update_it(csa->bfd, i, 0, len, &A_ind[beg-1], val); |
|
601 } |
|
602 csa->valid = (ret == 0); |
|
603 return ret; |
|
604 } |
|
605 #endif |
|
606 |
|
607 #if 1 /* copied from primal */ |
|
608 /*********************************************************************** |
|
609 * error_ftran - compute residual vector r = h - B * x |
|
610 * |
|
611 * This routine computes the residual vector r = h - B * x, where B is |
|
612 * the current basis matrix, h is the vector of right-hand sides, x is |
|
613 * the solution vector. */ |
|
614 |
|
615 static void error_ftran(struct csa *csa, double h[], double x[], |
|
616 double r[]) |
|
617 { int m = csa->m; |
|
618 #ifdef GLP_DEBUG |
|
619 int n = csa->n; |
|
620 #endif |
|
621 int *A_ptr = csa->A_ptr; |
|
622 int *A_ind = csa->A_ind; |
|
623 double *A_val = csa->A_val; |
|
624 int *head = csa->head; |
|
625 int i, k, beg, end, ptr; |
|
626 double temp; |
|
627 /* compute the residual vector: |
|
628 r = h - B * x = h - B[1] * x[1] - ... - B[m] * x[m], |
|
629 where B[1], ..., B[m] are columns of matrix B */ |
|
630 memcpy(&r[1], &h[1], m * sizeof(double)); |
|
631 for (i = 1; i <= m; i++) |
|
632 { temp = x[i]; |
|
633 if (temp == 0.0) continue; |
|
634 k = head[i]; /* B[i] is k-th column of (I|-A) */ |
|
635 #ifdef GLP_DEBUG |
|
636 xassert(1 <= k && k <= m+n); |
|
637 #endif |
|
638 if (k <= m) |
|
639 { /* B[i] is k-th column of submatrix I */ |
|
640 r[k] -= temp; |
|
641 } |
|
642 else |
|
643 { /* B[i] is (k-m)-th column of submatrix (-A) */ |
|
644 beg = A_ptr[k-m]; |
|
645 end = A_ptr[k-m+1]; |
|
646 for (ptr = beg; ptr < end; ptr++) |
|
647 r[A_ind[ptr]] += A_val[ptr] * temp; |
|
648 } |
|
649 } |
|
650 return; |
|
651 } |
|
652 #endif |
|
653 |
|
654 #if 1 /* copied from primal */ |
|
655 /*********************************************************************** |
|
656 * refine_ftran - refine solution of B * x = h |
|
657 * |
|
658 * This routine performs one iteration to refine the solution of |
|
659 * the system B * x = h, where B is the current basis matrix, h is the |
|
660 * vector of right-hand sides, x is the solution vector. */ |
|
661 |
|
662 static void refine_ftran(struct csa *csa, double h[], double x[]) |
|
663 { int m = csa->m; |
|
664 double *r = csa->work1; |
|
665 double *d = csa->work1; |
|
666 int i; |
|
667 /* compute the residual vector r = h - B * x */ |
|
668 error_ftran(csa, h, x, r); |
|
669 /* compute the correction vector d = inv(B) * r */ |
|
670 xassert(csa->valid); |
|
671 bfd_ftran(csa->bfd, d); |
|
672 /* refine the solution vector (new x) = (old x) + d */ |
|
673 for (i = 1; i <= m; i++) x[i] += d[i]; |
|
674 return; |
|
675 } |
|
676 #endif |
|
677 |
|
678 #if 1 /* copied from primal */ |
|
679 /*********************************************************************** |
|
680 * error_btran - compute residual vector r = h - B'* x |
|
681 * |
|
682 * This routine computes the residual vector r = h - B'* x, where B' |
|
683 * is a matrix transposed to the current basis matrix, h is the vector |
|
684 * of right-hand sides, x is the solution vector. */ |
|
685 |
|
686 static void error_btran(struct csa *csa, double h[], double x[], |
|
687 double r[]) |
|
688 { int m = csa->m; |
|
689 #ifdef GLP_DEBUG |
|
690 int n = csa->n; |
|
691 #endif |
|
692 int *A_ptr = csa->A_ptr; |
|
693 int *A_ind = csa->A_ind; |
|
694 double *A_val = csa->A_val; |
|
695 int *head = csa->head; |
|
696 int i, k, beg, end, ptr; |
|
697 double temp; |
|
698 /* compute the residual vector r = b - B'* x */ |
|
699 for (i = 1; i <= m; i++) |
|
700 { /* r[i] := b[i] - (i-th column of B)'* x */ |
|
701 k = head[i]; /* B[i] is k-th column of (I|-A) */ |
|
702 #ifdef GLP_DEBUG |
|
703 xassert(1 <= k && k <= m+n); |
|
704 #endif |
|
705 temp = h[i]; |
|
706 if (k <= m) |
|
707 { /* B[i] is k-th column of submatrix I */ |
|
708 temp -= x[k]; |
|
709 } |
|
710 else |
|
711 { /* B[i] is (k-m)-th column of submatrix (-A) */ |
|
712 beg = A_ptr[k-m]; |
|
713 end = A_ptr[k-m+1]; |
|
714 for (ptr = beg; ptr < end; ptr++) |
|
715 temp += A_val[ptr] * x[A_ind[ptr]]; |
|
716 } |
|
717 r[i] = temp; |
|
718 } |
|
719 return; |
|
720 } |
|
721 #endif |
|
722 |
|
723 #if 1 /* copied from primal */ |
|
724 /*********************************************************************** |
|
725 * refine_btran - refine solution of B'* x = h |
|
726 * |
|
727 * This routine performs one iteration to refine the solution of the |
|
728 * system B'* x = h, where B' is a matrix transposed to the current |
|
729 * basis matrix, h is the vector of right-hand sides, x is the solution |
|
730 * vector. */ |
|
731 |
|
732 static void refine_btran(struct csa *csa, double h[], double x[]) |
|
733 { int m = csa->m; |
|
734 double *r = csa->work1; |
|
735 double *d = csa->work1; |
|
736 int i; |
|
737 /* compute the residual vector r = h - B'* x */ |
|
738 error_btran(csa, h, x, r); |
|
739 /* compute the correction vector d = inv(B') * r */ |
|
740 xassert(csa->valid); |
|
741 bfd_btran(csa->bfd, d); |
|
742 /* refine the solution vector (new x) = (old x) + d */ |
|
743 for (i = 1; i <= m; i++) x[i] += d[i]; |
|
744 return; |
|
745 } |
|
746 #endif |
|
747 |
|
748 #if 1 /* copied from primal */ |
|
749 /*********************************************************************** |
|
750 * get_xN - determine current value of non-basic variable xN[j] |
|
751 * |
|
752 * This routine returns the current value of non-basic variable xN[j], |
|
753 * which is a value of its active bound. */ |
|
754 |
|
755 static double get_xN(struct csa *csa, int j) |
|
756 { int m = csa->m; |
|
757 #ifdef GLP_DEBUG |
|
758 int n = csa->n; |
|
759 #endif |
|
760 double *lb = csa->lb; |
|
761 double *ub = csa->ub; |
|
762 int *head = csa->head; |
|
763 char *stat = csa->stat; |
|
764 int k; |
|
765 double xN; |
|
766 #ifdef GLP_DEBUG |
|
767 xassert(1 <= j && j <= n); |
|
768 #endif |
|
769 k = head[m+j]; /* x[k] = xN[j] */ |
|
770 #ifdef GLP_DEBUG |
|
771 xassert(1 <= k && k <= m+n); |
|
772 #endif |
|
773 switch (stat[j]) |
|
774 { case GLP_NL: |
|
775 /* x[k] is on its lower bound */ |
|
776 xN = lb[k]; break; |
|
777 case GLP_NU: |
|
778 /* x[k] is on its upper bound */ |
|
779 xN = ub[k]; break; |
|
780 case GLP_NF: |
|
781 /* x[k] is free non-basic variable */ |
|
782 xN = 0.0; break; |
|
783 case GLP_NS: |
|
784 /* x[k] is fixed non-basic variable */ |
|
785 xN = lb[k]; break; |
|
786 default: |
|
787 xassert(stat != stat); |
|
788 } |
|
789 return xN; |
|
790 } |
|
791 #endif |
|
792 |
|
793 #if 1 /* copied from primal */ |
|
794 /*********************************************************************** |
|
795 * eval_beta - compute primal values of basic variables |
|
796 * |
|
797 * This routine computes current primal values of all basic variables: |
|
798 * |
|
799 * beta = - inv(B) * N * xN, |
|
800 * |
|
801 * where B is the current basis matrix, N is a matrix built of columns |
|
802 * of matrix (I|-A) corresponding to non-basic variables, and xN is the |
|
803 * vector of current values of non-basic variables. */ |
|
804 |
|
805 static void eval_beta(struct csa *csa, double beta[]) |
|
806 { int m = csa->m; |
|
807 int n = csa->n; |
|
808 int *A_ptr = csa->A_ptr; |
|
809 int *A_ind = csa->A_ind; |
|
810 double *A_val = csa->A_val; |
|
811 int *head = csa->head; |
|
812 double *h = csa->work2; |
|
813 int i, j, k, beg, end, ptr; |
|
814 double xN; |
|
815 /* compute the right-hand side vector: |
|
816 h := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n], |
|
817 where N[1], ..., N[n] are columns of matrix N */ |
|
818 for (i = 1; i <= m; i++) |
|
819 h[i] = 0.0; |
|
820 for (j = 1; j <= n; j++) |
|
821 { k = head[m+j]; /* x[k] = xN[j] */ |
|
822 #ifdef GLP_DEBUG |
|
823 xassert(1 <= k && k <= m+n); |
|
824 #endif |
|
825 /* determine current value of xN[j] */ |
|
826 xN = get_xN(csa, j); |
|
827 if (xN == 0.0) continue; |
|
828 if (k <= m) |
|
829 { /* N[j] is k-th column of submatrix I */ |
|
830 h[k] -= xN; |
|
831 } |
|
832 else |
|
833 { /* N[j] is (k-m)-th column of submatrix (-A) */ |
|
834 beg = A_ptr[k-m]; |
|
835 end = A_ptr[k-m+1]; |
|
836 for (ptr = beg; ptr < end; ptr++) |
|
837 h[A_ind[ptr]] += xN * A_val[ptr]; |
|
838 } |
|
839 } |
|
840 /* solve system B * beta = h */ |
|
841 memcpy(&beta[1], &h[1], m * sizeof(double)); |
|
842 xassert(csa->valid); |
|
843 bfd_ftran(csa->bfd, beta); |
|
844 /* and refine the solution */ |
|
845 refine_ftran(csa, h, beta); |
|
846 return; |
|
847 } |
|
848 #endif |
|
849 |
|
850 #if 1 /* copied from primal */ |
|
851 /*********************************************************************** |
|
852 * eval_pi - compute vector of simplex multipliers |
|
853 * |
|
854 * This routine computes the vector of current simplex multipliers: |
|
855 * |
|
856 * pi = inv(B') * cB, |
|
857 * |
|
858 * where B' is a matrix transposed to the current basis matrix, cB is |
|
859 * a subvector of objective coefficients at basic variables. */ |
|
860 |
|
861 static void eval_pi(struct csa *csa, double pi[]) |
|
862 { int m = csa->m; |
|
863 double *c = csa->coef; |
|
864 int *head = csa->head; |
|
865 double *cB = csa->work2; |
|
866 int i; |
|
867 /* construct the right-hand side vector cB */ |
|
868 for (i = 1; i <= m; i++) |
|
869 cB[i] = c[head[i]]; |
|
870 /* solve system B'* pi = cB */ |
|
871 memcpy(&pi[1], &cB[1], m * sizeof(double)); |
|
872 xassert(csa->valid); |
|
873 bfd_btran(csa->bfd, pi); |
|
874 /* and refine the solution */ |
|
875 refine_btran(csa, cB, pi); |
|
876 return; |
|
877 } |
|
878 #endif |
|
879 |
|
880 #if 1 /* copied from primal */ |
|
881 /*********************************************************************** |
|
882 * eval_cost - compute reduced cost of non-basic variable xN[j] |
|
883 * |
|
884 * This routine computes the current reduced cost of non-basic variable |
|
885 * xN[j]: |
|
886 * |
|
887 * d[j] = cN[j] - N'[j] * pi, |
|
888 * |
|
889 * where cN[j] is the objective coefficient at variable xN[j], N[j] is |
|
890 * a column of the augmented constraint matrix (I|-A) corresponding to |
|
891 * xN[j], pi is the vector of simplex multipliers. */ |
|
892 |
|
893 static double eval_cost(struct csa *csa, double pi[], int j) |
|
894 { int m = csa->m; |
|
895 #ifdef GLP_DEBUG |
|
896 int n = csa->n; |
|
897 #endif |
|
898 double *coef = csa->coef; |
|
899 int *head = csa->head; |
|
900 int k; |
|
901 double dj; |
|
902 #ifdef GLP_DEBUG |
|
903 xassert(1 <= j && j <= n); |
|
904 #endif |
|
905 k = head[m+j]; /* x[k] = xN[j] */ |
|
906 #ifdef GLP_DEBUG |
|
907 xassert(1 <= k && k <= m+n); |
|
908 #endif |
|
909 dj = coef[k]; |
|
910 if (k <= m) |
|
911 { /* N[j] is k-th column of submatrix I */ |
|
912 dj -= pi[k]; |
|
913 } |
|
914 else |
|
915 { /* N[j] is (k-m)-th column of submatrix (-A) */ |
|
916 int *A_ptr = csa->A_ptr; |
|
917 int *A_ind = csa->A_ind; |
|
918 double *A_val = csa->A_val; |
|
919 int beg, end, ptr; |
|
920 beg = A_ptr[k-m]; |
|
921 end = A_ptr[k-m+1]; |
|
922 for (ptr = beg; ptr < end; ptr++) |
|
923 dj += A_val[ptr] * pi[A_ind[ptr]]; |
|
924 } |
|
925 return dj; |
|
926 } |
|
927 #endif |
|
928 |
|
929 #if 1 /* copied from primal */ |
|
930 /*********************************************************************** |
|
931 * eval_bbar - compute and store primal values of basic variables |
|
932 * |
|
933 * This routine computes primal values of all basic variables and then |
|
934 * stores them in the solution array. */ |
|
935 |
|
936 static void eval_bbar(struct csa *csa) |
|
937 { eval_beta(csa, csa->bbar); |
|
938 return; |
|
939 } |
|
940 #endif |
|
941 |
|
942 #if 1 /* copied from primal */ |
|
943 /*********************************************************************** |
|
944 * eval_cbar - compute and store reduced costs of non-basic variables |
|
945 * |
|
946 * This routine computes reduced costs of all non-basic variables and |
|
947 * then stores them in the solution array. */ |
|
948 |
|
949 static void eval_cbar(struct csa *csa) |
|
950 { |
|
951 #ifdef GLP_DEBUG |
|
952 int m = csa->m; |
|
953 #endif |
|
954 int n = csa->n; |
|
955 #ifdef GLP_DEBUG |
|
956 int *head = csa->head; |
|
957 #endif |
|
958 double *cbar = csa->cbar; |
|
959 double *pi = csa->work3; |
|
960 int j; |
|
961 #ifdef GLP_DEBUG |
|
962 int k; |
|
963 #endif |
|
964 /* compute simplex multipliers */ |
|
965 eval_pi(csa, pi); |
|
966 /* compute and store reduced costs */ |
|
967 for (j = 1; j <= n; j++) |
|
968 { |
|
969 #ifdef GLP_DEBUG |
|
970 k = head[m+j]; /* x[k] = xN[j] */ |
|
971 xassert(1 <= k && k <= m+n); |
|
972 #endif |
|
973 cbar[j] = eval_cost(csa, pi, j); |
|
974 } |
|
975 return; |
|
976 } |
|
977 #endif |
|
978 |
|
979 /*********************************************************************** |
|
980 * reset_refsp - reset the reference space |
|
981 * |
|
982 * This routine resets (redefines) the reference space used in the |
|
983 * projected steepest edge pricing algorithm. */ |
|
984 |
|
985 static void reset_refsp(struct csa *csa) |
|
986 { int m = csa->m; |
|
987 int n = csa->n; |
|
988 int *head = csa->head; |
|
989 char *refsp = csa->refsp; |
|
990 double *gamma = csa->gamma; |
|
991 int i, k; |
|
992 xassert(csa->refct == 0); |
|
993 csa->refct = 1000; |
|
994 memset(&refsp[1], 0, (m+n) * sizeof(char)); |
|
995 for (i = 1; i <= m; i++) |
|
996 { k = head[i]; /* x[k] = xB[i] */ |
|
997 refsp[k] = 1; |
|
998 gamma[i] = 1.0; |
|
999 } |
|
1000 return; |
|
1001 } |
|
1002 |
|
1003 /*********************************************************************** |
|
1004 * eval_gamma - compute steepest edge coefficients |
|
1005 * |
|
1006 * This routine computes the vector of steepest edge coefficients for |
|
1007 * all basic variables (except free ones) using its direct definition: |
|
1008 * |
|
1009 * gamma[i] = eta[i] + sum alfa[i,j]^2, i = 1,...,m, |
|
1010 * j in C |
|
1011 * |
|
1012 * where eta[i] = 1 means that xB[i] is in the current reference space, |
|
1013 * and 0 otherwise; C is a set of non-basic non-fixed variables xN[j], |
|
1014 * which are in the current reference space; alfa[i,j] are elements of |
|
1015 * the current simplex table. |
|
1016 * |
|
1017 * NOTE: The routine is intended only for debugginig purposes. */ |
|
1018 |
|
1019 static void eval_gamma(struct csa *csa, double gamma[]) |
|
1020 { int m = csa->m; |
|
1021 int n = csa->n; |
|
1022 char *type = csa->type; |
|
1023 int *head = csa->head; |
|
1024 char *refsp = csa->refsp; |
|
1025 double *alfa = csa->work3; |
|
1026 double *h = csa->work3; |
|
1027 int i, j, k; |
|
1028 /* gamma[i] := eta[i] (or 1, if xB[i] is free) */ |
|
1029 for (i = 1; i <= m; i++) |
|
1030 { k = head[i]; /* x[k] = xB[i] */ |
|
1031 #ifdef GLP_DEBUG |
|
1032 xassert(1 <= k && k <= m+n); |
|
1033 #endif |
|
1034 if (type[k] == GLP_FR) |
|
1035 gamma[i] = 1.0; |
|
1036 else |
|
1037 gamma[i] = (refsp[k] ? 1.0 : 0.0); |
|
1038 } |
|
1039 /* compute columns of the current simplex table */ |
|
1040 for (j = 1; j <= n; j++) |
|
1041 { k = head[m+j]; /* x[k] = xN[j] */ |
|
1042 #ifdef GLP_DEBUG |
|
1043 xassert(1 <= k && k <= m+n); |
|
1044 #endif |
|
1045 /* skip column, if xN[j] is not in C */ |
|
1046 if (!refsp[k]) continue; |
|
1047 #ifdef GLP_DEBUG |
|
1048 /* set C must not contain fixed variables */ |
|
1049 xassert(type[k] != GLP_FX); |
|
1050 #endif |
|
1051 /* construct the right-hand side vector h = - N[j] */ |
|
1052 for (i = 1; i <= m; i++) |
|
1053 h[i] = 0.0; |
|
1054 if (k <= m) |
|
1055 { /* N[j] is k-th column of submatrix I */ |
|
1056 h[k] = -1.0; |
|
1057 } |
|
1058 else |
|
1059 { /* N[j] is (k-m)-th column of submatrix (-A) */ |
|
1060 int *A_ptr = csa->A_ptr; |
|
1061 int *A_ind = csa->A_ind; |
|
1062 double *A_val = csa->A_val; |
|
1063 int beg, end, ptr; |
|
1064 beg = A_ptr[k-m]; |
|
1065 end = A_ptr[k-m+1]; |
|
1066 for (ptr = beg; ptr < end; ptr++) |
|
1067 h[A_ind[ptr]] = A_val[ptr]; |
|
1068 } |
|
1069 /* solve system B * alfa = h */ |
|
1070 xassert(csa->valid); |
|
1071 bfd_ftran(csa->bfd, alfa); |
|
1072 /* gamma[i] := gamma[i] + alfa[i,j]^2 */ |
|
1073 for (i = 1; i <= m; i++) |
|
1074 { k = head[i]; /* x[k] = xB[i] */ |
|
1075 if (type[k] != GLP_FR) |
|
1076 gamma[i] += alfa[i] * alfa[i]; |
|
1077 } |
|
1078 } |
|
1079 return; |
|
1080 } |
|
1081 |
|
1082 /*********************************************************************** |
|
1083 * chuzr - choose basic variable (row of the simplex table) |
|
1084 * |
|
1085 * This routine chooses basic variable xB[p] having largest weighted |
|
1086 * bound violation: |
|
1087 * |
|
1088 * |r[p]| / sqrt(gamma[p]) = max |r[i]| / sqrt(gamma[i]), |
|
1089 * i in I |
|
1090 * |
|
1091 * / lB[i] - beta[i], if beta[i] < lB[i] |
|
1092 * | |
|
1093 * r[i] = < 0, if lB[i] <= beta[i] <= uB[i] |
|
1094 * | |
|
1095 * \ uB[i] - beta[i], if beta[i] > uB[i] |
|
1096 * |
|
1097 * where beta[i] is primal value of xB[i] in the current basis, lB[i] |
|
1098 * and uB[i] are lower and upper bounds of xB[i], I is a subset of |
|
1099 * eligible basic variables, which significantly violates their bounds, |
|
1100 * gamma[i] is the steepest edge coefficient. |
|
1101 * |
|
1102 * If |r[i]| is less than a specified tolerance, xB[i] is not included |
|
1103 * in I and therefore ignored. |
|
1104 * |
|
1105 * If I is empty and no variable has been chosen, p is set to 0. */ |
|
1106 |
|
1107 static void chuzr(struct csa *csa, double tol_bnd) |
|
1108 { int m = csa->m; |
|
1109 #ifdef GLP_DEBUG |
|
1110 int n = csa->n; |
|
1111 #endif |
|
1112 char *type = csa->type; |
|
1113 double *lb = csa->lb; |
|
1114 double *ub = csa->ub; |
|
1115 int *head = csa->head; |
|
1116 double *bbar = csa->bbar; |
|
1117 double *gamma = csa->gamma; |
|
1118 int i, k, p; |
|
1119 double delta, best, eps, ri, temp; |
|
1120 /* nothing is chosen so far */ |
|
1121 p = 0, delta = 0.0, best = 0.0; |
|
1122 /* look through the list of basic variables */ |
|
1123 for (i = 1; i <= m; i++) |
|
1124 { k = head[i]; /* x[k] = xB[i] */ |
|
1125 #ifdef GLP_DEBUG |
|
1126 xassert(1 <= k && k <= m+n); |
|
1127 #endif |
|
1128 /* determine bound violation ri[i] */ |
|
1129 ri = 0.0; |
|
1130 if (type[k] == GLP_LO || type[k] == GLP_DB || |
|
1131 type[k] == GLP_FX) |
|
1132 { /* xB[i] has lower bound */ |
|
1133 eps = tol_bnd * (1.0 + kappa * fabs(lb[k])); |
|
1134 if (bbar[i] < lb[k] - eps) |
|
1135 { /* and significantly violates it */ |
|
1136 ri = lb[k] - bbar[i]; |
|
1137 } |
|
1138 } |
|
1139 if (type[k] == GLP_UP || type[k] == GLP_DB || |
|
1140 type[k] == GLP_FX) |
|
1141 { /* xB[i] has upper bound */ |
|
1142 eps = tol_bnd * (1.0 + kappa * fabs(ub[k])); |
|
1143 if (bbar[i] > ub[k] + eps) |
|
1144 { /* and significantly violates it */ |
|
1145 ri = ub[k] - bbar[i]; |
|
1146 } |
|
1147 } |
|
1148 /* if xB[i] is not eligible, skip it */ |
|
1149 if (ri == 0.0) continue; |
|
1150 /* xB[i] is eligible basic variable; choose one with largest |
|
1151 weighted bound violation */ |
|
1152 #ifdef GLP_DEBUG |
|
1153 xassert(gamma[i] >= 0.0); |
|
1154 #endif |
|
1155 temp = gamma[i]; |
|
1156 if (temp < DBL_EPSILON) temp = DBL_EPSILON; |
|
1157 temp = (ri * ri) / temp; |
|
1158 if (best < temp) |
|
1159 p = i, delta = ri, best = temp; |
|
1160 } |
|
1161 /* store the index of basic variable xB[p] chosen and its change |
|
1162 in the adjacent basis */ |
|
1163 csa->p = p; |
|
1164 csa->delta = delta; |
|
1165 return; |
|
1166 } |
|
1167 |
|
1168 #if 1 /* copied from primal */ |
|
1169 /*********************************************************************** |
|
1170 * eval_rho - compute pivot row of the inverse |
|
1171 * |
|
1172 * This routine computes the pivot (p-th) row of the inverse inv(B), |
|
1173 * which corresponds to basic variable xB[p] chosen: |
|
1174 * |
|
1175 * rho = inv(B') * e[p], |
|
1176 * |
|
1177 * where B' is a matrix transposed to the current basis matrix, e[p] |
|
1178 * is unity vector. */ |
|
1179 |
|
1180 static void eval_rho(struct csa *csa, double rho[]) |
|
1181 { int m = csa->m; |
|
1182 int p = csa->p; |
|
1183 double *e = rho; |
|
1184 int i; |
|
1185 #ifdef GLP_DEBUG |
|
1186 xassert(1 <= p && p <= m); |
|
1187 #endif |
|
1188 /* construct the right-hand side vector e[p] */ |
|
1189 for (i = 1; i <= m; i++) |
|
1190 e[i] = 0.0; |
|
1191 e[p] = 1.0; |
|
1192 /* solve system B'* rho = e[p] */ |
|
1193 xassert(csa->valid); |
|
1194 bfd_btran(csa->bfd, rho); |
|
1195 return; |
|
1196 } |
|
1197 #endif |
|
1198 |
|
1199 #if 1 /* copied from primal */ |
|
1200 /*********************************************************************** |
|
1201 * refine_rho - refine pivot row of the inverse |
|
1202 * |
|
1203 * This routine refines the pivot row of the inverse inv(B) assuming |
|
1204 * that it was previously computed by the routine eval_rho. */ |
|
1205 |
|
1206 static void refine_rho(struct csa *csa, double rho[]) |
|
1207 { int m = csa->m; |
|
1208 int p = csa->p; |
|
1209 double *e = csa->work3; |
|
1210 int i; |
|
1211 #ifdef GLP_DEBUG |
|
1212 xassert(1 <= p && p <= m); |
|
1213 #endif |
|
1214 /* construct the right-hand side vector e[p] */ |
|
1215 for (i = 1; i <= m; i++) |
|
1216 e[i] = 0.0; |
|
1217 e[p] = 1.0; |
|
1218 /* refine solution of B'* rho = e[p] */ |
|
1219 refine_btran(csa, e, rho); |
|
1220 return; |
|
1221 } |
|
1222 #endif |
|
1223 |
|
1224 #if 1 /* 06/IV-2009 */ |
|
1225 /*********************************************************************** |
|
1226 * eval_trow - compute pivot row of the simplex table |
|
1227 * |
|
1228 * This routine computes the pivot row of the simplex table, which |
|
1229 * corresponds to basic variable xB[p] chosen. |
|
1230 * |
|
1231 * The pivot row is the following vector: |
|
1232 * |
|
1233 * trow = T'* e[p] = - N'* inv(B') * e[p] = - N' * rho, |
|
1234 * |
|
1235 * where rho is the pivot row of the inverse inv(B) previously computed |
|
1236 * by the routine eval_rho. |
|
1237 * |
|
1238 * Note that elements of the pivot row corresponding to fixed non-basic |
|
1239 * variables are not computed. |
|
1240 * |
|
1241 * NOTES |
|
1242 * |
|
1243 * Computing pivot row of the simplex table is one of the most time |
|
1244 * consuming operations, and for some instances it may take more than |
|
1245 * 50% of the total solution time. |
|
1246 * |
|
1247 * In the current implementation there are two routines to compute the |
|
1248 * pivot row. The routine eval_trow1 computes elements of the pivot row |
|
1249 * as inner products of columns of the matrix N and the vector rho; it |
|
1250 * is used when the vector rho is relatively dense. The routine |
|
1251 * eval_trow2 computes the pivot row as a linear combination of rows of |
|
1252 * the matrix N; it is used when the vector rho is relatively sparse. */ |
|
1253 |
|
1254 static void eval_trow1(struct csa *csa, double rho[]) |
|
1255 { int m = csa->m; |
|
1256 int n = csa->n; |
|
1257 int *A_ptr = csa->A_ptr; |
|
1258 int *A_ind = csa->A_ind; |
|
1259 double *A_val = csa->A_val; |
|
1260 int *head = csa->head; |
|
1261 char *stat = csa->stat; |
|
1262 int *trow_ind = csa->trow_ind; |
|
1263 double *trow_vec = csa->trow_vec; |
|
1264 int j, k, beg, end, ptr, nnz; |
|
1265 double temp; |
|
1266 /* compute the pivot row as inner products of columns of the |
|
1267 matrix N and vector rho: trow[j] = - rho * N[j] */ |
|
1268 nnz = 0; |
|
1269 for (j = 1; j <= n; j++) |
|
1270 { if (stat[j] == GLP_NS) |
|
1271 { /* xN[j] is fixed */ |
|
1272 trow_vec[j] = 0.0; |
|
1273 continue; |
|
1274 } |
|
1275 k = head[m+j]; /* x[k] = xN[j] */ |
|
1276 if (k <= m) |
|
1277 { /* N[j] is k-th column of submatrix I */ |
|
1278 temp = - rho[k]; |
|
1279 } |
|
1280 else |
|
1281 { /* N[j] is (k-m)-th column of submatrix (-A) */ |
|
1282 beg = A_ptr[k-m], end = A_ptr[k-m+1]; |
|
1283 temp = 0.0; |
|
1284 for (ptr = beg; ptr < end; ptr++) |
|
1285 temp += rho[A_ind[ptr]] * A_val[ptr]; |
|
1286 } |
|
1287 if (temp != 0.0) |
|
1288 trow_ind[++nnz] = j; |
|
1289 trow_vec[j] = temp; |
|
1290 } |
|
1291 csa->trow_nnz = nnz; |
|
1292 return; |
|
1293 } |
|
1294 |
|
1295 static void eval_trow2(struct csa *csa, double rho[]) |
|
1296 { int m = csa->m; |
|
1297 int n = csa->n; |
|
1298 int *AT_ptr = csa->AT_ptr; |
|
1299 int *AT_ind = csa->AT_ind; |
|
1300 double *AT_val = csa->AT_val; |
|
1301 int *bind = csa->bind; |
|
1302 char *stat = csa->stat; |
|
1303 int *trow_ind = csa->trow_ind; |
|
1304 double *trow_vec = csa->trow_vec; |
|
1305 int i, j, beg, end, ptr, nnz; |
|
1306 double temp; |
|
1307 /* clear the pivot row */ |
|
1308 for (j = 1; j <= n; j++) |
|
1309 trow_vec[j] = 0.0; |
|
1310 /* compute the pivot row as a linear combination of rows of the |
|
1311 matrix N: trow = - rho[1] * N'[1] - ... - rho[m] * N'[m] */ |
|
1312 for (i = 1; i <= m; i++) |
|
1313 { temp = rho[i]; |
|
1314 if (temp == 0.0) continue; |
|
1315 /* trow := trow - rho[i] * N'[i] */ |
|
1316 j = bind[i] - m; /* x[i] = xN[j] */ |
|
1317 if (j >= 1 && stat[j] != GLP_NS) |
|
1318 trow_vec[j] -= temp; |
|
1319 beg = AT_ptr[i], end = AT_ptr[i+1]; |
|
1320 for (ptr = beg; ptr < end; ptr++) |
|
1321 { j = bind[m + AT_ind[ptr]] - m; /* x[k] = xN[j] */ |
|
1322 if (j >= 1 && stat[j] != GLP_NS) |
|
1323 trow_vec[j] += temp * AT_val[ptr]; |
|
1324 } |
|
1325 } |
|
1326 /* construct sparse pattern of the pivot row */ |
|
1327 nnz = 0; |
|
1328 for (j = 1; j <= n; j++) |
|
1329 { if (trow_vec[j] != 0.0) |
|
1330 trow_ind[++nnz] = j; |
|
1331 } |
|
1332 csa->trow_nnz = nnz; |
|
1333 return; |
|
1334 } |
|
1335 |
|
1336 static void eval_trow(struct csa *csa, double rho[]) |
|
1337 { int m = csa->m; |
|
1338 int i, nnz; |
|
1339 double dens; |
|
1340 /* determine the density of the vector rho */ |
|
1341 nnz = 0; |
|
1342 for (i = 1; i <= m; i++) |
|
1343 if (rho[i] != 0.0) nnz++; |
|
1344 dens = (double)nnz / (double)m; |
|
1345 if (dens >= 0.20) |
|
1346 { /* rho is relatively dense */ |
|
1347 eval_trow1(csa, rho); |
|
1348 } |
|
1349 else |
|
1350 { /* rho is relatively sparse */ |
|
1351 eval_trow2(csa, rho); |
|
1352 } |
|
1353 return; |
|
1354 } |
|
1355 #endif |
|
1356 |
|
1357 /*********************************************************************** |
|
1358 * sort_trow - sort pivot row of the simplex table |
|
1359 * |
|
1360 * This routine reorders the list of non-zero elements of the pivot |
|
1361 * row to put significant elements, whose magnitude is not less than |
|
1362 * a specified tolerance, in front of the list, and stores the number |
|
1363 * of significant elements in trow_num. */ |
|
1364 |
|
1365 static void sort_trow(struct csa *csa, double tol_piv) |
|
1366 { |
|
1367 #ifdef GLP_DEBUG |
|
1368 int n = csa->n; |
|
1369 char *stat = csa->stat; |
|
1370 #endif |
|
1371 int nnz = csa->trow_nnz; |
|
1372 int *trow_ind = csa->trow_ind; |
|
1373 double *trow_vec = csa->trow_vec; |
|
1374 int j, num, pos; |
|
1375 double big, eps, temp; |
|
1376 /* compute infinity (maximum) norm of the row */ |
|
1377 big = 0.0; |
|
1378 for (pos = 1; pos <= nnz; pos++) |
|
1379 { |
|
1380 #ifdef GLP_DEBUG |
|
1381 j = trow_ind[pos]; |
|
1382 xassert(1 <= j && j <= n); |
|
1383 xassert(stat[j] != GLP_NS); |
|
1384 #endif |
|
1385 temp = fabs(trow_vec[trow_ind[pos]]); |
|
1386 if (big < temp) big = temp; |
|
1387 } |
|
1388 csa->trow_max = big; |
|
1389 /* determine absolute pivot tolerance */ |
|
1390 eps = tol_piv * (1.0 + 0.01 * big); |
|
1391 /* move significant row components to the front of the list */ |
|
1392 for (num = 0; num < nnz; ) |
|
1393 { j = trow_ind[nnz]; |
|
1394 if (fabs(trow_vec[j]) < eps) |
|
1395 nnz--; |
|
1396 else |
|
1397 { num++; |
|
1398 trow_ind[nnz] = trow_ind[num]; |
|
1399 trow_ind[num] = j; |
|
1400 } |
|
1401 } |
|
1402 csa->trow_num = num; |
|
1403 return; |
|
1404 } |
|
1405 |
|
1406 #ifdef GLP_LONG_STEP /* 07/IV-2009 */ |
|
1407 static int ls_func(const void *p1_, const void *p2_) |
|
1408 { const struct bkpt *p1 = p1_, *p2 = p2_; |
|
1409 if (p1->t < p2->t) return -1; |
|
1410 if (p1->t > p2->t) return +1; |
|
1411 return 0; |
|
1412 } |
|
1413 |
|
1414 static int ls_func1(const void *p1_, const void *p2_) |
|
1415 { const struct bkpt *p1 = p1_, *p2 = p2_; |
|
1416 if (p1->dz < p2->dz) return -1; |
|
1417 if (p1->dz > p2->dz) return +1; |
|
1418 return 0; |
|
1419 } |
|
1420 |
|
1421 static void long_step(struct csa *csa) |
|
1422 { int m = csa->m; |
|
1423 #ifdef GLP_DEBUG |
|
1424 int n = csa->n; |
|
1425 #endif |
|
1426 char *type = csa->type; |
|
1427 double *lb = csa->lb; |
|
1428 double *ub = csa->ub; |
|
1429 int *head = csa->head; |
|
1430 char *stat = csa->stat; |
|
1431 double *cbar = csa->cbar; |
|
1432 double delta = csa->delta; |
|
1433 int *trow_ind = csa->trow_ind; |
|
1434 double *trow_vec = csa->trow_vec; |
|
1435 int trow_num = csa->trow_num; |
|
1436 struct bkpt *bkpt = csa->bkpt; |
|
1437 int j, k, kk, nbps, pos; |
|
1438 double alfa, s, slope, dzmax; |
|
1439 /* delta > 0 means that xB[p] violates its lower bound, so to |
|
1440 increase the dual objective lambdaB[p] must increase; |
|
1441 delta < 0 means that xB[p] violates its upper bound, so to |
|
1442 increase the dual objective lambdaB[p] must decrease */ |
|
1443 /* s := sign(delta) */ |
|
1444 s = (delta > 0.0 ? +1.0 : -1.0); |
|
1445 /* determine breakpoints of the dual objective */ |
|
1446 nbps = 0; |
|
1447 for (pos = 1; pos <= trow_num; pos++) |
|
1448 { j = trow_ind[pos]; |
|
1449 #ifdef GLP_DEBUG |
|
1450 xassert(1 <= j && j <= n); |
|
1451 xassert(stat[j] != GLP_NS); |
|
1452 #endif |
|
1453 /* if there is free non-basic variable, switch to the standard |
|
1454 ratio test */ |
|
1455 if (stat[j] == GLP_NF) |
|
1456 { nbps = 0; |
|
1457 goto done; |
|
1458 } |
|
1459 /* lambdaN[j] = ... - alfa * t - ..., where t = s * lambdaB[i] |
|
1460 is the dual ray parameter, t >= 0 */ |
|
1461 alfa = s * trow_vec[j]; |
|
1462 #ifdef GLP_DEBUG |
|
1463 xassert(alfa != 0.0); |
|
1464 xassert(stat[j] == GLP_NL || stat[j] == GLP_NU); |
|
1465 #endif |
|
1466 if (alfa > 0.0 && stat[j] == GLP_NL || |
|
1467 alfa < 0.0 && stat[j] == GLP_NU) |
|
1468 { /* either lambdaN[j] >= 0 (if stat = GLP_NL) and decreases |
|
1469 or lambdaN[j] <= 0 (if stat = GLP_NU) and increases; in |
|
1470 both cases we have a breakpoint */ |
|
1471 nbps++; |
|
1472 #ifdef GLP_DEBUG |
|
1473 xassert(nbps <= n); |
|
1474 #endif |
|
1475 bkpt[nbps].j = j; |
|
1476 bkpt[nbps].t = cbar[j] / alfa; |
|
1477 /* |
|
1478 if (stat[j] == GLP_NL && cbar[j] < 0.0 || |
|
1479 stat[j] == GLP_NU && cbar[j] > 0.0) |
|
1480 xprintf("%d %g\n", stat[j], cbar[j]); |
|
1481 */ |
|
1482 /* if t is negative, replace it by exact zero (see comments |
|
1483 in the routine chuzc) */ |
|
1484 if (bkpt[nbps].t < 0.0) bkpt[nbps].t = 0.0; |
|
1485 } |
|
1486 } |
|
1487 /* if there are less than two breakpoints, switch to the standard |
|
1488 ratio test */ |
|
1489 if (nbps < 2) |
|
1490 { nbps = 0; |
|
1491 goto done; |
|
1492 } |
|
1493 /* sort breakpoints by ascending the dual ray parameter, t */ |
|
1494 qsort(&bkpt[1], nbps, sizeof(struct bkpt), ls_func); |
|
1495 /* determine last breakpoint, at which the dual objective still |
|
1496 greater than at t = 0 */ |
|
1497 dzmax = 0.0; |
|
1498 slope = fabs(delta); /* initial slope */ |
|
1499 for (kk = 1; kk <= nbps; kk++) |
|
1500 { if (kk == 1) |
|
1501 bkpt[kk].dz = |
|
1502 0.0 + slope * (bkpt[kk].t - 0.0); |
|
1503 else |
|
1504 bkpt[kk].dz = |
|
1505 bkpt[kk-1].dz + slope * (bkpt[kk].t - bkpt[kk-1].t); |
|
1506 if (dzmax < bkpt[kk].dz) |
|
1507 dzmax = bkpt[kk].dz; |
|
1508 else if (bkpt[kk].dz < 0.05 * (1.0 + dzmax)) |
|
1509 { nbps = kk - 1; |
|
1510 break; |
|
1511 } |
|
1512 j = bkpt[kk].j; |
|
1513 k = head[m+j]; /* x[k] = xN[j] */ |
|
1514 if (type[k] == GLP_DB) |
|
1515 slope -= fabs(trow_vec[j]) * (ub[k] - lb[k]); |
|
1516 else |
|
1517 { nbps = kk; |
|
1518 break; |
|
1519 } |
|
1520 } |
|
1521 /* if there are less than two breakpoints, switch to the standard |
|
1522 ratio test */ |
|
1523 if (nbps < 2) |
|
1524 { nbps = 0; |
|
1525 goto done; |
|
1526 } |
|
1527 /* sort breakpoints by ascending the dual change, dz */ |
|
1528 qsort(&bkpt[1], nbps, sizeof(struct bkpt), ls_func1); |
|
1529 /* |
|
1530 for (kk = 1; kk <= nbps; kk++) |
|
1531 xprintf("%d; t = %g; dz = %g\n", kk, bkpt[kk].t, bkpt[kk].dz); |
|
1532 */ |
|
1533 done: csa->nbps = nbps; |
|
1534 return; |
|
1535 } |
|
1536 #endif |
|
1537 |
|
1538 /*********************************************************************** |
|
1539 * chuzc - choose non-basic variable (column of the simplex table) |
|
1540 * |
|
1541 * This routine chooses non-basic variable xN[q], which being entered |
|
1542 * in the basis keeps dual feasibility of the basic solution. |
|
1543 * |
|
1544 * The parameter rtol is a relative tolerance used to relax zero bounds |
|
1545 * of reduced costs of non-basic variables. If rtol = 0, the routine |
|
1546 * implements the standard ratio test. Otherwise, if rtol > 0, the |
|
1547 * routine implements Harris' two-pass ratio test. In the latter case |
|
1548 * rtol should be about three times less than a tolerance used to check |
|
1549 * dual feasibility. */ |
|
1550 |
|
1551 static void chuzc(struct csa *csa, double rtol) |
|
1552 { |
|
1553 #ifdef GLP_DEBUG |
|
1554 int m = csa->m; |
|
1555 int n = csa->n; |
|
1556 #endif |
|
1557 char *stat = csa->stat; |
|
1558 double *cbar = csa->cbar; |
|
1559 #ifdef GLP_DEBUG |
|
1560 int p = csa->p; |
|
1561 #endif |
|
1562 double delta = csa->delta; |
|
1563 int *trow_ind = csa->trow_ind; |
|
1564 double *trow_vec = csa->trow_vec; |
|
1565 int trow_num = csa->trow_num; |
|
1566 int j, pos, q; |
|
1567 double alfa, big, s, t, teta, tmax; |
|
1568 #ifdef GLP_DEBUG |
|
1569 xassert(1 <= p && p <= m); |
|
1570 #endif |
|
1571 /* delta > 0 means that xB[p] violates its lower bound and goes |
|
1572 to it in the adjacent basis, so lambdaB[p] is increasing from |
|
1573 its lower zero bound; |
|
1574 delta < 0 means that xB[p] violates its upper bound and goes |
|
1575 to it in the adjacent basis, so lambdaB[p] is decreasing from |
|
1576 its upper zero bound */ |
|
1577 #ifdef GLP_DEBUG |
|
1578 xassert(delta != 0.0); |
|
1579 #endif |
|
1580 /* s := sign(delta) */ |
|
1581 s = (delta > 0.0 ? +1.0 : -1.0); |
|
1582 /*** FIRST PASS ***/ |
|
1583 /* nothing is chosen so far */ |
|
1584 q = 0, teta = DBL_MAX, big = 0.0; |
|
1585 /* walk through significant elements of the pivot row */ |
|
1586 for (pos = 1; pos <= trow_num; pos++) |
|
1587 { j = trow_ind[pos]; |
|
1588 #ifdef GLP_DEBUG |
|
1589 xassert(1 <= j && j <= n); |
|
1590 #endif |
|
1591 alfa = s * trow_vec[j]; |
|
1592 #ifdef GLP_DEBUG |
|
1593 xassert(alfa != 0.0); |
|
1594 #endif |
|
1595 /* lambdaN[j] = ... - alfa * lambdaB[p] - ..., and due to s we |
|
1596 need to consider only increasing lambdaB[p] */ |
|
1597 if (alfa > 0.0) |
|
1598 { /* lambdaN[j] is decreasing */ |
|
1599 if (stat[j] == GLP_NL || stat[j] == GLP_NF) |
|
1600 { /* lambdaN[j] has zero lower bound */ |
|
1601 t = (cbar[j] + rtol) / alfa; |
|
1602 } |
|
1603 else |
|
1604 { /* lambdaN[j] has no lower bound */ |
|
1605 continue; |
|
1606 } |
|
1607 } |
|
1608 else |
|
1609 { /* lambdaN[j] is increasing */ |
|
1610 if (stat[j] == GLP_NU || stat[j] == GLP_NF) |
|
1611 { /* lambdaN[j] has zero upper bound */ |
|
1612 t = (cbar[j] - rtol) / alfa; |
|
1613 } |
|
1614 else |
|
1615 { /* lambdaN[j] has no upper bound */ |
|
1616 continue; |
|
1617 } |
|
1618 } |
|
1619 /* t is a change of lambdaB[p], on which lambdaN[j] reaches |
|
1620 its zero bound (possibly relaxed); since the basic solution |
|
1621 is assumed to be dual feasible, t has to be non-negative by |
|
1622 definition; however, it may happen that lambdaN[j] slightly |
|
1623 (i.e. within a tolerance) violates its zero bound, that |
|
1624 leads to negative t; in the latter case, if xN[j] is chosen, |
|
1625 negative t means that lambdaB[p] changes in wrong direction |
|
1626 that may cause wrong results on updating reduced costs; |
|
1627 thus, if t is negative, we should replace it by exact zero |
|
1628 assuming that lambdaN[j] is exactly on its zero bound, and |
|
1629 violation appears due to round-off errors */ |
|
1630 if (t < 0.0) t = 0.0; |
|
1631 /* apply minimal ratio test */ |
|
1632 if (teta > t || teta == t && big < fabs(alfa)) |
|
1633 q = j, teta = t, big = fabs(alfa); |
|
1634 } |
|
1635 /* the second pass is skipped in the following cases: */ |
|
1636 /* if the standard ratio test is used */ |
|
1637 if (rtol == 0.0) goto done; |
|
1638 /* if no non-basic variable has been chosen on the first pass */ |
|
1639 if (q == 0) goto done; |
|
1640 /* if lambdaN[q] prevents lambdaB[p] from any change */ |
|
1641 if (teta == 0.0) goto done; |
|
1642 /*** SECOND PASS ***/ |
|
1643 /* here tmax is a maximal change of lambdaB[p], on which the |
|
1644 solution remains dual feasible within a tolerance */ |
|
1645 #if 0 |
|
1646 tmax = (1.0 + 10.0 * DBL_EPSILON) * teta; |
|
1647 #else |
|
1648 tmax = teta; |
|
1649 #endif |
|
1650 /* nothing is chosen so far */ |
|
1651 q = 0, teta = DBL_MAX, big = 0.0; |
|
1652 /* walk through significant elements of the pivot row */ |
|
1653 for (pos = 1; pos <= trow_num; pos++) |
|
1654 { j = trow_ind[pos]; |
|
1655 #ifdef GLP_DEBUG |
|
1656 xassert(1 <= j && j <= n); |
|
1657 #endif |
|
1658 alfa = s * trow_vec[j]; |
|
1659 #ifdef GLP_DEBUG |
|
1660 xassert(alfa != 0.0); |
|
1661 #endif |
|
1662 /* lambdaN[j] = ... - alfa * lambdaB[p] - ..., and due to s we |
|
1663 need to consider only increasing lambdaB[p] */ |
|
1664 if (alfa > 0.0) |
|
1665 { /* lambdaN[j] is decreasing */ |
|
1666 if (stat[j] == GLP_NL || stat[j] == GLP_NF) |
|
1667 { /* lambdaN[j] has zero lower bound */ |
|
1668 t = cbar[j] / alfa; |
|
1669 } |
|
1670 else |
|
1671 { /* lambdaN[j] has no lower bound */ |
|
1672 continue; |
|
1673 } |
|
1674 } |
|
1675 else |
|
1676 { /* lambdaN[j] is increasing */ |
|
1677 if (stat[j] == GLP_NU || stat[j] == GLP_NF) |
|
1678 { /* lambdaN[j] has zero upper bound */ |
|
1679 t = cbar[j] / alfa; |
|
1680 } |
|
1681 else |
|
1682 { /* lambdaN[j] has no upper bound */ |
|
1683 continue; |
|
1684 } |
|
1685 } |
|
1686 /* (see comments for the first pass) */ |
|
1687 if (t < 0.0) t = 0.0; |
|
1688 /* t is a change of lambdaB[p], on which lambdaN[j] reaches |
|
1689 its zero (lower or upper) bound; if t <= tmax, all reduced |
|
1690 costs can violate their zero bounds only within relaxation |
|
1691 tolerance rtol, so we can choose non-basic variable having |
|
1692 largest influence coefficient to avoid possible numerical |
|
1693 instability */ |
|
1694 if (t <= tmax && big < fabs(alfa)) |
|
1695 q = j, teta = t, big = fabs(alfa); |
|
1696 } |
|
1697 /* something must be chosen on the second pass */ |
|
1698 xassert(q != 0); |
|
1699 done: /* store the index of non-basic variable xN[q] chosen */ |
|
1700 csa->q = q; |
|
1701 /* store reduced cost of xN[q] in the adjacent basis */ |
|
1702 csa->new_dq = s * teta; |
|
1703 return; |
|
1704 } |
|
1705 |
|
1706 #if 1 /* copied from primal */ |
|
1707 /*********************************************************************** |
|
1708 * eval_tcol - compute pivot column of the simplex table |
|
1709 * |
|
1710 * This routine computes the pivot column of the simplex table, which |
|
1711 * corresponds to non-basic variable xN[q] chosen. |
|
1712 * |
|
1713 * The pivot column is the following vector: |
|
1714 * |
|
1715 * tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q], |
|
1716 * |
|
1717 * where B is the current basis matrix, N[q] is a column of the matrix |
|
1718 * (I|-A) corresponding to variable xN[q]. */ |
|
1719 |
|
1720 static void eval_tcol(struct csa *csa) |
|
1721 { int m = csa->m; |
|
1722 #ifdef GLP_DEBUG |
|
1723 int n = csa->n; |
|
1724 #endif |
|
1725 int *head = csa->head; |
|
1726 int q = csa->q; |
|
1727 int *tcol_ind = csa->tcol_ind; |
|
1728 double *tcol_vec = csa->tcol_vec; |
|
1729 double *h = csa->tcol_vec; |
|
1730 int i, k, nnz; |
|
1731 #ifdef GLP_DEBUG |
|
1732 xassert(1 <= q && q <= n); |
|
1733 #endif |
|
1734 k = head[m+q]; /* x[k] = xN[q] */ |
|
1735 #ifdef GLP_DEBUG |
|
1736 xassert(1 <= k && k <= m+n); |
|
1737 #endif |
|
1738 /* construct the right-hand side vector h = - N[q] */ |
|
1739 for (i = 1; i <= m; i++) |
|
1740 h[i] = 0.0; |
|
1741 if (k <= m) |
|
1742 { /* N[q] is k-th column of submatrix I */ |
|
1743 h[k] = -1.0; |
|
1744 } |
|
1745 else |
|
1746 { /* N[q] is (k-m)-th column of submatrix (-A) */ |
|
1747 int *A_ptr = csa->A_ptr; |
|
1748 int *A_ind = csa->A_ind; |
|
1749 double *A_val = csa->A_val; |
|
1750 int beg, end, ptr; |
|
1751 beg = A_ptr[k-m]; |
|
1752 end = A_ptr[k-m+1]; |
|
1753 for (ptr = beg; ptr < end; ptr++) |
|
1754 h[A_ind[ptr]] = A_val[ptr]; |
|
1755 } |
|
1756 /* solve system B * tcol = h */ |
|
1757 xassert(csa->valid); |
|
1758 bfd_ftran(csa->bfd, tcol_vec); |
|
1759 /* construct sparse pattern of the pivot column */ |
|
1760 nnz = 0; |
|
1761 for (i = 1; i <= m; i++) |
|
1762 { if (tcol_vec[i] != 0.0) |
|
1763 tcol_ind[++nnz] = i; |
|
1764 } |
|
1765 csa->tcol_nnz = nnz; |
|
1766 return; |
|
1767 } |
|
1768 #endif |
|
1769 |
|
1770 #if 1 /* copied from primal */ |
|
1771 /*********************************************************************** |
|
1772 * refine_tcol - refine pivot column of the simplex table |
|
1773 * |
|
1774 * This routine refines the pivot column of the simplex table assuming |
|
1775 * that it was previously computed by the routine eval_tcol. */ |
|
1776 |
|
1777 static void refine_tcol(struct csa *csa) |
|
1778 { int m = csa->m; |
|
1779 #ifdef GLP_DEBUG |
|
1780 int n = csa->n; |
|
1781 #endif |
|
1782 int *head = csa->head; |
|
1783 int q = csa->q; |
|
1784 int *tcol_ind = csa->tcol_ind; |
|
1785 double *tcol_vec = csa->tcol_vec; |
|
1786 double *h = csa->work3; |
|
1787 int i, k, nnz; |
|
1788 #ifdef GLP_DEBUG |
|
1789 xassert(1 <= q && q <= n); |
|
1790 #endif |
|
1791 k = head[m+q]; /* x[k] = xN[q] */ |
|
1792 #ifdef GLP_DEBUG |
|
1793 xassert(1 <= k && k <= m+n); |
|
1794 #endif |
|
1795 /* construct the right-hand side vector h = - N[q] */ |
|
1796 for (i = 1; i <= m; i++) |
|
1797 h[i] = 0.0; |
|
1798 if (k <= m) |
|
1799 { /* N[q] is k-th column of submatrix I */ |
|
1800 h[k] = -1.0; |
|
1801 } |
|
1802 else |
|
1803 { /* N[q] is (k-m)-th column of submatrix (-A) */ |
|
1804 int *A_ptr = csa->A_ptr; |
|
1805 int *A_ind = csa->A_ind; |
|
1806 double *A_val = csa->A_val; |
|
1807 int beg, end, ptr; |
|
1808 beg = A_ptr[k-m]; |
|
1809 end = A_ptr[k-m+1]; |
|
1810 for (ptr = beg; ptr < end; ptr++) |
|
1811 h[A_ind[ptr]] = A_val[ptr]; |
|
1812 } |
|
1813 /* refine solution of B * tcol = h */ |
|
1814 refine_ftran(csa, h, tcol_vec); |
|
1815 /* construct sparse pattern of the pivot column */ |
|
1816 nnz = 0; |
|
1817 for (i = 1; i <= m; i++) |
|
1818 { if (tcol_vec[i] != 0.0) |
|
1819 tcol_ind[++nnz] = i; |
|
1820 } |
|
1821 csa->tcol_nnz = nnz; |
|
1822 return; |
|
1823 } |
|
1824 #endif |
|
1825 |
|
1826 /*********************************************************************** |
|
1827 * update_cbar - update reduced costs of non-basic variables |
|
1828 * |
|
1829 * This routine updates reduced costs of all (except fixed) non-basic |
|
1830 * variables for the adjacent basis. */ |
|
1831 |
|
1832 static void update_cbar(struct csa *csa) |
|
1833 { |
|
1834 #ifdef GLP_DEBUG |
|
1835 int n = csa->n; |
|
1836 #endif |
|
1837 double *cbar = csa->cbar; |
|
1838 int trow_nnz = csa->trow_nnz; |
|
1839 int *trow_ind = csa->trow_ind; |
|
1840 double *trow_vec = csa->trow_vec; |
|
1841 int q = csa->q; |
|
1842 double new_dq = csa->new_dq; |
|
1843 int j, pos; |
|
1844 #ifdef GLP_DEBUG |
|
1845 xassert(1 <= q && q <= n); |
|
1846 #endif |
|
1847 /* set new reduced cost of xN[q] */ |
|
1848 cbar[q] = new_dq; |
|
1849 /* update reduced costs of other non-basic variables */ |
|
1850 if (new_dq == 0.0) goto done; |
|
1851 for (pos = 1; pos <= trow_nnz; pos++) |
|
1852 { j = trow_ind[pos]; |
|
1853 #ifdef GLP_DEBUG |
|
1854 xassert(1 <= j && j <= n); |
|
1855 #endif |
|
1856 if (j != q) |
|
1857 cbar[j] -= trow_vec[j] * new_dq; |
|
1858 } |
|
1859 done: return; |
|
1860 } |
|
1861 |
|
1862 /*********************************************************************** |
|
1863 * update_bbar - update values of basic variables |
|
1864 * |
|
1865 * This routine updates values of all basic variables for the adjacent |
|
1866 * basis. */ |
|
1867 |
|
1868 static void update_bbar(struct csa *csa) |
|
1869 { |
|
1870 #ifdef GLP_DEBUG |
|
1871 int m = csa->m; |
|
1872 int n = csa->n; |
|
1873 #endif |
|
1874 double *bbar = csa->bbar; |
|
1875 int p = csa->p; |
|
1876 double delta = csa->delta; |
|
1877 int q = csa->q; |
|
1878 int tcol_nnz = csa->tcol_nnz; |
|
1879 int *tcol_ind = csa->tcol_ind; |
|
1880 double *tcol_vec = csa->tcol_vec; |
|
1881 int i, pos; |
|
1882 double teta; |
|
1883 #ifdef GLP_DEBUG |
|
1884 xassert(1 <= p && p <= m); |
|
1885 xassert(1 <= q && q <= n); |
|
1886 #endif |
|
1887 /* determine the change of xN[q] in the adjacent basis */ |
|
1888 #ifdef GLP_DEBUG |
|
1889 xassert(tcol_vec[p] != 0.0); |
|
1890 #endif |
|
1891 teta = delta / tcol_vec[p]; |
|
1892 /* set new primal value of xN[q] */ |
|
1893 bbar[p] = get_xN(csa, q) + teta; |
|
1894 /* update primal values of other basic variables */ |
|
1895 if (teta == 0.0) goto done; |
|
1896 for (pos = 1; pos <= tcol_nnz; pos++) |
|
1897 { i = tcol_ind[pos]; |
|
1898 #ifdef GLP_DEBUG |
|
1899 xassert(1 <= i && i <= m); |
|
1900 #endif |
|
1901 if (i != p) |
|
1902 bbar[i] += tcol_vec[i] * teta; |
|
1903 } |
|
1904 done: return; |
|
1905 } |
|
1906 |
|
1907 /*********************************************************************** |
|
1908 * update_gamma - update steepest edge coefficients |
|
1909 * |
|
1910 * This routine updates steepest-edge coefficients for the adjacent |
|
1911 * basis. */ |
|
1912 |
|
1913 static void update_gamma(struct csa *csa) |
|
1914 { int m = csa->m; |
|
1915 #ifdef GLP_DEBUG |
|
1916 int n = csa->n; |
|
1917 #endif |
|
1918 char *type = csa->type; |
|
1919 int *head = csa->head; |
|
1920 char *refsp = csa->refsp; |
|
1921 double *gamma = csa->gamma; |
|
1922 int p = csa->p; |
|
1923 int trow_nnz = csa->trow_nnz; |
|
1924 int *trow_ind = csa->trow_ind; |
|
1925 double *trow_vec = csa->trow_vec; |
|
1926 int q = csa->q; |
|
1927 int tcol_nnz = csa->tcol_nnz; |
|
1928 int *tcol_ind = csa->tcol_ind; |
|
1929 double *tcol_vec = csa->tcol_vec; |
|
1930 double *u = csa->work3; |
|
1931 int i, j, k,pos; |
|
1932 double gamma_p, eta_p, pivot, t, t1, t2; |
|
1933 #ifdef GLP_DEBUG |
|
1934 xassert(1 <= p && p <= m); |
|
1935 xassert(1 <= q && q <= n); |
|
1936 #endif |
|
1937 /* the basis changes, so decrease the count */ |
|
1938 xassert(csa->refct > 0); |
|
1939 csa->refct--; |
|
1940 /* recompute gamma[p] for the current basis more accurately and |
|
1941 compute auxiliary vector u */ |
|
1942 #ifdef GLP_DEBUG |
|
1943 xassert(type[head[p]] != GLP_FR); |
|
1944 #endif |
|
1945 gamma_p = eta_p = (refsp[head[p]] ? 1.0 : 0.0); |
|
1946 for (i = 1; i <= m; i++) u[i] = 0.0; |
|
1947 for (pos = 1; pos <= trow_nnz; pos++) |
|
1948 { j = trow_ind[pos]; |
|
1949 #ifdef GLP_DEBUG |
|
1950 xassert(1 <= j && j <= n); |
|
1951 #endif |
|
1952 k = head[m+j]; /* x[k] = xN[j] */ |
|
1953 #ifdef GLP_DEBUG |
|
1954 xassert(1 <= k && k <= m+n); |
|
1955 xassert(type[k] != GLP_FX); |
|
1956 #endif |
|
1957 if (!refsp[k]) continue; |
|
1958 t = trow_vec[j]; |
|
1959 gamma_p += t * t; |
|
1960 /* u := u + N[j] * delta[j] * trow[j] */ |
|
1961 if (k <= m) |
|
1962 { /* N[k] = k-j stolbec submatrix I */ |
|
1963 u[k] += t; |
|
1964 } |
|
1965 else |
|
1966 { /* N[k] = k-m-k stolbec (-A) */ |
|
1967 int *A_ptr = csa->A_ptr; |
|
1968 int *A_ind = csa->A_ind; |
|
1969 double *A_val = csa->A_val; |
|
1970 int beg, end, ptr; |
|
1971 beg = A_ptr[k-m]; |
|
1972 end = A_ptr[k-m+1]; |
|
1973 for (ptr = beg; ptr < end; ptr++) |
|
1974 u[A_ind[ptr]] -= t * A_val[ptr]; |
|
1975 } |
|
1976 } |
|
1977 xassert(csa->valid); |
|
1978 bfd_ftran(csa->bfd, u); |
|
1979 /* update gamma[i] for other basic variables (except xB[p] and |
|
1980 free variables) */ |
|
1981 pivot = tcol_vec[p]; |
|
1982 #ifdef GLP_DEBUG |
|
1983 xassert(pivot != 0.0); |
|
1984 #endif |
|
1985 for (pos = 1; pos <= tcol_nnz; pos++) |
|
1986 { i = tcol_ind[pos]; |
|
1987 #ifdef GLP_DEBUG |
|
1988 xassert(1 <= i && i <= m); |
|
1989 #endif |
|
1990 k = head[i]; |
|
1991 #ifdef GLP_DEBUG |
|
1992 xassert(1 <= k && k <= m+n); |
|
1993 #endif |
|
1994 /* skip xB[p] */ |
|
1995 if (i == p) continue; |
|
1996 /* skip free basic variable */ |
|
1997 if (type[head[i]] == GLP_FR) |
|
1998 { |
|
1999 #ifdef GLP_DEBUG |
|
2000 xassert(gamma[i] == 1.0); |
|
2001 #endif |
|
2002 continue; |
|
2003 } |
|
2004 /* compute gamma[i] for the adjacent basis */ |
|
2005 t = tcol_vec[i] / pivot; |
|
2006 t1 = gamma[i] + t * t * gamma_p + 2.0 * t * u[i]; |
|
2007 t2 = (refsp[k] ? 1.0 : 0.0) + eta_p * t * t; |
|
2008 gamma[i] = (t1 >= t2 ? t1 : t2); |
|
2009 /* (though gamma[i] can be exact zero, because the reference |
|
2010 space does not include non-basic fixed variables) */ |
|
2011 if (gamma[i] < DBL_EPSILON) gamma[i] = DBL_EPSILON; |
|
2012 } |
|
2013 /* compute gamma[p] for the adjacent basis */ |
|
2014 if (type[head[m+q]] == GLP_FR) |
|
2015 gamma[p] = 1.0; |
|
2016 else |
|
2017 { gamma[p] = gamma_p / (pivot * pivot); |
|
2018 if (gamma[p] < DBL_EPSILON) gamma[p] = DBL_EPSILON; |
|
2019 } |
|
2020 /* if xB[p], which becomes xN[q] in the adjacent basis, is fixed |
|
2021 and belongs to the reference space, remove it from there, and |
|
2022 change all gamma's appropriately */ |
|
2023 k = head[p]; |
|
2024 if (type[k] == GLP_FX && refsp[k]) |
|
2025 { refsp[k] = 0; |
|
2026 for (pos = 1; pos <= tcol_nnz; pos++) |
|
2027 { i = tcol_ind[pos]; |
|
2028 if (i == p) |
|
2029 { if (type[head[m+q]] == GLP_FR) continue; |
|
2030 t = 1.0 / tcol_vec[p]; |
|
2031 } |
|
2032 else |
|
2033 { if (type[head[i]] == GLP_FR) continue; |
|
2034 t = tcol_vec[i] / tcol_vec[p]; |
|
2035 } |
|
2036 gamma[i] -= t * t; |
|
2037 if (gamma[i] < DBL_EPSILON) gamma[i] = DBL_EPSILON; |
|
2038 } |
|
2039 } |
|
2040 return; |
|
2041 } |
|
2042 |
|
2043 #if 1 /* copied from primal */ |
|
2044 /*********************************************************************** |
|
2045 * err_in_bbar - compute maximal relative error in primal solution |
|
2046 * |
|
2047 * This routine returns maximal relative error: |
|
2048 * |
|
2049 * max |beta[i] - bbar[i]| / (1 + |beta[i]|), |
|
2050 * |
|
2051 * where beta and bbar are, respectively, directly computed and the |
|
2052 * current (updated) values of basic variables. |
|
2053 * |
|
2054 * NOTE: The routine is intended only for debugginig purposes. */ |
|
2055 |
|
2056 static double err_in_bbar(struct csa *csa) |
|
2057 { int m = csa->m; |
|
2058 double *bbar = csa->bbar; |
|
2059 int i; |
|
2060 double e, emax, *beta; |
|
2061 beta = xcalloc(1+m, sizeof(double)); |
|
2062 eval_beta(csa, beta); |
|
2063 emax = 0.0; |
|
2064 for (i = 1; i <= m; i++) |
|
2065 { e = fabs(beta[i] - bbar[i]) / (1.0 + fabs(beta[i])); |
|
2066 if (emax < e) emax = e; |
|
2067 } |
|
2068 xfree(beta); |
|
2069 return emax; |
|
2070 } |
|
2071 #endif |
|
2072 |
|
2073 #if 1 /* copied from primal */ |
|
2074 /*********************************************************************** |
|
2075 * err_in_cbar - compute maximal relative error in dual solution |
|
2076 * |
|
2077 * This routine returns maximal relative error: |
|
2078 * |
|
2079 * max |cost[j] - cbar[j]| / (1 + |cost[j]|), |
|
2080 * |
|
2081 * where cost and cbar are, respectively, directly computed and the |
|
2082 * current (updated) reduced costs of non-basic non-fixed variables. |
|
2083 * |
|
2084 * NOTE: The routine is intended only for debugginig purposes. */ |
|
2085 |
|
2086 static double err_in_cbar(struct csa *csa) |
|
2087 { int m = csa->m; |
|
2088 int n = csa->n; |
|
2089 char *stat = csa->stat; |
|
2090 double *cbar = csa->cbar; |
|
2091 int j; |
|
2092 double e, emax, cost, *pi; |
|
2093 pi = xcalloc(1+m, sizeof(double)); |
|
2094 eval_pi(csa, pi); |
|
2095 emax = 0.0; |
|
2096 for (j = 1; j <= n; j++) |
|
2097 { if (stat[j] == GLP_NS) continue; |
|
2098 cost = eval_cost(csa, pi, j); |
|
2099 e = fabs(cost - cbar[j]) / (1.0 + fabs(cost)); |
|
2100 if (emax < e) emax = e; |
|
2101 } |
|
2102 xfree(pi); |
|
2103 return emax; |
|
2104 } |
|
2105 #endif |
|
2106 |
|
2107 /*********************************************************************** |
|
2108 * err_in_gamma - compute maximal relative error in steepest edge cff. |
|
2109 * |
|
2110 * This routine returns maximal relative error: |
|
2111 * |
|
2112 * max |gamma'[j] - gamma[j]| / (1 + |gamma'[j]), |
|
2113 * |
|
2114 * where gamma'[j] and gamma[j] are, respectively, directly computed |
|
2115 * and the current (updated) steepest edge coefficients for non-basic |
|
2116 * non-fixed variable x[j]. |
|
2117 * |
|
2118 * NOTE: The routine is intended only for debugginig purposes. */ |
|
2119 |
|
2120 static double err_in_gamma(struct csa *csa) |
|
2121 { int m = csa->m; |
|
2122 char *type = csa->type; |
|
2123 int *head = csa->head; |
|
2124 double *gamma = csa->gamma; |
|
2125 double *exact = csa->work4; |
|
2126 int i; |
|
2127 double e, emax, temp; |
|
2128 eval_gamma(csa, exact); |
|
2129 emax = 0.0; |
|
2130 for (i = 1; i <= m; i++) |
|
2131 { if (type[head[i]] == GLP_FR) |
|
2132 { xassert(gamma[i] == 1.0); |
|
2133 xassert(exact[i] == 1.0); |
|
2134 continue; |
|
2135 } |
|
2136 temp = exact[i]; |
|
2137 e = fabs(temp - gamma[i]) / (1.0 + fabs(temp)); |
|
2138 if (emax < e) emax = e; |
|
2139 } |
|
2140 return emax; |
|
2141 } |
|
2142 |
|
2143 /*********************************************************************** |
|
2144 * change_basis - change basis header |
|
2145 * |
|
2146 * This routine changes the basis header to make it corresponding to |
|
2147 * the adjacent basis. */ |
|
2148 |
|
2149 static void change_basis(struct csa *csa) |
|
2150 { int m = csa->m; |
|
2151 #ifdef GLP_DEBUG |
|
2152 int n = csa->n; |
|
2153 #endif |
|
2154 char *type = csa->type; |
|
2155 int *head = csa->head; |
|
2156 #if 1 /* 06/IV-2009 */ |
|
2157 int *bind = csa->bind; |
|
2158 #endif |
|
2159 char *stat = csa->stat; |
|
2160 int p = csa->p; |
|
2161 double delta = csa->delta; |
|
2162 int q = csa->q; |
|
2163 int k; |
|
2164 /* xB[p] leaves the basis, xN[q] enters the basis */ |
|
2165 #ifdef GLP_DEBUG |
|
2166 xassert(1 <= p && p <= m); |
|
2167 xassert(1 <= q && q <= n); |
|
2168 #endif |
|
2169 /* xB[p] <-> xN[q] */ |
|
2170 k = head[p], head[p] = head[m+q], head[m+q] = k; |
|
2171 #if 1 /* 06/IV-2009 */ |
|
2172 bind[head[p]] = p, bind[head[m+q]] = m + q; |
|
2173 #endif |
|
2174 if (type[k] == GLP_FX) |
|
2175 stat[q] = GLP_NS; |
|
2176 else if (delta > 0.0) |
|
2177 { |
|
2178 #ifdef GLP_DEBUG |
|
2179 xassert(type[k] == GLP_LO || type[k] == GLP_DB); |
|
2180 #endif |
|
2181 stat[q] = GLP_NL; |
|
2182 } |
|
2183 else /* delta < 0.0 */ |
|
2184 { |
|
2185 #ifdef GLP_DEBUG |
|
2186 xassert(type[k] == GLP_UP || type[k] == GLP_DB); |
|
2187 #endif |
|
2188 stat[q] = GLP_NU; |
|
2189 } |
|
2190 return; |
|
2191 } |
|
2192 |
|
2193 /*********************************************************************** |
|
2194 * check_feas - check dual feasibility of basic solution |
|
2195 * |
|
2196 * If the current basic solution is dual feasible within a tolerance, |
|
2197 * this routine returns zero, otherwise it returns non-zero. */ |
|
2198 |
|
2199 static int check_feas(struct csa *csa, double tol_dj) |
|
2200 { int m = csa->m; |
|
2201 int n = csa->n; |
|
2202 char *orig_type = csa->orig_type; |
|
2203 int *head = csa->head; |
|
2204 double *cbar = csa->cbar; |
|
2205 int j, k; |
|
2206 for (j = 1; j <= n; j++) |
|
2207 { k = head[m+j]; /* x[k] = xN[j] */ |
|
2208 #ifdef GLP_DEBUG |
|
2209 xassert(1 <= k && k <= m+n); |
|
2210 #endif |
|
2211 if (cbar[j] < - tol_dj) |
|
2212 if (orig_type[k] == GLP_LO || orig_type[k] == GLP_FR) |
|
2213 return 1; |
|
2214 if (cbar[j] > + tol_dj) |
|
2215 if (orig_type[k] == GLP_UP || orig_type[k] == GLP_FR) |
|
2216 return 1; |
|
2217 } |
|
2218 return 0; |
|
2219 } |
|
2220 |
|
2221 /*********************************************************************** |
|
2222 * set_aux_bnds - assign auxiliary bounds to variables |
|
2223 * |
|
2224 * This routine assigns auxiliary bounds to variables to construct an |
|
2225 * LP problem solved on phase I. */ |
|
2226 |
|
2227 static void set_aux_bnds(struct csa *csa) |
|
2228 { int m = csa->m; |
|
2229 int n = csa->n; |
|
2230 char *type = csa->type; |
|
2231 double *lb = csa->lb; |
|
2232 double *ub = csa->ub; |
|
2233 char *orig_type = csa->orig_type; |
|
2234 int *head = csa->head; |
|
2235 char *stat = csa->stat; |
|
2236 double *cbar = csa->cbar; |
|
2237 int j, k; |
|
2238 for (k = 1; k <= m+n; k++) |
|
2239 { switch (orig_type[k]) |
|
2240 { case GLP_FR: |
|
2241 #if 0 |
|
2242 type[k] = GLP_DB, lb[k] = -1.0, ub[k] = +1.0; |
|
2243 #else |
|
2244 /* to force free variables to enter the basis */ |
|
2245 type[k] = GLP_DB, lb[k] = -1e3, ub[k] = +1e3; |
|
2246 #endif |
|
2247 break; |
|
2248 case GLP_LO: |
|
2249 type[k] = GLP_DB, lb[k] = 0.0, ub[k] = +1.0; |
|
2250 break; |
|
2251 case GLP_UP: |
|
2252 type[k] = GLP_DB, lb[k] = -1.0, ub[k] = 0.0; |
|
2253 break; |
|
2254 case GLP_DB: |
|
2255 case GLP_FX: |
|
2256 type[k] = GLP_FX, lb[k] = ub[k] = 0.0; |
|
2257 break; |
|
2258 default: |
|
2259 xassert(orig_type != orig_type); |
|
2260 } |
|
2261 } |
|
2262 for (j = 1; j <= n; j++) |
|
2263 { k = head[m+j]; /* x[k] = xN[j] */ |
|
2264 #ifdef GLP_DEBUG |
|
2265 xassert(1 <= k && k <= m+n); |
|
2266 #endif |
|
2267 if (type[k] == GLP_FX) |
|
2268 stat[j] = GLP_NS; |
|
2269 else if (cbar[j] >= 0.0) |
|
2270 stat[j] = GLP_NL; |
|
2271 else |
|
2272 stat[j] = GLP_NU; |
|
2273 } |
|
2274 return; |
|
2275 } |
|
2276 |
|
2277 /*********************************************************************** |
|
2278 * set_orig_bnds - restore original bounds of variables |
|
2279 * |
|
2280 * This routine restores original types and bounds of variables and |
|
2281 * determines statuses of non-basic variables assuming that the current |
|
2282 * basis is dual feasible. */ |
|
2283 |
|
2284 static void set_orig_bnds(struct csa *csa) |
|
2285 { int m = csa->m; |
|
2286 int n = csa->n; |
|
2287 char *type = csa->type; |
|
2288 double *lb = csa->lb; |
|
2289 double *ub = csa->ub; |
|
2290 char *orig_type = csa->orig_type; |
|
2291 double *orig_lb = csa->orig_lb; |
|
2292 double *orig_ub = csa->orig_ub; |
|
2293 int *head = csa->head; |
|
2294 char *stat = csa->stat; |
|
2295 double *cbar = csa->cbar; |
|
2296 int j, k; |
|
2297 memcpy(&type[1], &orig_type[1], (m+n) * sizeof(char)); |
|
2298 memcpy(&lb[1], &orig_lb[1], (m+n) * sizeof(double)); |
|
2299 memcpy(&ub[1], &orig_ub[1], (m+n) * sizeof(double)); |
|
2300 for (j = 1; j <= n; j++) |
|
2301 { k = head[m+j]; /* x[k] = xN[j] */ |
|
2302 #ifdef GLP_DEBUG |
|
2303 xassert(1 <= k && k <= m+n); |
|
2304 #endif |
|
2305 switch (type[k]) |
|
2306 { case GLP_FR: |
|
2307 stat[j] = GLP_NF; |
|
2308 break; |
|
2309 case GLP_LO: |
|
2310 stat[j] = GLP_NL; |
|
2311 break; |
|
2312 case GLP_UP: |
|
2313 stat[j] = GLP_NU; |
|
2314 break; |
|
2315 case GLP_DB: |
|
2316 if (cbar[j] >= +DBL_EPSILON) |
|
2317 stat[j] = GLP_NL; |
|
2318 else if (cbar[j] <= -DBL_EPSILON) |
|
2319 stat[j] = GLP_NU; |
|
2320 else if (fabs(lb[k]) <= fabs(ub[k])) |
|
2321 stat[j] = GLP_NL; |
|
2322 else |
|
2323 stat[j] = GLP_NU; |
|
2324 break; |
|
2325 case GLP_FX: |
|
2326 stat[j] = GLP_NS; |
|
2327 break; |
|
2328 default: |
|
2329 xassert(type != type); |
|
2330 } |
|
2331 } |
|
2332 return; |
|
2333 } |
|
2334 |
|
2335 /*********************************************************************** |
|
2336 * check_stab - check numerical stability of basic solution |
|
2337 * |
|
2338 * If the current basic solution is dual feasible within a tolerance, |
|
2339 * this routine returns zero, otherwise it returns non-zero. */ |
|
2340 |
|
2341 static int check_stab(struct csa *csa, double tol_dj) |
|
2342 { int n = csa->n; |
|
2343 char *stat = csa->stat; |
|
2344 double *cbar = csa->cbar; |
|
2345 int j; |
|
2346 for (j = 1; j <= n; j++) |
|
2347 { if (cbar[j] < - tol_dj) |
|
2348 if (stat[j] == GLP_NL || stat[j] == GLP_NF) return 1; |
|
2349 if (cbar[j] > + tol_dj) |
|
2350 if (stat[j] == GLP_NU || stat[j] == GLP_NF) return 1; |
|
2351 } |
|
2352 return 0; |
|
2353 } |
|
2354 |
|
2355 #if 1 /* copied from primal */ |
|
2356 /*********************************************************************** |
|
2357 * eval_obj - compute original objective function |
|
2358 * |
|
2359 * This routine computes the current value of the original objective |
|
2360 * function. */ |
|
2361 |
|
2362 static double eval_obj(struct csa *csa) |
|
2363 { int m = csa->m; |
|
2364 int n = csa->n; |
|
2365 double *obj = csa->obj; |
|
2366 int *head = csa->head; |
|
2367 double *bbar = csa->bbar; |
|
2368 int i, j, k; |
|
2369 double sum; |
|
2370 sum = obj[0]; |
|
2371 /* walk through the list of basic variables */ |
|
2372 for (i = 1; i <= m; i++) |
|
2373 { k = head[i]; /* x[k] = xB[i] */ |
|
2374 #ifdef GLP_DEBUG |
|
2375 xassert(1 <= k && k <= m+n); |
|
2376 #endif |
|
2377 if (k > m) |
|
2378 sum += obj[k-m] * bbar[i]; |
|
2379 } |
|
2380 /* walk through the list of non-basic variables */ |
|
2381 for (j = 1; j <= n; j++) |
|
2382 { k = head[m+j]; /* x[k] = xN[j] */ |
|
2383 #ifdef GLP_DEBUG |
|
2384 xassert(1 <= k && k <= m+n); |
|
2385 #endif |
|
2386 if (k > m) |
|
2387 sum += obj[k-m] * get_xN(csa, j); |
|
2388 } |
|
2389 return sum; |
|
2390 } |
|
2391 #endif |
|
2392 |
|
2393 /*********************************************************************** |
|
2394 * display - display the search progress |
|
2395 * |
|
2396 * This routine displays some information about the search progress. */ |
|
2397 |
|
2398 static void display(struct csa *csa, const glp_smcp *parm, int spec) |
|
2399 { int m = csa->m; |
|
2400 int n = csa->n; |
|
2401 double *coef = csa->coef; |
|
2402 char *orig_type = csa->orig_type; |
|
2403 int *head = csa->head; |
|
2404 char *stat = csa->stat; |
|
2405 int phase = csa->phase; |
|
2406 double *bbar = csa->bbar; |
|
2407 double *cbar = csa->cbar; |
|
2408 int i, j, cnt; |
|
2409 double sum; |
|
2410 if (parm->msg_lev < GLP_MSG_ON) goto skip; |
|
2411 if (parm->out_dly > 0 && |
|
2412 1000.0 * xdifftime(xtime(), csa->tm_beg) < parm->out_dly) |
|
2413 goto skip; |
|
2414 if (csa->it_cnt == csa->it_dpy) goto skip; |
|
2415 if (!spec && csa->it_cnt % parm->out_frq != 0) goto skip; |
|
2416 /* compute the sum of dual infeasibilities */ |
|
2417 sum = 0.0; |
|
2418 if (phase == 1) |
|
2419 { for (i = 1; i <= m; i++) |
|
2420 sum -= coef[head[i]] * bbar[i]; |
|
2421 for (j = 1; j <= n; j++) |
|
2422 sum -= coef[head[m+j]] * get_xN(csa, j); |
|
2423 } |
|
2424 else |
|
2425 { for (j = 1; j <= n; j++) |
|
2426 { if (cbar[j] < 0.0) |
|
2427 if (stat[j] == GLP_NL || stat[j] == GLP_NF) |
|
2428 sum -= cbar[j]; |
|
2429 if (cbar[j] > 0.0) |
|
2430 if (stat[j] == GLP_NU || stat[j] == GLP_NF) |
|
2431 sum += cbar[j]; |
|
2432 } |
|
2433 } |
|
2434 /* determine the number of basic fixed variables */ |
|
2435 cnt = 0; |
|
2436 for (i = 1; i <= m; i++) |
|
2437 if (orig_type[head[i]] == GLP_FX) cnt++; |
|
2438 if (csa->phase == 1) |
|
2439 xprintf(" %6d: %24s infeas = %10.3e (%d)\n", |
|
2440 csa->it_cnt, "", sum, cnt); |
|
2441 else |
|
2442 xprintf("|%6d: obj = %17.9e infeas = %10.3e (%d)\n", |
|
2443 csa->it_cnt, eval_obj(csa), sum, cnt); |
|
2444 csa->it_dpy = csa->it_cnt; |
|
2445 skip: return; |
|
2446 } |
|
2447 |
|
2448 #if 1 /* copied from primal */ |
|
2449 /*********************************************************************** |
|
2450 * store_sol - store basic solution back to the problem object |
|
2451 * |
|
2452 * This routine stores basic solution components back to the problem |
|
2453 * object. */ |
|
2454 |
|
2455 static void store_sol(struct csa *csa, glp_prob *lp, int p_stat, |
|
2456 int d_stat, int ray) |
|
2457 { int m = csa->m; |
|
2458 int n = csa->n; |
|
2459 double zeta = csa->zeta; |
|
2460 int *head = csa->head; |
|
2461 char *stat = csa->stat; |
|
2462 double *bbar = csa->bbar; |
|
2463 double *cbar = csa->cbar; |
|
2464 int i, j, k; |
|
2465 #ifdef GLP_DEBUG |
|
2466 xassert(lp->m == m); |
|
2467 xassert(lp->n == n); |
|
2468 #endif |
|
2469 /* basis factorization */ |
|
2470 #ifdef GLP_DEBUG |
|
2471 xassert(!lp->valid && lp->bfd == NULL); |
|
2472 xassert(csa->valid && csa->bfd != NULL); |
|
2473 #endif |
|
2474 lp->valid = 1, csa->valid = 0; |
|
2475 lp->bfd = csa->bfd, csa->bfd = NULL; |
|
2476 memcpy(&lp->head[1], &head[1], m * sizeof(int)); |
|
2477 /* basic solution status */ |
|
2478 lp->pbs_stat = p_stat; |
|
2479 lp->dbs_stat = d_stat; |
|
2480 /* objective function value */ |
|
2481 lp->obj_val = eval_obj(csa); |
|
2482 /* simplex iteration count */ |
|
2483 lp->it_cnt = csa->it_cnt; |
|
2484 /* unbounded ray */ |
|
2485 lp->some = ray; |
|
2486 /* basic variables */ |
|
2487 for (i = 1; i <= m; i++) |
|
2488 { k = head[i]; /* x[k] = xB[i] */ |
|
2489 #ifdef GLP_DEBUG |
|
2490 xassert(1 <= k && k <= m+n); |
|
2491 #endif |
|
2492 if (k <= m) |
|
2493 { GLPROW *row = lp->row[k]; |
|
2494 row->stat = GLP_BS; |
|
2495 row->bind = i; |
|
2496 row->prim = bbar[i] / row->rii; |
|
2497 row->dual = 0.0; |
|
2498 } |
|
2499 else |
|
2500 { GLPCOL *col = lp->col[k-m]; |
|
2501 col->stat = GLP_BS; |
|
2502 col->bind = i; |
|
2503 col->prim = bbar[i] * col->sjj; |
|
2504 col->dual = 0.0; |
|
2505 } |
|
2506 } |
|
2507 /* non-basic variables */ |
|
2508 for (j = 1; j <= n; j++) |
|
2509 { k = head[m+j]; /* x[k] = xN[j] */ |
|
2510 #ifdef GLP_DEBUG |
|
2511 xassert(1 <= k && k <= m+n); |
|
2512 #endif |
|
2513 if (k <= m) |
|
2514 { GLPROW *row = lp->row[k]; |
|
2515 row->stat = stat[j]; |
|
2516 row->bind = 0; |
|
2517 #if 0 |
|
2518 row->prim = get_xN(csa, j) / row->rii; |
|
2519 #else |
|
2520 switch (stat[j]) |
|
2521 { case GLP_NL: |
|
2522 row->prim = row->lb; break; |
|
2523 case GLP_NU: |
|
2524 row->prim = row->ub; break; |
|
2525 case GLP_NF: |
|
2526 row->prim = 0.0; break; |
|
2527 case GLP_NS: |
|
2528 row->prim = row->lb; break; |
|
2529 default: |
|
2530 xassert(stat != stat); |
|
2531 } |
|
2532 #endif |
|
2533 row->dual = (cbar[j] * row->rii) / zeta; |
|
2534 } |
|
2535 else |
|
2536 { GLPCOL *col = lp->col[k-m]; |
|
2537 col->stat = stat[j]; |
|
2538 col->bind = 0; |
|
2539 #if 0 |
|
2540 col->prim = get_xN(csa, j) * col->sjj; |
|
2541 #else |
|
2542 switch (stat[j]) |
|
2543 { case GLP_NL: |
|
2544 col->prim = col->lb; break; |
|
2545 case GLP_NU: |
|
2546 col->prim = col->ub; break; |
|
2547 case GLP_NF: |
|
2548 col->prim = 0.0; break; |
|
2549 case GLP_NS: |
|
2550 col->prim = col->lb; break; |
|
2551 default: |
|
2552 xassert(stat != stat); |
|
2553 } |
|
2554 #endif |
|
2555 col->dual = (cbar[j] / col->sjj) / zeta; |
|
2556 } |
|
2557 } |
|
2558 return; |
|
2559 } |
|
2560 #endif |
|
2561 |
|
2562 /*********************************************************************** |
|
2563 * free_csa - deallocate common storage area |
|
2564 * |
|
2565 * This routine frees all the memory allocated to arrays in the common |
|
2566 * storage area (CSA). */ |
|
2567 |
|
2568 static void free_csa(struct csa *csa) |
|
2569 { xfree(csa->type); |
|
2570 xfree(csa->lb); |
|
2571 xfree(csa->ub); |
|
2572 xfree(csa->coef); |
|
2573 xfree(csa->orig_type); |
|
2574 xfree(csa->orig_lb); |
|
2575 xfree(csa->orig_ub); |
|
2576 xfree(csa->obj); |
|
2577 xfree(csa->A_ptr); |
|
2578 xfree(csa->A_ind); |
|
2579 xfree(csa->A_val); |
|
2580 #if 1 /* 06/IV-2009 */ |
|
2581 xfree(csa->AT_ptr); |
|
2582 xfree(csa->AT_ind); |
|
2583 xfree(csa->AT_val); |
|
2584 #endif |
|
2585 xfree(csa->head); |
|
2586 #if 1 /* 06/IV-2009 */ |
|
2587 xfree(csa->bind); |
|
2588 #endif |
|
2589 xfree(csa->stat); |
|
2590 #if 0 /* 06/IV-2009 */ |
|
2591 xfree(csa->N_ptr); |
|
2592 xfree(csa->N_len); |
|
2593 xfree(csa->N_ind); |
|
2594 xfree(csa->N_val); |
|
2595 #endif |
|
2596 xfree(csa->bbar); |
|
2597 xfree(csa->cbar); |
|
2598 xfree(csa->refsp); |
|
2599 xfree(csa->gamma); |
|
2600 xfree(csa->trow_ind); |
|
2601 xfree(csa->trow_vec); |
|
2602 #ifdef GLP_LONG_STEP /* 07/IV-2009 */ |
|
2603 xfree(csa->bkpt); |
|
2604 #endif |
|
2605 xfree(csa->tcol_ind); |
|
2606 xfree(csa->tcol_vec); |
|
2607 xfree(csa->work1); |
|
2608 xfree(csa->work2); |
|
2609 xfree(csa->work3); |
|
2610 xfree(csa->work4); |
|
2611 xfree(csa); |
|
2612 return; |
|
2613 } |
|
2614 |
|
2615 /*********************************************************************** |
|
2616 * spx_dual - core LP solver based on the dual simplex method |
|
2617 * |
|
2618 * SYNOPSIS |
|
2619 * |
|
2620 * #include "glpspx.h" |
|
2621 * int spx_dual(glp_prob *lp, const glp_smcp *parm); |
|
2622 * |
|
2623 * DESCRIPTION |
|
2624 * |
|
2625 * The routine spx_dual is a core LP solver based on the two-phase dual |
|
2626 * simplex method. |
|
2627 * |
|
2628 * RETURNS |
|
2629 * |
|
2630 * 0 LP instance has been successfully solved. |
|
2631 * |
|
2632 * GLP_EOBJLL |
|
2633 * Objective lower limit has been reached (maximization). |
|
2634 * |
|
2635 * GLP_EOBJUL |
|
2636 * Objective upper limit has been reached (minimization). |
|
2637 * |
|
2638 * GLP_EITLIM |
|
2639 * Iteration limit has been exhausted. |
|
2640 * |
|
2641 * GLP_ETMLIM |
|
2642 * Time limit has been exhausted. |
|
2643 * |
|
2644 * GLP_EFAIL |
|
2645 * The solver failed to solve LP instance. */ |
|
2646 |
|
2647 int spx_dual(glp_prob *lp, const glp_smcp *parm) |
|
2648 { struct csa *csa; |
|
2649 int binv_st = 2; |
|
2650 /* status of basis matrix factorization: |
|
2651 0 - invalid; 1 - just computed; 2 - updated */ |
|
2652 int bbar_st = 0; |
|
2653 /* status of primal values of basic variables: |
|
2654 0 - invalid; 1 - just computed; 2 - updated */ |
|
2655 int cbar_st = 0; |
|
2656 /* status of reduced costs of non-basic variables: |
|
2657 0 - invalid; 1 - just computed; 2 - updated */ |
|
2658 int rigorous = 0; |
|
2659 /* rigorous mode flag; this flag is used to enable iterative |
|
2660 refinement on computing pivot rows and columns of the simplex |
|
2661 table */ |
|
2662 int check = 0; |
|
2663 int p_stat, d_stat, ret; |
|
2664 /* allocate and initialize the common storage area */ |
|
2665 csa = alloc_csa(lp); |
|
2666 init_csa(csa, lp); |
|
2667 if (parm->msg_lev >= GLP_MSG_DBG) |
|
2668 xprintf("Objective scale factor = %g\n", csa->zeta); |
|
2669 loop: /* main loop starts here */ |
|
2670 /* compute factorization of the basis matrix */ |
|
2671 if (binv_st == 0) |
|
2672 { ret = invert_B(csa); |
|
2673 if (ret != 0) |
|
2674 { if (parm->msg_lev >= GLP_MSG_ERR) |
|
2675 { xprintf("Error: unable to factorize the basis matrix (%d" |
|
2676 ")\n", ret); |
|
2677 xprintf("Sorry, basis recovery procedure not implemented" |
|
2678 " yet\n"); |
|
2679 } |
|
2680 xassert(!lp->valid && lp->bfd == NULL); |
|
2681 lp->bfd = csa->bfd, csa->bfd = NULL; |
|
2682 lp->pbs_stat = lp->dbs_stat = GLP_UNDEF; |
|
2683 lp->obj_val = 0.0; |
|
2684 lp->it_cnt = csa->it_cnt; |
|
2685 lp->some = 0; |
|
2686 ret = GLP_EFAIL; |
|
2687 goto done; |
|
2688 } |
|
2689 csa->valid = 1; |
|
2690 binv_st = 1; /* just computed */ |
|
2691 /* invalidate basic solution components */ |
|
2692 bbar_st = cbar_st = 0; |
|
2693 } |
|
2694 /* compute reduced costs of non-basic variables */ |
|
2695 if (cbar_st == 0) |
|
2696 { eval_cbar(csa); |
|
2697 cbar_st = 1; /* just computed */ |
|
2698 /* determine the search phase, if not determined yet */ |
|
2699 if (csa->phase == 0) |
|
2700 { if (check_feas(csa, 0.90 * parm->tol_dj) != 0) |
|
2701 { /* current basic solution is dual infeasible */ |
|
2702 /* start searching for dual feasible solution */ |
|
2703 csa->phase = 1; |
|
2704 set_aux_bnds(csa); |
|
2705 } |
|
2706 else |
|
2707 { /* current basic solution is dual feasible */ |
|
2708 /* start searching for optimal solution */ |
|
2709 csa->phase = 2; |
|
2710 set_orig_bnds(csa); |
|
2711 } |
|
2712 xassert(check_stab(csa, parm->tol_dj) == 0); |
|
2713 /* some non-basic double-bounded variables might become |
|
2714 fixed (on phase I) or vice versa (on phase II) */ |
|
2715 #if 0 /* 06/IV-2009 */ |
|
2716 build_N(csa); |
|
2717 #endif |
|
2718 csa->refct = 0; |
|
2719 /* bounds of non-basic variables have been changed, so |
|
2720 invalidate primal values */ |
|
2721 bbar_st = 0; |
|
2722 } |
|
2723 /* make sure that the current basic solution remains dual |
|
2724 feasible */ |
|
2725 if (check_stab(csa, parm->tol_dj) != 0) |
|
2726 { if (parm->msg_lev >= GLP_MSG_ERR) |
|
2727 xprintf("Warning: numerical instability (dual simplex, p" |
|
2728 "hase %s)\n", csa->phase == 1 ? "I" : "II"); |
|
2729 #if 1 |
|
2730 if (parm->meth == GLP_DUALP) |
|
2731 { store_sol(csa, lp, GLP_UNDEF, GLP_UNDEF, 0); |
|
2732 ret = GLP_EFAIL; |
|
2733 goto done; |
|
2734 } |
|
2735 #endif |
|
2736 /* restart the search */ |
|
2737 csa->phase = 0; |
|
2738 binv_st = 0; |
|
2739 rigorous = 5; |
|
2740 goto loop; |
|
2741 } |
|
2742 } |
|
2743 xassert(csa->phase == 1 || csa->phase == 2); |
|
2744 /* on phase I we do not need to wait until the current basic |
|
2745 solution becomes primal feasible; it is sufficient to make |
|
2746 sure that all reduced costs have correct signs */ |
|
2747 if (csa->phase == 1 && check_feas(csa, parm->tol_dj) == 0) |
|
2748 { /* the current basis is dual feasible; switch to phase II */ |
|
2749 display(csa, parm, 1); |
|
2750 csa->phase = 2; |
|
2751 if (cbar_st != 1) |
|
2752 { eval_cbar(csa); |
|
2753 cbar_st = 1; |
|
2754 } |
|
2755 set_orig_bnds(csa); |
|
2756 #if 0 /* 06/IV-2009 */ |
|
2757 build_N(csa); |
|
2758 #endif |
|
2759 csa->refct = 0; |
|
2760 bbar_st = 0; |
|
2761 } |
|
2762 /* compute primal values of basic variables */ |
|
2763 if (bbar_st == 0) |
|
2764 { eval_bbar(csa); |
|
2765 if (csa->phase == 2) |
|
2766 csa->bbar[0] = eval_obj(csa); |
|
2767 bbar_st = 1; /* just computed */ |
|
2768 } |
|
2769 /* redefine the reference space, if required */ |
|
2770 switch (parm->pricing) |
|
2771 { case GLP_PT_STD: |
|
2772 break; |
|
2773 case GLP_PT_PSE: |
|
2774 if (csa->refct == 0) reset_refsp(csa); |
|
2775 break; |
|
2776 default: |
|
2777 xassert(parm != parm); |
|
2778 } |
|
2779 /* at this point the basis factorization and all basic solution |
|
2780 components are valid */ |
|
2781 xassert(binv_st && bbar_st && cbar_st); |
|
2782 /* check accuracy of current basic solution components (only for |
|
2783 debugging) */ |
|
2784 if (check) |
|
2785 { double e_bbar = err_in_bbar(csa); |
|
2786 double e_cbar = err_in_cbar(csa); |
|
2787 double e_gamma = |
|
2788 (parm->pricing == GLP_PT_PSE ? err_in_gamma(csa) : 0.0); |
|
2789 xprintf("e_bbar = %10.3e; e_cbar = %10.3e; e_gamma = %10.3e\n", |
|
2790 e_bbar, e_cbar, e_gamma); |
|
2791 xassert(e_bbar <= 1e-5 && e_cbar <= 1e-5 && e_gamma <= 1e-3); |
|
2792 } |
|
2793 /* if the objective has to be maximized, check if it has reached |
|
2794 its lower limit */ |
|
2795 if (csa->phase == 2 && csa->zeta < 0.0 && |
|
2796 parm->obj_ll > -DBL_MAX && csa->bbar[0] <= parm->obj_ll) |
|
2797 { if (bbar_st != 1 || cbar_st != 1) |
|
2798 { if (bbar_st != 1) bbar_st = 0; |
|
2799 if (cbar_st != 1) cbar_st = 0; |
|
2800 goto loop; |
|
2801 } |
|
2802 display(csa, parm, 1); |
|
2803 if (parm->msg_lev >= GLP_MSG_ALL) |
|
2804 xprintf("OBJECTIVE LOWER LIMIT REACHED; SEARCH TERMINATED\n" |
|
2805 ); |
|
2806 store_sol(csa, lp, GLP_INFEAS, GLP_FEAS, 0); |
|
2807 ret = GLP_EOBJLL; |
|
2808 goto done; |
|
2809 } |
|
2810 /* if the objective has to be minimized, check if it has reached |
|
2811 its upper limit */ |
|
2812 if (csa->phase == 2 && csa->zeta > 0.0 && |
|
2813 parm->obj_ul < +DBL_MAX && csa->bbar[0] >= parm->obj_ul) |
|
2814 { if (bbar_st != 1 || cbar_st != 1) |
|
2815 { if (bbar_st != 1) bbar_st = 0; |
|
2816 if (cbar_st != 1) cbar_st = 0; |
|
2817 goto loop; |
|
2818 } |
|
2819 display(csa, parm, 1); |
|
2820 if (parm->msg_lev >= GLP_MSG_ALL) |
|
2821 xprintf("OBJECTIVE UPPER LIMIT REACHED; SEARCH TERMINATED\n" |
|
2822 ); |
|
2823 store_sol(csa, lp, GLP_INFEAS, GLP_FEAS, 0); |
|
2824 ret = GLP_EOBJUL; |
|
2825 goto done; |
|
2826 } |
|
2827 /* check if the iteration limit has been exhausted */ |
|
2828 if (parm->it_lim < INT_MAX && |
|
2829 csa->it_cnt - csa->it_beg >= parm->it_lim) |
|
2830 { if (csa->phase == 2 && bbar_st != 1 || cbar_st != 1) |
|
2831 { if (csa->phase == 2 && bbar_st != 1) bbar_st = 0; |
|
2832 if (cbar_st != 1) cbar_st = 0; |
|
2833 goto loop; |
|
2834 } |
|
2835 display(csa, parm, 1); |
|
2836 if (parm->msg_lev >= GLP_MSG_ALL) |
|
2837 xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
|
2838 switch (csa->phase) |
|
2839 { case 1: |
|
2840 d_stat = GLP_INFEAS; |
|
2841 set_orig_bnds(csa); |
|
2842 eval_bbar(csa); |
|
2843 break; |
|
2844 case 2: |
|
2845 d_stat = GLP_FEAS; |
|
2846 break; |
|
2847 default: |
|
2848 xassert(csa != csa); |
|
2849 } |
|
2850 store_sol(csa, lp, GLP_INFEAS, d_stat, 0); |
|
2851 ret = GLP_EITLIM; |
|
2852 goto done; |
|
2853 } |
|
2854 /* check if the time limit has been exhausted */ |
|
2855 if (parm->tm_lim < INT_MAX && |
|
2856 1000.0 * xdifftime(xtime(), csa->tm_beg) >= parm->tm_lim) |
|
2857 { if (csa->phase == 2 && bbar_st != 1 || cbar_st != 1) |
|
2858 { if (csa->phase == 2 && bbar_st != 1) bbar_st = 0; |
|
2859 if (cbar_st != 1) cbar_st = 0; |
|
2860 goto loop; |
|
2861 } |
|
2862 display(csa, parm, 1); |
|
2863 if (parm->msg_lev >= GLP_MSG_ALL) |
|
2864 xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
|
2865 switch (csa->phase) |
|
2866 { case 1: |
|
2867 d_stat = GLP_INFEAS; |
|
2868 set_orig_bnds(csa); |
|
2869 eval_bbar(csa); |
|
2870 break; |
|
2871 case 2: |
|
2872 d_stat = GLP_FEAS; |
|
2873 break; |
|
2874 default: |
|
2875 xassert(csa != csa); |
|
2876 } |
|
2877 store_sol(csa, lp, GLP_INFEAS, d_stat, 0); |
|
2878 ret = GLP_ETMLIM; |
|
2879 goto done; |
|
2880 } |
|
2881 /* display the search progress */ |
|
2882 display(csa, parm, 0); |
|
2883 /* choose basic variable xB[p] */ |
|
2884 chuzr(csa, parm->tol_bnd); |
|
2885 if (csa->p == 0) |
|
2886 { if (bbar_st != 1 || cbar_st != 1) |
|
2887 { if (bbar_st != 1) bbar_st = 0; |
|
2888 if (cbar_st != 1) cbar_st = 0; |
|
2889 goto loop; |
|
2890 } |
|
2891 display(csa, parm, 1); |
|
2892 switch (csa->phase) |
|
2893 { case 1: |
|
2894 if (parm->msg_lev >= GLP_MSG_ALL) |
|
2895 xprintf("PROBLEM HAS NO DUAL FEASIBLE SOLUTION\n"); |
|
2896 set_orig_bnds(csa); |
|
2897 eval_bbar(csa); |
|
2898 p_stat = GLP_INFEAS, d_stat = GLP_NOFEAS; |
|
2899 break; |
|
2900 case 2: |
|
2901 if (parm->msg_lev >= GLP_MSG_ALL) |
|
2902 xprintf("OPTIMAL SOLUTION FOUND\n"); |
|
2903 p_stat = d_stat = GLP_FEAS; |
|
2904 break; |
|
2905 default: |
|
2906 xassert(csa != csa); |
|
2907 } |
|
2908 store_sol(csa, lp, p_stat, d_stat, 0); |
|
2909 ret = 0; |
|
2910 goto done; |
|
2911 } |
|
2912 /* compute pivot row of the simplex table */ |
|
2913 { double *rho = csa->work4; |
|
2914 eval_rho(csa, rho); |
|
2915 if (rigorous) refine_rho(csa, rho); |
|
2916 eval_trow(csa, rho); |
|
2917 sort_trow(csa, parm->tol_bnd); |
|
2918 } |
|
2919 /* unlike primal simplex there is no need to check accuracy of |
|
2920 the primal value of xB[p] (which might be computed using the |
|
2921 pivot row), since bbar is a result of FTRAN */ |
|
2922 #ifdef GLP_LONG_STEP /* 07/IV-2009 */ |
|
2923 long_step(csa); |
|
2924 if (csa->nbps > 0) |
|
2925 { csa->q = csa->bkpt[csa->nbps].j; |
|
2926 if (csa->delta > 0.0) |
|
2927 csa->new_dq = + csa->bkpt[csa->nbps].t; |
|
2928 else |
|
2929 csa->new_dq = - csa->bkpt[csa->nbps].t; |
|
2930 } |
|
2931 else |
|
2932 #endif |
|
2933 /* choose non-basic variable xN[q] */ |
|
2934 switch (parm->r_test) |
|
2935 { case GLP_RT_STD: |
|
2936 chuzc(csa, 0.0); |
|
2937 break; |
|
2938 case GLP_RT_HAR: |
|
2939 chuzc(csa, 0.30 * parm->tol_dj); |
|
2940 break; |
|
2941 default: |
|
2942 xassert(parm != parm); |
|
2943 } |
|
2944 if (csa->q == 0) |
|
2945 { if (bbar_st != 1 || cbar_st != 1 || !rigorous) |
|
2946 { if (bbar_st != 1) bbar_st = 0; |
|
2947 if (cbar_st != 1) cbar_st = 0; |
|
2948 rigorous = 1; |
|
2949 goto loop; |
|
2950 } |
|
2951 display(csa, parm, 1); |
|
2952 switch (csa->phase) |
|
2953 { case 1: |
|
2954 if (parm->msg_lev >= GLP_MSG_ERR) |
|
2955 xprintf("Error: unable to choose basic variable on ph" |
|
2956 "ase I\n"); |
|
2957 xassert(!lp->valid && lp->bfd == NULL); |
|
2958 lp->bfd = csa->bfd, csa->bfd = NULL; |
|
2959 lp->pbs_stat = lp->dbs_stat = GLP_UNDEF; |
|
2960 lp->obj_val = 0.0; |
|
2961 lp->it_cnt = csa->it_cnt; |
|
2962 lp->some = 0; |
|
2963 ret = GLP_EFAIL; |
|
2964 break; |
|
2965 case 2: |
|
2966 if (parm->msg_lev >= GLP_MSG_ALL) |
|
2967 xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n"); |
|
2968 store_sol(csa, lp, GLP_NOFEAS, GLP_FEAS, |
|
2969 csa->head[csa->p]); |
|
2970 ret = 0; |
|
2971 break; |
|
2972 default: |
|
2973 xassert(csa != csa); |
|
2974 } |
|
2975 goto done; |
|
2976 } |
|
2977 /* check if the pivot element is acceptable */ |
|
2978 { double piv = csa->trow_vec[csa->q]; |
|
2979 double eps = 1e-5 * (1.0 + 0.01 * csa->trow_max); |
|
2980 if (fabs(piv) < eps) |
|
2981 { if (parm->msg_lev >= GLP_MSG_DBG) |
|
2982 xprintf("piv = %.12g; eps = %g\n", piv, eps); |
|
2983 if (!rigorous) |
|
2984 { rigorous = 5; |
|
2985 goto loop; |
|
2986 } |
|
2987 } |
|
2988 } |
|
2989 /* now xN[q] and xB[p] have been chosen anyhow */ |
|
2990 /* compute pivot column of the simplex table */ |
|
2991 eval_tcol(csa); |
|
2992 if (rigorous) refine_tcol(csa); |
|
2993 /* accuracy check based on the pivot element */ |
|
2994 { double piv1 = csa->tcol_vec[csa->p]; /* more accurate */ |
|
2995 double piv2 = csa->trow_vec[csa->q]; /* less accurate */ |
|
2996 xassert(piv1 != 0.0); |
|
2997 if (fabs(piv1 - piv2) > 1e-8 * (1.0 + fabs(piv1)) || |
|
2998 !(piv1 > 0.0 && piv2 > 0.0 || piv1 < 0.0 && piv2 < 0.0)) |
|
2999 { if (parm->msg_lev >= GLP_MSG_DBG) |
|
3000 xprintf("piv1 = %.12g; piv2 = %.12g\n", piv1, piv2); |
|
3001 if (binv_st != 1 || !rigorous) |
|
3002 { if (binv_st != 1) binv_st = 0; |
|
3003 rigorous = 5; |
|
3004 goto loop; |
|
3005 } |
|
3006 /* (not a good idea; should be revised later) */ |
|
3007 if (csa->tcol_vec[csa->p] == 0.0) |
|
3008 { csa->tcol_nnz++; |
|
3009 xassert(csa->tcol_nnz <= csa->m); |
|
3010 csa->tcol_ind[csa->tcol_nnz] = csa->p; |
|
3011 } |
|
3012 csa->tcol_vec[csa->p] = piv2; |
|
3013 } |
|
3014 } |
|
3015 /* update primal values of basic variables */ |
|
3016 #ifdef GLP_LONG_STEP /* 07/IV-2009 */ |
|
3017 if (csa->nbps > 0) |
|
3018 { int kk, j, k; |
|
3019 for (kk = 1; kk < csa->nbps; kk++) |
|
3020 { if (csa->bkpt[kk].t >= csa->bkpt[csa->nbps].t) continue; |
|
3021 j = csa->bkpt[kk].j; |
|
3022 k = csa->head[csa->m + j]; |
|
3023 xassert(csa->type[k] == GLP_DB); |
|
3024 if (csa->stat[j] == GLP_NL) |
|
3025 csa->stat[j] = GLP_NU; |
|
3026 else |
|
3027 csa->stat[j] = GLP_NL; |
|
3028 } |
|
3029 } |
|
3030 bbar_st = 0; |
|
3031 #else |
|
3032 update_bbar(csa); |
|
3033 if (csa->phase == 2) |
|
3034 csa->bbar[0] += (csa->cbar[csa->q] / csa->zeta) * |
|
3035 (csa->delta / csa->tcol_vec[csa->p]); |
|
3036 bbar_st = 2; /* updated */ |
|
3037 #endif |
|
3038 /* update reduced costs of non-basic variables */ |
|
3039 update_cbar(csa); |
|
3040 cbar_st = 2; /* updated */ |
|
3041 /* update steepest edge coefficients */ |
|
3042 switch (parm->pricing) |
|
3043 { case GLP_PT_STD: |
|
3044 break; |
|
3045 case GLP_PT_PSE: |
|
3046 if (csa->refct > 0) update_gamma(csa); |
|
3047 break; |
|
3048 default: |
|
3049 xassert(parm != parm); |
|
3050 } |
|
3051 /* update factorization of the basis matrix */ |
|
3052 ret = update_B(csa, csa->p, csa->head[csa->m+csa->q]); |
|
3053 if (ret == 0) |
|
3054 binv_st = 2; /* updated */ |
|
3055 else |
|
3056 { csa->valid = 0; |
|
3057 binv_st = 0; /* invalid */ |
|
3058 } |
|
3059 #if 0 /* 06/IV-2009 */ |
|
3060 /* update matrix N */ |
|
3061 del_N_col(csa, csa->q, csa->head[csa->m+csa->q]); |
|
3062 if (csa->type[csa->head[csa->p]] != GLP_FX) |
|
3063 add_N_col(csa, csa->q, csa->head[csa->p]); |
|
3064 #endif |
|
3065 /* change the basis header */ |
|
3066 change_basis(csa); |
|
3067 /* iteration complete */ |
|
3068 csa->it_cnt++; |
|
3069 if (rigorous > 0) rigorous--; |
|
3070 goto loop; |
|
3071 done: /* deallocate the common storage area */ |
|
3072 free_csa(csa); |
|
3073 /* return to the calling program */ |
|
3074 return ret; |
|
3075 } |
|
3076 |
|
3077 /* eof */ |