src/glpspx02.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
/* glpspx02.c (dual simplex method) */
alpar@1
     2
alpar@1
     3
/***********************************************************************
alpar@1
     4
*  This code is part of GLPK (GNU Linear Programming Kit).
alpar@1
     5
*
alpar@1
     6
*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@1
     7
*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
alpar@1
     8
*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@1
     9
*  E-mail: <mao@gnu.org>.
alpar@1
    10
*
alpar@1
    11
*  GLPK is free software: you can redistribute it and/or modify it
alpar@1
    12
*  under the terms of the GNU General Public License as published by
alpar@1
    13
*  the Free Software Foundation, either version 3 of the License, or
alpar@1
    14
*  (at your option) any later version.
alpar@1
    15
*
alpar@1
    16
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@1
    17
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@1
    18
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@1
    19
*  License for more details.
alpar@1
    20
*
alpar@1
    21
*  You should have received a copy of the GNU General Public License
alpar@1
    22
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@1
    23
***********************************************************************/
alpar@1
    24
alpar@1
    25
#include "glpspx.h"
alpar@1
    26
alpar@1
    27
#define GLP_DEBUG 1
alpar@1
    28
alpar@1
    29
#if 0
alpar@1
    30
#define GLP_LONG_STEP 1
alpar@1
    31
#endif
alpar@1
    32
alpar@1
    33
struct csa
alpar@1
    34
{     /* common storage area */
alpar@1
    35
      /*--------------------------------------------------------------*/
alpar@1
    36
      /* LP data */
alpar@1
    37
      int m;
alpar@1
    38
      /* number of rows (auxiliary variables), m > 0 */
alpar@1
    39
      int n;
alpar@1
    40
      /* number of columns (structural variables), n > 0 */
alpar@1
    41
      char *type; /* char type[1+m+n]; */
alpar@1
    42
      /* type[0] is not used;
alpar@1
    43
         type[k], 1 <= k <= m+n, is the type of variable x[k]:
alpar@1
    44
         GLP_FR - free variable
alpar@1
    45
         GLP_LO - variable with lower bound
alpar@1
    46
         GLP_UP - variable with upper bound
alpar@1
    47
         GLP_DB - double-bounded variable
alpar@1
    48
         GLP_FX - fixed variable */
alpar@1
    49
      double *lb; /* double lb[1+m+n]; */
alpar@1
    50
      /* lb[0] is not used;
alpar@1
    51
         lb[k], 1 <= k <= m+n, is an lower bound of variable x[k];
alpar@1
    52
         if x[k] has no lower bound, lb[k] is zero */
alpar@1
    53
      double *ub; /* double ub[1+m+n]; */
alpar@1
    54
      /* ub[0] is not used;
alpar@1
    55
         ub[k], 1 <= k <= m+n, is an upper bound of variable x[k];
alpar@1
    56
         if x[k] has no upper bound, ub[k] is zero;
alpar@1
    57
         if x[k] is of fixed type, ub[k] is the same as lb[k] */
alpar@1
    58
      double *coef; /* double coef[1+m+n]; */
alpar@1
    59
      /* coef[0] is not used;
alpar@1
    60
         coef[k], 1 <= k <= m+n, is an objective coefficient at
alpar@1
    61
         variable x[k] */
alpar@1
    62
      /*--------------------------------------------------------------*/
alpar@1
    63
      /* original bounds of variables */
alpar@1
    64
      char *orig_type; /* char orig_type[1+m+n]; */
alpar@1
    65
      double *orig_lb; /* double orig_lb[1+m+n]; */
alpar@1
    66
      double *orig_ub; /* double orig_ub[1+m+n]; */
alpar@1
    67
      /*--------------------------------------------------------------*/
alpar@1
    68
      /* original objective function */
alpar@1
    69
      double *obj; /* double obj[1+n]; */
alpar@1
    70
      /* obj[0] is a constant term of the original objective function;
alpar@1
    71
         obj[j], 1 <= j <= n, is an original objective coefficient at
alpar@1
    72
         structural variable x[m+j] */
alpar@1
    73
      double zeta;
alpar@1
    74
      /* factor used to scale original objective coefficients; its
alpar@1
    75
         sign defines original optimization direction: zeta > 0 means
alpar@1
    76
         minimization, zeta < 0 means maximization */
alpar@1
    77
      /*--------------------------------------------------------------*/
alpar@1
    78
      /* constraint matrix A; it has m rows and n columns and is stored
alpar@1
    79
         by columns */
alpar@1
    80
      int *A_ptr; /* int A_ptr[1+n+1]; */
alpar@1
    81
      /* A_ptr[0] is not used;
alpar@1
    82
         A_ptr[j], 1 <= j <= n, is starting position of j-th column in
alpar@1
    83
         arrays A_ind and A_val; note that A_ptr[1] is always 1;
alpar@1
    84
         A_ptr[n+1] indicates the position after the last element in
alpar@1
    85
         arrays A_ind and A_val */
alpar@1
    86
      int *A_ind; /* int A_ind[A_ptr[n+1]]; */
alpar@1
    87
      /* row indices */
alpar@1
    88
      double *A_val; /* double A_val[A_ptr[n+1]]; */
alpar@1
    89
      /* non-zero element values */
alpar@1
    90
#if 1 /* 06/IV-2009 */
alpar@1
    91
      /* constraint matrix A stored by rows */
alpar@1
    92
      int *AT_ptr; /* int AT_ptr[1+m+1];
alpar@1
    93
      /* AT_ptr[0] is not used;
alpar@1
    94
         AT_ptr[i], 1 <= i <= m, is starting position of i-th row in
alpar@1
    95
         arrays AT_ind and AT_val; note that AT_ptr[1] is always 1;
alpar@1
    96
         AT_ptr[m+1] indicates the position after the last element in
alpar@1
    97
         arrays AT_ind and AT_val */
alpar@1
    98
      int *AT_ind; /* int AT_ind[AT_ptr[m+1]]; */
alpar@1
    99
      /* column indices */
alpar@1
   100
      double *AT_val; /* double AT_val[AT_ptr[m+1]]; */
alpar@1
   101
      /* non-zero element values */
alpar@1
   102
#endif
alpar@1
   103
      /*--------------------------------------------------------------*/
alpar@1
   104
      /* basis header */
alpar@1
   105
      int *head; /* int head[1+m+n]; */
alpar@1
   106
      /* head[0] is not used;
alpar@1
   107
         head[i], 1 <= i <= m, is the ordinal number of basic variable
alpar@1
   108
         xB[i]; head[i] = k means that xB[i] = x[k] and i-th column of
alpar@1
   109
         matrix B is k-th column of matrix (I|-A);
alpar@1
   110
         head[m+j], 1 <= j <= n, is the ordinal number of non-basic
alpar@1
   111
         variable xN[j]; head[m+j] = k means that xN[j] = x[k] and j-th
alpar@1
   112
         column of matrix N is k-th column of matrix (I|-A) */
alpar@1
   113
#if 1 /* 06/IV-2009 */
alpar@1
   114
      int *bind; /* int bind[1+m+n]; */
alpar@1
   115
      /* bind[0] is not used;
alpar@1
   116
         bind[k], 1 <= k <= m+n, is the position of k-th column of the
alpar@1
   117
         matrix (I|-A) in the matrix (B|N); that is, bind[k] = k' means
alpar@1
   118
         that head[k'] = k */
alpar@1
   119
#endif
alpar@1
   120
      char *stat; /* char stat[1+n]; */
alpar@1
   121
      /* stat[0] is not used;
alpar@1
   122
         stat[j], 1 <= j <= n, is the status of non-basic variable
alpar@1
   123
         xN[j], which defines its active bound:
alpar@1
   124
         GLP_NL - lower bound is active
alpar@1
   125
         GLP_NU - upper bound is active
alpar@1
   126
         GLP_NF - free variable
alpar@1
   127
         GLP_NS - fixed variable */
alpar@1
   128
      /*--------------------------------------------------------------*/
alpar@1
   129
      /* matrix B is the basis matrix; it is composed from columns of
alpar@1
   130
         the augmented constraint matrix (I|-A) corresponding to basic
alpar@1
   131
         variables and stored in a factorized (invertable) form */
alpar@1
   132
      int valid;
alpar@1
   133
      /* factorization is valid only if this flag is set */
alpar@1
   134
      BFD *bfd; /* BFD bfd[1:m,1:m]; */
alpar@1
   135
      /* factorized (invertable) form of the basis matrix */
alpar@1
   136
#if 0 /* 06/IV-2009 */
alpar@1
   137
      /*--------------------------------------------------------------*/
alpar@1
   138
      /* matrix N is a matrix composed from columns of the augmented
alpar@1
   139
         constraint matrix (I|-A) corresponding to non-basic variables
alpar@1
   140
         except fixed ones; it is stored by rows and changes every time
alpar@1
   141
         the basis changes */
alpar@1
   142
      int *N_ptr; /* int N_ptr[1+m+1]; */
alpar@1
   143
      /* N_ptr[0] is not used;
alpar@1
   144
         N_ptr[i], 1 <= i <= m, is starting position of i-th row in
alpar@1
   145
         arrays N_ind and N_val; note that N_ptr[1] is always 1;
alpar@1
   146
         N_ptr[m+1] indicates the position after the last element in
alpar@1
   147
         arrays N_ind and N_val */
alpar@1
   148
      int *N_len; /* int N_len[1+m]; */
alpar@1
   149
      /* N_len[0] is not used;
alpar@1
   150
         N_len[i], 1 <= i <= m, is length of i-th row (0 to n) */
alpar@1
   151
      int *N_ind; /* int N_ind[N_ptr[m+1]]; */
alpar@1
   152
      /* column indices */
alpar@1
   153
      double *N_val; /* double N_val[N_ptr[m+1]]; */
alpar@1
   154
      /* non-zero element values */
alpar@1
   155
#endif
alpar@1
   156
      /*--------------------------------------------------------------*/
alpar@1
   157
      /* working parameters */
alpar@1
   158
      int phase;
alpar@1
   159
      /* search phase:
alpar@1
   160
         0 - not determined yet
alpar@1
   161
         1 - search for dual feasible solution
alpar@1
   162
         2 - search for optimal solution */
alpar@1
   163
      glp_long tm_beg;
alpar@1
   164
      /* time value at the beginning of the search */
alpar@1
   165
      int it_beg;
alpar@1
   166
      /* simplex iteration count at the beginning of the search */
alpar@1
   167
      int it_cnt;
alpar@1
   168
      /* simplex iteration count; it increases by one every time the
alpar@1
   169
         basis changes */
alpar@1
   170
      int it_dpy;
alpar@1
   171
      /* simplex iteration count at the most recent display output */
alpar@1
   172
      /*--------------------------------------------------------------*/
alpar@1
   173
      /* basic solution components */
alpar@1
   174
      double *bbar; /* double bbar[1+m]; */
alpar@1
   175
      /* bbar[0] is not used on phase I; on phase II it is the current
alpar@1
   176
         value of the original objective function;
alpar@1
   177
         bbar[i], 1 <= i <= m, is primal value of basic variable xB[i]
alpar@1
   178
         (if xB[i] is free, its primal value is not updated) */
alpar@1
   179
      double *cbar; /* double cbar[1+n]; */
alpar@1
   180
      /* cbar[0] is not used;
alpar@1
   181
         cbar[j], 1 <= j <= n, is reduced cost of non-basic variable
alpar@1
   182
         xN[j] (if xN[j] is fixed, its reduced cost is not updated) */
alpar@1
   183
      /*--------------------------------------------------------------*/
alpar@1
   184
      /* the following pricing technique options may be used:
alpar@1
   185
         GLP_PT_STD - standard ("textbook") pricing;
alpar@1
   186
         GLP_PT_PSE - projected steepest edge;
alpar@1
   187
         GLP_PT_DVX - Devex pricing (not implemented yet);
alpar@1
   188
         in case of GLP_PT_STD the reference space is not used, and all
alpar@1
   189
         steepest edge coefficients are set to 1 */
alpar@1
   190
      int refct;
alpar@1
   191
      /* this count is set to an initial value when the reference space
alpar@1
   192
         is defined and decreases by one every time the basis changes;
alpar@1
   193
         once this count reaches zero, the reference space is redefined
alpar@1
   194
         again */
alpar@1
   195
      char *refsp; /* char refsp[1+m+n]; */
alpar@1
   196
      /* refsp[0] is not used;
alpar@1
   197
         refsp[k], 1 <= k <= m+n, is the flag which means that variable
alpar@1
   198
         x[k] belongs to the current reference space */
alpar@1
   199
      double *gamma; /* double gamma[1+m]; */
alpar@1
   200
      /* gamma[0] is not used;
alpar@1
   201
         gamma[i], 1 <= i <= n, is the steepest edge coefficient for
alpar@1
   202
         basic variable xB[i]; if xB[i] is free, gamma[i] is not used
alpar@1
   203
         and just set to 1 */
alpar@1
   204
      /*--------------------------------------------------------------*/
alpar@1
   205
      /* basic variable xB[p] chosen to leave the basis */
alpar@1
   206
      int p;
alpar@1
   207
      /* index of the basic variable xB[p] chosen, 1 <= p <= m;
alpar@1
   208
         if the set of eligible basic variables is empty (i.e. if the
alpar@1
   209
         current basic solution is primal feasible within a tolerance)
alpar@1
   210
         and thus no variable has been chosen, p is set to 0 */
alpar@1
   211
      double delta;
alpar@1
   212
      /* change of xB[p] in the adjacent basis;
alpar@1
   213
         delta > 0 means that xB[p] violates its lower bound and will
alpar@1
   214
         increase to achieve it in the adjacent basis;
alpar@1
   215
         delta < 0 means that xB[p] violates its upper bound and will
alpar@1
   216
         decrease to achieve it in the adjacent basis */
alpar@1
   217
      /*--------------------------------------------------------------*/
alpar@1
   218
      /* pivot row of the simplex table corresponding to basic variable
alpar@1
   219
         xB[p] chosen is the following vector:
alpar@1
   220
            T' * e[p] = - N' * inv(B') * e[p] = - N' * rho,
alpar@1
   221
         where B' is a matrix transposed to the current basis matrix,
alpar@1
   222
         N' is a matrix, whose rows are columns of the matrix (I|-A)
alpar@1
   223
         corresponding to non-basic non-fixed variables */
alpar@1
   224
      int trow_nnz;
alpar@1
   225
      /* number of non-zero components, 0 <= nnz <= n */
alpar@1
   226
      int *trow_ind; /* int trow_ind[1+n]; */
alpar@1
   227
      /* trow_ind[0] is not used;
alpar@1
   228
         trow_ind[t], 1 <= t <= nnz, is an index of non-zero component,
alpar@1
   229
         i.e. trow_ind[t] = j means that trow_vec[j] != 0 */
alpar@1
   230
      double *trow_vec; /* int trow_vec[1+n]; */
alpar@1
   231
      /* trow_vec[0] is not used;
alpar@1
   232
         trow_vec[j], 1 <= j <= n, is a numeric value of j-th component
alpar@1
   233
         of the row */
alpar@1
   234
      double trow_max;
alpar@1
   235
      /* infinity (maximum) norm of the row (max |trow_vec[j]|) */
alpar@1
   236
      int trow_num;
alpar@1
   237
      /* number of significant non-zero components, which means that:
alpar@1
   238
         |trow_vec[j]| >= eps for j in trow_ind[1,...,num],
alpar@1
   239
         |tcol_vec[j]| <  eps for j in trow_ind[num+1,...,nnz],
alpar@1
   240
         where eps is a pivot tolerance */
alpar@1
   241
      /*--------------------------------------------------------------*/
alpar@1
   242
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
alpar@1
   243
      int nbps;
alpar@1
   244
      /* number of breakpoints, 0 <= nbps <= n */
alpar@1
   245
      struct bkpt
alpar@1
   246
      {     int j;
alpar@1
   247
            /* index of non-basic variable xN[j], 1 <= j <= n */
alpar@1
   248
            double t;
alpar@1
   249
            /* value of dual ray parameter at breakpoint, t >= 0 */
alpar@1
   250
            double dz;
alpar@1
   251
            /* dz = zeta(t = t[k]) - zeta(t = 0) */
alpar@1
   252
      } *bkpt; /* struct bkpt bkpt[1+n]; */
alpar@1
   253
      /* bkpt[0] is not used;
alpar@1
   254
         bkpt[k], 1 <= k <= nbps, is k-th breakpoint of the dual
alpar@1
   255
         objective */
alpar@1
   256
#endif
alpar@1
   257
      /*--------------------------------------------------------------*/
alpar@1
   258
      /* non-basic variable xN[q] chosen to enter the basis */
alpar@1
   259
      int q;
alpar@1
   260
      /* index of the non-basic variable xN[q] chosen, 1 <= q <= n;
alpar@1
   261
         if no variable has been chosen, q is set to 0 */
alpar@1
   262
      double new_dq;
alpar@1
   263
      /* reduced cost of xN[q] in the adjacent basis (it is the change
alpar@1
   264
         of lambdaB[p]) */
alpar@1
   265
      /*--------------------------------------------------------------*/
alpar@1
   266
      /* pivot column of the simplex table corresponding to non-basic
alpar@1
   267
         variable xN[q] chosen is the following vector:
alpar@1
   268
            T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
alpar@1
   269
         where B is the current basis matrix, N[q] is a column of the
alpar@1
   270
         matrix (I|-A) corresponding to xN[q] */
alpar@1
   271
      int tcol_nnz;
alpar@1
   272
      /* number of non-zero components, 0 <= nnz <= m */
alpar@1
   273
      int *tcol_ind; /* int tcol_ind[1+m]; */
alpar@1
   274
      /* tcol_ind[0] is not used;
alpar@1
   275
         tcol_ind[t], 1 <= t <= nnz, is an index of non-zero component,
alpar@1
   276
         i.e. tcol_ind[t] = i means that tcol_vec[i] != 0 */
alpar@1
   277
      double *tcol_vec; /* double tcol_vec[1+m]; */
alpar@1
   278
      /* tcol_vec[0] is not used;
alpar@1
   279
         tcol_vec[i], 1 <= i <= m, is a numeric value of i-th component
alpar@1
   280
         of the column */
alpar@1
   281
      /*--------------------------------------------------------------*/
alpar@1
   282
      /* working arrays */
alpar@1
   283
      double *work1; /* double work1[1+m]; */
alpar@1
   284
      double *work2; /* double work2[1+m]; */
alpar@1
   285
      double *work3; /* double work3[1+m]; */
alpar@1
   286
      double *work4; /* double work4[1+m]; */
alpar@1
   287
};
alpar@1
   288
alpar@1
   289
static const double kappa = 0.10;
alpar@1
   290
alpar@1
   291
/***********************************************************************
alpar@1
   292
*  alloc_csa - allocate common storage area
alpar@1
   293
*
alpar@1
   294
*  This routine allocates all arrays in the common storage area (CSA)
alpar@1
   295
*  and returns a pointer to the CSA. */
alpar@1
   296
alpar@1
   297
static struct csa *alloc_csa(glp_prob *lp)
alpar@1
   298
{     struct csa *csa;
alpar@1
   299
      int m = lp->m;
alpar@1
   300
      int n = lp->n;
alpar@1
   301
      int nnz = lp->nnz;
alpar@1
   302
      csa = xmalloc(sizeof(struct csa));
alpar@1
   303
      xassert(m > 0 && n > 0);
alpar@1
   304
      csa->m = m;
alpar@1
   305
      csa->n = n;
alpar@1
   306
      csa->type = xcalloc(1+m+n, sizeof(char));
alpar@1
   307
      csa->lb = xcalloc(1+m+n, sizeof(double));
alpar@1
   308
      csa->ub = xcalloc(1+m+n, sizeof(double));
alpar@1
   309
      csa->coef = xcalloc(1+m+n, sizeof(double));
alpar@1
   310
      csa->orig_type = xcalloc(1+m+n, sizeof(char));
alpar@1
   311
      csa->orig_lb = xcalloc(1+m+n, sizeof(double));
alpar@1
   312
      csa->orig_ub = xcalloc(1+m+n, sizeof(double));
alpar@1
   313
      csa->obj = xcalloc(1+n, sizeof(double));
alpar@1
   314
      csa->A_ptr = xcalloc(1+n+1, sizeof(int));
alpar@1
   315
      csa->A_ind = xcalloc(1+nnz, sizeof(int));
alpar@1
   316
      csa->A_val = xcalloc(1+nnz, sizeof(double));
alpar@1
   317
#if 1 /* 06/IV-2009 */
alpar@1
   318
      csa->AT_ptr = xcalloc(1+m+1, sizeof(int));
alpar@1
   319
      csa->AT_ind = xcalloc(1+nnz, sizeof(int));
alpar@1
   320
      csa->AT_val = xcalloc(1+nnz, sizeof(double));
alpar@1
   321
#endif
alpar@1
   322
      csa->head = xcalloc(1+m+n, sizeof(int));
alpar@1
   323
#if 1 /* 06/IV-2009 */
alpar@1
   324
      csa->bind = xcalloc(1+m+n, sizeof(int));
alpar@1
   325
#endif
alpar@1
   326
      csa->stat = xcalloc(1+n, sizeof(char));
alpar@1
   327
#if 0 /* 06/IV-2009 */
alpar@1
   328
      csa->N_ptr = xcalloc(1+m+1, sizeof(int));
alpar@1
   329
      csa->N_len = xcalloc(1+m, sizeof(int));
alpar@1
   330
      csa->N_ind = NULL; /* will be allocated later */
alpar@1
   331
      csa->N_val = NULL; /* will be allocated later */
alpar@1
   332
#endif
alpar@1
   333
      csa->bbar = xcalloc(1+m, sizeof(double));
alpar@1
   334
      csa->cbar = xcalloc(1+n, sizeof(double));
alpar@1
   335
      csa->refsp = xcalloc(1+m+n, sizeof(char));
alpar@1
   336
      csa->gamma = xcalloc(1+m, sizeof(double));
alpar@1
   337
      csa->trow_ind = xcalloc(1+n, sizeof(int));
alpar@1
   338
      csa->trow_vec = xcalloc(1+n, sizeof(double));
alpar@1
   339
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
alpar@1
   340
      csa->bkpt = xcalloc(1+n, sizeof(struct bkpt));
alpar@1
   341
#endif
alpar@1
   342
      csa->tcol_ind = xcalloc(1+m, sizeof(int));
alpar@1
   343
      csa->tcol_vec = xcalloc(1+m, sizeof(double));
alpar@1
   344
      csa->work1 = xcalloc(1+m, sizeof(double));
alpar@1
   345
      csa->work2 = xcalloc(1+m, sizeof(double));
alpar@1
   346
      csa->work3 = xcalloc(1+m, sizeof(double));
alpar@1
   347
      csa->work4 = xcalloc(1+m, sizeof(double));
alpar@1
   348
      return csa;
alpar@1
   349
}
alpar@1
   350
alpar@1
   351
/***********************************************************************
alpar@1
   352
*  init_csa - initialize common storage area
alpar@1
   353
*
alpar@1
   354
*  This routine initializes all data structures in the common storage
alpar@1
   355
*  area (CSA). */
alpar@1
   356
alpar@1
   357
static void init_csa(struct csa *csa, glp_prob *lp)
alpar@1
   358
{     int m = csa->m;
alpar@1
   359
      int n = csa->n;
alpar@1
   360
      char *type = csa->type;
alpar@1
   361
      double *lb = csa->lb;
alpar@1
   362
      double *ub = csa->ub;
alpar@1
   363
      double *coef = csa->coef;
alpar@1
   364
      char *orig_type = csa->orig_type;
alpar@1
   365
      double *orig_lb = csa->orig_lb;
alpar@1
   366
      double *orig_ub = csa->orig_ub;
alpar@1
   367
      double *obj = csa->obj;
alpar@1
   368
      int *A_ptr = csa->A_ptr;
alpar@1
   369
      int *A_ind = csa->A_ind;
alpar@1
   370
      double *A_val = csa->A_val;
alpar@1
   371
#if 1 /* 06/IV-2009 */
alpar@1
   372
      int *AT_ptr = csa->AT_ptr;
alpar@1
   373
      int *AT_ind = csa->AT_ind;
alpar@1
   374
      double *AT_val = csa->AT_val;
alpar@1
   375
#endif
alpar@1
   376
      int *head = csa->head;
alpar@1
   377
#if 1 /* 06/IV-2009 */
alpar@1
   378
      int *bind = csa->bind;
alpar@1
   379
#endif
alpar@1
   380
      char *stat = csa->stat;
alpar@1
   381
      char *refsp = csa->refsp;
alpar@1
   382
      double *gamma = csa->gamma;
alpar@1
   383
      int i, j, k, loc;
alpar@1
   384
      double cmax;
alpar@1
   385
      /* auxiliary variables */
alpar@1
   386
      for (i = 1; i <= m; i++)
alpar@1
   387
      {  GLPROW *row = lp->row[i];
alpar@1
   388
         type[i] = (char)row->type;
alpar@1
   389
         lb[i] = row->lb * row->rii;
alpar@1
   390
         ub[i] = row->ub * row->rii;
alpar@1
   391
         coef[i] = 0.0;
alpar@1
   392
      }
alpar@1
   393
      /* structural variables */
alpar@1
   394
      for (j = 1; j <= n; j++)
alpar@1
   395
      {  GLPCOL *col = lp->col[j];
alpar@1
   396
         type[m+j] = (char)col->type;
alpar@1
   397
         lb[m+j] = col->lb / col->sjj;
alpar@1
   398
         ub[m+j] = col->ub / col->sjj;
alpar@1
   399
         coef[m+j] = col->coef * col->sjj;
alpar@1
   400
      }
alpar@1
   401
      /* original bounds of variables */
alpar@1
   402
      memcpy(&orig_type[1], &type[1], (m+n) * sizeof(char));
alpar@1
   403
      memcpy(&orig_lb[1], &lb[1], (m+n) * sizeof(double));
alpar@1
   404
      memcpy(&orig_ub[1], &ub[1], (m+n) * sizeof(double));
alpar@1
   405
      /* original objective function */
alpar@1
   406
      obj[0] = lp->c0;
alpar@1
   407
      memcpy(&obj[1], &coef[m+1], n * sizeof(double));
alpar@1
   408
      /* factor used to scale original objective coefficients */
alpar@1
   409
      cmax = 0.0;
alpar@1
   410
      for (j = 1; j <= n; j++)
alpar@1
   411
         if (cmax < fabs(obj[j])) cmax = fabs(obj[j]);
alpar@1
   412
      if (cmax == 0.0) cmax = 1.0;
alpar@1
   413
      switch (lp->dir)
alpar@1
   414
      {  case GLP_MIN:
alpar@1
   415
            csa->zeta = + 1.0 / cmax;
alpar@1
   416
            break;
alpar@1
   417
         case GLP_MAX:
alpar@1
   418
            csa->zeta = - 1.0 / cmax;
alpar@1
   419
            break;
alpar@1
   420
         default:
alpar@1
   421
            xassert(lp != lp);
alpar@1
   422
      }
alpar@1
   423
#if 1
alpar@1
   424
      if (fabs(csa->zeta) < 1.0) csa->zeta *= 1000.0;
alpar@1
   425
#endif
alpar@1
   426
      /* scale working objective coefficients */
alpar@1
   427
      for (j = 1; j <= n; j++) coef[m+j] *= csa->zeta;
alpar@1
   428
      /* matrix A (by columns) */
alpar@1
   429
      loc = 1;
alpar@1
   430
      for (j = 1; j <= n; j++)
alpar@1
   431
      {  GLPAIJ *aij;
alpar@1
   432
         A_ptr[j] = loc;
alpar@1
   433
         for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
alpar@1
   434
         {  A_ind[loc] = aij->row->i;
alpar@1
   435
            A_val[loc] = aij->row->rii * aij->val * aij->col->sjj;
alpar@1
   436
            loc++;
alpar@1
   437
         }
alpar@1
   438
      }
alpar@1
   439
      A_ptr[n+1] = loc;
alpar@1
   440
      xassert(loc-1 == lp->nnz);
alpar@1
   441
#if 1 /* 06/IV-2009 */
alpar@1
   442
      /* matrix A (by rows) */
alpar@1
   443
      loc = 1;
alpar@1
   444
      for (i = 1; i <= m; i++)
alpar@1
   445
      {  GLPAIJ *aij;
alpar@1
   446
         AT_ptr[i] = loc;
alpar@1
   447
         for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)
alpar@1
   448
         {  AT_ind[loc] = aij->col->j;
alpar@1
   449
            AT_val[loc] = aij->row->rii * aij->val * aij->col->sjj;
alpar@1
   450
            loc++;
alpar@1
   451
         }
alpar@1
   452
      }
alpar@1
   453
      AT_ptr[m+1] = loc;
alpar@1
   454
      xassert(loc-1 == lp->nnz);
alpar@1
   455
#endif
alpar@1
   456
      /* basis header */
alpar@1
   457
      xassert(lp->valid);
alpar@1
   458
      memcpy(&head[1], &lp->head[1], m * sizeof(int));
alpar@1
   459
      k = 0;
alpar@1
   460
      for (i = 1; i <= m; i++)
alpar@1
   461
      {  GLPROW *row = lp->row[i];
alpar@1
   462
         if (row->stat != GLP_BS)
alpar@1
   463
         {  k++;
alpar@1
   464
            xassert(k <= n);
alpar@1
   465
            head[m+k] = i;
alpar@1
   466
            stat[k] = (char)row->stat;
alpar@1
   467
         }
alpar@1
   468
      }
alpar@1
   469
      for (j = 1; j <= n; j++)
alpar@1
   470
      {  GLPCOL *col = lp->col[j];
alpar@1
   471
         if (col->stat != GLP_BS)
alpar@1
   472
         {  k++;
alpar@1
   473
            xassert(k <= n);
alpar@1
   474
            head[m+k] = m + j;
alpar@1
   475
            stat[k] = (char)col->stat;
alpar@1
   476
         }
alpar@1
   477
      }
alpar@1
   478
      xassert(k == n);
alpar@1
   479
#if 1 /* 06/IV-2009 */
alpar@1
   480
      for (k = 1; k <= m+n; k++)
alpar@1
   481
         bind[head[k]] = k;
alpar@1
   482
#endif
alpar@1
   483
      /* factorization of matrix B */
alpar@1
   484
      csa->valid = 1, lp->valid = 0;
alpar@1
   485
      csa->bfd = lp->bfd, lp->bfd = NULL;
alpar@1
   486
#if 0 /* 06/IV-2009 */
alpar@1
   487
      /* matrix N (by rows) */
alpar@1
   488
      alloc_N(csa);
alpar@1
   489
      build_N(csa);
alpar@1
   490
#endif
alpar@1
   491
      /* working parameters */
alpar@1
   492
      csa->phase = 0;
alpar@1
   493
      csa->tm_beg = xtime();
alpar@1
   494
      csa->it_beg = csa->it_cnt = lp->it_cnt;
alpar@1
   495
      csa->it_dpy = -1;
alpar@1
   496
      /* reference space and steepest edge coefficients */
alpar@1
   497
      csa->refct = 0;
alpar@1
   498
      memset(&refsp[1], 0, (m+n) * sizeof(char));
alpar@1
   499
      for (i = 1; i <= m; i++) gamma[i] = 1.0;
alpar@1
   500
      return;
alpar@1
   501
}
alpar@1
   502
alpar@1
   503
#if 1 /* copied from primal */
alpar@1
   504
/***********************************************************************
alpar@1
   505
*  invert_B - compute factorization of the basis matrix
alpar@1
   506
*
alpar@1
   507
*  This routine computes factorization of the current basis matrix B.
alpar@1
   508
*
alpar@1
   509
*  If the operation is successful, the routine returns zero, otherwise
alpar@1
   510
*  non-zero. */
alpar@1
   511
alpar@1
   512
static int inv_col(void *info, int i, int ind[], double val[])
alpar@1
   513
{     /* this auxiliary routine returns row indices and numeric values
alpar@1
   514
         of non-zero elements of i-th column of the basis matrix */
alpar@1
   515
      struct csa *csa = info;
alpar@1
   516
      int m = csa->m;
alpar@1
   517
#ifdef GLP_DEBUG
alpar@1
   518
      int n = csa->n;
alpar@1
   519
#endif
alpar@1
   520
      int *A_ptr = csa->A_ptr;
alpar@1
   521
      int *A_ind = csa->A_ind;
alpar@1
   522
      double *A_val = csa->A_val;
alpar@1
   523
      int *head = csa->head;
alpar@1
   524
      int k, len, ptr, t;
alpar@1
   525
#ifdef GLP_DEBUG
alpar@1
   526
      xassert(1 <= i && i <= m);
alpar@1
   527
#endif
alpar@1
   528
      k = head[i]; /* B[i] is k-th column of (I|-A) */
alpar@1
   529
#ifdef GLP_DEBUG
alpar@1
   530
      xassert(1 <= k && k <= m+n);
alpar@1
   531
#endif
alpar@1
   532
      if (k <= m)
alpar@1
   533
      {  /* B[i] is k-th column of submatrix I */
alpar@1
   534
         len = 1;
alpar@1
   535
         ind[1] = k;
alpar@1
   536
         val[1] = 1.0;
alpar@1
   537
      }
alpar@1
   538
      else
alpar@1
   539
      {  /* B[i] is (k-m)-th column of submatrix (-A) */
alpar@1
   540
         ptr = A_ptr[k-m];
alpar@1
   541
         len = A_ptr[k-m+1] - ptr;
alpar@1
   542
         memcpy(&ind[1], &A_ind[ptr], len * sizeof(int));
alpar@1
   543
         memcpy(&val[1], &A_val[ptr], len * sizeof(double));
alpar@1
   544
         for (t = 1; t <= len; t++) val[t] = - val[t];
alpar@1
   545
      }
alpar@1
   546
      return len;
alpar@1
   547
}
alpar@1
   548
alpar@1
   549
static int invert_B(struct csa *csa)
alpar@1
   550
{     int ret;
alpar@1
   551
      ret = bfd_factorize(csa->bfd, csa->m, NULL, inv_col, csa);
alpar@1
   552
      csa->valid = (ret == 0);
alpar@1
   553
      return ret;
alpar@1
   554
}
alpar@1
   555
#endif
alpar@1
   556
alpar@1
   557
#if 1 /* copied from primal */
alpar@1
   558
/***********************************************************************
alpar@1
   559
*  update_B - update factorization of the basis matrix
alpar@1
   560
*
alpar@1
   561
*  This routine replaces i-th column of the basis matrix B by k-th
alpar@1
   562
*  column of the augmented constraint matrix (I|-A) and then updates
alpar@1
   563
*  the factorization of B.
alpar@1
   564
*
alpar@1
   565
*  If the factorization has been successfully updated, the routine
alpar@1
   566
*  returns zero, otherwise non-zero. */
alpar@1
   567
alpar@1
   568
static int update_B(struct csa *csa, int i, int k)
alpar@1
   569
{     int m = csa->m;
alpar@1
   570
#ifdef GLP_DEBUG
alpar@1
   571
      int n = csa->n;
alpar@1
   572
#endif
alpar@1
   573
      int ret;
alpar@1
   574
#ifdef GLP_DEBUG
alpar@1
   575
      xassert(1 <= i && i <= m);
alpar@1
   576
      xassert(1 <= k && k <= m+n);
alpar@1
   577
#endif
alpar@1
   578
      if (k <= m)
alpar@1
   579
      {  /* new i-th column of B is k-th column of I */
alpar@1
   580
         int ind[1+1];
alpar@1
   581
         double val[1+1];
alpar@1
   582
         ind[1] = k;
alpar@1
   583
         val[1] = 1.0;
alpar@1
   584
         xassert(csa->valid);
alpar@1
   585
         ret = bfd_update_it(csa->bfd, i, 0, 1, ind, val);
alpar@1
   586
      }
alpar@1
   587
      else
alpar@1
   588
      {  /* new i-th column of B is (k-m)-th column of (-A) */
alpar@1
   589
         int *A_ptr = csa->A_ptr;
alpar@1
   590
         int *A_ind = csa->A_ind;
alpar@1
   591
         double *A_val = csa->A_val;
alpar@1
   592
         double *val = csa->work1;
alpar@1
   593
         int beg, end, ptr, len;
alpar@1
   594
         beg = A_ptr[k-m];
alpar@1
   595
         end = A_ptr[k-m+1];
alpar@1
   596
         len = 0;
alpar@1
   597
         for (ptr = beg; ptr < end; ptr++)
alpar@1
   598
            val[++len] = - A_val[ptr];
alpar@1
   599
         xassert(csa->valid);
alpar@1
   600
         ret = bfd_update_it(csa->bfd, i, 0, len, &A_ind[beg-1], val);
alpar@1
   601
      }
alpar@1
   602
      csa->valid = (ret == 0);
alpar@1
   603
      return ret;
alpar@1
   604
}
alpar@1
   605
#endif
alpar@1
   606
alpar@1
   607
#if 1 /* copied from primal */
alpar@1
   608
/***********************************************************************
alpar@1
   609
*  error_ftran - compute residual vector r = h - B * x
alpar@1
   610
*
alpar@1
   611
*  This routine computes the residual vector r = h - B * x, where B is
alpar@1
   612
*  the current basis matrix, h is the vector of right-hand sides, x is
alpar@1
   613
*  the solution vector. */
alpar@1
   614
alpar@1
   615
static void error_ftran(struct csa *csa, double h[], double x[],
alpar@1
   616
      double r[])
alpar@1
   617
{     int m = csa->m;
alpar@1
   618
#ifdef GLP_DEBUG
alpar@1
   619
      int n = csa->n;
alpar@1
   620
#endif
alpar@1
   621
      int *A_ptr = csa->A_ptr;
alpar@1
   622
      int *A_ind = csa->A_ind;
alpar@1
   623
      double *A_val = csa->A_val;
alpar@1
   624
      int *head = csa->head;
alpar@1
   625
      int i, k, beg, end, ptr;
alpar@1
   626
      double temp;
alpar@1
   627
      /* compute the residual vector:
alpar@1
   628
         r = h - B * x = h - B[1] * x[1] - ... - B[m] * x[m],
alpar@1
   629
         where B[1], ..., B[m] are columns of matrix B */
alpar@1
   630
      memcpy(&r[1], &h[1], m * sizeof(double));
alpar@1
   631
      for (i = 1; i <= m; i++)
alpar@1
   632
      {  temp = x[i];
alpar@1
   633
         if (temp == 0.0) continue;
alpar@1
   634
         k = head[i]; /* B[i] is k-th column of (I|-A) */
alpar@1
   635
#ifdef GLP_DEBUG
alpar@1
   636
         xassert(1 <= k && k <= m+n);
alpar@1
   637
#endif
alpar@1
   638
         if (k <= m)
alpar@1
   639
         {  /* B[i] is k-th column of submatrix I */
alpar@1
   640
            r[k] -= temp;
alpar@1
   641
         }
alpar@1
   642
         else
alpar@1
   643
         {  /* B[i] is (k-m)-th column of submatrix (-A) */
alpar@1
   644
            beg = A_ptr[k-m];
alpar@1
   645
            end = A_ptr[k-m+1];
alpar@1
   646
            for (ptr = beg; ptr < end; ptr++)
alpar@1
   647
               r[A_ind[ptr]] += A_val[ptr] * temp;
alpar@1
   648
         }
alpar@1
   649
      }
alpar@1
   650
      return;
alpar@1
   651
}
alpar@1
   652
#endif
alpar@1
   653
alpar@1
   654
#if 1 /* copied from primal */
alpar@1
   655
/***********************************************************************
alpar@1
   656
*  refine_ftran - refine solution of B * x = h
alpar@1
   657
*
alpar@1
   658
*  This routine performs one iteration to refine the solution of
alpar@1
   659
*  the system B * x = h, where B is the current basis matrix, h is the
alpar@1
   660
*  vector of right-hand sides, x is the solution vector. */
alpar@1
   661
alpar@1
   662
static void refine_ftran(struct csa *csa, double h[], double x[])
alpar@1
   663
{     int m = csa->m;
alpar@1
   664
      double *r = csa->work1;
alpar@1
   665
      double *d = csa->work1;
alpar@1
   666
      int i;
alpar@1
   667
      /* compute the residual vector r = h - B * x */
alpar@1
   668
      error_ftran(csa, h, x, r);
alpar@1
   669
      /* compute the correction vector d = inv(B) * r */
alpar@1
   670
      xassert(csa->valid);
alpar@1
   671
      bfd_ftran(csa->bfd, d);
alpar@1
   672
      /* refine the solution vector (new x) = (old x) + d */
alpar@1
   673
      for (i = 1; i <= m; i++) x[i] += d[i];
alpar@1
   674
      return;
alpar@1
   675
}
alpar@1
   676
#endif
alpar@1
   677
alpar@1
   678
#if 1 /* copied from primal */
alpar@1
   679
/***********************************************************************
alpar@1
   680
*  error_btran - compute residual vector r = h - B'* x
alpar@1
   681
*
alpar@1
   682
*  This routine computes the residual vector r = h - B'* x, where B'
alpar@1
   683
*  is a matrix transposed to the current basis matrix, h is the vector
alpar@1
   684
*  of right-hand sides, x is the solution vector. */
alpar@1
   685
alpar@1
   686
static void error_btran(struct csa *csa, double h[], double x[],
alpar@1
   687
      double r[])
alpar@1
   688
{     int m = csa->m;
alpar@1
   689
#ifdef GLP_DEBUG
alpar@1
   690
      int n = csa->n;
alpar@1
   691
#endif
alpar@1
   692
      int *A_ptr = csa->A_ptr;
alpar@1
   693
      int *A_ind = csa->A_ind;
alpar@1
   694
      double *A_val = csa->A_val;
alpar@1
   695
      int *head = csa->head;
alpar@1
   696
      int i, k, beg, end, ptr;
alpar@1
   697
      double temp;
alpar@1
   698
      /* compute the residual vector r = b - B'* x */
alpar@1
   699
      for (i = 1; i <= m; i++)
alpar@1
   700
      {  /* r[i] := b[i] - (i-th column of B)'* x */
alpar@1
   701
         k = head[i]; /* B[i] is k-th column of (I|-A) */
alpar@1
   702
#ifdef GLP_DEBUG
alpar@1
   703
         xassert(1 <= k && k <= m+n);
alpar@1
   704
#endif
alpar@1
   705
         temp = h[i];
alpar@1
   706
         if (k <= m)
alpar@1
   707
         {  /* B[i] is k-th column of submatrix I */
alpar@1
   708
            temp -= x[k];
alpar@1
   709
         }
alpar@1
   710
         else
alpar@1
   711
         {  /* B[i] is (k-m)-th column of submatrix (-A) */
alpar@1
   712
            beg = A_ptr[k-m];
alpar@1
   713
            end = A_ptr[k-m+1];
alpar@1
   714
            for (ptr = beg; ptr < end; ptr++)
alpar@1
   715
               temp += A_val[ptr] * x[A_ind[ptr]];
alpar@1
   716
         }
alpar@1
   717
         r[i] = temp;
alpar@1
   718
      }
alpar@1
   719
      return;
alpar@1
   720
}
alpar@1
   721
#endif
alpar@1
   722
alpar@1
   723
#if 1 /* copied from primal */
alpar@1
   724
/***********************************************************************
alpar@1
   725
*  refine_btran - refine solution of B'* x = h
alpar@1
   726
*
alpar@1
   727
*  This routine performs one iteration to refine the solution of the
alpar@1
   728
*  system B'* x = h, where B' is a matrix transposed to the current
alpar@1
   729
*  basis matrix, h is the vector of right-hand sides, x is the solution
alpar@1
   730
*  vector. */
alpar@1
   731
alpar@1
   732
static void refine_btran(struct csa *csa, double h[], double x[])
alpar@1
   733
{     int m = csa->m;
alpar@1
   734
      double *r = csa->work1;
alpar@1
   735
      double *d = csa->work1;
alpar@1
   736
      int i;
alpar@1
   737
      /* compute the residual vector r = h - B'* x */
alpar@1
   738
      error_btran(csa, h, x, r);
alpar@1
   739
      /* compute the correction vector d = inv(B') * r */
alpar@1
   740
      xassert(csa->valid);
alpar@1
   741
      bfd_btran(csa->bfd, d);
alpar@1
   742
      /* refine the solution vector (new x) = (old x) + d */
alpar@1
   743
      for (i = 1; i <= m; i++) x[i] += d[i];
alpar@1
   744
      return;
alpar@1
   745
}
alpar@1
   746
#endif
alpar@1
   747
alpar@1
   748
#if 1 /* copied from primal */
alpar@1
   749
/***********************************************************************
alpar@1
   750
*  get_xN - determine current value of non-basic variable xN[j]
alpar@1
   751
*
alpar@1
   752
*  This routine returns the current value of non-basic variable xN[j],
alpar@1
   753
*  which is a value of its active bound. */
alpar@1
   754
alpar@1
   755
static double get_xN(struct csa *csa, int j)
alpar@1
   756
{     int m = csa->m;
alpar@1
   757
#ifdef GLP_DEBUG
alpar@1
   758
      int n = csa->n;
alpar@1
   759
#endif
alpar@1
   760
      double *lb = csa->lb;
alpar@1
   761
      double *ub = csa->ub;
alpar@1
   762
      int *head = csa->head;
alpar@1
   763
      char *stat = csa->stat;
alpar@1
   764
      int k;
alpar@1
   765
      double xN;
alpar@1
   766
#ifdef GLP_DEBUG
alpar@1
   767
      xassert(1 <= j && j <= n);
alpar@1
   768
#endif
alpar@1
   769
      k = head[m+j]; /* x[k] = xN[j] */
alpar@1
   770
#ifdef GLP_DEBUG
alpar@1
   771
      xassert(1 <= k && k <= m+n);
alpar@1
   772
#endif
alpar@1
   773
      switch (stat[j])
alpar@1
   774
      {  case GLP_NL:
alpar@1
   775
            /* x[k] is on its lower bound */
alpar@1
   776
            xN = lb[k]; break;
alpar@1
   777
         case GLP_NU:
alpar@1
   778
            /* x[k] is on its upper bound */
alpar@1
   779
            xN = ub[k]; break;
alpar@1
   780
         case GLP_NF:
alpar@1
   781
            /* x[k] is free non-basic variable */
alpar@1
   782
            xN = 0.0; break;
alpar@1
   783
         case GLP_NS:
alpar@1
   784
            /* x[k] is fixed non-basic variable */
alpar@1
   785
            xN = lb[k]; break;
alpar@1
   786
         default:
alpar@1
   787
            xassert(stat != stat);
alpar@1
   788
      }
alpar@1
   789
      return xN;
alpar@1
   790
}
alpar@1
   791
#endif
alpar@1
   792
alpar@1
   793
#if 1 /* copied from primal */
alpar@1
   794
/***********************************************************************
alpar@1
   795
*  eval_beta - compute primal values of basic variables
alpar@1
   796
*
alpar@1
   797
*  This routine computes current primal values of all basic variables:
alpar@1
   798
*
alpar@1
   799
*     beta = - inv(B) * N * xN,
alpar@1
   800
*
alpar@1
   801
*  where B is the current basis matrix, N is a matrix built of columns
alpar@1
   802
*  of matrix (I|-A) corresponding to non-basic variables, and xN is the
alpar@1
   803
*  vector of current values of non-basic variables. */
alpar@1
   804
alpar@1
   805
static void eval_beta(struct csa *csa, double beta[])
alpar@1
   806
{     int m = csa->m;
alpar@1
   807
      int n = csa->n;
alpar@1
   808
      int *A_ptr = csa->A_ptr;
alpar@1
   809
      int *A_ind = csa->A_ind;
alpar@1
   810
      double *A_val = csa->A_val;
alpar@1
   811
      int *head = csa->head;
alpar@1
   812
      double *h = csa->work2;
alpar@1
   813
      int i, j, k, beg, end, ptr;
alpar@1
   814
      double xN;
alpar@1
   815
      /* compute the right-hand side vector:
alpar@1
   816
         h := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n],
alpar@1
   817
         where N[1], ..., N[n] are columns of matrix N */
alpar@1
   818
      for (i = 1; i <= m; i++)
alpar@1
   819
         h[i] = 0.0;
alpar@1
   820
      for (j = 1; j <= n; j++)
alpar@1
   821
      {  k = head[m+j]; /* x[k] = xN[j] */
alpar@1
   822
#ifdef GLP_DEBUG
alpar@1
   823
         xassert(1 <= k && k <= m+n);
alpar@1
   824
#endif
alpar@1
   825
         /* determine current value of xN[j] */
alpar@1
   826
         xN = get_xN(csa, j);
alpar@1
   827
         if (xN == 0.0) continue;
alpar@1
   828
         if (k <= m)
alpar@1
   829
         {  /* N[j] is k-th column of submatrix I */
alpar@1
   830
            h[k] -= xN;
alpar@1
   831
         }
alpar@1
   832
         else
alpar@1
   833
         {  /* N[j] is (k-m)-th column of submatrix (-A) */
alpar@1
   834
            beg = A_ptr[k-m];
alpar@1
   835
            end = A_ptr[k-m+1];
alpar@1
   836
            for (ptr = beg; ptr < end; ptr++)
alpar@1
   837
               h[A_ind[ptr]] += xN * A_val[ptr];
alpar@1
   838
         }
alpar@1
   839
      }
alpar@1
   840
      /* solve system B * beta = h */
alpar@1
   841
      memcpy(&beta[1], &h[1], m * sizeof(double));
alpar@1
   842
      xassert(csa->valid);
alpar@1
   843
      bfd_ftran(csa->bfd, beta);
alpar@1
   844
      /* and refine the solution */
alpar@1
   845
      refine_ftran(csa, h, beta);
alpar@1
   846
      return;
alpar@1
   847
}
alpar@1
   848
#endif
alpar@1
   849
alpar@1
   850
#if 1 /* copied from primal */
alpar@1
   851
/***********************************************************************
alpar@1
   852
*  eval_pi - compute vector of simplex multipliers
alpar@1
   853
*
alpar@1
   854
*  This routine computes the vector of current simplex multipliers:
alpar@1
   855
*
alpar@1
   856
*     pi = inv(B') * cB,
alpar@1
   857
*
alpar@1
   858
*  where B' is a matrix transposed to the current basis matrix, cB is
alpar@1
   859
*  a subvector of objective coefficients at basic variables. */
alpar@1
   860
alpar@1
   861
static void eval_pi(struct csa *csa, double pi[])
alpar@1
   862
{     int m = csa->m;
alpar@1
   863
      double *c = csa->coef;
alpar@1
   864
      int *head = csa->head;
alpar@1
   865
      double *cB = csa->work2;
alpar@1
   866
      int i;
alpar@1
   867
      /* construct the right-hand side vector cB */
alpar@1
   868
      for (i = 1; i <= m; i++)
alpar@1
   869
         cB[i] = c[head[i]];
alpar@1
   870
      /* solve system B'* pi = cB */
alpar@1
   871
      memcpy(&pi[1], &cB[1], m * sizeof(double));
alpar@1
   872
      xassert(csa->valid);
alpar@1
   873
      bfd_btran(csa->bfd, pi);
alpar@1
   874
      /* and refine the solution */
alpar@1
   875
      refine_btran(csa, cB, pi);
alpar@1
   876
      return;
alpar@1
   877
}
alpar@1
   878
#endif
alpar@1
   879
alpar@1
   880
#if 1 /* copied from primal */
alpar@1
   881
/***********************************************************************
alpar@1
   882
*  eval_cost - compute reduced cost of non-basic variable xN[j]
alpar@1
   883
*
alpar@1
   884
*  This routine computes the current reduced cost of non-basic variable
alpar@1
   885
*  xN[j]:
alpar@1
   886
*
alpar@1
   887
*     d[j] = cN[j] - N'[j] * pi,
alpar@1
   888
*
alpar@1
   889
*  where cN[j] is the objective coefficient at variable xN[j], N[j] is
alpar@1
   890
*  a column of the augmented constraint matrix (I|-A) corresponding to
alpar@1
   891
*  xN[j], pi is the vector of simplex multipliers. */
alpar@1
   892
alpar@1
   893
static double eval_cost(struct csa *csa, double pi[], int j)
alpar@1
   894
{     int m = csa->m;
alpar@1
   895
#ifdef GLP_DEBUG
alpar@1
   896
      int n = csa->n;
alpar@1
   897
#endif
alpar@1
   898
      double *coef = csa->coef;
alpar@1
   899
      int *head = csa->head;
alpar@1
   900
      int k;
alpar@1
   901
      double dj;
alpar@1
   902
#ifdef GLP_DEBUG
alpar@1
   903
      xassert(1 <= j && j <= n);
alpar@1
   904
#endif
alpar@1
   905
      k = head[m+j]; /* x[k] = xN[j] */
alpar@1
   906
#ifdef GLP_DEBUG
alpar@1
   907
      xassert(1 <= k && k <= m+n);
alpar@1
   908
#endif
alpar@1
   909
      dj = coef[k];
alpar@1
   910
      if (k <= m)
alpar@1
   911
      {  /* N[j] is k-th column of submatrix I */
alpar@1
   912
         dj -= pi[k];
alpar@1
   913
      }
alpar@1
   914
      else
alpar@1
   915
      {  /* N[j] is (k-m)-th column of submatrix (-A) */
alpar@1
   916
         int *A_ptr = csa->A_ptr;
alpar@1
   917
         int *A_ind = csa->A_ind;
alpar@1
   918
         double *A_val = csa->A_val;
alpar@1
   919
         int beg, end, ptr;
alpar@1
   920
         beg = A_ptr[k-m];
alpar@1
   921
         end = A_ptr[k-m+1];
alpar@1
   922
         for (ptr = beg; ptr < end; ptr++)
alpar@1
   923
            dj += A_val[ptr] * pi[A_ind[ptr]];
alpar@1
   924
      }
alpar@1
   925
      return dj;
alpar@1
   926
}
alpar@1
   927
#endif
alpar@1
   928
alpar@1
   929
#if 1 /* copied from primal */
alpar@1
   930
/***********************************************************************
alpar@1
   931
*  eval_bbar - compute and store primal values of basic variables
alpar@1
   932
*
alpar@1
   933
*  This routine computes primal values of all basic variables and then
alpar@1
   934
*  stores them in the solution array. */
alpar@1
   935
alpar@1
   936
static void eval_bbar(struct csa *csa)
alpar@1
   937
{     eval_beta(csa, csa->bbar);
alpar@1
   938
      return;
alpar@1
   939
}
alpar@1
   940
#endif
alpar@1
   941
alpar@1
   942
#if 1 /* copied from primal */
alpar@1
   943
/***********************************************************************
alpar@1
   944
*  eval_cbar - compute and store reduced costs of non-basic variables
alpar@1
   945
*
alpar@1
   946
*  This routine computes reduced costs of all non-basic variables and
alpar@1
   947
*  then stores them in the solution array. */
alpar@1
   948
alpar@1
   949
static void eval_cbar(struct csa *csa)
alpar@1
   950
{
alpar@1
   951
#ifdef GLP_DEBUG
alpar@1
   952
      int m = csa->m;
alpar@1
   953
#endif
alpar@1
   954
      int n = csa->n;
alpar@1
   955
#ifdef GLP_DEBUG
alpar@1
   956
      int *head = csa->head;
alpar@1
   957
#endif
alpar@1
   958
      double *cbar = csa->cbar;
alpar@1
   959
      double *pi = csa->work3;
alpar@1
   960
      int j;
alpar@1
   961
#ifdef GLP_DEBUG
alpar@1
   962
      int k;
alpar@1
   963
#endif
alpar@1
   964
      /* compute simplex multipliers */
alpar@1
   965
      eval_pi(csa, pi);
alpar@1
   966
      /* compute and store reduced costs */
alpar@1
   967
      for (j = 1; j <= n; j++)
alpar@1
   968
      {
alpar@1
   969
#ifdef GLP_DEBUG
alpar@1
   970
         k = head[m+j]; /* x[k] = xN[j] */
alpar@1
   971
         xassert(1 <= k && k <= m+n);
alpar@1
   972
#endif
alpar@1
   973
         cbar[j] = eval_cost(csa, pi, j);
alpar@1
   974
      }
alpar@1
   975
      return;
alpar@1
   976
}
alpar@1
   977
#endif
alpar@1
   978
alpar@1
   979
/***********************************************************************
alpar@1
   980
*  reset_refsp - reset the reference space
alpar@1
   981
*
alpar@1
   982
*  This routine resets (redefines) the reference space used in the
alpar@1
   983
*  projected steepest edge pricing algorithm. */
alpar@1
   984
alpar@1
   985
static void reset_refsp(struct csa *csa)
alpar@1
   986
{     int m = csa->m;
alpar@1
   987
      int n = csa->n;
alpar@1
   988
      int *head = csa->head;
alpar@1
   989
      char *refsp = csa->refsp;
alpar@1
   990
      double *gamma = csa->gamma;
alpar@1
   991
      int i, k;
alpar@1
   992
      xassert(csa->refct == 0);
alpar@1
   993
      csa->refct = 1000;
alpar@1
   994
      memset(&refsp[1], 0, (m+n) * sizeof(char));
alpar@1
   995
      for (i = 1; i <= m; i++)
alpar@1
   996
      {  k = head[i]; /* x[k] = xB[i] */
alpar@1
   997
         refsp[k] = 1;
alpar@1
   998
         gamma[i] = 1.0;
alpar@1
   999
      }
alpar@1
  1000
      return;
alpar@1
  1001
}
alpar@1
  1002
alpar@1
  1003
/***********************************************************************
alpar@1
  1004
*  eval_gamma - compute steepest edge coefficients
alpar@1
  1005
*
alpar@1
  1006
*  This routine computes the vector of steepest edge coefficients for
alpar@1
  1007
*  all basic variables (except free ones) using its direct definition:
alpar@1
  1008
*
alpar@1
  1009
*     gamma[i] = eta[i] +  sum   alfa[i,j]^2,  i = 1,...,m,
alpar@1
  1010
*                         j in C
alpar@1
  1011
*
alpar@1
  1012
*  where eta[i] = 1 means that xB[i] is in the current reference space,
alpar@1
  1013
*  and 0 otherwise; C is a set of non-basic non-fixed variables xN[j],
alpar@1
  1014
*  which are in the current reference space; alfa[i,j] are elements of
alpar@1
  1015
*  the current simplex table.
alpar@1
  1016
*
alpar@1
  1017
*  NOTE: The routine is intended only for debugginig purposes. */
alpar@1
  1018
alpar@1
  1019
static void eval_gamma(struct csa *csa, double gamma[])
alpar@1
  1020
{     int m = csa->m;
alpar@1
  1021
      int n = csa->n;
alpar@1
  1022
      char *type = csa->type;
alpar@1
  1023
      int *head = csa->head;
alpar@1
  1024
      char *refsp = csa->refsp;
alpar@1
  1025
      double *alfa = csa->work3;
alpar@1
  1026
      double *h = csa->work3;
alpar@1
  1027
      int i, j, k;
alpar@1
  1028
      /* gamma[i] := eta[i] (or 1, if xB[i] is free) */
alpar@1
  1029
      for (i = 1; i <= m; i++)
alpar@1
  1030
      {  k = head[i]; /* x[k] = xB[i] */
alpar@1
  1031
#ifdef GLP_DEBUG
alpar@1
  1032
         xassert(1 <= k && k <= m+n);
alpar@1
  1033
#endif
alpar@1
  1034
         if (type[k] == GLP_FR)
alpar@1
  1035
            gamma[i] = 1.0;
alpar@1
  1036
         else
alpar@1
  1037
            gamma[i] = (refsp[k] ? 1.0 : 0.0);
alpar@1
  1038
      }
alpar@1
  1039
      /* compute columns of the current simplex table */
alpar@1
  1040
      for (j = 1; j <= n; j++)
alpar@1
  1041
      {  k = head[m+j]; /* x[k] = xN[j] */
alpar@1
  1042
#ifdef GLP_DEBUG
alpar@1
  1043
         xassert(1 <= k && k <= m+n);
alpar@1
  1044
#endif
alpar@1
  1045
         /* skip column, if xN[j] is not in C */
alpar@1
  1046
         if (!refsp[k]) continue;
alpar@1
  1047
#ifdef GLP_DEBUG
alpar@1
  1048
         /* set C must not contain fixed variables */
alpar@1
  1049
         xassert(type[k] != GLP_FX);
alpar@1
  1050
#endif
alpar@1
  1051
         /* construct the right-hand side vector h = - N[j] */
alpar@1
  1052
         for (i = 1; i <= m; i++)
alpar@1
  1053
            h[i] = 0.0;
alpar@1
  1054
         if (k <= m)
alpar@1
  1055
         {  /* N[j] is k-th column of submatrix I */
alpar@1
  1056
            h[k] = -1.0;
alpar@1
  1057
         }
alpar@1
  1058
         else
alpar@1
  1059
         {  /* N[j] is (k-m)-th column of submatrix (-A) */
alpar@1
  1060
            int *A_ptr = csa->A_ptr;
alpar@1
  1061
            int *A_ind = csa->A_ind;
alpar@1
  1062
            double *A_val = csa->A_val;
alpar@1
  1063
            int beg, end, ptr;
alpar@1
  1064
            beg = A_ptr[k-m];
alpar@1
  1065
            end = A_ptr[k-m+1];
alpar@1
  1066
            for (ptr = beg; ptr < end; ptr++)
alpar@1
  1067
               h[A_ind[ptr]] = A_val[ptr];
alpar@1
  1068
         }
alpar@1
  1069
         /* solve system B * alfa = h */
alpar@1
  1070
         xassert(csa->valid);
alpar@1
  1071
         bfd_ftran(csa->bfd, alfa);
alpar@1
  1072
         /* gamma[i] := gamma[i] + alfa[i,j]^2 */
alpar@1
  1073
         for (i = 1; i <= m; i++)
alpar@1
  1074
         {  k = head[i]; /* x[k] = xB[i] */
alpar@1
  1075
            if (type[k] != GLP_FR)
alpar@1
  1076
               gamma[i] += alfa[i] * alfa[i];
alpar@1
  1077
         }
alpar@1
  1078
      }
alpar@1
  1079
      return;
alpar@1
  1080
}
alpar@1
  1081
alpar@1
  1082
/***********************************************************************
alpar@1
  1083
*  chuzr - choose basic variable (row of the simplex table)
alpar@1
  1084
*
alpar@1
  1085
*  This routine chooses basic variable xB[p] having largest weighted
alpar@1
  1086
*  bound violation:
alpar@1
  1087
*
alpar@1
  1088
*     |r[p]| / sqrt(gamma[p]) = max  |r[i]| / sqrt(gamma[i]),
alpar@1
  1089
*                              i in I
alpar@1
  1090
*
alpar@1
  1091
*            / lB[i] - beta[i], if beta[i] < lB[i]
alpar@1
  1092
*            |
alpar@1
  1093
*     r[i] = < 0,               if lB[i] <= beta[i] <= uB[i]
alpar@1
  1094
*            |
alpar@1
  1095
*            \ uB[i] - beta[i], if beta[i] > uB[i]
alpar@1
  1096
*
alpar@1
  1097
*  where beta[i] is primal value of xB[i] in the current basis, lB[i]
alpar@1
  1098
*  and uB[i] are lower and upper bounds of xB[i], I is a subset of
alpar@1
  1099
*  eligible basic variables, which significantly violates their bounds,
alpar@1
  1100
*  gamma[i] is the steepest edge coefficient.
alpar@1
  1101
*
alpar@1
  1102
*  If |r[i]| is less than a specified tolerance, xB[i] is not included
alpar@1
  1103
*  in I and therefore ignored.
alpar@1
  1104
*
alpar@1
  1105
*  If I is empty and no variable has been chosen, p is set to 0. */
alpar@1
  1106
alpar@1
  1107
static void chuzr(struct csa *csa, double tol_bnd)
alpar@1
  1108
{     int m = csa->m;
alpar@1
  1109
#ifdef GLP_DEBUG
alpar@1
  1110
      int n = csa->n;
alpar@1
  1111
#endif
alpar@1
  1112
      char *type = csa->type;
alpar@1
  1113
      double *lb = csa->lb;
alpar@1
  1114
      double *ub = csa->ub;
alpar@1
  1115
      int *head = csa->head;
alpar@1
  1116
      double *bbar = csa->bbar;
alpar@1
  1117
      double *gamma = csa->gamma;
alpar@1
  1118
      int i, k, p;
alpar@1
  1119
      double delta, best, eps, ri, temp;
alpar@1
  1120
      /* nothing is chosen so far */
alpar@1
  1121
      p = 0, delta = 0.0, best = 0.0;
alpar@1
  1122
      /* look through the list of basic variables */
alpar@1
  1123
      for (i = 1; i <= m; i++)
alpar@1
  1124
      {  k = head[i]; /* x[k] = xB[i] */
alpar@1
  1125
#ifdef GLP_DEBUG
alpar@1
  1126
         xassert(1 <= k && k <= m+n);
alpar@1
  1127
#endif
alpar@1
  1128
         /* determine bound violation ri[i] */
alpar@1
  1129
         ri = 0.0;
alpar@1
  1130
         if (type[k] == GLP_LO || type[k] == GLP_DB ||
alpar@1
  1131
             type[k] == GLP_FX)
alpar@1
  1132
         {  /* xB[i] has lower bound */
alpar@1
  1133
            eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
alpar@1
  1134
            if (bbar[i] < lb[k] - eps)
alpar@1
  1135
            {  /* and significantly violates it */
alpar@1
  1136
               ri = lb[k] - bbar[i];
alpar@1
  1137
            }
alpar@1
  1138
         }
alpar@1
  1139
         if (type[k] == GLP_UP || type[k] == GLP_DB ||
alpar@1
  1140
             type[k] == GLP_FX)
alpar@1
  1141
         {  /* xB[i] has upper bound */
alpar@1
  1142
            eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
alpar@1
  1143
            if (bbar[i] > ub[k] + eps)
alpar@1
  1144
            {  /* and significantly violates it */
alpar@1
  1145
               ri = ub[k] - bbar[i];
alpar@1
  1146
            }
alpar@1
  1147
         }
alpar@1
  1148
         /* if xB[i] is not eligible, skip it */
alpar@1
  1149
         if (ri == 0.0) continue;
alpar@1
  1150
         /* xB[i] is eligible basic variable; choose one with largest
alpar@1
  1151
            weighted bound violation */
alpar@1
  1152
#ifdef GLP_DEBUG
alpar@1
  1153
         xassert(gamma[i] >= 0.0);
alpar@1
  1154
#endif
alpar@1
  1155
         temp = gamma[i];
alpar@1
  1156
         if (temp < DBL_EPSILON) temp = DBL_EPSILON;
alpar@1
  1157
         temp = (ri * ri) / temp;
alpar@1
  1158
         if (best < temp)
alpar@1
  1159
            p = i, delta = ri, best = temp;
alpar@1
  1160
      }
alpar@1
  1161
      /* store the index of basic variable xB[p] chosen and its change
alpar@1
  1162
         in the adjacent basis */
alpar@1
  1163
      csa->p = p;
alpar@1
  1164
      csa->delta = delta;
alpar@1
  1165
      return;
alpar@1
  1166
}
alpar@1
  1167
alpar@1
  1168
#if 1 /* copied from primal */
alpar@1
  1169
/***********************************************************************
alpar@1
  1170
*  eval_rho - compute pivot row of the inverse
alpar@1
  1171
*
alpar@1
  1172
*  This routine computes the pivot (p-th) row of the inverse inv(B),
alpar@1
  1173
*  which corresponds to basic variable xB[p] chosen:
alpar@1
  1174
*
alpar@1
  1175
*     rho = inv(B') * e[p],
alpar@1
  1176
*
alpar@1
  1177
*  where B' is a matrix transposed to the current basis matrix, e[p]
alpar@1
  1178
*  is unity vector. */
alpar@1
  1179
alpar@1
  1180
static void eval_rho(struct csa *csa, double rho[])
alpar@1
  1181
{     int m = csa->m;
alpar@1
  1182
      int p = csa->p;
alpar@1
  1183
      double *e = rho;
alpar@1
  1184
      int i;
alpar@1
  1185
#ifdef GLP_DEBUG
alpar@1
  1186
      xassert(1 <= p && p <= m);
alpar@1
  1187
#endif
alpar@1
  1188
      /* construct the right-hand side vector e[p] */
alpar@1
  1189
      for (i = 1; i <= m; i++)
alpar@1
  1190
         e[i] = 0.0;
alpar@1
  1191
      e[p] = 1.0;
alpar@1
  1192
      /* solve system B'* rho = e[p] */
alpar@1
  1193
      xassert(csa->valid);
alpar@1
  1194
      bfd_btran(csa->bfd, rho);
alpar@1
  1195
      return;
alpar@1
  1196
}
alpar@1
  1197
#endif
alpar@1
  1198
alpar@1
  1199
#if 1 /* copied from primal */
alpar@1
  1200
/***********************************************************************
alpar@1
  1201
*  refine_rho - refine pivot row of the inverse
alpar@1
  1202
*
alpar@1
  1203
*  This routine refines the pivot row of the inverse inv(B) assuming
alpar@1
  1204
*  that it was previously computed by the routine eval_rho. */
alpar@1
  1205
alpar@1
  1206
static void refine_rho(struct csa *csa, double rho[])
alpar@1
  1207
{     int m = csa->m;
alpar@1
  1208
      int p = csa->p;
alpar@1
  1209
      double *e = csa->work3;
alpar@1
  1210
      int i;
alpar@1
  1211
#ifdef GLP_DEBUG
alpar@1
  1212
      xassert(1 <= p && p <= m);
alpar@1
  1213
#endif
alpar@1
  1214
      /* construct the right-hand side vector e[p] */
alpar@1
  1215
      for (i = 1; i <= m; i++)
alpar@1
  1216
         e[i] = 0.0;
alpar@1
  1217
      e[p] = 1.0;
alpar@1
  1218
      /* refine solution of B'* rho = e[p] */
alpar@1
  1219
      refine_btran(csa, e, rho);
alpar@1
  1220
      return;
alpar@1
  1221
}
alpar@1
  1222
#endif
alpar@1
  1223
alpar@1
  1224
#if 1 /* 06/IV-2009 */
alpar@1
  1225
/***********************************************************************
alpar@1
  1226
*  eval_trow - compute pivot row of the simplex table
alpar@1
  1227
*
alpar@1
  1228
*  This routine computes the pivot row of the simplex table, which
alpar@1
  1229
*  corresponds to basic variable xB[p] chosen.
alpar@1
  1230
*
alpar@1
  1231
*  The pivot row is the following vector:
alpar@1
  1232
*
alpar@1
  1233
*     trow = T'* e[p] = - N'* inv(B') * e[p] = - N' * rho,
alpar@1
  1234
*
alpar@1
  1235
*  where rho is the pivot row of the inverse inv(B) previously computed
alpar@1
  1236
*  by the routine eval_rho.
alpar@1
  1237
*
alpar@1
  1238
*  Note that elements of the pivot row corresponding to fixed non-basic
alpar@1
  1239
*  variables are not computed.
alpar@1
  1240
*
alpar@1
  1241
*  NOTES
alpar@1
  1242
*
alpar@1
  1243
*  Computing pivot row of the simplex table is one of the most time
alpar@1
  1244
*  consuming operations, and for some instances it may take more than
alpar@1
  1245
*  50% of the total solution time.
alpar@1
  1246
*
alpar@1
  1247
*  In the current implementation there are two routines to compute the
alpar@1
  1248
*  pivot row. The routine eval_trow1 computes elements of the pivot row
alpar@1
  1249
*  as inner products of columns of the matrix N and the vector rho; it
alpar@1
  1250
*  is used when the vector rho is relatively dense. The routine
alpar@1
  1251
*  eval_trow2 computes the pivot row as a linear combination of rows of
alpar@1
  1252
*  the matrix N; it is used when the vector rho is relatively sparse. */
alpar@1
  1253
alpar@1
  1254
static void eval_trow1(struct csa *csa, double rho[])
alpar@1
  1255
{     int m = csa->m;
alpar@1
  1256
      int n = csa->n;
alpar@1
  1257
      int *A_ptr = csa->A_ptr;
alpar@1
  1258
      int *A_ind = csa->A_ind;
alpar@1
  1259
      double *A_val = csa->A_val;
alpar@1
  1260
      int *head = csa->head;
alpar@1
  1261
      char *stat = csa->stat;
alpar@1
  1262
      int *trow_ind = csa->trow_ind;
alpar@1
  1263
      double *trow_vec = csa->trow_vec;
alpar@1
  1264
      int j, k, beg, end, ptr, nnz;
alpar@1
  1265
      double temp;
alpar@1
  1266
      /* compute the pivot row as inner products of columns of the
alpar@1
  1267
         matrix N and vector rho: trow[j] = - rho * N[j] */
alpar@1
  1268
      nnz = 0;
alpar@1
  1269
      for (j = 1; j <= n; j++)
alpar@1
  1270
      {  if (stat[j] == GLP_NS)
alpar@1
  1271
         {  /* xN[j] is fixed */
alpar@1
  1272
            trow_vec[j] = 0.0;
alpar@1
  1273
            continue;
alpar@1
  1274
         }
alpar@1
  1275
         k = head[m+j]; /* x[k] = xN[j] */
alpar@1
  1276
         if (k <= m)
alpar@1
  1277
         {  /* N[j] is k-th column of submatrix I */
alpar@1
  1278
            temp = - rho[k];
alpar@1
  1279
         }
alpar@1
  1280
         else
alpar@1
  1281
         {  /* N[j] is (k-m)-th column of submatrix (-A) */
alpar@1
  1282
            beg = A_ptr[k-m], end = A_ptr[k-m+1];
alpar@1
  1283
            temp = 0.0;
alpar@1
  1284
            for (ptr = beg; ptr < end; ptr++)
alpar@1
  1285
               temp += rho[A_ind[ptr]] * A_val[ptr];
alpar@1
  1286
         }
alpar@1
  1287
         if (temp != 0.0)
alpar@1
  1288
            trow_ind[++nnz] = j;
alpar@1
  1289
         trow_vec[j] = temp;
alpar@1
  1290
      }
alpar@1
  1291
      csa->trow_nnz = nnz;
alpar@1
  1292
      return;
alpar@1
  1293
}
alpar@1
  1294
alpar@1
  1295
static void eval_trow2(struct csa *csa, double rho[])
alpar@1
  1296
{     int m = csa->m;
alpar@1
  1297
      int n = csa->n;
alpar@1
  1298
      int *AT_ptr = csa->AT_ptr;
alpar@1
  1299
      int *AT_ind = csa->AT_ind;
alpar@1
  1300
      double *AT_val = csa->AT_val;
alpar@1
  1301
      int *bind = csa->bind;
alpar@1
  1302
      char *stat = csa->stat;
alpar@1
  1303
      int *trow_ind = csa->trow_ind;
alpar@1
  1304
      double *trow_vec = csa->trow_vec;
alpar@1
  1305
      int i, j, beg, end, ptr, nnz;
alpar@1
  1306
      double temp;
alpar@1
  1307
      /* clear the pivot row */
alpar@1
  1308
      for (j = 1; j <= n; j++)
alpar@1
  1309
         trow_vec[j] = 0.0;
alpar@1
  1310
      /* compute the pivot row as a linear combination of rows of the
alpar@1
  1311
         matrix N: trow = - rho[1] * N'[1] - ... - rho[m] * N'[m] */
alpar@1
  1312
      for (i = 1; i <= m; i++)
alpar@1
  1313
      {  temp = rho[i];
alpar@1
  1314
         if (temp == 0.0) continue;
alpar@1
  1315
         /* trow := trow - rho[i] * N'[i] */
alpar@1
  1316
         j = bind[i] - m; /* x[i] = xN[j] */
alpar@1
  1317
         if (j >= 1 && stat[j] != GLP_NS)
alpar@1
  1318
            trow_vec[j] -= temp;
alpar@1
  1319
         beg = AT_ptr[i], end = AT_ptr[i+1];
alpar@1
  1320
         for (ptr = beg; ptr < end; ptr++)
alpar@1
  1321
         {  j = bind[m + AT_ind[ptr]] - m; /* x[k] = xN[j] */
alpar@1
  1322
            if (j >= 1 && stat[j] != GLP_NS)
alpar@1
  1323
               trow_vec[j] += temp * AT_val[ptr];
alpar@1
  1324
         }
alpar@1
  1325
      }
alpar@1
  1326
      /* construct sparse pattern of the pivot row */
alpar@1
  1327
      nnz = 0;
alpar@1
  1328
      for (j = 1; j <= n; j++)
alpar@1
  1329
      {  if (trow_vec[j] != 0.0)
alpar@1
  1330
            trow_ind[++nnz] = j;
alpar@1
  1331
      }
alpar@1
  1332
      csa->trow_nnz = nnz;
alpar@1
  1333
      return;
alpar@1
  1334
}
alpar@1
  1335
alpar@1
  1336
static void eval_trow(struct csa *csa, double rho[])
alpar@1
  1337
{     int m = csa->m;
alpar@1
  1338
      int i, nnz;
alpar@1
  1339
      double dens;
alpar@1
  1340
      /* determine the density of the vector rho */
alpar@1
  1341
      nnz = 0;
alpar@1
  1342
      for (i = 1; i <= m; i++)
alpar@1
  1343
         if (rho[i] != 0.0) nnz++;
alpar@1
  1344
      dens = (double)nnz / (double)m;
alpar@1
  1345
      if (dens >= 0.20)
alpar@1
  1346
      {  /* rho is relatively dense */
alpar@1
  1347
         eval_trow1(csa, rho);
alpar@1
  1348
      }
alpar@1
  1349
      else
alpar@1
  1350
      {  /* rho is relatively sparse */
alpar@1
  1351
         eval_trow2(csa, rho);
alpar@1
  1352
      }
alpar@1
  1353
      return;
alpar@1
  1354
}
alpar@1
  1355
#endif
alpar@1
  1356
alpar@1
  1357
/***********************************************************************
alpar@1
  1358
*  sort_trow - sort pivot row of the simplex table
alpar@1
  1359
*
alpar@1
  1360
*  This routine reorders the list of non-zero elements of the pivot
alpar@1
  1361
*  row to put significant elements, whose magnitude is not less than
alpar@1
  1362
*  a specified tolerance, in front of the list, and stores the number
alpar@1
  1363
*  of significant elements in trow_num. */
alpar@1
  1364
alpar@1
  1365
static void sort_trow(struct csa *csa, double tol_piv)
alpar@1
  1366
{
alpar@1
  1367
#ifdef GLP_DEBUG
alpar@1
  1368
      int n = csa->n;
alpar@1
  1369
      char *stat = csa->stat;
alpar@1
  1370
#endif
alpar@1
  1371
      int nnz = csa->trow_nnz;
alpar@1
  1372
      int *trow_ind = csa->trow_ind;
alpar@1
  1373
      double *trow_vec = csa->trow_vec;
alpar@1
  1374
      int j, num, pos;
alpar@1
  1375
      double big, eps, temp;
alpar@1
  1376
      /* compute infinity (maximum) norm of the row */
alpar@1
  1377
      big = 0.0;
alpar@1
  1378
      for (pos = 1; pos <= nnz; pos++)
alpar@1
  1379
      {
alpar@1
  1380
#ifdef GLP_DEBUG
alpar@1
  1381
         j = trow_ind[pos];
alpar@1
  1382
         xassert(1 <= j && j <= n);
alpar@1
  1383
         xassert(stat[j] != GLP_NS);
alpar@1
  1384
#endif
alpar@1
  1385
         temp = fabs(trow_vec[trow_ind[pos]]);
alpar@1
  1386
         if (big < temp) big = temp;
alpar@1
  1387
      }
alpar@1
  1388
      csa->trow_max = big;
alpar@1
  1389
      /* determine absolute pivot tolerance */
alpar@1
  1390
      eps = tol_piv * (1.0 + 0.01 * big);
alpar@1
  1391
      /* move significant row components to the front of the list */
alpar@1
  1392
      for (num = 0; num < nnz; )
alpar@1
  1393
      {  j = trow_ind[nnz];
alpar@1
  1394
         if (fabs(trow_vec[j]) < eps)
alpar@1
  1395
            nnz--;
alpar@1
  1396
         else
alpar@1
  1397
         {  num++;
alpar@1
  1398
            trow_ind[nnz] = trow_ind[num];
alpar@1
  1399
            trow_ind[num] = j;
alpar@1
  1400
         }
alpar@1
  1401
      }
alpar@1
  1402
      csa->trow_num = num;
alpar@1
  1403
      return;
alpar@1
  1404
}
alpar@1
  1405
alpar@1
  1406
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
alpar@1
  1407
static int ls_func(const void *p1_, const void *p2_)
alpar@1
  1408
{     const struct bkpt *p1 = p1_, *p2 = p2_;
alpar@1
  1409
      if (p1->t < p2->t) return -1;
alpar@1
  1410
      if (p1->t > p2->t) return +1;
alpar@1
  1411
      return 0;
alpar@1
  1412
}
alpar@1
  1413
alpar@1
  1414
static int ls_func1(const void *p1_, const void *p2_)
alpar@1
  1415
{     const struct bkpt *p1 = p1_, *p2 = p2_;
alpar@1
  1416
      if (p1->dz < p2->dz) return -1;
alpar@1
  1417
      if (p1->dz > p2->dz) return +1;
alpar@1
  1418
      return 0;
alpar@1
  1419
}
alpar@1
  1420
alpar@1
  1421
static void long_step(struct csa *csa)
alpar@1
  1422
{     int m = csa->m;
alpar@1
  1423
#ifdef GLP_DEBUG
alpar@1
  1424
      int n = csa->n;
alpar@1
  1425
#endif
alpar@1
  1426
      char *type = csa->type;
alpar@1
  1427
      double *lb = csa->lb;
alpar@1
  1428
      double *ub = csa->ub;
alpar@1
  1429
      int *head = csa->head;
alpar@1
  1430
      char *stat = csa->stat;
alpar@1
  1431
      double *cbar = csa->cbar;
alpar@1
  1432
      double delta = csa->delta;
alpar@1
  1433
      int *trow_ind = csa->trow_ind;
alpar@1
  1434
      double *trow_vec = csa->trow_vec;
alpar@1
  1435
      int trow_num = csa->trow_num;
alpar@1
  1436
      struct bkpt *bkpt = csa->bkpt;
alpar@1
  1437
      int j, k, kk, nbps, pos;
alpar@1
  1438
      double alfa, s, slope, dzmax;
alpar@1
  1439
      /* delta > 0 means that xB[p] violates its lower bound, so to
alpar@1
  1440
         increase the dual objective lambdaB[p] must increase;
alpar@1
  1441
         delta < 0 means that xB[p] violates its upper bound, so to
alpar@1
  1442
         increase the dual objective lambdaB[p] must decrease */
alpar@1
  1443
      /* s := sign(delta) */
alpar@1
  1444
      s = (delta > 0.0 ? +1.0 : -1.0);
alpar@1
  1445
      /* determine breakpoints of the dual objective */
alpar@1
  1446
      nbps = 0;
alpar@1
  1447
      for (pos = 1; pos <= trow_num; pos++)
alpar@1
  1448
      {  j = trow_ind[pos];
alpar@1
  1449
#ifdef GLP_DEBUG
alpar@1
  1450
         xassert(1 <= j && j <= n);
alpar@1
  1451
         xassert(stat[j] != GLP_NS);
alpar@1
  1452
#endif
alpar@1
  1453
         /* if there is free non-basic variable, switch to the standard
alpar@1
  1454
            ratio test */
alpar@1
  1455
         if (stat[j] == GLP_NF)
alpar@1
  1456
         {  nbps = 0;
alpar@1
  1457
            goto done;
alpar@1
  1458
         }
alpar@1
  1459
         /* lambdaN[j] = ... - alfa * t - ..., where t = s * lambdaB[i]
alpar@1
  1460
            is the dual ray parameter, t >= 0 */
alpar@1
  1461
         alfa = s * trow_vec[j];
alpar@1
  1462
#ifdef GLP_DEBUG
alpar@1
  1463
         xassert(alfa != 0.0);
alpar@1
  1464
         xassert(stat[j] == GLP_NL || stat[j] == GLP_NU);
alpar@1
  1465
#endif
alpar@1
  1466
         if (alfa > 0.0 && stat[j] == GLP_NL ||
alpar@1
  1467
             alfa < 0.0 && stat[j] == GLP_NU)
alpar@1
  1468
         {  /* either lambdaN[j] >= 0 (if stat = GLP_NL) and decreases
alpar@1
  1469
               or lambdaN[j] <= 0 (if stat = GLP_NU) and increases; in
alpar@1
  1470
               both cases we have a breakpoint */
alpar@1
  1471
            nbps++;
alpar@1
  1472
#ifdef GLP_DEBUG
alpar@1
  1473
            xassert(nbps <= n);
alpar@1
  1474
#endif
alpar@1
  1475
            bkpt[nbps].j = j;
alpar@1
  1476
            bkpt[nbps].t = cbar[j] / alfa;
alpar@1
  1477
/*
alpar@1
  1478
if (stat[j] == GLP_NL && cbar[j] < 0.0 ||
alpar@1
  1479
    stat[j] == GLP_NU && cbar[j] > 0.0)
alpar@1
  1480
xprintf("%d %g\n", stat[j], cbar[j]);
alpar@1
  1481
*/
alpar@1
  1482
            /* if t is negative, replace it by exact zero (see comments
alpar@1
  1483
               in the routine chuzc) */
alpar@1
  1484
            if (bkpt[nbps].t < 0.0) bkpt[nbps].t = 0.0;
alpar@1
  1485
         }
alpar@1
  1486
      }
alpar@1
  1487
      /* if there are less than two breakpoints, switch to the standard
alpar@1
  1488
         ratio test */
alpar@1
  1489
      if (nbps < 2)
alpar@1
  1490
      {  nbps = 0;
alpar@1
  1491
         goto done;
alpar@1
  1492
      }
alpar@1
  1493
      /* sort breakpoints by ascending the dual ray parameter, t */
alpar@1
  1494
      qsort(&bkpt[1], nbps, sizeof(struct bkpt), ls_func);
alpar@1
  1495
      /* determine last breakpoint, at which the dual objective still
alpar@1
  1496
         greater than at t = 0 */
alpar@1
  1497
      dzmax = 0.0;
alpar@1
  1498
      slope = fabs(delta); /* initial slope */
alpar@1
  1499
      for (kk = 1; kk <= nbps; kk++)
alpar@1
  1500
      {  if (kk == 1)
alpar@1
  1501
            bkpt[kk].dz =
alpar@1
  1502
               0.0 + slope * (bkpt[kk].t - 0.0);
alpar@1
  1503
         else
alpar@1
  1504
            bkpt[kk].dz =
alpar@1
  1505
               bkpt[kk-1].dz + slope * (bkpt[kk].t - bkpt[kk-1].t);
alpar@1
  1506
         if (dzmax < bkpt[kk].dz)
alpar@1
  1507
            dzmax = bkpt[kk].dz;
alpar@1
  1508
         else if (bkpt[kk].dz < 0.05 * (1.0 + dzmax))
alpar@1
  1509
         {  nbps = kk - 1;
alpar@1
  1510
            break;
alpar@1
  1511
         }
alpar@1
  1512
         j = bkpt[kk].j;
alpar@1
  1513
         k = head[m+j]; /* x[k] = xN[j] */
alpar@1
  1514
         if (type[k] == GLP_DB)
alpar@1
  1515
            slope -= fabs(trow_vec[j]) * (ub[k] - lb[k]);
alpar@1
  1516
         else
alpar@1
  1517
         {  nbps = kk;
alpar@1
  1518
            break;
alpar@1
  1519
         }
alpar@1
  1520
      }
alpar@1
  1521
      /* if there are less than two breakpoints, switch to the standard
alpar@1
  1522
         ratio test */
alpar@1
  1523
      if (nbps < 2)
alpar@1
  1524
      {  nbps = 0;
alpar@1
  1525
         goto done;
alpar@1
  1526
      }
alpar@1
  1527
      /* sort breakpoints by ascending the dual change, dz */
alpar@1
  1528
      qsort(&bkpt[1], nbps, sizeof(struct bkpt), ls_func1);
alpar@1
  1529
/*
alpar@1
  1530
for (kk = 1; kk <= nbps; kk++)
alpar@1
  1531
xprintf("%d; t = %g; dz = %g\n", kk, bkpt[kk].t, bkpt[kk].dz);
alpar@1
  1532
*/
alpar@1
  1533
done: csa->nbps = nbps;
alpar@1
  1534
      return;
alpar@1
  1535
}
alpar@1
  1536
#endif
alpar@1
  1537
alpar@1
  1538
/***********************************************************************
alpar@1
  1539
*  chuzc - choose non-basic variable (column of the simplex table)
alpar@1
  1540
*
alpar@1
  1541
*  This routine chooses non-basic variable xN[q], which being entered
alpar@1
  1542
*  in the basis keeps dual feasibility of the basic solution.
alpar@1
  1543
*
alpar@1
  1544
*  The parameter rtol is a relative tolerance used to relax zero bounds
alpar@1
  1545
*  of reduced costs of non-basic variables. If rtol = 0, the routine
alpar@1
  1546
*  implements the standard ratio test. Otherwise, if rtol > 0, the
alpar@1
  1547
*  routine implements Harris' two-pass ratio test. In the latter case
alpar@1
  1548
*  rtol should be about three times less than a tolerance used to check
alpar@1
  1549
*  dual feasibility. */
alpar@1
  1550
alpar@1
  1551
static void chuzc(struct csa *csa, double rtol)
alpar@1
  1552
{
alpar@1
  1553
#ifdef GLP_DEBUG
alpar@1
  1554
      int m = csa->m;
alpar@1
  1555
      int n = csa->n;
alpar@1
  1556
#endif
alpar@1
  1557
      char *stat = csa->stat;
alpar@1
  1558
      double *cbar = csa->cbar;
alpar@1
  1559
#ifdef GLP_DEBUG
alpar@1
  1560
      int p = csa->p;
alpar@1
  1561
#endif
alpar@1
  1562
      double delta = csa->delta;
alpar@1
  1563
      int *trow_ind = csa->trow_ind;
alpar@1
  1564
      double *trow_vec = csa->trow_vec;
alpar@1
  1565
      int trow_num = csa->trow_num;
alpar@1
  1566
      int j, pos, q;
alpar@1
  1567
      double alfa, big, s, t, teta, tmax;
alpar@1
  1568
#ifdef GLP_DEBUG
alpar@1
  1569
      xassert(1 <= p && p <= m);
alpar@1
  1570
#endif
alpar@1
  1571
      /* delta > 0 means that xB[p] violates its lower bound and goes
alpar@1
  1572
         to it in the adjacent basis, so lambdaB[p] is increasing from
alpar@1
  1573
         its lower zero bound;
alpar@1
  1574
         delta < 0 means that xB[p] violates its upper bound and goes
alpar@1
  1575
         to it in the adjacent basis, so lambdaB[p] is decreasing from
alpar@1
  1576
         its upper zero bound */
alpar@1
  1577
#ifdef GLP_DEBUG
alpar@1
  1578
      xassert(delta != 0.0);
alpar@1
  1579
#endif
alpar@1
  1580
      /* s := sign(delta) */
alpar@1
  1581
      s = (delta > 0.0 ? +1.0 : -1.0);
alpar@1
  1582
      /*** FIRST PASS ***/
alpar@1
  1583
      /* nothing is chosen so far */
alpar@1
  1584
      q = 0, teta = DBL_MAX, big = 0.0;
alpar@1
  1585
      /* walk through significant elements of the pivot row */
alpar@1
  1586
      for (pos = 1; pos <= trow_num; pos++)
alpar@1
  1587
      {  j = trow_ind[pos];
alpar@1
  1588
#ifdef GLP_DEBUG
alpar@1
  1589
         xassert(1 <= j && j <= n);
alpar@1
  1590
#endif
alpar@1
  1591
         alfa = s * trow_vec[j];
alpar@1
  1592
#ifdef GLP_DEBUG
alpar@1
  1593
         xassert(alfa != 0.0);
alpar@1
  1594
#endif
alpar@1
  1595
         /* lambdaN[j] = ... - alfa * lambdaB[p] - ..., and due to s we
alpar@1
  1596
            need to consider only increasing lambdaB[p] */
alpar@1
  1597
         if (alfa > 0.0)
alpar@1
  1598
         {  /* lambdaN[j] is decreasing */
alpar@1
  1599
            if (stat[j] == GLP_NL || stat[j] == GLP_NF)
alpar@1
  1600
            {  /* lambdaN[j] has zero lower bound */
alpar@1
  1601
               t = (cbar[j] + rtol) / alfa;
alpar@1
  1602
            }
alpar@1
  1603
            else
alpar@1
  1604
            {  /* lambdaN[j] has no lower bound */
alpar@1
  1605
               continue;
alpar@1
  1606
            }
alpar@1
  1607
         }
alpar@1
  1608
         else
alpar@1
  1609
         {  /* lambdaN[j] is increasing */
alpar@1
  1610
            if (stat[j] == GLP_NU || stat[j] == GLP_NF)
alpar@1
  1611
            {  /* lambdaN[j] has zero upper bound */
alpar@1
  1612
               t = (cbar[j] - rtol) / alfa;
alpar@1
  1613
            }
alpar@1
  1614
            else
alpar@1
  1615
            {  /* lambdaN[j] has no upper bound */
alpar@1
  1616
               continue;
alpar@1
  1617
            }
alpar@1
  1618
         }
alpar@1
  1619
         /* t is a change of lambdaB[p], on which lambdaN[j] reaches
alpar@1
  1620
            its zero bound (possibly relaxed); since the basic solution
alpar@1
  1621
            is assumed to be dual feasible, t has to be non-negative by
alpar@1
  1622
            definition; however, it may happen that lambdaN[j] slightly
alpar@1
  1623
            (i.e. within a tolerance) violates its zero bound, that
alpar@1
  1624
            leads to negative t; in the latter case, if xN[j] is chosen,
alpar@1
  1625
            negative t means that lambdaB[p] changes in wrong direction
alpar@1
  1626
            that may cause wrong results on updating reduced costs;
alpar@1
  1627
            thus, if t is negative, we should replace it by exact zero
alpar@1
  1628
            assuming that lambdaN[j] is exactly on its zero bound, and
alpar@1
  1629
            violation appears due to round-off errors */
alpar@1
  1630
         if (t < 0.0) t = 0.0;
alpar@1
  1631
         /* apply minimal ratio test */
alpar@1
  1632
         if (teta > t || teta == t && big < fabs(alfa))
alpar@1
  1633
            q = j, teta = t, big = fabs(alfa);
alpar@1
  1634
      }
alpar@1
  1635
      /* the second pass is skipped in the following cases: */
alpar@1
  1636
      /* if the standard ratio test is used */
alpar@1
  1637
      if (rtol == 0.0) goto done;
alpar@1
  1638
      /* if no non-basic variable has been chosen on the first pass */
alpar@1
  1639
      if (q == 0) goto done;
alpar@1
  1640
      /* if lambdaN[q] prevents lambdaB[p] from any change */
alpar@1
  1641
      if (teta == 0.0) goto done;
alpar@1
  1642
      /*** SECOND PASS ***/
alpar@1
  1643
      /* here tmax is a maximal change of lambdaB[p], on which the
alpar@1
  1644
         solution remains dual feasible within a tolerance */
alpar@1
  1645
#if 0
alpar@1
  1646
      tmax = (1.0 + 10.0 * DBL_EPSILON) * teta;
alpar@1
  1647
#else
alpar@1
  1648
      tmax = teta;
alpar@1
  1649
#endif
alpar@1
  1650
      /* nothing is chosen so far */
alpar@1
  1651
      q = 0, teta = DBL_MAX, big = 0.0;
alpar@1
  1652
      /* walk through significant elements of the pivot row */
alpar@1
  1653
      for (pos = 1; pos <= trow_num; pos++)
alpar@1
  1654
      {  j = trow_ind[pos];
alpar@1
  1655
#ifdef GLP_DEBUG
alpar@1
  1656
         xassert(1 <= j && j <= n);
alpar@1
  1657
#endif
alpar@1
  1658
         alfa = s * trow_vec[j];
alpar@1
  1659
#ifdef GLP_DEBUG
alpar@1
  1660
         xassert(alfa != 0.0);
alpar@1
  1661
#endif
alpar@1
  1662
         /* lambdaN[j] = ... - alfa * lambdaB[p] - ..., and due to s we
alpar@1
  1663
            need to consider only increasing lambdaB[p] */
alpar@1
  1664
         if (alfa > 0.0)
alpar@1
  1665
         {  /* lambdaN[j] is decreasing */
alpar@1
  1666
            if (stat[j] == GLP_NL || stat[j] == GLP_NF)
alpar@1
  1667
            {  /* lambdaN[j] has zero lower bound */
alpar@1
  1668
               t = cbar[j] / alfa;
alpar@1
  1669
            }
alpar@1
  1670
            else
alpar@1
  1671
            {  /* lambdaN[j] has no lower bound */
alpar@1
  1672
               continue;
alpar@1
  1673
            }
alpar@1
  1674
         }
alpar@1
  1675
         else
alpar@1
  1676
         {  /* lambdaN[j] is increasing */
alpar@1
  1677
            if (stat[j] == GLP_NU || stat[j] == GLP_NF)
alpar@1
  1678
            {  /* lambdaN[j] has zero upper bound */
alpar@1
  1679
               t = cbar[j] / alfa;
alpar@1
  1680
            }
alpar@1
  1681
            else
alpar@1
  1682
            {  /* lambdaN[j] has no upper bound */
alpar@1
  1683
               continue;
alpar@1
  1684
            }
alpar@1
  1685
         }
alpar@1
  1686
         /* (see comments for the first pass) */
alpar@1
  1687
         if (t < 0.0) t = 0.0;
alpar@1
  1688
         /* t is a change of lambdaB[p], on which lambdaN[j] reaches
alpar@1
  1689
            its zero (lower or upper) bound; if t <= tmax, all reduced
alpar@1
  1690
            costs can violate their zero bounds only within relaxation
alpar@1
  1691
            tolerance rtol, so we can choose non-basic variable having
alpar@1
  1692
            largest influence coefficient to avoid possible numerical
alpar@1
  1693
            instability */
alpar@1
  1694
         if (t <= tmax && big < fabs(alfa))
alpar@1
  1695
            q = j, teta = t, big = fabs(alfa);
alpar@1
  1696
      }
alpar@1
  1697
      /* something must be chosen on the second pass */
alpar@1
  1698
      xassert(q != 0);
alpar@1
  1699
done: /* store the index of non-basic variable xN[q] chosen */
alpar@1
  1700
      csa->q = q;
alpar@1
  1701
      /* store reduced cost of xN[q] in the adjacent basis */
alpar@1
  1702
      csa->new_dq = s * teta;
alpar@1
  1703
      return;
alpar@1
  1704
}
alpar@1
  1705
alpar@1
  1706
#if 1 /* copied from primal */
alpar@1
  1707
/***********************************************************************
alpar@1
  1708
*  eval_tcol - compute pivot column of the simplex table
alpar@1
  1709
*
alpar@1
  1710
*  This routine computes the pivot column of the simplex table, which
alpar@1
  1711
*  corresponds to non-basic variable xN[q] chosen.
alpar@1
  1712
*
alpar@1
  1713
*  The pivot column is the following vector:
alpar@1
  1714
*
alpar@1
  1715
*     tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
alpar@1
  1716
*
alpar@1
  1717
*  where B is the current basis matrix, N[q] is a column of the matrix
alpar@1
  1718
*  (I|-A) corresponding to variable xN[q]. */
alpar@1
  1719
alpar@1
  1720
static void eval_tcol(struct csa *csa)
alpar@1
  1721
{     int m = csa->m;
alpar@1
  1722
#ifdef GLP_DEBUG
alpar@1
  1723
      int n = csa->n;
alpar@1
  1724
#endif
alpar@1
  1725
      int *head = csa->head;
alpar@1
  1726
      int q = csa->q;
alpar@1
  1727
      int *tcol_ind = csa->tcol_ind;
alpar@1
  1728
      double *tcol_vec = csa->tcol_vec;
alpar@1
  1729
      double *h = csa->tcol_vec;
alpar@1
  1730
      int i, k, nnz;
alpar@1
  1731
#ifdef GLP_DEBUG
alpar@1
  1732
      xassert(1 <= q && q <= n);
alpar@1
  1733
#endif
alpar@1
  1734
      k = head[m+q]; /* x[k] = xN[q] */
alpar@1
  1735
#ifdef GLP_DEBUG
alpar@1
  1736
      xassert(1 <= k && k <= m+n);
alpar@1
  1737
#endif
alpar@1
  1738
      /* construct the right-hand side vector h = - N[q] */
alpar@1
  1739
      for (i = 1; i <= m; i++)
alpar@1
  1740
         h[i] = 0.0;
alpar@1
  1741
      if (k <= m)
alpar@1
  1742
      {  /* N[q] is k-th column of submatrix I */
alpar@1
  1743
         h[k] = -1.0;
alpar@1
  1744
      }
alpar@1
  1745
      else
alpar@1
  1746
      {  /* N[q] is (k-m)-th column of submatrix (-A) */
alpar@1
  1747
         int *A_ptr = csa->A_ptr;
alpar@1
  1748
         int *A_ind = csa->A_ind;
alpar@1
  1749
         double *A_val = csa->A_val;
alpar@1
  1750
         int beg, end, ptr;
alpar@1
  1751
         beg = A_ptr[k-m];
alpar@1
  1752
         end = A_ptr[k-m+1];
alpar@1
  1753
         for (ptr = beg; ptr < end; ptr++)
alpar@1
  1754
            h[A_ind[ptr]] = A_val[ptr];
alpar@1
  1755
      }
alpar@1
  1756
      /* solve system B * tcol = h */
alpar@1
  1757
      xassert(csa->valid);
alpar@1
  1758
      bfd_ftran(csa->bfd, tcol_vec);
alpar@1
  1759
      /* construct sparse pattern of the pivot column */
alpar@1
  1760
      nnz = 0;
alpar@1
  1761
      for (i = 1; i <= m; i++)
alpar@1
  1762
      {  if (tcol_vec[i] != 0.0)
alpar@1
  1763
            tcol_ind[++nnz] = i;
alpar@1
  1764
      }
alpar@1
  1765
      csa->tcol_nnz = nnz;
alpar@1
  1766
      return;
alpar@1
  1767
}
alpar@1
  1768
#endif
alpar@1
  1769
alpar@1
  1770
#if 1 /* copied from primal */
alpar@1
  1771
/***********************************************************************
alpar@1
  1772
*  refine_tcol - refine pivot column of the simplex table
alpar@1
  1773
*
alpar@1
  1774
*  This routine refines the pivot column of the simplex table assuming
alpar@1
  1775
*  that it was previously computed by the routine eval_tcol. */
alpar@1
  1776
alpar@1
  1777
static void refine_tcol(struct csa *csa)
alpar@1
  1778
{     int m = csa->m;
alpar@1
  1779
#ifdef GLP_DEBUG
alpar@1
  1780
      int n = csa->n;
alpar@1
  1781
#endif
alpar@1
  1782
      int *head = csa->head;
alpar@1
  1783
      int q = csa->q;
alpar@1
  1784
      int *tcol_ind = csa->tcol_ind;
alpar@1
  1785
      double *tcol_vec = csa->tcol_vec;
alpar@1
  1786
      double *h = csa->work3;
alpar@1
  1787
      int i, k, nnz;
alpar@1
  1788
#ifdef GLP_DEBUG
alpar@1
  1789
      xassert(1 <= q && q <= n);
alpar@1
  1790
#endif
alpar@1
  1791
      k = head[m+q]; /* x[k] = xN[q] */
alpar@1
  1792
#ifdef GLP_DEBUG
alpar@1
  1793
      xassert(1 <= k && k <= m+n);
alpar@1
  1794
#endif
alpar@1
  1795
      /* construct the right-hand side vector h = - N[q] */
alpar@1
  1796
      for (i = 1; i <= m; i++)
alpar@1
  1797
         h[i] = 0.0;
alpar@1
  1798
      if (k <= m)
alpar@1
  1799
      {  /* N[q] is k-th column of submatrix I */
alpar@1
  1800
         h[k] = -1.0;
alpar@1
  1801
      }
alpar@1
  1802
      else
alpar@1
  1803
      {  /* N[q] is (k-m)-th column of submatrix (-A) */
alpar@1
  1804
         int *A_ptr = csa->A_ptr;
alpar@1
  1805
         int *A_ind = csa->A_ind;
alpar@1
  1806
         double *A_val = csa->A_val;
alpar@1
  1807
         int beg, end, ptr;
alpar@1
  1808
         beg = A_ptr[k-m];
alpar@1
  1809
         end = A_ptr[k-m+1];
alpar@1
  1810
         for (ptr = beg; ptr < end; ptr++)
alpar@1
  1811
            h[A_ind[ptr]] = A_val[ptr];
alpar@1
  1812
      }
alpar@1
  1813
      /* refine solution of B * tcol = h */
alpar@1
  1814
      refine_ftran(csa, h, tcol_vec);
alpar@1
  1815
      /* construct sparse pattern of the pivot column */
alpar@1
  1816
      nnz = 0;
alpar@1
  1817
      for (i = 1; i <= m; i++)
alpar@1
  1818
      {  if (tcol_vec[i] != 0.0)
alpar@1
  1819
            tcol_ind[++nnz] = i;
alpar@1
  1820
      }
alpar@1
  1821
      csa->tcol_nnz = nnz;
alpar@1
  1822
      return;
alpar@1
  1823
}
alpar@1
  1824
#endif
alpar@1
  1825
alpar@1
  1826
/***********************************************************************
alpar@1
  1827
*  update_cbar - update reduced costs of non-basic variables
alpar@1
  1828
*
alpar@1
  1829
*  This routine updates reduced costs of all (except fixed) non-basic
alpar@1
  1830
*  variables for the adjacent basis. */
alpar@1
  1831
alpar@1
  1832
static void update_cbar(struct csa *csa)
alpar@1
  1833
{
alpar@1
  1834
#ifdef GLP_DEBUG
alpar@1
  1835
      int n = csa->n;
alpar@1
  1836
#endif
alpar@1
  1837
      double *cbar = csa->cbar;
alpar@1
  1838
      int trow_nnz = csa->trow_nnz;
alpar@1
  1839
      int *trow_ind = csa->trow_ind;
alpar@1
  1840
      double *trow_vec = csa->trow_vec;
alpar@1
  1841
      int q = csa->q;
alpar@1
  1842
      double new_dq = csa->new_dq;
alpar@1
  1843
      int j, pos;
alpar@1
  1844
#ifdef GLP_DEBUG
alpar@1
  1845
      xassert(1 <= q && q <= n);
alpar@1
  1846
#endif
alpar@1
  1847
      /* set new reduced cost of xN[q] */
alpar@1
  1848
      cbar[q] = new_dq;
alpar@1
  1849
      /* update reduced costs of other non-basic variables */
alpar@1
  1850
      if (new_dq == 0.0) goto done;
alpar@1
  1851
      for (pos = 1; pos <= trow_nnz; pos++)
alpar@1
  1852
      {  j = trow_ind[pos];
alpar@1
  1853
#ifdef GLP_DEBUG
alpar@1
  1854
         xassert(1 <= j && j <= n);
alpar@1
  1855
#endif
alpar@1
  1856
         if (j != q)
alpar@1
  1857
            cbar[j] -= trow_vec[j] * new_dq;
alpar@1
  1858
      }
alpar@1
  1859
done: return;
alpar@1
  1860
}
alpar@1
  1861
alpar@1
  1862
/***********************************************************************
alpar@1
  1863
*  update_bbar - update values of basic variables
alpar@1
  1864
*
alpar@1
  1865
*  This routine updates values of all basic variables for the adjacent
alpar@1
  1866
*  basis. */
alpar@1
  1867
alpar@1
  1868
static void update_bbar(struct csa *csa)
alpar@1
  1869
{
alpar@1
  1870
#ifdef GLP_DEBUG
alpar@1
  1871
      int m = csa->m;
alpar@1
  1872
      int n = csa->n;
alpar@1
  1873
#endif
alpar@1
  1874
      double *bbar = csa->bbar;
alpar@1
  1875
      int p = csa->p;
alpar@1
  1876
      double delta = csa->delta;
alpar@1
  1877
      int q = csa->q;
alpar@1
  1878
      int tcol_nnz = csa->tcol_nnz;
alpar@1
  1879
      int *tcol_ind = csa->tcol_ind;
alpar@1
  1880
      double *tcol_vec = csa->tcol_vec;
alpar@1
  1881
      int i, pos;
alpar@1
  1882
      double teta;
alpar@1
  1883
#ifdef GLP_DEBUG
alpar@1
  1884
      xassert(1 <= p && p <= m);
alpar@1
  1885
      xassert(1 <= q && q <= n);
alpar@1
  1886
#endif
alpar@1
  1887
      /* determine the change of xN[q] in the adjacent basis */
alpar@1
  1888
#ifdef GLP_DEBUG
alpar@1
  1889
      xassert(tcol_vec[p] != 0.0);
alpar@1
  1890
#endif
alpar@1
  1891
      teta = delta / tcol_vec[p];
alpar@1
  1892
      /* set new primal value of xN[q] */
alpar@1
  1893
      bbar[p] = get_xN(csa, q) + teta;
alpar@1
  1894
      /* update primal values of other basic variables */
alpar@1
  1895
      if (teta == 0.0) goto done;
alpar@1
  1896
      for (pos = 1; pos <= tcol_nnz; pos++)
alpar@1
  1897
      {  i = tcol_ind[pos];
alpar@1
  1898
#ifdef GLP_DEBUG
alpar@1
  1899
         xassert(1 <= i && i <= m);
alpar@1
  1900
#endif
alpar@1
  1901
         if (i != p)
alpar@1
  1902
            bbar[i] += tcol_vec[i] * teta;
alpar@1
  1903
      }
alpar@1
  1904
done: return;
alpar@1
  1905
}
alpar@1
  1906
alpar@1
  1907
/***********************************************************************
alpar@1
  1908
*  update_gamma - update steepest edge coefficients
alpar@1
  1909
*
alpar@1
  1910
*  This routine updates steepest-edge coefficients for the adjacent
alpar@1
  1911
*  basis. */
alpar@1
  1912
alpar@1
  1913
static void update_gamma(struct csa *csa)
alpar@1
  1914
{     int m = csa->m;
alpar@1
  1915
#ifdef GLP_DEBUG
alpar@1
  1916
      int n = csa->n;
alpar@1
  1917
#endif
alpar@1
  1918
      char *type = csa->type;
alpar@1
  1919
      int *head = csa->head;
alpar@1
  1920
      char *refsp = csa->refsp;
alpar@1
  1921
      double *gamma = csa->gamma;
alpar@1
  1922
      int p = csa->p;
alpar@1
  1923
      int trow_nnz = csa->trow_nnz;
alpar@1
  1924
      int *trow_ind = csa->trow_ind;
alpar@1
  1925
      double *trow_vec = csa->trow_vec;
alpar@1
  1926
      int q = csa->q;
alpar@1
  1927
      int tcol_nnz = csa->tcol_nnz;
alpar@1
  1928
      int *tcol_ind = csa->tcol_ind;
alpar@1
  1929
      double *tcol_vec = csa->tcol_vec;
alpar@1
  1930
      double *u = csa->work3;
alpar@1
  1931
      int i, j, k,pos;
alpar@1
  1932
      double gamma_p, eta_p, pivot, t, t1, t2;
alpar@1
  1933
#ifdef GLP_DEBUG
alpar@1
  1934
      xassert(1 <= p && p <= m);
alpar@1
  1935
      xassert(1 <= q && q <= n);
alpar@1
  1936
#endif
alpar@1
  1937
      /* the basis changes, so decrease the count */
alpar@1
  1938
      xassert(csa->refct > 0);
alpar@1
  1939
      csa->refct--;
alpar@1
  1940
      /* recompute gamma[p] for the current basis more accurately and
alpar@1
  1941
         compute auxiliary vector u */
alpar@1
  1942
#ifdef GLP_DEBUG
alpar@1
  1943
      xassert(type[head[p]] != GLP_FR);
alpar@1
  1944
#endif
alpar@1
  1945
      gamma_p = eta_p = (refsp[head[p]] ? 1.0 : 0.0);
alpar@1
  1946
      for (i = 1; i <= m; i++) u[i] = 0.0;
alpar@1
  1947
      for (pos = 1; pos <= trow_nnz; pos++)
alpar@1
  1948
      {  j = trow_ind[pos];
alpar@1
  1949
#ifdef GLP_DEBUG
alpar@1
  1950
         xassert(1 <= j && j <= n);
alpar@1
  1951
#endif
alpar@1
  1952
         k = head[m+j]; /* x[k] = xN[j] */
alpar@1
  1953
#ifdef GLP_DEBUG
alpar@1
  1954
         xassert(1 <= k && k <= m+n);
alpar@1
  1955
         xassert(type[k] != GLP_FX);
alpar@1
  1956
#endif
alpar@1
  1957
         if (!refsp[k]) continue;
alpar@1
  1958
         t = trow_vec[j];
alpar@1
  1959
         gamma_p += t * t;
alpar@1
  1960
         /* u := u + N[j] * delta[j] * trow[j] */
alpar@1
  1961
         if (k <= m)
alpar@1
  1962
         {  /* N[k] = k-j stolbec submatrix I */
alpar@1
  1963
            u[k] += t;
alpar@1
  1964
         }
alpar@1
  1965
         else
alpar@1
  1966
         {  /* N[k] = k-m-k stolbec (-A) */
alpar@1
  1967
            int *A_ptr = csa->A_ptr;
alpar@1
  1968
            int *A_ind = csa->A_ind;
alpar@1
  1969
            double *A_val = csa->A_val;
alpar@1
  1970
            int beg, end, ptr;
alpar@1
  1971
            beg = A_ptr[k-m];
alpar@1
  1972
            end = A_ptr[k-m+1];
alpar@1
  1973
            for (ptr = beg; ptr < end; ptr++)
alpar@1
  1974
               u[A_ind[ptr]] -= t * A_val[ptr];
alpar@1
  1975
         }
alpar@1
  1976
      }
alpar@1
  1977
      xassert(csa->valid);
alpar@1
  1978
      bfd_ftran(csa->bfd, u);
alpar@1
  1979
      /* update gamma[i] for other basic variables (except xB[p] and
alpar@1
  1980
         free variables) */
alpar@1
  1981
      pivot = tcol_vec[p];
alpar@1
  1982
#ifdef GLP_DEBUG
alpar@1
  1983
      xassert(pivot != 0.0);
alpar@1
  1984
#endif
alpar@1
  1985
      for (pos = 1; pos <= tcol_nnz; pos++)
alpar@1
  1986
      {  i = tcol_ind[pos];
alpar@1
  1987
#ifdef GLP_DEBUG
alpar@1
  1988
         xassert(1 <= i && i <= m);
alpar@1
  1989
#endif
alpar@1
  1990
         k = head[i];
alpar@1
  1991
#ifdef GLP_DEBUG
alpar@1
  1992
         xassert(1 <= k && k <= m+n);
alpar@1
  1993
#endif
alpar@1
  1994
         /* skip xB[p] */
alpar@1
  1995
         if (i == p) continue;
alpar@1
  1996
         /* skip free basic variable */
alpar@1
  1997
         if (type[head[i]] == GLP_FR)
alpar@1
  1998
         {
alpar@1
  1999
#ifdef GLP_DEBUG
alpar@1
  2000
            xassert(gamma[i] == 1.0);
alpar@1
  2001
#endif
alpar@1
  2002
            continue;
alpar@1
  2003
         }
alpar@1
  2004
         /* compute gamma[i] for the adjacent basis */
alpar@1
  2005
         t = tcol_vec[i] / pivot;
alpar@1
  2006
         t1 = gamma[i] + t * t * gamma_p + 2.0 * t * u[i];
alpar@1
  2007
         t2 = (refsp[k] ? 1.0 : 0.0) + eta_p * t * t;
alpar@1
  2008
         gamma[i] = (t1 >= t2 ? t1 : t2);
alpar@1
  2009
         /* (though gamma[i] can be exact zero, because the reference
alpar@1
  2010
            space does not include non-basic fixed variables) */
alpar@1
  2011
         if (gamma[i] < DBL_EPSILON) gamma[i] = DBL_EPSILON;
alpar@1
  2012
      }
alpar@1
  2013
      /* compute gamma[p] for the adjacent basis */
alpar@1
  2014
      if (type[head[m+q]] == GLP_FR)
alpar@1
  2015
         gamma[p] = 1.0;
alpar@1
  2016
      else
alpar@1
  2017
      {  gamma[p] = gamma_p / (pivot * pivot);
alpar@1
  2018
         if (gamma[p] < DBL_EPSILON) gamma[p] = DBL_EPSILON;
alpar@1
  2019
      }
alpar@1
  2020
      /* if xB[p], which becomes xN[q] in the adjacent basis, is fixed
alpar@1
  2021
         and belongs to the reference space, remove it from there, and
alpar@1
  2022
         change all gamma's appropriately */
alpar@1
  2023
      k = head[p];
alpar@1
  2024
      if (type[k] == GLP_FX && refsp[k])
alpar@1
  2025
      {  refsp[k] = 0;
alpar@1
  2026
         for (pos = 1; pos <= tcol_nnz; pos++)
alpar@1
  2027
         {  i = tcol_ind[pos];
alpar@1
  2028
            if (i == p)
alpar@1
  2029
            {  if (type[head[m+q]] == GLP_FR) continue;
alpar@1
  2030
               t = 1.0 / tcol_vec[p];
alpar@1
  2031
            }
alpar@1
  2032
            else
alpar@1
  2033
            {  if (type[head[i]] == GLP_FR) continue;
alpar@1
  2034
               t = tcol_vec[i] / tcol_vec[p];
alpar@1
  2035
            }
alpar@1
  2036
            gamma[i] -= t * t;
alpar@1
  2037
            if (gamma[i] < DBL_EPSILON) gamma[i] = DBL_EPSILON;
alpar@1
  2038
         }
alpar@1
  2039
      }
alpar@1
  2040
      return;
alpar@1
  2041
}
alpar@1
  2042
alpar@1
  2043
#if 1 /* copied from primal */
alpar@1
  2044
/***********************************************************************
alpar@1
  2045
*  err_in_bbar - compute maximal relative error in primal solution
alpar@1
  2046
*
alpar@1
  2047
*  This routine returns maximal relative error:
alpar@1
  2048
*
alpar@1
  2049
*     max |beta[i] - bbar[i]| / (1 + |beta[i]|),
alpar@1
  2050
*
alpar@1
  2051
*  where beta and bbar are, respectively, directly computed and the
alpar@1
  2052
*  current (updated) values of basic variables.
alpar@1
  2053
*
alpar@1
  2054
*  NOTE: The routine is intended only for debugginig purposes. */
alpar@1
  2055
alpar@1
  2056
static double err_in_bbar(struct csa *csa)
alpar@1
  2057
{     int m = csa->m;
alpar@1
  2058
      double *bbar = csa->bbar;
alpar@1
  2059
      int i;
alpar@1
  2060
      double e, emax, *beta;
alpar@1
  2061
      beta = xcalloc(1+m, sizeof(double));
alpar@1
  2062
      eval_beta(csa, beta);
alpar@1
  2063
      emax = 0.0;
alpar@1
  2064
      for (i = 1; i <= m; i++)
alpar@1
  2065
      {  e = fabs(beta[i] - bbar[i]) / (1.0 + fabs(beta[i]));
alpar@1
  2066
         if (emax < e) emax = e;
alpar@1
  2067
      }
alpar@1
  2068
      xfree(beta);
alpar@1
  2069
      return emax;
alpar@1
  2070
}
alpar@1
  2071
#endif
alpar@1
  2072
alpar@1
  2073
#if 1 /* copied from primal */
alpar@1
  2074
/***********************************************************************
alpar@1
  2075
*  err_in_cbar - compute maximal relative error in dual solution
alpar@1
  2076
*
alpar@1
  2077
*  This routine returns maximal relative error:
alpar@1
  2078
*
alpar@1
  2079
*     max |cost[j] - cbar[j]| / (1 + |cost[j]|),
alpar@1
  2080
*
alpar@1
  2081
*  where cost and cbar are, respectively, directly computed and the
alpar@1
  2082
*  current (updated) reduced costs of non-basic non-fixed variables.
alpar@1
  2083
*
alpar@1
  2084
*  NOTE: The routine is intended only for debugginig purposes. */
alpar@1
  2085
alpar@1
  2086
static double err_in_cbar(struct csa *csa)
alpar@1
  2087
{     int m = csa->m;
alpar@1
  2088
      int n = csa->n;
alpar@1
  2089
      char *stat = csa->stat;
alpar@1
  2090
      double *cbar = csa->cbar;
alpar@1
  2091
      int j;
alpar@1
  2092
      double e, emax, cost, *pi;
alpar@1
  2093
      pi = xcalloc(1+m, sizeof(double));
alpar@1
  2094
      eval_pi(csa, pi);
alpar@1
  2095
      emax = 0.0;
alpar@1
  2096
      for (j = 1; j <= n; j++)
alpar@1
  2097
      {  if (stat[j] == GLP_NS) continue;
alpar@1
  2098
         cost = eval_cost(csa, pi, j);
alpar@1
  2099
         e = fabs(cost - cbar[j]) / (1.0 + fabs(cost));
alpar@1
  2100
         if (emax < e) emax = e;
alpar@1
  2101
      }
alpar@1
  2102
      xfree(pi);
alpar@1
  2103
      return emax;
alpar@1
  2104
}
alpar@1
  2105
#endif
alpar@1
  2106
alpar@1
  2107
/***********************************************************************
alpar@1
  2108
*  err_in_gamma - compute maximal relative error in steepest edge cff.
alpar@1
  2109
*
alpar@1
  2110
*  This routine returns maximal relative error:
alpar@1
  2111
*
alpar@1
  2112
*     max |gamma'[j] - gamma[j]| / (1 + |gamma'[j]),
alpar@1
  2113
*
alpar@1
  2114
*  where gamma'[j] and gamma[j] are, respectively, directly computed
alpar@1
  2115
*  and the current (updated) steepest edge coefficients for non-basic
alpar@1
  2116
*  non-fixed variable x[j].
alpar@1
  2117
*
alpar@1
  2118
*  NOTE: The routine is intended only for debugginig purposes. */
alpar@1
  2119
alpar@1
  2120
static double err_in_gamma(struct csa *csa)
alpar@1
  2121
{     int m = csa->m;
alpar@1
  2122
      char *type = csa->type;
alpar@1
  2123
      int *head = csa->head;
alpar@1
  2124
      double *gamma = csa->gamma;
alpar@1
  2125
      double *exact = csa->work4;
alpar@1
  2126
      int i;
alpar@1
  2127
      double e, emax, temp;
alpar@1
  2128
      eval_gamma(csa, exact);
alpar@1
  2129
      emax = 0.0;
alpar@1
  2130
      for (i = 1; i <= m; i++)
alpar@1
  2131
      {  if (type[head[i]] == GLP_FR)
alpar@1
  2132
         {  xassert(gamma[i] == 1.0);
alpar@1
  2133
            xassert(exact[i] == 1.0);
alpar@1
  2134
            continue;
alpar@1
  2135
         }
alpar@1
  2136
         temp = exact[i];
alpar@1
  2137
         e = fabs(temp - gamma[i]) / (1.0 + fabs(temp));
alpar@1
  2138
         if (emax < e) emax = e;
alpar@1
  2139
      }
alpar@1
  2140
      return emax;
alpar@1
  2141
}
alpar@1
  2142
alpar@1
  2143
/***********************************************************************
alpar@1
  2144
*  change_basis - change basis header
alpar@1
  2145
*
alpar@1
  2146
*  This routine changes the basis header to make it corresponding to
alpar@1
  2147
*  the adjacent basis. */
alpar@1
  2148
alpar@1
  2149
static void change_basis(struct csa *csa)
alpar@1
  2150
{     int m = csa->m;
alpar@1
  2151
#ifdef GLP_DEBUG
alpar@1
  2152
      int n = csa->n;
alpar@1
  2153
#endif
alpar@1
  2154
      char *type = csa->type;
alpar@1
  2155
      int *head = csa->head;
alpar@1
  2156
#if 1 /* 06/IV-2009 */
alpar@1
  2157
      int *bind = csa->bind;
alpar@1
  2158
#endif
alpar@1
  2159
      char *stat = csa->stat;
alpar@1
  2160
      int p = csa->p;
alpar@1
  2161
      double delta = csa->delta;
alpar@1
  2162
      int q = csa->q;
alpar@1
  2163
      int k;
alpar@1
  2164
      /* xB[p] leaves the basis, xN[q] enters the basis */
alpar@1
  2165
#ifdef GLP_DEBUG
alpar@1
  2166
      xassert(1 <= p && p <= m);
alpar@1
  2167
      xassert(1 <= q && q <= n);
alpar@1
  2168
#endif
alpar@1
  2169
      /* xB[p] <-> xN[q] */
alpar@1
  2170
      k = head[p], head[p] = head[m+q], head[m+q] = k;
alpar@1
  2171
#if 1 /* 06/IV-2009 */
alpar@1
  2172
      bind[head[p]] = p, bind[head[m+q]] = m + q;
alpar@1
  2173
#endif
alpar@1
  2174
      if (type[k] == GLP_FX)
alpar@1
  2175
         stat[q] = GLP_NS;
alpar@1
  2176
      else if (delta > 0.0)
alpar@1
  2177
      {
alpar@1
  2178
#ifdef GLP_DEBUG
alpar@1
  2179
         xassert(type[k] == GLP_LO || type[k] == GLP_DB);
alpar@1
  2180
#endif
alpar@1
  2181
         stat[q] = GLP_NL;
alpar@1
  2182
      }
alpar@1
  2183
      else /* delta < 0.0 */
alpar@1
  2184
      {
alpar@1
  2185
#ifdef GLP_DEBUG
alpar@1
  2186
         xassert(type[k] == GLP_UP || type[k] == GLP_DB);
alpar@1
  2187
#endif
alpar@1
  2188
         stat[q] = GLP_NU;
alpar@1
  2189
      }
alpar@1
  2190
      return;
alpar@1
  2191
}
alpar@1
  2192
alpar@1
  2193
/***********************************************************************
alpar@1
  2194
*  check_feas - check dual feasibility of basic solution
alpar@1
  2195
*
alpar@1
  2196
*  If the current basic solution is dual feasible within a tolerance,
alpar@1
  2197
*  this routine returns zero, otherwise it returns non-zero. */
alpar@1
  2198
alpar@1
  2199
static int check_feas(struct csa *csa, double tol_dj)
alpar@1
  2200
{     int m = csa->m;
alpar@1
  2201
      int n = csa->n;
alpar@1
  2202
      char *orig_type = csa->orig_type;
alpar@1
  2203
      int *head = csa->head;
alpar@1
  2204
      double *cbar = csa->cbar;
alpar@1
  2205
      int j, k;
alpar@1
  2206
      for (j = 1; j <= n; j++)
alpar@1
  2207
      {  k = head[m+j]; /* x[k] = xN[j] */
alpar@1
  2208
#ifdef GLP_DEBUG
alpar@1
  2209
         xassert(1 <= k && k <= m+n);
alpar@1
  2210
#endif
alpar@1
  2211
         if (cbar[j] < - tol_dj)
alpar@1
  2212
            if (orig_type[k] == GLP_LO || orig_type[k] == GLP_FR)
alpar@1
  2213
               return 1;
alpar@1
  2214
         if (cbar[j] > + tol_dj)
alpar@1
  2215
            if (orig_type[k] == GLP_UP || orig_type[k] == GLP_FR)
alpar@1
  2216
               return 1;
alpar@1
  2217
      }
alpar@1
  2218
      return 0;
alpar@1
  2219
}
alpar@1
  2220
alpar@1
  2221
/***********************************************************************
alpar@1
  2222
*  set_aux_bnds - assign auxiliary bounds to variables
alpar@1
  2223
*
alpar@1
  2224
*  This routine assigns auxiliary bounds to variables to construct an
alpar@1
  2225
*  LP problem solved on phase I. */
alpar@1
  2226
alpar@1
  2227
static void set_aux_bnds(struct csa *csa)
alpar@1
  2228
{     int m = csa->m;
alpar@1
  2229
      int n = csa->n;
alpar@1
  2230
      char *type = csa->type;
alpar@1
  2231
      double *lb = csa->lb;
alpar@1
  2232
      double *ub = csa->ub;
alpar@1
  2233
      char *orig_type = csa->orig_type;
alpar@1
  2234
      int *head = csa->head;
alpar@1
  2235
      char *stat = csa->stat;
alpar@1
  2236
      double *cbar = csa->cbar;
alpar@1
  2237
      int j, k;
alpar@1
  2238
      for (k = 1; k <= m+n; k++)
alpar@1
  2239
      {  switch (orig_type[k])
alpar@1
  2240
         {  case GLP_FR:
alpar@1
  2241
#if 0
alpar@1
  2242
               type[k] = GLP_DB, lb[k] = -1.0, ub[k] = +1.0;
alpar@1
  2243
#else
alpar@1
  2244
               /* to force free variables to enter the basis */
alpar@1
  2245
               type[k] = GLP_DB, lb[k] = -1e3, ub[k] = +1e3;
alpar@1
  2246
#endif
alpar@1
  2247
               break;
alpar@1
  2248
            case GLP_LO:
alpar@1
  2249
               type[k] = GLP_DB, lb[k] = 0.0, ub[k] = +1.0;
alpar@1
  2250
               break;
alpar@1
  2251
            case GLP_UP:
alpar@1
  2252
               type[k] = GLP_DB, lb[k] = -1.0, ub[k] = 0.0;
alpar@1
  2253
               break;
alpar@1
  2254
            case GLP_DB:
alpar@1
  2255
            case GLP_FX:
alpar@1
  2256
               type[k] = GLP_FX, lb[k] = ub[k] = 0.0;
alpar@1
  2257
               break;
alpar@1
  2258
            default:
alpar@1
  2259
               xassert(orig_type != orig_type);
alpar@1
  2260
         }
alpar@1
  2261
      }
alpar@1
  2262
      for (j = 1; j <= n; j++)
alpar@1
  2263
      {  k = head[m+j]; /* x[k] = xN[j] */
alpar@1
  2264
#ifdef GLP_DEBUG
alpar@1
  2265
         xassert(1 <= k && k <= m+n);
alpar@1
  2266
#endif
alpar@1
  2267
         if (type[k] == GLP_FX)
alpar@1
  2268
            stat[j] = GLP_NS;
alpar@1
  2269
         else if (cbar[j] >= 0.0)
alpar@1
  2270
            stat[j] = GLP_NL;
alpar@1
  2271
         else
alpar@1
  2272
            stat[j] = GLP_NU;
alpar@1
  2273
      }
alpar@1
  2274
      return;
alpar@1
  2275
}
alpar@1
  2276
alpar@1
  2277
/***********************************************************************
alpar@1
  2278
*  set_orig_bnds - restore original bounds of variables
alpar@1
  2279
*
alpar@1
  2280
*  This routine restores original types and bounds of variables and
alpar@1
  2281
*  determines statuses of non-basic variables assuming that the current
alpar@1
  2282
*  basis is dual feasible. */
alpar@1
  2283
alpar@1
  2284
static void set_orig_bnds(struct csa *csa)
alpar@1
  2285
{     int m = csa->m;
alpar@1
  2286
      int n = csa->n;
alpar@1
  2287
      char *type = csa->type;
alpar@1
  2288
      double *lb = csa->lb;
alpar@1
  2289
      double *ub = csa->ub;
alpar@1
  2290
      char *orig_type = csa->orig_type;
alpar@1
  2291
      double *orig_lb = csa->orig_lb;
alpar@1
  2292
      double *orig_ub = csa->orig_ub;
alpar@1
  2293
      int *head = csa->head;
alpar@1
  2294
      char *stat = csa->stat;
alpar@1
  2295
      double *cbar = csa->cbar;
alpar@1
  2296
      int j, k;
alpar@1
  2297
      memcpy(&type[1], &orig_type[1], (m+n) * sizeof(char));
alpar@1
  2298
      memcpy(&lb[1], &orig_lb[1], (m+n) * sizeof(double));
alpar@1
  2299
      memcpy(&ub[1], &orig_ub[1], (m+n) * sizeof(double));
alpar@1
  2300
      for (j = 1; j <= n; j++)
alpar@1
  2301
      {  k = head[m+j]; /* x[k] = xN[j] */
alpar@1
  2302
#ifdef GLP_DEBUG
alpar@1
  2303
         xassert(1 <= k && k <= m+n);
alpar@1
  2304
#endif
alpar@1
  2305
         switch (type[k])
alpar@1
  2306
         {  case GLP_FR:
alpar@1
  2307
               stat[j] = GLP_NF;
alpar@1
  2308
               break;
alpar@1
  2309
            case GLP_LO:
alpar@1
  2310
               stat[j] = GLP_NL;
alpar@1
  2311
               break;
alpar@1
  2312
            case GLP_UP:
alpar@1
  2313
               stat[j] = GLP_NU;
alpar@1
  2314
               break;
alpar@1
  2315
            case GLP_DB:
alpar@1
  2316
               if (cbar[j] >= +DBL_EPSILON)
alpar@1
  2317
                  stat[j] = GLP_NL;
alpar@1
  2318
               else if (cbar[j] <= -DBL_EPSILON)
alpar@1
  2319
                  stat[j] = GLP_NU;
alpar@1
  2320
               else if (fabs(lb[k]) <= fabs(ub[k]))
alpar@1
  2321
                  stat[j] = GLP_NL;
alpar@1
  2322
               else
alpar@1
  2323
                  stat[j] = GLP_NU;
alpar@1
  2324
               break;
alpar@1
  2325
            case GLP_FX:
alpar@1
  2326
               stat[j] = GLP_NS;
alpar@1
  2327
               break;
alpar@1
  2328
            default:
alpar@1
  2329
               xassert(type != type);
alpar@1
  2330
         }
alpar@1
  2331
      }
alpar@1
  2332
      return;
alpar@1
  2333
}
alpar@1
  2334
alpar@1
  2335
/***********************************************************************
alpar@1
  2336
*  check_stab - check numerical stability of basic solution
alpar@1
  2337
*
alpar@1
  2338
*  If the current basic solution is dual feasible within a tolerance,
alpar@1
  2339
*  this routine returns zero, otherwise it returns non-zero. */
alpar@1
  2340
alpar@1
  2341
static int check_stab(struct csa *csa, double tol_dj)
alpar@1
  2342
{     int n = csa->n;
alpar@1
  2343
      char *stat = csa->stat;
alpar@1
  2344
      double *cbar = csa->cbar;
alpar@1
  2345
      int j;
alpar@1
  2346
      for (j = 1; j <= n; j++)
alpar@1
  2347
      {  if (cbar[j] < - tol_dj)
alpar@1
  2348
            if (stat[j] == GLP_NL || stat[j] == GLP_NF) return 1;
alpar@1
  2349
         if (cbar[j] > + tol_dj)
alpar@1
  2350
            if (stat[j] == GLP_NU || stat[j] == GLP_NF) return 1;
alpar@1
  2351
      }
alpar@1
  2352
      return 0;
alpar@1
  2353
}
alpar@1
  2354
alpar@1
  2355
#if 1 /* copied from primal */
alpar@1
  2356
/***********************************************************************
alpar@1
  2357
*  eval_obj - compute original objective function
alpar@1
  2358
*
alpar@1
  2359
*  This routine computes the current value of the original objective
alpar@1
  2360
*  function. */
alpar@1
  2361
alpar@1
  2362
static double eval_obj(struct csa *csa)
alpar@1
  2363
{     int m = csa->m;
alpar@1
  2364
      int n = csa->n;
alpar@1
  2365
      double *obj = csa->obj;
alpar@1
  2366
      int *head = csa->head;
alpar@1
  2367
      double *bbar = csa->bbar;
alpar@1
  2368
      int i, j, k;
alpar@1
  2369
      double sum;
alpar@1
  2370
      sum = obj[0];
alpar@1
  2371
      /* walk through the list of basic variables */
alpar@1
  2372
      for (i = 1; i <= m; i++)
alpar@1
  2373
      {  k = head[i]; /* x[k] = xB[i] */
alpar@1
  2374
#ifdef GLP_DEBUG
alpar@1
  2375
         xassert(1 <= k && k <= m+n);
alpar@1
  2376
#endif
alpar@1
  2377
         if (k > m)
alpar@1
  2378
            sum += obj[k-m] * bbar[i];
alpar@1
  2379
      }
alpar@1
  2380
      /* walk through the list of non-basic variables */
alpar@1
  2381
      for (j = 1; j <= n; j++)
alpar@1
  2382
      {  k = head[m+j]; /* x[k] = xN[j] */
alpar@1
  2383
#ifdef GLP_DEBUG
alpar@1
  2384
         xassert(1 <= k && k <= m+n);
alpar@1
  2385
#endif
alpar@1
  2386
         if (k > m)
alpar@1
  2387
            sum += obj[k-m] * get_xN(csa, j);
alpar@1
  2388
      }
alpar@1
  2389
      return sum;
alpar@1
  2390
}
alpar@1
  2391
#endif
alpar@1
  2392
alpar@1
  2393
/***********************************************************************
alpar@1
  2394
*  display - display the search progress
alpar@1
  2395
*
alpar@1
  2396
*  This routine displays some information about the search progress. */
alpar@1
  2397
alpar@1
  2398
static void display(struct csa *csa, const glp_smcp *parm, int spec)
alpar@1
  2399
{     int m = csa->m;
alpar@1
  2400
      int n = csa->n;
alpar@1
  2401
      double *coef = csa->coef;
alpar@1
  2402
      char *orig_type = csa->orig_type;
alpar@1
  2403
      int *head = csa->head;
alpar@1
  2404
      char *stat = csa->stat;
alpar@1
  2405
      int phase = csa->phase;
alpar@1
  2406
      double *bbar = csa->bbar;
alpar@1
  2407
      double *cbar = csa->cbar;
alpar@1
  2408
      int i, j, cnt;
alpar@1
  2409
      double sum;
alpar@1
  2410
      if (parm->msg_lev < GLP_MSG_ON) goto skip;
alpar@1
  2411
      if (parm->out_dly > 0 &&
alpar@1
  2412
         1000.0 * xdifftime(xtime(), csa->tm_beg) < parm->out_dly)
alpar@1
  2413
         goto skip;
alpar@1
  2414
      if (csa->it_cnt == csa->it_dpy) goto skip;
alpar@1
  2415
      if (!spec && csa->it_cnt % parm->out_frq != 0) goto skip;
alpar@1
  2416
      /* compute the sum of dual infeasibilities */
alpar@1
  2417
      sum = 0.0;
alpar@1
  2418
      if (phase == 1)
alpar@1
  2419
      {  for (i = 1; i <= m; i++)
alpar@1
  2420
            sum -= coef[head[i]] * bbar[i];
alpar@1
  2421
         for (j = 1; j <= n; j++)
alpar@1
  2422
            sum -= coef[head[m+j]] * get_xN(csa, j);
alpar@1
  2423
      }
alpar@1
  2424
      else
alpar@1
  2425
      {  for (j = 1; j <= n; j++)
alpar@1
  2426
         {  if (cbar[j] < 0.0)
alpar@1
  2427
               if (stat[j] == GLP_NL || stat[j] == GLP_NF)
alpar@1
  2428
                  sum -= cbar[j];
alpar@1
  2429
            if (cbar[j] > 0.0)
alpar@1
  2430
               if (stat[j] == GLP_NU || stat[j] == GLP_NF)
alpar@1
  2431
                  sum += cbar[j];
alpar@1
  2432
         }
alpar@1
  2433
      }
alpar@1
  2434
      /* determine the number of basic fixed variables */
alpar@1
  2435
      cnt = 0;
alpar@1
  2436
      for (i = 1; i <= m; i++)
alpar@1
  2437
         if (orig_type[head[i]] == GLP_FX) cnt++;
alpar@1
  2438
      if (csa->phase == 1)
alpar@1
  2439
         xprintf(" %6d: %24s infeas = %10.3e (%d)\n",
alpar@1
  2440
            csa->it_cnt, "", sum, cnt);
alpar@1
  2441
      else
alpar@1
  2442
         xprintf("|%6d: obj = %17.9e  infeas = %10.3e (%d)\n",
alpar@1
  2443
            csa->it_cnt, eval_obj(csa), sum, cnt);
alpar@1
  2444
      csa->it_dpy = csa->it_cnt;
alpar@1
  2445
skip: return;
alpar@1
  2446
}
alpar@1
  2447
alpar@1
  2448
#if 1 /* copied from primal */
alpar@1
  2449
/***********************************************************************
alpar@1
  2450
*  store_sol - store basic solution back to the problem object
alpar@1
  2451
*
alpar@1
  2452
*  This routine stores basic solution components back to the problem
alpar@1
  2453
*  object. */
alpar@1
  2454
alpar@1
  2455
static void store_sol(struct csa *csa, glp_prob *lp, int p_stat,
alpar@1
  2456
      int d_stat, int ray)
alpar@1
  2457
{     int m = csa->m;
alpar@1
  2458
      int n = csa->n;
alpar@1
  2459
      double zeta = csa->zeta;
alpar@1
  2460
      int *head = csa->head;
alpar@1
  2461
      char *stat = csa->stat;
alpar@1
  2462
      double *bbar = csa->bbar;
alpar@1
  2463
      double *cbar = csa->cbar;
alpar@1
  2464
      int i, j, k;
alpar@1
  2465
#ifdef GLP_DEBUG
alpar@1
  2466
      xassert(lp->m == m);
alpar@1
  2467
      xassert(lp->n == n);
alpar@1
  2468
#endif
alpar@1
  2469
      /* basis factorization */
alpar@1
  2470
#ifdef GLP_DEBUG
alpar@1
  2471
      xassert(!lp->valid && lp->bfd == NULL);
alpar@1
  2472
      xassert(csa->valid && csa->bfd != NULL);
alpar@1
  2473
#endif
alpar@1
  2474
      lp->valid = 1, csa->valid = 0;
alpar@1
  2475
      lp->bfd = csa->bfd, csa->bfd = NULL;
alpar@1
  2476
      memcpy(&lp->head[1], &head[1], m * sizeof(int));
alpar@1
  2477
      /* basic solution status */
alpar@1
  2478
      lp->pbs_stat = p_stat;
alpar@1
  2479
      lp->dbs_stat = d_stat;
alpar@1
  2480
      /* objective function value */
alpar@1
  2481
      lp->obj_val = eval_obj(csa);
alpar@1
  2482
      /* simplex iteration count */
alpar@1
  2483
      lp->it_cnt = csa->it_cnt;
alpar@1
  2484
      /* unbounded ray */
alpar@1
  2485
      lp->some = ray;
alpar@1
  2486
      /* basic variables */
alpar@1
  2487
      for (i = 1; i <= m; i++)
alpar@1
  2488
      {  k = head[i]; /* x[k] = xB[i] */
alpar@1
  2489
#ifdef GLP_DEBUG
alpar@1
  2490
         xassert(1 <= k && k <= m+n);
alpar@1
  2491
#endif
alpar@1
  2492
         if (k <= m)
alpar@1
  2493
         {  GLPROW *row = lp->row[k];
alpar@1
  2494
            row->stat = GLP_BS;
alpar@1
  2495
            row->bind = i;
alpar@1
  2496
            row->prim = bbar[i] / row->rii;
alpar@1
  2497
            row->dual = 0.0;
alpar@1
  2498
         }
alpar@1
  2499
         else
alpar@1
  2500
         {  GLPCOL *col = lp->col[k-m];
alpar@1
  2501
            col->stat = GLP_BS;
alpar@1
  2502
            col->bind = i;
alpar@1
  2503
            col->prim = bbar[i] * col->sjj;
alpar@1
  2504
            col->dual = 0.0;
alpar@1
  2505
         }
alpar@1
  2506
      }
alpar@1
  2507
      /* non-basic variables */
alpar@1
  2508
      for (j = 1; j <= n; j++)
alpar@1
  2509
      {  k = head[m+j]; /* x[k] = xN[j] */
alpar@1
  2510
#ifdef GLP_DEBUG
alpar@1
  2511
         xassert(1 <= k && k <= m+n);
alpar@1
  2512
#endif
alpar@1
  2513
         if (k <= m)
alpar@1
  2514
         {  GLPROW *row = lp->row[k];
alpar@1
  2515
            row->stat = stat[j];
alpar@1
  2516
            row->bind = 0;
alpar@1
  2517
#if 0
alpar@1
  2518
            row->prim = get_xN(csa, j) / row->rii;
alpar@1
  2519
#else
alpar@1
  2520
            switch (stat[j])
alpar@1
  2521
            {  case GLP_NL:
alpar@1
  2522
                  row->prim = row->lb; break;
alpar@1
  2523
               case GLP_NU:
alpar@1
  2524
                  row->prim = row->ub; break;
alpar@1
  2525
               case GLP_NF:
alpar@1
  2526
                  row->prim = 0.0; break;
alpar@1
  2527
               case GLP_NS:
alpar@1
  2528
                  row->prim = row->lb; break;
alpar@1
  2529
               default:
alpar@1
  2530
                  xassert(stat != stat);
alpar@1
  2531
            }
alpar@1
  2532
#endif
alpar@1
  2533
            row->dual = (cbar[j] * row->rii) / zeta;
alpar@1
  2534
         }
alpar@1
  2535
         else
alpar@1
  2536
         {  GLPCOL *col = lp->col[k-m];
alpar@1
  2537
            col->stat = stat[j];
alpar@1
  2538
            col->bind = 0;
alpar@1
  2539
#if 0
alpar@1
  2540
            col->prim = get_xN(csa, j) * col->sjj;
alpar@1
  2541
#else
alpar@1
  2542
            switch (stat[j])
alpar@1
  2543
            {  case GLP_NL:
alpar@1
  2544
                  col->prim = col->lb; break;
alpar@1
  2545
               case GLP_NU:
alpar@1
  2546
                  col->prim = col->ub; break;
alpar@1
  2547
               case GLP_NF:
alpar@1
  2548
                  col->prim = 0.0; break;
alpar@1
  2549
               case GLP_NS:
alpar@1
  2550
                  col->prim = col->lb; break;
alpar@1
  2551
               default:
alpar@1
  2552
                  xassert(stat != stat);
alpar@1
  2553
            }
alpar@1
  2554
#endif
alpar@1
  2555
            col->dual = (cbar[j] / col->sjj) / zeta;
alpar@1
  2556
         }
alpar@1
  2557
      }
alpar@1
  2558
      return;
alpar@1
  2559
}
alpar@1
  2560
#endif
alpar@1
  2561
alpar@1
  2562
/***********************************************************************
alpar@1
  2563
*  free_csa - deallocate common storage area
alpar@1
  2564
*
alpar@1
  2565
*  This routine frees all the memory allocated to arrays in the common
alpar@1
  2566
*  storage area (CSA). */
alpar@1
  2567
alpar@1
  2568
static void free_csa(struct csa *csa)
alpar@1
  2569
{     xfree(csa->type);
alpar@1
  2570
      xfree(csa->lb);
alpar@1
  2571
      xfree(csa->ub);
alpar@1
  2572
      xfree(csa->coef);
alpar@1
  2573
      xfree(csa->orig_type);
alpar@1
  2574
      xfree(csa->orig_lb);
alpar@1
  2575
      xfree(csa->orig_ub);
alpar@1
  2576
      xfree(csa->obj);
alpar@1
  2577
      xfree(csa->A_ptr);
alpar@1
  2578
      xfree(csa->A_ind);
alpar@1
  2579
      xfree(csa->A_val);
alpar@1
  2580
#if 1 /* 06/IV-2009 */
alpar@1
  2581
      xfree(csa->AT_ptr);
alpar@1
  2582
      xfree(csa->AT_ind);
alpar@1
  2583
      xfree(csa->AT_val);
alpar@1
  2584
#endif
alpar@1
  2585
      xfree(csa->head);
alpar@1
  2586
#if 1 /* 06/IV-2009 */
alpar@1
  2587
      xfree(csa->bind);
alpar@1
  2588
#endif
alpar@1
  2589
      xfree(csa->stat);
alpar@1
  2590
#if 0 /* 06/IV-2009 */
alpar@1
  2591
      xfree(csa->N_ptr);
alpar@1
  2592
      xfree(csa->N_len);
alpar@1
  2593
      xfree(csa->N_ind);
alpar@1
  2594
      xfree(csa->N_val);
alpar@1
  2595
#endif
alpar@1
  2596
      xfree(csa->bbar);
alpar@1
  2597
      xfree(csa->cbar);
alpar@1
  2598
      xfree(csa->refsp);
alpar@1
  2599
      xfree(csa->gamma);
alpar@1
  2600
      xfree(csa->trow_ind);
alpar@1
  2601
      xfree(csa->trow_vec);
alpar@1
  2602
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
alpar@1
  2603
      xfree(csa->bkpt);
alpar@1
  2604
#endif
alpar@1
  2605
      xfree(csa->tcol_ind);
alpar@1
  2606
      xfree(csa->tcol_vec);
alpar@1
  2607
      xfree(csa->work1);
alpar@1
  2608
      xfree(csa->work2);
alpar@1
  2609
      xfree(csa->work3);
alpar@1
  2610
      xfree(csa->work4);
alpar@1
  2611
      xfree(csa);
alpar@1
  2612
      return;
alpar@1
  2613
}
alpar@1
  2614
alpar@1
  2615
/***********************************************************************
alpar@1
  2616
*  spx_dual - core LP solver based on the dual simplex method
alpar@1
  2617
*
alpar@1
  2618
*  SYNOPSIS
alpar@1
  2619
*
alpar@1
  2620
*  #include "glpspx.h"
alpar@1
  2621
*  int spx_dual(glp_prob *lp, const glp_smcp *parm);
alpar@1
  2622
*
alpar@1
  2623
*  DESCRIPTION
alpar@1
  2624
*
alpar@1
  2625
*  The routine spx_dual is a core LP solver based on the two-phase dual
alpar@1
  2626
*  simplex method.
alpar@1
  2627
*
alpar@1
  2628
*  RETURNS
alpar@1
  2629
*
alpar@1
  2630
*  0  LP instance has been successfully solved.
alpar@1
  2631
*
alpar@1
  2632
*  GLP_EOBJLL
alpar@1
  2633
*     Objective lower limit has been reached (maximization).
alpar@1
  2634
*
alpar@1
  2635
*  GLP_EOBJUL
alpar@1
  2636
*     Objective upper limit has been reached (minimization).
alpar@1
  2637
*
alpar@1
  2638
*  GLP_EITLIM
alpar@1
  2639
*     Iteration limit has been exhausted.
alpar@1
  2640
*
alpar@1
  2641
*  GLP_ETMLIM
alpar@1
  2642
*     Time limit has been exhausted.
alpar@1
  2643
*
alpar@1
  2644
*  GLP_EFAIL
alpar@1
  2645
*     The solver failed to solve LP instance. */
alpar@1
  2646
alpar@1
  2647
int spx_dual(glp_prob *lp, const glp_smcp *parm)
alpar@1
  2648
{     struct csa *csa;
alpar@1
  2649
      int binv_st = 2;
alpar@1
  2650
      /* status of basis matrix factorization:
alpar@1
  2651
         0 - invalid; 1 - just computed; 2 - updated */
alpar@1
  2652
      int bbar_st = 0;
alpar@1
  2653
      /* status of primal values of basic variables:
alpar@1
  2654
         0 - invalid; 1 - just computed; 2 - updated */
alpar@1
  2655
      int cbar_st = 0;
alpar@1
  2656
      /* status of reduced costs of non-basic variables:
alpar@1
  2657
         0 - invalid; 1 - just computed; 2 - updated */
alpar@1
  2658
      int rigorous = 0;
alpar@1
  2659
      /* rigorous mode flag; this flag is used to enable iterative
alpar@1
  2660
         refinement on computing pivot rows and columns of the simplex
alpar@1
  2661
         table */
alpar@1
  2662
      int check = 0;
alpar@1
  2663
      int p_stat, d_stat, ret;
alpar@1
  2664
      /* allocate and initialize the common storage area */
alpar@1
  2665
      csa = alloc_csa(lp);
alpar@1
  2666
      init_csa(csa, lp);
alpar@1
  2667
      if (parm->msg_lev >= GLP_MSG_DBG)
alpar@1
  2668
         xprintf("Objective scale factor = %g\n", csa->zeta);
alpar@1
  2669
loop: /* main loop starts here */
alpar@1
  2670
      /* compute factorization of the basis matrix */
alpar@1
  2671
      if (binv_st == 0)
alpar@1
  2672
      {  ret = invert_B(csa);
alpar@1
  2673
         if (ret != 0)
alpar@1
  2674
         {  if (parm->msg_lev >= GLP_MSG_ERR)
alpar@1
  2675
            {  xprintf("Error: unable to factorize the basis matrix (%d"
alpar@1
  2676
                  ")\n", ret);
alpar@1
  2677
               xprintf("Sorry, basis recovery procedure not implemented"
alpar@1
  2678
                  " yet\n");
alpar@1
  2679
            }
alpar@1
  2680
            xassert(!lp->valid && lp->bfd == NULL);
alpar@1
  2681
            lp->bfd = csa->bfd, csa->bfd = NULL;
alpar@1
  2682
            lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
alpar@1
  2683
            lp->obj_val = 0.0;
alpar@1
  2684
            lp->it_cnt = csa->it_cnt;
alpar@1
  2685
            lp->some = 0;
alpar@1
  2686
            ret = GLP_EFAIL;
alpar@1
  2687
            goto done;
alpar@1
  2688
         }
alpar@1
  2689
         csa->valid = 1;
alpar@1
  2690
         binv_st = 1; /* just computed */
alpar@1
  2691
         /* invalidate basic solution components */
alpar@1
  2692
         bbar_st = cbar_st = 0;
alpar@1
  2693
      }
alpar@1
  2694
      /* compute reduced costs of non-basic variables */
alpar@1
  2695
      if (cbar_st == 0)
alpar@1
  2696
      {  eval_cbar(csa);
alpar@1
  2697
         cbar_st = 1; /* just computed */
alpar@1
  2698
         /* determine the search phase, if not determined yet */
alpar@1
  2699
         if (csa->phase == 0)
alpar@1
  2700
         {  if (check_feas(csa, 0.90 * parm->tol_dj) != 0)
alpar@1
  2701
            {  /* current basic solution is dual infeasible */
alpar@1
  2702
               /* start searching for dual feasible solution */
alpar@1
  2703
               csa->phase = 1;
alpar@1
  2704
               set_aux_bnds(csa);
alpar@1
  2705
            }
alpar@1
  2706
            else
alpar@1
  2707
            {  /* current basic solution is dual feasible */
alpar@1
  2708
               /* start searching for optimal solution */
alpar@1
  2709
               csa->phase = 2;
alpar@1
  2710
               set_orig_bnds(csa);
alpar@1
  2711
            }
alpar@1
  2712
            xassert(check_stab(csa, parm->tol_dj) == 0);
alpar@1
  2713
            /* some non-basic double-bounded variables might become
alpar@1
  2714
               fixed (on phase I) or vice versa (on phase II) */
alpar@1
  2715
#if 0 /* 06/IV-2009 */
alpar@1
  2716
            build_N(csa);
alpar@1
  2717
#endif
alpar@1
  2718
            csa->refct = 0;
alpar@1
  2719
            /* bounds of non-basic variables have been changed, so
alpar@1
  2720
               invalidate primal values */
alpar@1
  2721
            bbar_st = 0;
alpar@1
  2722
         }
alpar@1
  2723
         /* make sure that the current basic solution remains dual
alpar@1
  2724
            feasible */
alpar@1
  2725
         if (check_stab(csa, parm->tol_dj) != 0)
alpar@1
  2726
         {  if (parm->msg_lev >= GLP_MSG_ERR)
alpar@1
  2727
               xprintf("Warning: numerical instability (dual simplex, p"
alpar@1
  2728
                  "hase %s)\n", csa->phase == 1 ? "I" : "II");
alpar@1
  2729
#if 1
alpar@1
  2730
            if (parm->meth == GLP_DUALP)
alpar@1
  2731
            {  store_sol(csa, lp, GLP_UNDEF, GLP_UNDEF, 0);
alpar@1
  2732
               ret = GLP_EFAIL;
alpar@1
  2733
               goto done;
alpar@1
  2734
            }
alpar@1
  2735
#endif
alpar@1
  2736
            /* restart the search */
alpar@1
  2737
            csa->phase = 0;
alpar@1
  2738
            binv_st = 0;
alpar@1
  2739
            rigorous = 5;
alpar@1
  2740
            goto loop;
alpar@1
  2741
         }
alpar@1
  2742
      }
alpar@1
  2743
      xassert(csa->phase == 1 || csa->phase == 2);
alpar@1
  2744
      /* on phase I we do not need to wait until the current basic
alpar@1
  2745
         solution becomes primal feasible; it is sufficient to make
alpar@1
  2746
         sure that all reduced costs have correct signs */
alpar@1
  2747
      if (csa->phase == 1 && check_feas(csa, parm->tol_dj) == 0)
alpar@1
  2748
      {  /* the current basis is dual feasible; switch to phase II */
alpar@1
  2749
         display(csa, parm, 1);
alpar@1
  2750
         csa->phase = 2;
alpar@1
  2751
         if (cbar_st != 1)
alpar@1
  2752
         {  eval_cbar(csa);
alpar@1
  2753
            cbar_st = 1;
alpar@1
  2754
         }
alpar@1
  2755
         set_orig_bnds(csa);
alpar@1
  2756
#if 0 /* 06/IV-2009 */
alpar@1
  2757
         build_N(csa);
alpar@1
  2758
#endif
alpar@1
  2759
         csa->refct = 0;
alpar@1
  2760
         bbar_st = 0;
alpar@1
  2761
      }
alpar@1
  2762
      /* compute primal values of basic variables */
alpar@1
  2763
      if (bbar_st == 0)
alpar@1
  2764
      {  eval_bbar(csa);
alpar@1
  2765
         if (csa->phase == 2)
alpar@1
  2766
            csa->bbar[0] = eval_obj(csa);
alpar@1
  2767
         bbar_st = 1; /* just computed */
alpar@1
  2768
      }
alpar@1
  2769
      /* redefine the reference space, if required */
alpar@1
  2770
      switch (parm->pricing)
alpar@1
  2771
      {  case GLP_PT_STD:
alpar@1
  2772
            break;
alpar@1
  2773
         case GLP_PT_PSE:
alpar@1
  2774
            if (csa->refct == 0) reset_refsp(csa);
alpar@1
  2775
            break;
alpar@1
  2776
         default:
alpar@1
  2777
            xassert(parm != parm);
alpar@1
  2778
      }
alpar@1
  2779
      /* at this point the basis factorization and all basic solution
alpar@1
  2780
         components are valid */
alpar@1
  2781
      xassert(binv_st && bbar_st && cbar_st);
alpar@1
  2782
      /* check accuracy of current basic solution components (only for
alpar@1
  2783
         debugging) */
alpar@1
  2784
      if (check)
alpar@1
  2785
      {  double e_bbar = err_in_bbar(csa);
alpar@1
  2786
         double e_cbar = err_in_cbar(csa);
alpar@1
  2787
         double e_gamma =
alpar@1
  2788
            (parm->pricing == GLP_PT_PSE ? err_in_gamma(csa) : 0.0);
alpar@1
  2789
         xprintf("e_bbar = %10.3e; e_cbar = %10.3e; e_gamma = %10.3e\n",
alpar@1
  2790
            e_bbar, e_cbar, e_gamma);
alpar@1
  2791
         xassert(e_bbar <= 1e-5 && e_cbar <= 1e-5 && e_gamma <= 1e-3);
alpar@1
  2792
      }
alpar@1
  2793
      /* if the objective has to be maximized, check if it has reached
alpar@1
  2794
         its lower limit */
alpar@1
  2795
      if (csa->phase == 2 && csa->zeta < 0.0 &&
alpar@1
  2796
          parm->obj_ll > -DBL_MAX && csa->bbar[0] <= parm->obj_ll)
alpar@1
  2797
      {  if (bbar_st != 1 || cbar_st != 1)
alpar@1
  2798
         {  if (bbar_st != 1) bbar_st = 0;
alpar@1
  2799
            if (cbar_st != 1) cbar_st = 0;
alpar@1
  2800
            goto loop;
alpar@1
  2801
         }
alpar@1
  2802
         display(csa, parm, 1);
alpar@1
  2803
         if (parm->msg_lev >= GLP_MSG_ALL)
alpar@1
  2804
            xprintf("OBJECTIVE LOWER LIMIT REACHED; SEARCH TERMINATED\n"
alpar@1
  2805
               );
alpar@1
  2806
         store_sol(csa, lp, GLP_INFEAS, GLP_FEAS, 0);
alpar@1
  2807
         ret = GLP_EOBJLL;
alpar@1
  2808
         goto done;
alpar@1
  2809
      }
alpar@1
  2810
      /* if the objective has to be minimized, check if it has reached
alpar@1
  2811
         its upper limit */
alpar@1
  2812
      if (csa->phase == 2 && csa->zeta > 0.0 &&
alpar@1
  2813
          parm->obj_ul < +DBL_MAX && csa->bbar[0] >= parm->obj_ul)
alpar@1
  2814
      {  if (bbar_st != 1 || cbar_st != 1)
alpar@1
  2815
         {  if (bbar_st != 1) bbar_st = 0;
alpar@1
  2816
            if (cbar_st != 1) cbar_st = 0;
alpar@1
  2817
            goto loop;
alpar@1
  2818
         }
alpar@1
  2819
         display(csa, parm, 1);
alpar@1
  2820
         if (parm->msg_lev >= GLP_MSG_ALL)
alpar@1
  2821
            xprintf("OBJECTIVE UPPER LIMIT REACHED; SEARCH TERMINATED\n"
alpar@1
  2822
               );
alpar@1
  2823
         store_sol(csa, lp, GLP_INFEAS, GLP_FEAS, 0);
alpar@1
  2824
         ret = GLP_EOBJUL;
alpar@1
  2825
         goto done;
alpar@1
  2826
      }
alpar@1
  2827
      /* check if the iteration limit has been exhausted */
alpar@1
  2828
      if (parm->it_lim < INT_MAX &&
alpar@1
  2829
          csa->it_cnt - csa->it_beg >= parm->it_lim)
alpar@1
  2830
      {  if (csa->phase == 2 && bbar_st != 1 || cbar_st != 1)
alpar@1
  2831
         {  if (csa->phase == 2 && bbar_st != 1) bbar_st = 0;
alpar@1
  2832
            if (cbar_st != 1) cbar_st = 0;
alpar@1
  2833
            goto loop;
alpar@1
  2834
         }
alpar@1
  2835
         display(csa, parm, 1);
alpar@1
  2836
         if (parm->msg_lev >= GLP_MSG_ALL)
alpar@1
  2837
            xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
alpar@1
  2838
         switch (csa->phase)
alpar@1
  2839
         {  case 1:
alpar@1
  2840
               d_stat = GLP_INFEAS;
alpar@1
  2841
               set_orig_bnds(csa);
alpar@1
  2842
               eval_bbar(csa);
alpar@1
  2843
               break;
alpar@1
  2844
            case 2:
alpar@1
  2845
               d_stat = GLP_FEAS;
alpar@1
  2846
               break;
alpar@1
  2847
            default:
alpar@1
  2848
               xassert(csa != csa);
alpar@1
  2849
         }
alpar@1
  2850
         store_sol(csa, lp, GLP_INFEAS, d_stat, 0);
alpar@1
  2851
         ret = GLP_EITLIM;
alpar@1
  2852
         goto done;
alpar@1
  2853
      }
alpar@1
  2854
      /* check if the time limit has been exhausted */
alpar@1
  2855
      if (parm->tm_lim < INT_MAX &&
alpar@1
  2856
          1000.0 * xdifftime(xtime(), csa->tm_beg) >= parm->tm_lim)
alpar@1
  2857
      {  if (csa->phase == 2 && bbar_st != 1 || cbar_st != 1)
alpar@1
  2858
         {  if (csa->phase == 2 && bbar_st != 1) bbar_st = 0;
alpar@1
  2859
            if (cbar_st != 1) cbar_st = 0;
alpar@1
  2860
            goto loop;
alpar@1
  2861
         }
alpar@1
  2862
         display(csa, parm, 1);
alpar@1
  2863
         if (parm->msg_lev >= GLP_MSG_ALL)
alpar@1
  2864
            xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
alpar@1
  2865
         switch (csa->phase)
alpar@1
  2866
         {  case 1:
alpar@1
  2867
               d_stat = GLP_INFEAS;
alpar@1
  2868
               set_orig_bnds(csa);
alpar@1
  2869
               eval_bbar(csa);
alpar@1
  2870
               break;
alpar@1
  2871
            case 2:
alpar@1
  2872
               d_stat = GLP_FEAS;
alpar@1
  2873
               break;
alpar@1
  2874
            default:
alpar@1
  2875
               xassert(csa != csa);
alpar@1
  2876
         }
alpar@1
  2877
         store_sol(csa, lp, GLP_INFEAS, d_stat, 0);
alpar@1
  2878
         ret = GLP_ETMLIM;
alpar@1
  2879
         goto done;
alpar@1
  2880
      }
alpar@1
  2881
      /* display the search progress */
alpar@1
  2882
      display(csa, parm, 0);
alpar@1
  2883
      /* choose basic variable xB[p] */
alpar@1
  2884
      chuzr(csa, parm->tol_bnd);
alpar@1
  2885
      if (csa->p == 0)
alpar@1
  2886
      {  if (bbar_st != 1 || cbar_st != 1)
alpar@1
  2887
         {  if (bbar_st != 1) bbar_st = 0;
alpar@1
  2888
            if (cbar_st != 1) cbar_st = 0;
alpar@1
  2889
            goto loop;
alpar@1
  2890
         }
alpar@1
  2891
         display(csa, parm, 1);
alpar@1
  2892
         switch (csa->phase)
alpar@1
  2893
         {  case 1:
alpar@1
  2894
               if (parm->msg_lev >= GLP_MSG_ALL)
alpar@1
  2895
                  xprintf("PROBLEM HAS NO DUAL FEASIBLE SOLUTION\n");
alpar@1
  2896
               set_orig_bnds(csa);
alpar@1
  2897
               eval_bbar(csa);
alpar@1
  2898
               p_stat = GLP_INFEAS, d_stat = GLP_NOFEAS;
alpar@1
  2899
               break;
alpar@1
  2900
            case 2:
alpar@1
  2901
               if (parm->msg_lev >= GLP_MSG_ALL)
alpar@1
  2902
                  xprintf("OPTIMAL SOLUTION FOUND\n");
alpar@1
  2903
               p_stat = d_stat = GLP_FEAS;
alpar@1
  2904
               break;
alpar@1
  2905
            default:
alpar@1
  2906
               xassert(csa != csa);
alpar@1
  2907
         }
alpar@1
  2908
         store_sol(csa, lp, p_stat, d_stat, 0);
alpar@1
  2909
         ret = 0;
alpar@1
  2910
         goto done;
alpar@1
  2911
      }
alpar@1
  2912
      /* compute pivot row of the simplex table */
alpar@1
  2913
      {  double *rho = csa->work4;
alpar@1
  2914
         eval_rho(csa, rho);
alpar@1
  2915
         if (rigorous) refine_rho(csa, rho);
alpar@1
  2916
         eval_trow(csa, rho);
alpar@1
  2917
         sort_trow(csa, parm->tol_bnd);
alpar@1
  2918
      }
alpar@1
  2919
      /* unlike primal simplex there is no need to check accuracy of
alpar@1
  2920
         the primal value of xB[p] (which might be computed using the
alpar@1
  2921
         pivot row), since bbar is a result of FTRAN */
alpar@1
  2922
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
alpar@1
  2923
      long_step(csa);
alpar@1
  2924
      if (csa->nbps > 0)
alpar@1
  2925
      {  csa->q = csa->bkpt[csa->nbps].j;
alpar@1
  2926
         if (csa->delta > 0.0)
alpar@1
  2927
            csa->new_dq = + csa->bkpt[csa->nbps].t;
alpar@1
  2928
         else
alpar@1
  2929
            csa->new_dq = - csa->bkpt[csa->nbps].t;
alpar@1
  2930
      }
alpar@1
  2931
      else
alpar@1
  2932
#endif
alpar@1
  2933
      /* choose non-basic variable xN[q] */
alpar@1
  2934
      switch (parm->r_test)
alpar@1
  2935
      {  case GLP_RT_STD:
alpar@1
  2936
            chuzc(csa, 0.0);
alpar@1
  2937
            break;
alpar@1
  2938
         case GLP_RT_HAR:
alpar@1
  2939
            chuzc(csa, 0.30 * parm->tol_dj);
alpar@1
  2940
            break;
alpar@1
  2941
         default:
alpar@1
  2942
            xassert(parm != parm);
alpar@1
  2943
      }
alpar@1
  2944
      if (csa->q == 0)
alpar@1
  2945
      {  if (bbar_st != 1 || cbar_st != 1 || !rigorous)
alpar@1
  2946
         {  if (bbar_st != 1) bbar_st = 0;
alpar@1
  2947
            if (cbar_st != 1) cbar_st = 0;
alpar@1
  2948
            rigorous = 1;
alpar@1
  2949
            goto loop;
alpar@1
  2950
         }
alpar@1
  2951
         display(csa, parm, 1);
alpar@1
  2952
         switch (csa->phase)
alpar@1
  2953
         {  case 1:
alpar@1
  2954
               if (parm->msg_lev >= GLP_MSG_ERR)
alpar@1
  2955
                  xprintf("Error: unable to choose basic variable on ph"
alpar@1
  2956
                     "ase I\n");
alpar@1
  2957
               xassert(!lp->valid && lp->bfd == NULL);
alpar@1
  2958
               lp->bfd = csa->bfd, csa->bfd = NULL;
alpar@1
  2959
               lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
alpar@1
  2960
               lp->obj_val = 0.0;
alpar@1
  2961
               lp->it_cnt = csa->it_cnt;
alpar@1
  2962
               lp->some = 0;
alpar@1
  2963
               ret = GLP_EFAIL;
alpar@1
  2964
               break;
alpar@1
  2965
            case 2:
alpar@1
  2966
               if (parm->msg_lev >= GLP_MSG_ALL)
alpar@1
  2967
                  xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n");
alpar@1
  2968
               store_sol(csa, lp, GLP_NOFEAS, GLP_FEAS,
alpar@1
  2969
                  csa->head[csa->p]);
alpar@1
  2970
               ret = 0;
alpar@1
  2971
               break;
alpar@1
  2972
            default:
alpar@1
  2973
               xassert(csa != csa);
alpar@1
  2974
         }
alpar@1
  2975
         goto done;
alpar@1
  2976
      }
alpar@1
  2977
      /* check if the pivot element is acceptable */
alpar@1
  2978
      {  double piv = csa->trow_vec[csa->q];
alpar@1
  2979
         double eps = 1e-5 * (1.0 + 0.01 * csa->trow_max);
alpar@1
  2980
         if (fabs(piv) < eps)
alpar@1
  2981
         {  if (parm->msg_lev >= GLP_MSG_DBG)
alpar@1
  2982
               xprintf("piv = %.12g; eps = %g\n", piv, eps);
alpar@1
  2983
            if (!rigorous)
alpar@1
  2984
            {  rigorous = 5;
alpar@1
  2985
               goto loop;
alpar@1
  2986
            }
alpar@1
  2987
         }
alpar@1
  2988
      }
alpar@1
  2989
      /* now xN[q] and xB[p] have been chosen anyhow */
alpar@1
  2990
      /* compute pivot column of the simplex table */
alpar@1
  2991
      eval_tcol(csa);
alpar@1
  2992
      if (rigorous) refine_tcol(csa);
alpar@1
  2993
      /* accuracy check based on the pivot element */
alpar@1
  2994
      {  double piv1 = csa->tcol_vec[csa->p]; /* more accurate */
alpar@1
  2995
         double piv2 = csa->trow_vec[csa->q]; /* less accurate */
alpar@1
  2996
         xassert(piv1 != 0.0);
alpar@1
  2997
         if (fabs(piv1 - piv2) > 1e-8 * (1.0 + fabs(piv1)) ||
alpar@1
  2998
             !(piv1 > 0.0 && piv2 > 0.0 || piv1 < 0.0 && piv2 < 0.0))
alpar@1
  2999
         {  if (parm->msg_lev >= GLP_MSG_DBG)
alpar@1
  3000
               xprintf("piv1 = %.12g; piv2 = %.12g\n", piv1, piv2);
alpar@1
  3001
            if (binv_st != 1 || !rigorous)
alpar@1
  3002
            {  if (binv_st != 1) binv_st = 0;
alpar@1
  3003
               rigorous = 5;
alpar@1
  3004
               goto loop;
alpar@1
  3005
            }
alpar@1
  3006
            /* (not a good idea; should be revised later) */
alpar@1
  3007
            if (csa->tcol_vec[csa->p] == 0.0)
alpar@1
  3008
            {  csa->tcol_nnz++;
alpar@1
  3009
               xassert(csa->tcol_nnz <= csa->m);
alpar@1
  3010
               csa->tcol_ind[csa->tcol_nnz] = csa->p;
alpar@1
  3011
            }
alpar@1
  3012
            csa->tcol_vec[csa->p] = piv2;
alpar@1
  3013
         }
alpar@1
  3014
      }
alpar@1
  3015
      /* update primal values of basic variables */
alpar@1
  3016
#ifdef GLP_LONG_STEP /* 07/IV-2009 */
alpar@1
  3017
      if (csa->nbps > 0)
alpar@1
  3018
      {  int kk, j, k;
alpar@1
  3019
         for (kk = 1; kk < csa->nbps; kk++)
alpar@1
  3020
         {  if (csa->bkpt[kk].t >= csa->bkpt[csa->nbps].t) continue;
alpar@1
  3021
            j = csa->bkpt[kk].j;
alpar@1
  3022
            k = csa->head[csa->m + j];
alpar@1
  3023
            xassert(csa->type[k] == GLP_DB);
alpar@1
  3024
            if (csa->stat[j] == GLP_NL)
alpar@1
  3025
               csa->stat[j] = GLP_NU;
alpar@1
  3026
            else
alpar@1
  3027
               csa->stat[j] = GLP_NL;
alpar@1
  3028
         }
alpar@1
  3029
      }
alpar@1
  3030
      bbar_st = 0;
alpar@1
  3031
#else
alpar@1
  3032
      update_bbar(csa);
alpar@1
  3033
      if (csa->phase == 2)
alpar@1
  3034
         csa->bbar[0] += (csa->cbar[csa->q] / csa->zeta) *
alpar@1
  3035
            (csa->delta / csa->tcol_vec[csa->p]);
alpar@1
  3036
      bbar_st = 2; /* updated */
alpar@1
  3037
#endif
alpar@1
  3038
      /* update reduced costs of non-basic variables */
alpar@1
  3039
      update_cbar(csa);
alpar@1
  3040
      cbar_st = 2; /* updated */
alpar@1
  3041
      /* update steepest edge coefficients */
alpar@1
  3042
      switch (parm->pricing)
alpar@1
  3043
      {  case GLP_PT_STD:
alpar@1
  3044
            break;
alpar@1
  3045
         case GLP_PT_PSE:
alpar@1
  3046
            if (csa->refct > 0) update_gamma(csa);
alpar@1
  3047
            break;
alpar@1
  3048
         default:
alpar@1
  3049
            xassert(parm != parm);
alpar@1
  3050
      }
alpar@1
  3051
      /* update factorization of the basis matrix */
alpar@1
  3052
      ret = update_B(csa, csa->p, csa->head[csa->m+csa->q]);
alpar@1
  3053
      if (ret == 0)
alpar@1
  3054
         binv_st = 2; /* updated */
alpar@1
  3055
      else
alpar@1
  3056
      {  csa->valid = 0;
alpar@1
  3057
         binv_st = 0; /* invalid */
alpar@1
  3058
      }
alpar@1
  3059
#if 0 /* 06/IV-2009 */
alpar@1
  3060
      /* update matrix N */
alpar@1
  3061
      del_N_col(csa, csa->q, csa->head[csa->m+csa->q]);
alpar@1
  3062
      if (csa->type[csa->head[csa->p]] != GLP_FX)
alpar@1
  3063
         add_N_col(csa, csa->q, csa->head[csa->p]);
alpar@1
  3064
#endif
alpar@1
  3065
      /* change the basis header */
alpar@1
  3066
      change_basis(csa);
alpar@1
  3067
      /* iteration complete */
alpar@1
  3068
      csa->it_cnt++;
alpar@1
  3069
      if (rigorous > 0) rigorous--;
alpar@1
  3070
      goto loop;
alpar@1
  3071
done: /* deallocate the common storage area */
alpar@1
  3072
      free_csa(csa);
alpar@1
  3073
      /* return to the calling program */
alpar@1
  3074
      return ret;
alpar@1
  3075
}
alpar@1
  3076
alpar@1
  3077
/* eof */