1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/examples/maxflow.mod Mon Dec 06 13:09:21 2010 +0100
1.3 @@ -0,0 +1,83 @@
1.4 +/* MAXFLOW, Maximum Flow Problem */
1.5 +
1.6 +/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
1.7 +
1.8 +/* The Maximum Flow Problem in a network G = (V, E), where V is a set
1.9 + of nodes, E within V x V is a set of arcs, is to maximize the flow
1.10 + from one given node s (source) to another given node t (sink) subject
1.11 + to conservation of flow constraints at each node and flow capacities
1.12 + on each arc. */
1.13 +
1.14 +param n, integer, >= 2;
1.15 +/* number of nodes */
1.16 +
1.17 +set V, default {1..n};
1.18 +/* set of nodes */
1.19 +
1.20 +set E, within V cross V;
1.21 +/* set of arcs */
1.22 +
1.23 +param a{(i,j) in E}, > 0;
1.24 +/* a[i,j] is capacity of arc (i,j) */
1.25 +
1.26 +param s, symbolic, in V, default 1;
1.27 +/* source node */
1.28 +
1.29 +param t, symbolic, in V, != s, default n;
1.30 +/* sink node */
1.31 +
1.32 +var x{(i,j) in E}, >= 0, <= a[i,j];
1.33 +/* x[i,j] is elementary flow through arc (i,j) to be found */
1.34 +
1.35 +var flow, >= 0;
1.36 +/* total flow from s to t */
1.37 +
1.38 +s.t. node{i in V}:
1.39 +/* node[i] is conservation constraint for node i */
1.40 +
1.41 + sum{(j,i) in E} x[j,i] + (if i = s then flow)
1.42 + /* summary flow into node i through all ingoing arcs */
1.43 +
1.44 + = /* must be equal to */
1.45 +
1.46 + sum{(i,j) in E} x[i,j] + (if i = t then flow);
1.47 + /* summary flow from node i through all outgoing arcs */
1.48 +
1.49 +maximize obj: flow;
1.50 +/* objective is to maximize the total flow through the network */
1.51 +
1.52 +solve;
1.53 +
1.54 +printf{1..56} "="; printf "\n";
1.55 +printf "Maximum flow from node %s to node %s is %g\n\n", s, t, flow;
1.56 +printf "Starting node Ending node Arc capacity Flow in arc\n";
1.57 +printf "------------- ----------- ------------ -----------\n";
1.58 +printf{(i,j) in E: x[i,j] != 0}: "%13s %11s %12g %11g\n", i, j,
1.59 + a[i,j], x[i,j];
1.60 +printf{1..56} "="; printf "\n";
1.61 +
1.62 +data;
1.63 +
1.64 +/* These data correspond to an example from [Christofides]. */
1.65 +
1.66 +/* Optimal solution is 29 */
1.67 +
1.68 +param n := 9;
1.69 +
1.70 +param : E : a :=
1.71 + 1 2 14
1.72 + 1 4 23
1.73 + 2 3 10
1.74 + 2 4 9
1.75 + 3 5 12
1.76 + 3 8 18
1.77 + 4 5 26
1.78 + 5 2 11
1.79 + 5 6 25
1.80 + 5 7 4
1.81 + 6 7 7
1.82 + 6 8 8
1.83 + 7 9 15
1.84 + 8 9 20;
1.85 +
1.86 +end;