examples/maxflow.mod
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* MAXFLOW, Maximum Flow Problem */
     2 
     3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
     4 
     5 /* The Maximum Flow Problem in a network G = (V, E), where V is a set
     6    of nodes, E within V x V is a set of arcs, is to maximize the flow
     7    from one given node s (source) to another given node t (sink) subject
     8    to conservation of flow constraints at each node and flow capacities
     9    on each arc. */
    10 
    11 param n, integer, >= 2;
    12 /* number of nodes */
    13 
    14 set V, default {1..n};
    15 /* set of nodes */
    16 
    17 set E, within V cross V;
    18 /* set of arcs */
    19 
    20 param a{(i,j) in E}, > 0;
    21 /* a[i,j] is capacity of arc (i,j) */
    22 
    23 param s, symbolic, in V, default 1;
    24 /* source node */
    25 
    26 param t, symbolic, in V, != s, default n;
    27 /* sink node */
    28 
    29 var x{(i,j) in E}, >= 0, <= a[i,j];
    30 /* x[i,j] is elementary flow through arc (i,j) to be found */
    31 
    32 var flow, >= 0;
    33 /* total flow from s to t */
    34 
    35 s.t. node{i in V}:
    36 /* node[i] is conservation constraint for node i */
    37 
    38    sum{(j,i) in E} x[j,i] + (if i = s then flow)
    39    /* summary flow into node i through all ingoing arcs */
    40 
    41    = /* must be equal to */
    42 
    43    sum{(i,j) in E} x[i,j] + (if i = t then flow);
    44    /* summary flow from node i through all outgoing arcs */
    45 
    46 maximize obj: flow;
    47 /* objective is to maximize the total flow through the network */
    48 
    49 solve;
    50 
    51 printf{1..56} "="; printf "\n";
    52 printf "Maximum flow from node %s to node %s is %g\n\n", s, t, flow;
    53 printf "Starting node   Ending node   Arc capacity   Flow in arc\n";
    54 printf "-------------   -----------   ------------   -----------\n";
    55 printf{(i,j) in E: x[i,j] != 0}: "%13s   %11s   %12g   %11g\n", i, j,
    56    a[i,j], x[i,j];
    57 printf{1..56} "="; printf "\n";
    58 
    59 data;
    60 
    61 /* These data correspond to an example from [Christofides]. */
    62 
    63 /* Optimal solution is 29 */
    64 
    65 param n := 9;
    66 
    67 param : E :   a :=
    68        1 2   14
    69        1 4   23
    70        2 3   10
    71        2 4    9
    72        3 5   12
    73        3 8   18
    74        4 5   26
    75        5 2   11
    76        5 6   25
    77        5 7    4
    78        6 7    7
    79        6 8    8
    80        7 9   15
    81        8 9   20;
    82 
    83 end;