include/glpk.h
changeset 1 c445c931472f
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/include/glpk.h	Mon Dec 06 13:09:21 2010 +0100
     1.3 @@ -0,0 +1,1750 @@
     1.4 +/* glpk.h */
     1.5 +
     1.6 +/***********************************************************************
     1.7 +*  This code is part of GLPK (GNU Linear Programming Kit).
     1.8 +*
     1.9 +*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
    1.10 +*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
    1.11 +*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
    1.12 +*  E-mail: <mao@gnu.org>.
    1.13 +*
    1.14 +*  GLPK is free software: you can redistribute it and/or modify it
    1.15 +*  under the terms of the GNU General Public License as published by
    1.16 +*  the Free Software Foundation, either version 3 of the License, or
    1.17 +*  (at your option) any later version.
    1.18 +*
    1.19 +*  GLPK is distributed in the hope that it will be useful, but WITHOUT
    1.20 +*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    1.21 +*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    1.22 +*  License for more details.
    1.23 +*
    1.24 +*  You should have received a copy of the GNU General Public License
    1.25 +*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    1.26 +***********************************************************************/
    1.27 +
    1.28 +#ifndef GLPK_H
    1.29 +#define GLPK_H
    1.30 +
    1.31 +#include <stdarg.h>
    1.32 +#include <stddef.h>
    1.33 +
    1.34 +#ifdef __cplusplus
    1.35 +extern "C" {
    1.36 +#endif
    1.37 +
    1.38 +/* library version numbers: */
    1.39 +#define GLP_MAJOR_VERSION  4
    1.40 +#define GLP_MINOR_VERSION  45
    1.41 +
    1.42 +#ifndef GLP_PROB_DEFINED
    1.43 +#define GLP_PROB_DEFINED
    1.44 +typedef struct { double _opaque_prob[100]; } glp_prob;
    1.45 +/* LP/MIP problem object */
    1.46 +#endif
    1.47 +
    1.48 +/* optimization direction flag: */
    1.49 +#define GLP_MIN            1  /* minimization */
    1.50 +#define GLP_MAX            2  /* maximization */
    1.51 +
    1.52 +/* kind of structural variable: */
    1.53 +#define GLP_CV             1  /* continuous variable */
    1.54 +#define GLP_IV             2  /* integer variable */
    1.55 +#define GLP_BV             3  /* binary variable */
    1.56 +
    1.57 +/* type of auxiliary/structural variable: */
    1.58 +#define GLP_FR             1  /* free variable */
    1.59 +#define GLP_LO             2  /* variable with lower bound */
    1.60 +#define GLP_UP             3  /* variable with upper bound */
    1.61 +#define GLP_DB             4  /* double-bounded variable */
    1.62 +#define GLP_FX             5  /* fixed variable */
    1.63 +
    1.64 +/* status of auxiliary/structural variable: */
    1.65 +#define GLP_BS             1  /* basic variable */
    1.66 +#define GLP_NL             2  /* non-basic variable on lower bound */
    1.67 +#define GLP_NU             3  /* non-basic variable on upper bound */
    1.68 +#define GLP_NF             4  /* non-basic free variable */
    1.69 +#define GLP_NS             5  /* non-basic fixed variable */
    1.70 +
    1.71 +/* scaling options: */
    1.72 +#define GLP_SF_GM       0x01  /* perform geometric mean scaling */
    1.73 +#define GLP_SF_EQ       0x10  /* perform equilibration scaling */
    1.74 +#define GLP_SF_2N       0x20  /* round scale factors to power of two */
    1.75 +#define GLP_SF_SKIP     0x40  /* skip if problem is well scaled */
    1.76 +#define GLP_SF_AUTO     0x80  /* choose scaling options automatically */
    1.77 +
    1.78 +/* solution indicator: */
    1.79 +#define GLP_SOL            1  /* basic solution */
    1.80 +#define GLP_IPT            2  /* interior-point solution */
    1.81 +#define GLP_MIP            3  /* mixed integer solution */
    1.82 +
    1.83 +/* solution status: */
    1.84 +#define GLP_UNDEF          1  /* solution is undefined */
    1.85 +#define GLP_FEAS           2  /* solution is feasible */
    1.86 +#define GLP_INFEAS         3  /* solution is infeasible */
    1.87 +#define GLP_NOFEAS         4  /* no feasible solution exists */
    1.88 +#define GLP_OPT            5  /* solution is optimal */
    1.89 +#define GLP_UNBND          6  /* solution is unbounded */
    1.90 +
    1.91 +typedef struct
    1.92 +{     /* basis factorization control parameters */
    1.93 +      int msg_lev;            /* (reserved) */
    1.94 +      int type;               /* factorization type: */
    1.95 +#define GLP_BF_FT          1  /* LUF + Forrest-Tomlin */
    1.96 +#define GLP_BF_BG          2  /* LUF + Schur compl. + Bartels-Golub */
    1.97 +#define GLP_BF_GR          3  /* LUF + Schur compl. + Givens rotation */
    1.98 +      int lu_size;            /* luf.sv_size */
    1.99 +      double piv_tol;         /* luf.piv_tol */
   1.100 +      int piv_lim;            /* luf.piv_lim */
   1.101 +      int suhl;               /* luf.suhl */
   1.102 +      double eps_tol;         /* luf.eps_tol */
   1.103 +      double max_gro;         /* luf.max_gro */
   1.104 +      int nfs_max;            /* fhv.hh_max */
   1.105 +      double upd_tol;         /* fhv.upd_tol */
   1.106 +      int nrs_max;            /* lpf.n_max */
   1.107 +      int rs_size;            /* lpf.v_size */
   1.108 +      double foo_bar[38];     /* (reserved) */
   1.109 +} glp_bfcp;
   1.110 +
   1.111 +typedef struct
   1.112 +{     /* simplex method control parameters */
   1.113 +      int msg_lev;            /* message level: */
   1.114 +#define GLP_MSG_OFF        0  /* no output */
   1.115 +#define GLP_MSG_ERR        1  /* warning and error messages only */
   1.116 +#define GLP_MSG_ON         2  /* normal output */
   1.117 +#define GLP_MSG_ALL        3  /* full output */
   1.118 +#define GLP_MSG_DBG        4  /* debug output */
   1.119 +      int meth;               /* simplex method option: */
   1.120 +#define GLP_PRIMAL         1  /* use primal simplex */
   1.121 +#define GLP_DUALP          2  /* use dual; if it fails, use primal */
   1.122 +#define GLP_DUAL           3  /* use dual simplex */
   1.123 +      int pricing;            /* pricing technique: */
   1.124 +#define GLP_PT_STD      0x11  /* standard (Dantzig rule) */
   1.125 +#define GLP_PT_PSE      0x22  /* projected steepest edge */
   1.126 +      int r_test;             /* ratio test technique: */
   1.127 +#define GLP_RT_STD      0x11  /* standard (textbook) */
   1.128 +#define GLP_RT_HAR      0x22  /* two-pass Harris' ratio test */
   1.129 +      double tol_bnd;         /* spx.tol_bnd */
   1.130 +      double tol_dj;          /* spx.tol_dj */
   1.131 +      double tol_piv;         /* spx.tol_piv */
   1.132 +      double obj_ll;          /* spx.obj_ll */
   1.133 +      double obj_ul;          /* spx.obj_ul */
   1.134 +      int it_lim;             /* spx.it_lim */
   1.135 +      int tm_lim;             /* spx.tm_lim (milliseconds) */
   1.136 +      int out_frq;            /* spx.out_frq */
   1.137 +      int out_dly;            /* spx.out_dly (milliseconds) */
   1.138 +      int presolve;           /* enable/disable using LP presolver */
   1.139 +      double foo_bar[36];     /* (reserved) */
   1.140 +} glp_smcp;
   1.141 +
   1.142 +typedef struct
   1.143 +{     /* interior-point solver control parameters */
   1.144 +      int msg_lev;            /* message level (see glp_smcp) */
   1.145 +      int ord_alg;            /* ordering algorithm: */
   1.146 +#define GLP_ORD_NONE       0  /* natural (original) ordering */
   1.147 +#define GLP_ORD_QMD        1  /* quotient minimum degree (QMD) */
   1.148 +#define GLP_ORD_AMD        2  /* approx. minimum degree (AMD) */
   1.149 +#define GLP_ORD_SYMAMD     3  /* approx. minimum degree (SYMAMD) */
   1.150 +      double foo_bar[48];     /* (reserved) */
   1.151 +} glp_iptcp;
   1.152 +
   1.153 +#ifndef GLP_TREE_DEFINED
   1.154 +#define GLP_TREE_DEFINED
   1.155 +typedef struct { double _opaque_tree[100]; } glp_tree;
   1.156 +/* branch-and-bound tree */
   1.157 +#endif
   1.158 +
   1.159 +typedef struct
   1.160 +{     /* integer optimizer control parameters */
   1.161 +      int msg_lev;            /* message level (see glp_smcp) */
   1.162 +      int br_tech;            /* branching technique: */
   1.163 +#define GLP_BR_FFV         1  /* first fractional variable */
   1.164 +#define GLP_BR_LFV         2  /* last fractional variable */
   1.165 +#define GLP_BR_MFV         3  /* most fractional variable */
   1.166 +#define GLP_BR_DTH         4  /* heuristic by Driebeck and Tomlin */
   1.167 +#define GLP_BR_PCH         5  /* hybrid pseudocost heuristic */
   1.168 +      int bt_tech;            /* backtracking technique: */
   1.169 +#define GLP_BT_DFS         1  /* depth first search */
   1.170 +#define GLP_BT_BFS         2  /* breadth first search */
   1.171 +#define GLP_BT_BLB         3  /* best local bound */
   1.172 +#define GLP_BT_BPH         4  /* best projection heuristic */
   1.173 +      double tol_int;         /* mip.tol_int */
   1.174 +      double tol_obj;         /* mip.tol_obj */
   1.175 +      int tm_lim;             /* mip.tm_lim (milliseconds) */
   1.176 +      int out_frq;            /* mip.out_frq (milliseconds) */
   1.177 +      int out_dly;            /* mip.out_dly (milliseconds) */
   1.178 +      void (*cb_func)(glp_tree *T, void *info);
   1.179 +                              /* mip.cb_func */
   1.180 +      void *cb_info;          /* mip.cb_info */
   1.181 +      int cb_size;            /* mip.cb_size */
   1.182 +      int pp_tech;            /* preprocessing technique: */
   1.183 +#define GLP_PP_NONE        0  /* disable preprocessing */
   1.184 +#define GLP_PP_ROOT        1  /* preprocessing only on root level */
   1.185 +#define GLP_PP_ALL         2  /* preprocessing on all levels */
   1.186 +      double mip_gap;         /* relative MIP gap tolerance */
   1.187 +      int mir_cuts;           /* MIR cuts       (GLP_ON/GLP_OFF) */
   1.188 +      int gmi_cuts;           /* Gomory's cuts  (GLP_ON/GLP_OFF) */
   1.189 +      int cov_cuts;           /* cover cuts     (GLP_ON/GLP_OFF) */
   1.190 +      int clq_cuts;           /* clique cuts    (GLP_ON/GLP_OFF) */
   1.191 +      int presolve;           /* enable/disable using MIP presolver */
   1.192 +      int binarize;           /* try to binarize integer variables */
   1.193 +      int fp_heur;            /* feasibility pump heuristic */
   1.194 +#if 1 /* 28/V-2010 */
   1.195 +      int alien;              /* use alien solver */
   1.196 +#endif
   1.197 +      double foo_bar[29];     /* (reserved) */
   1.198 +} glp_iocp;
   1.199 +
   1.200 +typedef struct
   1.201 +{     /* additional row attributes */
   1.202 +      int level;
   1.203 +      /* subproblem level at which the row was added */
   1.204 +      int origin;
   1.205 +      /* row origin flag: */
   1.206 +#define GLP_RF_REG         0  /* regular constraint */
   1.207 +#define GLP_RF_LAZY        1  /* "lazy" constraint */
   1.208 +#define GLP_RF_CUT         2  /* cutting plane constraint */
   1.209 +      int klass;
   1.210 +      /* row class descriptor: */
   1.211 +#define GLP_RF_GMI         1  /* Gomory's mixed integer cut */
   1.212 +#define GLP_RF_MIR         2  /* mixed integer rounding cut */
   1.213 +#define GLP_RF_COV         3  /* mixed cover cut */
   1.214 +#define GLP_RF_CLQ         4  /* clique cut */
   1.215 +      double foo_bar[7];
   1.216 +      /* (reserved) */
   1.217 +} glp_attr;
   1.218 +
   1.219 +/* enable/disable flag: */
   1.220 +#define GLP_ON             1  /* enable something */
   1.221 +#define GLP_OFF            0  /* disable something */
   1.222 +
   1.223 +/* reason codes: */
   1.224 +#define GLP_IROWGEN     0x01  /* request for row generation */
   1.225 +#define GLP_IBINGO      0x02  /* better integer solution found */
   1.226 +#define GLP_IHEUR       0x03  /* request for heuristic solution */
   1.227 +#define GLP_ICUTGEN     0x04  /* request for cut generation */
   1.228 +#define GLP_IBRANCH     0x05  /* request for branching */
   1.229 +#define GLP_ISELECT     0x06  /* request for subproblem selection */
   1.230 +#define GLP_IPREPRO     0x07  /* request for preprocessing */
   1.231 +
   1.232 +/* branch selection indicator: */
   1.233 +#define GLP_NO_BRNCH       0  /* select no branch */
   1.234 +#define GLP_DN_BRNCH       1  /* select down-branch */
   1.235 +#define GLP_UP_BRNCH       2  /* select up-branch */
   1.236 +
   1.237 +/* return codes: */
   1.238 +#define GLP_EBADB       0x01  /* invalid basis */
   1.239 +#define GLP_ESING       0x02  /* singular matrix */
   1.240 +#define GLP_ECOND       0x03  /* ill-conditioned matrix */
   1.241 +#define GLP_EBOUND      0x04  /* invalid bounds */
   1.242 +#define GLP_EFAIL       0x05  /* solver failed */
   1.243 +#define GLP_EOBJLL      0x06  /* objective lower limit reached */
   1.244 +#define GLP_EOBJUL      0x07  /* objective upper limit reached */
   1.245 +#define GLP_EITLIM      0x08  /* iteration limit exceeded */
   1.246 +#define GLP_ETMLIM      0x09  /* time limit exceeded */
   1.247 +#define GLP_ENOPFS      0x0A  /* no primal feasible solution */
   1.248 +#define GLP_ENODFS      0x0B  /* no dual feasible solution */
   1.249 +#define GLP_EROOT       0x0C  /* root LP optimum not provided */
   1.250 +#define GLP_ESTOP       0x0D  /* search terminated by application */
   1.251 +#define GLP_EMIPGAP     0x0E  /* relative mip gap tolerance reached */
   1.252 +#define GLP_ENOFEAS     0x0F  /* no primal/dual feasible solution */
   1.253 +#define GLP_ENOCVG      0x10  /* no convergence */
   1.254 +#define GLP_EINSTAB     0x11  /* numerical instability */
   1.255 +#define GLP_EDATA       0x12  /* invalid data */
   1.256 +#define GLP_ERANGE      0x13  /* result out of range */
   1.257 +
   1.258 +/* condition indicator: */
   1.259 +#define GLP_KKT_PE         1  /* primal equalities */
   1.260 +#define GLP_KKT_PB         2  /* primal bounds */
   1.261 +#define GLP_KKT_DE         3  /* dual equalities */
   1.262 +#define GLP_KKT_DB         4  /* dual bounds */
   1.263 +#define GLP_KKT_CS         5  /* complementary slackness */
   1.264 +
   1.265 +/* MPS file format: */
   1.266 +#define GLP_MPS_DECK       1  /* fixed (ancient) */
   1.267 +#define GLP_MPS_FILE       2  /* free (modern) */
   1.268 +
   1.269 +typedef struct
   1.270 +{     /* MPS format control parameters */
   1.271 +      int blank;
   1.272 +      /* character code to replace blanks in symbolic names */
   1.273 +      char *obj_name;
   1.274 +      /* objective row name */
   1.275 +      double tol_mps;
   1.276 +      /* zero tolerance for MPS data */
   1.277 +      double foo_bar[17];
   1.278 +      /* (reserved for use in the future) */
   1.279 +} glp_mpscp;
   1.280 +
   1.281 +typedef struct
   1.282 +{     /* CPLEX LP format control parameters */
   1.283 +      double foo_bar[20];
   1.284 +      /* (reserved for use in the future) */
   1.285 +} glp_cpxcp;
   1.286 +
   1.287 +#ifndef GLP_TRAN_DEFINED
   1.288 +#define GLP_TRAN_DEFINED
   1.289 +typedef struct { double _opaque_tran[100]; } glp_tran;
   1.290 +/* MathProg translator workspace */
   1.291 +#endif
   1.292 +
   1.293 +glp_prob *glp_create_prob(void);
   1.294 +/* create problem object */
   1.295 +
   1.296 +void glp_set_prob_name(glp_prob *P, const char *name);
   1.297 +/* assign (change) problem name */
   1.298 +
   1.299 +void glp_set_obj_name(glp_prob *P, const char *name);
   1.300 +/* assign (change) objective function name */
   1.301 +
   1.302 +void glp_set_obj_dir(glp_prob *P, int dir);
   1.303 +/* set (change) optimization direction flag */
   1.304 +
   1.305 +int glp_add_rows(glp_prob *P, int nrs);
   1.306 +/* add new rows to problem object */
   1.307 +
   1.308 +int glp_add_cols(glp_prob *P, int ncs);
   1.309 +/* add new columns to problem object */
   1.310 +
   1.311 +void glp_set_row_name(glp_prob *P, int i, const char *name);
   1.312 +/* assign (change) row name */
   1.313 +
   1.314 +void glp_set_col_name(glp_prob *P, int j, const char *name);
   1.315 +/* assign (change) column name */
   1.316 +
   1.317 +void glp_set_row_bnds(glp_prob *P, int i, int type, double lb,
   1.318 +      double ub);
   1.319 +/* set (change) row bounds */
   1.320 +
   1.321 +void glp_set_col_bnds(glp_prob *P, int j, int type, double lb,
   1.322 +      double ub);
   1.323 +/* set (change) column bounds */
   1.324 +
   1.325 +void glp_set_obj_coef(glp_prob *P, int j, double coef);
   1.326 +/* set (change) obj. coefficient or constant term */
   1.327 +
   1.328 +void glp_set_mat_row(glp_prob *P, int i, int len, const int ind[],
   1.329 +      const double val[]);
   1.330 +/* set (replace) row of the constraint matrix */
   1.331 +
   1.332 +void glp_set_mat_col(glp_prob *P, int j, int len, const int ind[],
   1.333 +      const double val[]);
   1.334 +/* set (replace) column of the constraint matrix */
   1.335 +
   1.336 +void glp_load_matrix(glp_prob *P, int ne, const int ia[],
   1.337 +      const int ja[], const double ar[]);
   1.338 +/* load (replace) the whole constraint matrix */
   1.339 +
   1.340 +int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[]);
   1.341 +/* check for duplicate elements in sparse matrix */
   1.342 +
   1.343 +void glp_sort_matrix(glp_prob *P);
   1.344 +/* sort elements of the constraint matrix */
   1.345 +
   1.346 +void glp_del_rows(glp_prob *P, int nrs, const int num[]);
   1.347 +/* delete specified rows from problem object */
   1.348 +
   1.349 +void glp_del_cols(glp_prob *P, int ncs, const int num[]);
   1.350 +/* delete specified columns from problem object */
   1.351 +
   1.352 +void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);
   1.353 +/* copy problem object content */
   1.354 +
   1.355 +void glp_erase_prob(glp_prob *P);
   1.356 +/* erase problem object content */
   1.357 +
   1.358 +void glp_delete_prob(glp_prob *P);
   1.359 +/* delete problem object */
   1.360 +
   1.361 +const char *glp_get_prob_name(glp_prob *P);
   1.362 +/* retrieve problem name */
   1.363 +
   1.364 +const char *glp_get_obj_name(glp_prob *P);
   1.365 +/* retrieve objective function name */
   1.366 +
   1.367 +int glp_get_obj_dir(glp_prob *P);
   1.368 +/* retrieve optimization direction flag */
   1.369 +
   1.370 +int glp_get_num_rows(glp_prob *P);
   1.371 +/* retrieve number of rows */
   1.372 +
   1.373 +int glp_get_num_cols(glp_prob *P);
   1.374 +/* retrieve number of columns */
   1.375 +
   1.376 +const char *glp_get_row_name(glp_prob *P, int i);
   1.377 +/* retrieve row name */
   1.378 +
   1.379 +const char *glp_get_col_name(glp_prob *P, int j);
   1.380 +/* retrieve column name */
   1.381 +
   1.382 +int glp_get_row_type(glp_prob *P, int i);
   1.383 +/* retrieve row type */
   1.384 +
   1.385 +double glp_get_row_lb(glp_prob *P, int i);
   1.386 +/* retrieve row lower bound */
   1.387 +
   1.388 +double glp_get_row_ub(glp_prob *P, int i);
   1.389 +/* retrieve row upper bound */
   1.390 +
   1.391 +int glp_get_col_type(glp_prob *P, int j);
   1.392 +/* retrieve column type */
   1.393 +
   1.394 +double glp_get_col_lb(glp_prob *P, int j);
   1.395 +/* retrieve column lower bound */
   1.396 +
   1.397 +double glp_get_col_ub(glp_prob *P, int j);
   1.398 +/* retrieve column upper bound */
   1.399 +
   1.400 +double glp_get_obj_coef(glp_prob *P, int j);
   1.401 +/* retrieve obj. coefficient or constant term */
   1.402 +
   1.403 +int glp_get_num_nz(glp_prob *P);
   1.404 +/* retrieve number of constraint coefficients */
   1.405 +
   1.406 +int glp_get_mat_row(glp_prob *P, int i, int ind[], double val[]);
   1.407 +/* retrieve row of the constraint matrix */
   1.408 +
   1.409 +int glp_get_mat_col(glp_prob *P, int j, int ind[], double val[]);
   1.410 +/* retrieve column of the constraint matrix */
   1.411 +
   1.412 +void glp_create_index(glp_prob *P);
   1.413 +/* create the name index */
   1.414 +
   1.415 +int glp_find_row(glp_prob *P, const char *name);
   1.416 +/* find row by its name */
   1.417 +
   1.418 +int glp_find_col(glp_prob *P, const char *name);
   1.419 +/* find column by its name */
   1.420 +
   1.421 +void glp_delete_index(glp_prob *P);
   1.422 +/* delete the name index */
   1.423 +
   1.424 +void glp_set_rii(glp_prob *P, int i, double rii);
   1.425 +/* set (change) row scale factor */
   1.426 +
   1.427 +void glp_set_sjj(glp_prob *P, int j, double sjj);
   1.428 +/* set (change) column scale factor */
   1.429 +
   1.430 +double glp_get_rii(glp_prob *P, int i);
   1.431 +/* retrieve row scale factor */
   1.432 +
   1.433 +double glp_get_sjj(glp_prob *P, int j);
   1.434 +/* retrieve column scale factor */
   1.435 +
   1.436 +void glp_scale_prob(glp_prob *P, int flags);
   1.437 +/* scale problem data */
   1.438 +
   1.439 +void glp_unscale_prob(glp_prob *P);
   1.440 +/* unscale problem data */
   1.441 +
   1.442 +void glp_set_row_stat(glp_prob *P, int i, int stat);
   1.443 +/* set (change) row status */
   1.444 +
   1.445 +void glp_set_col_stat(glp_prob *P, int j, int stat);
   1.446 +/* set (change) column status */
   1.447 +
   1.448 +void glp_std_basis(glp_prob *P);
   1.449 +/* construct standard initial LP basis */
   1.450 +
   1.451 +void glp_adv_basis(glp_prob *P, int flags);
   1.452 +/* construct advanced initial LP basis */
   1.453 +
   1.454 +void glp_cpx_basis(glp_prob *P);
   1.455 +/* construct Bixby's initial LP basis */
   1.456 +
   1.457 +int glp_simplex(glp_prob *P, const glp_smcp *parm);
   1.458 +/* solve LP problem with the simplex method */
   1.459 +
   1.460 +int glp_exact(glp_prob *P, const glp_smcp *parm);
   1.461 +/* solve LP problem in exact arithmetic */
   1.462 +
   1.463 +void glp_init_smcp(glp_smcp *parm);
   1.464 +/* initialize simplex method control parameters */
   1.465 +
   1.466 +int glp_get_status(glp_prob *P);
   1.467 +/* retrieve generic status of basic solution */
   1.468 +
   1.469 +int glp_get_prim_stat(glp_prob *P);
   1.470 +/* retrieve status of primal basic solution */
   1.471 +
   1.472 +int glp_get_dual_stat(glp_prob *P);
   1.473 +/* retrieve status of dual basic solution */
   1.474 +
   1.475 +double glp_get_obj_val(glp_prob *P);
   1.476 +/* retrieve objective value (basic solution) */
   1.477 +
   1.478 +int glp_get_row_stat(glp_prob *P, int i);
   1.479 +/* retrieve row status */
   1.480 +
   1.481 +double glp_get_row_prim(glp_prob *P, int i);
   1.482 +/* retrieve row primal value (basic solution) */
   1.483 +
   1.484 +double glp_get_row_dual(glp_prob *P, int i);
   1.485 +/* retrieve row dual value (basic solution) */
   1.486 +
   1.487 +int glp_get_col_stat(glp_prob *P, int j);
   1.488 +/* retrieve column status */
   1.489 +
   1.490 +double glp_get_col_prim(glp_prob *P, int j);
   1.491 +/* retrieve column primal value (basic solution) */
   1.492 +
   1.493 +double glp_get_col_dual(glp_prob *P, int j);
   1.494 +/* retrieve column dual value (basic solution) */
   1.495 +
   1.496 +int glp_get_unbnd_ray(glp_prob *P);
   1.497 +/* determine variable causing unboundedness */
   1.498 +
   1.499 +int glp_interior(glp_prob *P, const glp_iptcp *parm);
   1.500 +/* solve LP problem with the interior-point method */
   1.501 +
   1.502 +void glp_init_iptcp(glp_iptcp *parm);
   1.503 +/* initialize interior-point solver control parameters */
   1.504 +
   1.505 +int glp_ipt_status(glp_prob *P);
   1.506 +/* retrieve status of interior-point solution */
   1.507 +
   1.508 +double glp_ipt_obj_val(glp_prob *P);
   1.509 +/* retrieve objective value (interior point) */
   1.510 +
   1.511 +double glp_ipt_row_prim(glp_prob *P, int i);
   1.512 +/* retrieve row primal value (interior point) */
   1.513 +
   1.514 +double glp_ipt_row_dual(glp_prob *P, int i);
   1.515 +/* retrieve row dual value (interior point) */
   1.516 +
   1.517 +double glp_ipt_col_prim(glp_prob *P, int j);
   1.518 +/* retrieve column primal value (interior point) */
   1.519 +
   1.520 +double glp_ipt_col_dual(glp_prob *P, int j);
   1.521 +/* retrieve column dual value (interior point) */
   1.522 +
   1.523 +void glp_set_col_kind(glp_prob *P, int j, int kind);
   1.524 +/* set (change) column kind */
   1.525 +
   1.526 +int glp_get_col_kind(glp_prob *P, int j);
   1.527 +/* retrieve column kind */
   1.528 +
   1.529 +int glp_get_num_int(glp_prob *P);
   1.530 +/* retrieve number of integer columns */
   1.531 +
   1.532 +int glp_get_num_bin(glp_prob *P);
   1.533 +/* retrieve number of binary columns */
   1.534 +
   1.535 +int glp_intopt(glp_prob *P, const glp_iocp *parm);
   1.536 +/* solve MIP problem with the branch-and-bound method */
   1.537 +
   1.538 +void glp_init_iocp(glp_iocp *parm);
   1.539 +/* initialize integer optimizer control parameters */
   1.540 +
   1.541 +int glp_mip_status(glp_prob *P);
   1.542 +/* retrieve status of MIP solution */
   1.543 +
   1.544 +double glp_mip_obj_val(glp_prob *P);
   1.545 +/* retrieve objective value (MIP solution) */
   1.546 +
   1.547 +double glp_mip_row_val(glp_prob *P, int i);
   1.548 +/* retrieve row value (MIP solution) */
   1.549 +
   1.550 +double glp_mip_col_val(glp_prob *P, int j);
   1.551 +/* retrieve column value (MIP solution) */
   1.552 +
   1.553 +int glp_print_sol(glp_prob *P, const char *fname);
   1.554 +/* write basic solution in printable format */
   1.555 +
   1.556 +int glp_read_sol(glp_prob *P, const char *fname);
   1.557 +/* read basic solution from text file */
   1.558 +
   1.559 +int glp_write_sol(glp_prob *P, const char *fname);
   1.560 +/* write basic solution to text file */
   1.561 +
   1.562 +int glp_print_ranges(glp_prob *P, int len, const int list[],
   1.563 +      int flags, const char *fname);
   1.564 +/* print sensitivity analysis report */
   1.565 +
   1.566 +int glp_print_ipt(glp_prob *P, const char *fname);
   1.567 +/* write interior-point solution in printable format */
   1.568 +
   1.569 +int glp_read_ipt(glp_prob *P, const char *fname);
   1.570 +/* read interior-point solution from text file */
   1.571 +
   1.572 +int glp_write_ipt(glp_prob *P, const char *fname);
   1.573 +/* write interior-point solution to text file */
   1.574 +
   1.575 +int glp_print_mip(glp_prob *P, const char *fname);
   1.576 +/* write MIP solution in printable format */
   1.577 +
   1.578 +int glp_read_mip(glp_prob *P, const char *fname);
   1.579 +/* read MIP solution from text file */
   1.580 +
   1.581 +int glp_write_mip(glp_prob *P, const char *fname);
   1.582 +/* write MIP solution to text file */
   1.583 +
   1.584 +int glp_bf_exists(glp_prob *P);
   1.585 +/* check if the basis factorization exists */
   1.586 +
   1.587 +int glp_factorize(glp_prob *P);
   1.588 +/* compute the basis factorization */
   1.589 +
   1.590 +int glp_bf_updated(glp_prob *P);
   1.591 +/* check if the basis factorization has been updated */
   1.592 +
   1.593 +void glp_get_bfcp(glp_prob *P, glp_bfcp *parm);
   1.594 +/* retrieve basis factorization control parameters */
   1.595 +
   1.596 +void glp_set_bfcp(glp_prob *P, const glp_bfcp *parm);
   1.597 +/* change basis factorization control parameters */
   1.598 +
   1.599 +int glp_get_bhead(glp_prob *P, int k);
   1.600 +/* retrieve the basis header information */
   1.601 +
   1.602 +int glp_get_row_bind(glp_prob *P, int i);
   1.603 +/* retrieve row index in the basis header */
   1.604 +
   1.605 +int glp_get_col_bind(glp_prob *P, int j);
   1.606 +/* retrieve column index in the basis header */
   1.607 +
   1.608 +void glp_ftran(glp_prob *P, double x[]);
   1.609 +/* perform forward transformation (solve system B*x = b) */
   1.610 +
   1.611 +void glp_btran(glp_prob *P, double x[]);
   1.612 +/* perform backward transformation (solve system B'*x = b) */
   1.613 +
   1.614 +int glp_warm_up(glp_prob *P);
   1.615 +/* "warm up" LP basis */
   1.616 +
   1.617 +int glp_eval_tab_row(glp_prob *P, int k, int ind[], double val[]);
   1.618 +/* compute row of the simplex tableau */
   1.619 +
   1.620 +int glp_eval_tab_col(glp_prob *P, int k, int ind[], double val[]);
   1.621 +/* compute column of the simplex tableau */
   1.622 +
   1.623 +int glp_transform_row(glp_prob *P, int len, int ind[], double val[]);
   1.624 +/* transform explicitly specified row */
   1.625 +
   1.626 +int glp_transform_col(glp_prob *P, int len, int ind[], double val[]);
   1.627 +/* transform explicitly specified column */
   1.628 +
   1.629 +int glp_prim_rtest(glp_prob *P, int len, const int ind[],
   1.630 +      const double val[], int dir, double eps);
   1.631 +/* perform primal ratio test */
   1.632 +
   1.633 +int glp_dual_rtest(glp_prob *P, int len, const int ind[],
   1.634 +      const double val[], int dir, double eps);
   1.635 +/* perform dual ratio test */
   1.636 +
   1.637 +void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1,
   1.638 +      double *value2, int *var2);
   1.639 +/* analyze active bound of non-basic variable */
   1.640 +
   1.641 +void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
   1.642 +      double *value1, double *coef2, int *var2, double *value2);
   1.643 +/* analyze objective coefficient at basic variable */
   1.644 +
   1.645 +int glp_ios_reason(glp_tree *T);
   1.646 +/* determine reason for calling the callback routine */
   1.647 +
   1.648 +glp_prob *glp_ios_get_prob(glp_tree *T);
   1.649 +/* access the problem object */
   1.650 +
   1.651 +void glp_ios_tree_size(glp_tree *T, int *a_cnt, int *n_cnt,
   1.652 +      int *t_cnt);
   1.653 +/* determine size of the branch-and-bound tree */
   1.654 +
   1.655 +int glp_ios_curr_node(glp_tree *T);
   1.656 +/* determine current active subproblem */
   1.657 +
   1.658 +int glp_ios_next_node(glp_tree *T, int p);
   1.659 +/* determine next active subproblem */
   1.660 +
   1.661 +int glp_ios_prev_node(glp_tree *T, int p);
   1.662 +/* determine previous active subproblem */
   1.663 +
   1.664 +int glp_ios_up_node(glp_tree *T, int p);
   1.665 +/* determine parent subproblem */
   1.666 +
   1.667 +int glp_ios_node_level(glp_tree *T, int p);
   1.668 +/* determine subproblem level */
   1.669 +
   1.670 +double glp_ios_node_bound(glp_tree *T, int p);
   1.671 +/* determine subproblem local bound */
   1.672 +
   1.673 +int glp_ios_best_node(glp_tree *T);
   1.674 +/* find active subproblem with best local bound */
   1.675 +
   1.676 +double glp_ios_mip_gap(glp_tree *T);
   1.677 +/* compute relative MIP gap */
   1.678 +
   1.679 +void *glp_ios_node_data(glp_tree *T, int p);
   1.680 +/* access subproblem application-specific data */
   1.681 +
   1.682 +void glp_ios_row_attr(glp_tree *T, int i, glp_attr *attr);
   1.683 +/* retrieve additional row attributes */
   1.684 +
   1.685 +int glp_ios_pool_size(glp_tree *T);
   1.686 +/* determine current size of the cut pool */
   1.687 +
   1.688 +int glp_ios_add_row(glp_tree *T,
   1.689 +      const char *name, int klass, int flags, int len, const int ind[],
   1.690 +      const double val[], int type, double rhs);
   1.691 +/* add row (constraint) to the cut pool */
   1.692 +
   1.693 +void glp_ios_del_row(glp_tree *T, int i);
   1.694 +/* remove row (constraint) from the cut pool */
   1.695 +
   1.696 +void glp_ios_clear_pool(glp_tree *T);
   1.697 +/* remove all rows (constraints) from the cut pool */
   1.698 +
   1.699 +int glp_ios_can_branch(glp_tree *T, int j);
   1.700 +/* check if can branch upon specified variable */
   1.701 +
   1.702 +void glp_ios_branch_upon(glp_tree *T, int j, int sel);
   1.703 +/* choose variable to branch upon */
   1.704 +
   1.705 +void glp_ios_select_node(glp_tree *T, int p);
   1.706 +/* select subproblem to continue the search */
   1.707 +
   1.708 +int glp_ios_heur_sol(glp_tree *T, const double x[]);
   1.709 +/* provide solution found by heuristic */
   1.710 +
   1.711 +void glp_ios_terminate(glp_tree *T);
   1.712 +/* terminate the solution process */
   1.713 +
   1.714 +void glp_init_mpscp(glp_mpscp *parm);
   1.715 +/* initialize MPS format control parameters */
   1.716 +
   1.717 +int glp_read_mps(glp_prob *P, int fmt, const glp_mpscp *parm,
   1.718 +      const char *fname);
   1.719 +/* read problem data in MPS format */
   1.720 +
   1.721 +int glp_write_mps(glp_prob *P, int fmt, const glp_mpscp *parm,
   1.722 +      const char *fname);
   1.723 +/* write problem data in MPS format */
   1.724 +
   1.725 +void glp_init_cpxcp(glp_cpxcp *parm);
   1.726 +/* initialize CPLEX LP format control parameters */
   1.727 +
   1.728 +int glp_read_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname);
   1.729 +/* read problem data in CPLEX LP format */
   1.730 +
   1.731 +int glp_write_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname);
   1.732 +/* write problem data in CPLEX LP format */
   1.733 +
   1.734 +int glp_read_prob(glp_prob *P, int flags, const char *fname);
   1.735 +/* read problem data in GLPK format */
   1.736 +
   1.737 +int glp_write_prob(glp_prob *P, int flags, const char *fname);
   1.738 +/* write problem data in GLPK format */
   1.739 +
   1.740 +glp_tran *glp_mpl_alloc_wksp(void);
   1.741 +/* allocate the MathProg translator workspace */
   1.742 +
   1.743 +int glp_mpl_read_model(glp_tran *tran, const char *fname, int skip);
   1.744 +/* read and translate model section */
   1.745 +
   1.746 +int glp_mpl_read_data(glp_tran *tran, const char *fname);
   1.747 +/* read and translate data section */
   1.748 +
   1.749 +int glp_mpl_generate(glp_tran *tran, const char *fname);
   1.750 +/* generate the model */
   1.751 +
   1.752 +void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob);
   1.753 +/* build LP/MIP problem instance from the model */
   1.754 +
   1.755 +int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol);
   1.756 +/* postsolve the model */
   1.757 +
   1.758 +void glp_mpl_free_wksp(glp_tran *tran);
   1.759 +/* free the MathProg translator workspace */
   1.760 +
   1.761 +int glp_main(int argc, const char *argv[]);
   1.762 +/* stand-alone LP/MIP solver */
   1.763 +
   1.764 +/**********************************************************************/
   1.765 +
   1.766 +#ifndef GLP_LONG_DEFINED
   1.767 +#define GLP_LONG_DEFINED
   1.768 +typedef struct { int lo, hi; } glp_long;
   1.769 +/* long integer data type */
   1.770 +#endif
   1.771 +
   1.772 +int glp_init_env(void);
   1.773 +/* initialize GLPK environment */
   1.774 +
   1.775 +const char *glp_version(void);
   1.776 +/* determine library version */
   1.777 +
   1.778 +int glp_free_env(void);
   1.779 +/* free GLPK environment */
   1.780 +
   1.781 +void glp_printf(const char *fmt, ...);
   1.782 +/* write formatted output to terminal */
   1.783 +
   1.784 +void glp_vprintf(const char *fmt, va_list arg);
   1.785 +/* write formatted output to terminal */
   1.786 +
   1.787 +int glp_term_out(int flag);
   1.788 +/* enable/disable terminal output */
   1.789 +
   1.790 +void glp_term_hook(int (*func)(void *info, const char *s), void *info);
   1.791 +/* install hook to intercept terminal output */
   1.792 +
   1.793 +int glp_open_tee(const char *fname);
   1.794 +/* start copying terminal output to text file */
   1.795 +
   1.796 +int glp_close_tee(void);
   1.797 +/* stop copying terminal output to text file */
   1.798 +
   1.799 +#ifndef GLP_ERROR_DEFINED
   1.800 +#define GLP_ERROR_DEFINED
   1.801 +typedef void (*_glp_error)(const char *fmt, ...);
   1.802 +#endif
   1.803 +
   1.804 +#define glp_error glp_error_(__FILE__, __LINE__)
   1.805 +_glp_error glp_error_(const char *file, int line);
   1.806 +/* display error message and terminate execution */
   1.807 +
   1.808 +#define glp_assert(expr) \
   1.809 +      ((void)((expr) || (glp_assert_(#expr, __FILE__, __LINE__), 1)))
   1.810 +void glp_assert_(const char *expr, const char *file, int line);
   1.811 +/* check for logical condition */
   1.812 +
   1.813 +void glp_error_hook(void (*func)(void *info), void *info);
   1.814 +/* install hook to intercept abnormal termination */
   1.815 +
   1.816 +void *glp_malloc(int size);
   1.817 +/* allocate memory block */
   1.818 +
   1.819 +void *glp_calloc(int n, int size);
   1.820 +/* allocate memory block */
   1.821 +
   1.822 +void glp_free(void *ptr);
   1.823 +/* free memory block */
   1.824 +
   1.825 +void glp_mem_limit(int limit);
   1.826 +/* set memory usage limit */
   1.827 +
   1.828 +void glp_mem_usage(int *count, int *cpeak, glp_long *total,
   1.829 +      glp_long *tpeak);
   1.830 +/* get memory usage information */
   1.831 +
   1.832 +glp_long glp_time(void);
   1.833 +/* determine current universal time */
   1.834 +
   1.835 +double glp_difftime(glp_long t1, glp_long t0);
   1.836 +/* compute difference between two time values */
   1.837 +
   1.838 +/**********************************************************************/
   1.839 +
   1.840 +#ifndef GLP_DATA_DEFINED
   1.841 +#define GLP_DATA_DEFINED
   1.842 +typedef struct { double _opaque_data[100]; } glp_data;
   1.843 +/* plain data file */
   1.844 +#endif
   1.845 +
   1.846 +glp_data *glp_sdf_open_file(const char *fname);
   1.847 +/* open plain data file */
   1.848 +
   1.849 +void glp_sdf_set_jump(glp_data *data, void *jump);
   1.850 +/* set up error handling */
   1.851 +
   1.852 +void glp_sdf_error(glp_data *data, const char *fmt, ...);
   1.853 +/* print error message */
   1.854 +
   1.855 +void glp_sdf_warning(glp_data *data, const char *fmt, ...);
   1.856 +/* print warning message */
   1.857 +
   1.858 +int glp_sdf_read_int(glp_data *data);
   1.859 +/* read integer number */
   1.860 +
   1.861 +double glp_sdf_read_num(glp_data *data);
   1.862 +/* read floating-point number */
   1.863 +
   1.864 +const char *glp_sdf_read_item(glp_data *data);
   1.865 +/* read data item */
   1.866 +
   1.867 +const char *glp_sdf_read_text(glp_data *data);
   1.868 +/* read text until end of line */
   1.869 +
   1.870 +int glp_sdf_line(glp_data *data);
   1.871 +/* determine current line number */
   1.872 +
   1.873 +void glp_sdf_close_file(glp_data *data);
   1.874 +/* close plain data file */
   1.875 +
   1.876 +/**********************************************************************/
   1.877 +
   1.878 +typedef struct _glp_graph glp_graph;
   1.879 +typedef struct _glp_vertex glp_vertex;
   1.880 +typedef struct _glp_arc glp_arc;
   1.881 +
   1.882 +struct _glp_graph
   1.883 +{     /* graph descriptor */
   1.884 +      void *pool; /* DMP *pool; */
   1.885 +      /* memory pool to store graph components */
   1.886 +      char *name;
   1.887 +      /* graph name (1 to 255 chars); NULL means no name is assigned
   1.888 +         to the graph */
   1.889 +      int nv_max;
   1.890 +      /* length of the vertex list (enlarged automatically) */
   1.891 +      int nv;
   1.892 +      /* number of vertices in the graph, 0 <= nv <= nv_max */
   1.893 +      int na;
   1.894 +      /* number of arcs in the graph, na >= 0 */
   1.895 +      glp_vertex **v; /* glp_vertex *v[1+nv_max]; */
   1.896 +      /* v[i], 1 <= i <= nv, is a pointer to i-th vertex */
   1.897 +      void *index; /* AVL *index; */
   1.898 +      /* vertex index to find vertices by their names; NULL means the
   1.899 +         index does not exist */
   1.900 +      int v_size;
   1.901 +      /* size of data associated with each vertex (0 to 256 bytes) */
   1.902 +      int a_size;
   1.903 +      /* size of data associated with each arc (0 to 256 bytes) */
   1.904 +};
   1.905 +
   1.906 +struct _glp_vertex
   1.907 +{     /* vertex descriptor */
   1.908 +      int i;
   1.909 +      /* vertex ordinal number, 1 <= i <= nv */
   1.910 +      char *name;
   1.911 +      /* vertex name (1 to 255 chars); NULL means no name is assigned
   1.912 +         to the vertex */
   1.913 +      void *entry; /* AVLNODE *entry; */
   1.914 +      /* pointer to corresponding entry in the vertex index; NULL means
   1.915 +         that either the index does not exist or the vertex has no name
   1.916 +         assigned */
   1.917 +      void *data;
   1.918 +      /* pointer to data associated with the vertex */
   1.919 +      void *temp;
   1.920 +      /* working pointer */
   1.921 +      glp_arc *in;
   1.922 +      /* pointer to the (unordered) list of incoming arcs */
   1.923 +      glp_arc *out;
   1.924 +      /* pointer to the (unordered) list of outgoing arcs */
   1.925 +};
   1.926 +
   1.927 +struct _glp_arc
   1.928 +{     /* arc descriptor */
   1.929 +      glp_vertex *tail;
   1.930 +      /* pointer to the tail endpoint */
   1.931 +      glp_vertex *head;
   1.932 +      /* pointer to the head endpoint */
   1.933 +      void *data;
   1.934 +      /* pointer to data associated with the arc */
   1.935 +      void *temp;
   1.936 +      /* working pointer */
   1.937 +      glp_arc *t_prev;
   1.938 +      /* pointer to previous arc having the same tail endpoint */
   1.939 +      glp_arc *t_next;
   1.940 +      /* pointer to next arc having the same tail endpoint */
   1.941 +      glp_arc *h_prev;
   1.942 +      /* pointer to previous arc having the same head endpoint */
   1.943 +      glp_arc *h_next;
   1.944 +      /* pointer to next arc having the same head endpoint */
   1.945 +};
   1.946 +
   1.947 +glp_graph *glp_create_graph(int v_size, int a_size);
   1.948 +/* create graph */
   1.949 +
   1.950 +void glp_set_graph_name(glp_graph *G, const char *name);
   1.951 +/* assign (change) graph name */
   1.952 +
   1.953 +int glp_add_vertices(glp_graph *G, int nadd);
   1.954 +/* add new vertices to graph */
   1.955 +
   1.956 +void glp_set_vertex_name(glp_graph *G, int i, const char *name);
   1.957 +/* assign (change) vertex name */
   1.958 +
   1.959 +glp_arc *glp_add_arc(glp_graph *G, int i, int j);
   1.960 +/* add new arc to graph */
   1.961 +
   1.962 +void glp_del_vertices(glp_graph *G, int ndel, const int num[]);
   1.963 +/* delete vertices from graph */
   1.964 +
   1.965 +void glp_del_arc(glp_graph *G, glp_arc *a);
   1.966 +/* delete arc from graph */
   1.967 +
   1.968 +void glp_erase_graph(glp_graph *G, int v_size, int a_size);
   1.969 +/* erase graph content */
   1.970 +
   1.971 +void glp_delete_graph(glp_graph *G);
   1.972 +/* delete graph */
   1.973 +
   1.974 +void glp_create_v_index(glp_graph *G);
   1.975 +/* create vertex name index */
   1.976 +
   1.977 +int glp_find_vertex(glp_graph *G, const char *name);
   1.978 +/* find vertex by its name */
   1.979 +
   1.980 +void glp_delete_v_index(glp_graph *G);
   1.981 +/* delete vertex name index */
   1.982 +
   1.983 +int glp_read_graph(glp_graph *G, const char *fname);
   1.984 +/* read graph from plain text file */
   1.985 +
   1.986 +int glp_write_graph(glp_graph *G, const char *fname);
   1.987 +/* write graph to plain text file */
   1.988 +
   1.989 +void glp_mincost_lp(glp_prob *P, glp_graph *G, int names, int v_rhs,
   1.990 +      int a_low, int a_cap, int a_cost);
   1.991 +/* convert minimum cost flow problem to LP */
   1.992 +
   1.993 +int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, int a_cap,
   1.994 +      int a_cost, double *sol, int a_x, int v_pi);
   1.995 +/* find minimum-cost flow with out-of-kilter algorithm */
   1.996 +
   1.997 +void glp_maxflow_lp(glp_prob *P, glp_graph *G, int names, int s,
   1.998 +      int t, int a_cap);
   1.999 +/* convert maximum flow problem to LP */
  1.1000 +
  1.1001 +int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap,
  1.1002 +      double *sol, int a_x, int v_cut);
  1.1003 +/* find maximal flow with Ford-Fulkerson algorithm */
  1.1004 +
  1.1005 +int glp_check_asnprob(glp_graph *G, int v_set);
  1.1006 +/* check correctness of assignment problem data */
  1.1007 +
  1.1008 +/* assignment problem formulation: */
  1.1009 +#define GLP_ASN_MIN        1  /* perfect matching (minimization) */
  1.1010 +#define GLP_ASN_MAX        2  /* perfect matching (maximization) */
  1.1011 +#define GLP_ASN_MMP        3  /* maximum matching */
  1.1012 +
  1.1013 +int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, int names,
  1.1014 +      int v_set, int a_cost);
  1.1015 +/* convert assignment problem to LP */
  1.1016 +
  1.1017 +int glp_asnprob_okalg(int form, glp_graph *G, int v_set, int a_cost,
  1.1018 +      double *sol, int a_x);
  1.1019 +/* solve assignment problem with out-of-kilter algorithm */
  1.1020 +
  1.1021 +int glp_asnprob_hall(glp_graph *G, int v_set, int a_x);
  1.1022 +/* find bipartite matching of maximum cardinality */
  1.1023 +
  1.1024 +double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls);
  1.1025 +/* solve critical path problem */
  1.1026 +
  1.1027 +int glp_read_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
  1.1028 +      int a_cost, const char *fname);
  1.1029 +/* read min-cost flow problem data in DIMACS format */
  1.1030 +
  1.1031 +int glp_write_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
  1.1032 +      int a_cost, const char *fname);
  1.1033 +/* write min-cost flow problem data in DIMACS format */
  1.1034 +
  1.1035 +int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap,
  1.1036 +      const char *fname);
  1.1037 +/* read maximum flow problem data in DIMACS format */
  1.1038 +
  1.1039 +int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap,
  1.1040 +      const char *fname);
  1.1041 +/* write maximum flow problem data in DIMACS format */
  1.1042 +
  1.1043 +int glp_read_asnprob(glp_graph *G, int v_set, int a_cost, const char
  1.1044 +      *fname);
  1.1045 +/* read assignment problem data in DIMACS format */
  1.1046 +
  1.1047 +int glp_write_asnprob(glp_graph *G, int v_set, int a_cost, const char
  1.1048 +      *fname);
  1.1049 +/* write assignment problem data in DIMACS format */
  1.1050 +
  1.1051 +int glp_read_ccdata(glp_graph *G, int v_wgt, const char *fname);
  1.1052 +/* read graph in DIMACS clique/coloring format */
  1.1053 +
  1.1054 +int glp_write_ccdata(glp_graph *G, int v_wgt, const char *fname);
  1.1055 +/* write graph in DIMACS clique/coloring format */
  1.1056 +
  1.1057 +int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
  1.1058 +      const int parm[1+15]);
  1.1059 +/* Klingman's network problem generator */
  1.1060 +
  1.1061 +int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
  1.1062 +      const int parm[1+14]);
  1.1063 +/* grid-like network problem generator */
  1.1064 +
  1.1065 +int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap,
  1.1066 +      const int parm[1+5]);
  1.1067 +/* Goldfarb's maximum flow problem generator */
  1.1068 +
  1.1069 +int glp_weak_comp(glp_graph *G, int v_num);
  1.1070 +/* find all weakly connected components of graph */
  1.1071 +
  1.1072 +int glp_strong_comp(glp_graph *G, int v_num);
  1.1073 +/* find all strongly connected components of graph */
  1.1074 +
  1.1075 +int glp_top_sort(glp_graph *G, int v_num);
  1.1076 +/* topological sorting of acyclic digraph */
  1.1077 +
  1.1078 +int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, int v_set);
  1.1079 +/* find maximum weight clique with exact algorithm */
  1.1080 +
  1.1081 +/***********************************************************************
  1.1082 +*  NOTE: All symbols defined below are obsolete and kept here only for
  1.1083 +*        backward compatibility.
  1.1084 +***********************************************************************/
  1.1085 +
  1.1086 +#define LPX glp_prob
  1.1087 +
  1.1088 +/* problem class: */
  1.1089 +#define LPX_LP          100   /* linear programming (LP) */
  1.1090 +#define LPX_MIP         101   /* mixed integer programming (MIP) */
  1.1091 +
  1.1092 +/* type of auxiliary/structural variable: */
  1.1093 +#define LPX_FR          110   /* free variable */
  1.1094 +#define LPX_LO          111   /* variable with lower bound */
  1.1095 +#define LPX_UP          112   /* variable with upper bound */
  1.1096 +#define LPX_DB          113   /* double-bounded variable */
  1.1097 +#define LPX_FX          114   /* fixed variable */
  1.1098 +
  1.1099 +/* optimization direction flag: */
  1.1100 +#define LPX_MIN         120   /* minimization */
  1.1101 +#define LPX_MAX         121   /* maximization */
  1.1102 +
  1.1103 +/* status of primal basic solution: */
  1.1104 +#define LPX_P_UNDEF     132   /* primal solution is undefined */
  1.1105 +#define LPX_P_FEAS      133   /* solution is primal feasible */
  1.1106 +#define LPX_P_INFEAS    134   /* solution is primal infeasible */
  1.1107 +#define LPX_P_NOFEAS    135   /* no primal feasible solution exists */
  1.1108 +
  1.1109 +/* status of dual basic solution: */
  1.1110 +#define LPX_D_UNDEF     136   /* dual solution is undefined */
  1.1111 +#define LPX_D_FEAS      137   /* solution is dual feasible */
  1.1112 +#define LPX_D_INFEAS    138   /* solution is dual infeasible */
  1.1113 +#define LPX_D_NOFEAS    139   /* no dual feasible solution exists */
  1.1114 +
  1.1115 +/* status of auxiliary/structural variable: */
  1.1116 +#define LPX_BS          140   /* basic variable */
  1.1117 +#define LPX_NL          141   /* non-basic variable on lower bound */
  1.1118 +#define LPX_NU          142   /* non-basic variable on upper bound */
  1.1119 +#define LPX_NF          143   /* non-basic free variable */
  1.1120 +#define LPX_NS          144   /* non-basic fixed variable */
  1.1121 +
  1.1122 +/* status of interior-point solution: */
  1.1123 +#define LPX_T_UNDEF     150   /* interior solution is undefined */
  1.1124 +#define LPX_T_OPT       151   /* interior solution is optimal */
  1.1125 +
  1.1126 +/* kind of structural variable: */
  1.1127 +#define LPX_CV          160   /* continuous variable */
  1.1128 +#define LPX_IV          161   /* integer variable */
  1.1129 +
  1.1130 +/* status of integer solution: */
  1.1131 +#define LPX_I_UNDEF     170   /* integer solution is undefined */
  1.1132 +#define LPX_I_OPT       171   /* integer solution is optimal */
  1.1133 +#define LPX_I_FEAS      172   /* integer solution is feasible */
  1.1134 +#define LPX_I_NOFEAS    173   /* no integer solution exists */
  1.1135 +
  1.1136 +/* status codes reported by the routine lpx_get_status: */
  1.1137 +#define LPX_OPT         180   /* optimal */
  1.1138 +#define LPX_FEAS        181   /* feasible */
  1.1139 +#define LPX_INFEAS      182   /* infeasible */
  1.1140 +#define LPX_NOFEAS      183   /* no feasible */
  1.1141 +#define LPX_UNBND       184   /* unbounded */
  1.1142 +#define LPX_UNDEF       185   /* undefined */
  1.1143 +
  1.1144 +/* exit codes returned by solver routines: */
  1.1145 +#define LPX_E_OK        200   /* success */
  1.1146 +#define LPX_E_EMPTY     201   /* empty problem */
  1.1147 +#define LPX_E_BADB      202   /* invalid initial basis */
  1.1148 +#define LPX_E_INFEAS    203   /* infeasible initial solution */
  1.1149 +#define LPX_E_FAULT     204   /* unable to start the search */
  1.1150 +#define LPX_E_OBJLL     205   /* objective lower limit reached */
  1.1151 +#define LPX_E_OBJUL     206   /* objective upper limit reached */
  1.1152 +#define LPX_E_ITLIM     207   /* iterations limit exhausted */
  1.1153 +#define LPX_E_TMLIM     208   /* time limit exhausted */
  1.1154 +#define LPX_E_NOFEAS    209   /* no feasible solution */
  1.1155 +#define LPX_E_INSTAB    210   /* numerical instability */
  1.1156 +#define LPX_E_SING      211   /* problems with basis matrix */
  1.1157 +#define LPX_E_NOCONV    212   /* no convergence (interior) */
  1.1158 +#define LPX_E_NOPFS     213   /* no primal feas. sol. (LP presolver) */
  1.1159 +#define LPX_E_NODFS     214   /* no dual feas. sol. (LP presolver) */
  1.1160 +#define LPX_E_MIPGAP    215   /* relative mip gap tolerance reached */
  1.1161 +
  1.1162 +/* control parameter identifiers: */
  1.1163 +#define LPX_K_MSGLEV    300   /* lp->msg_lev */
  1.1164 +#define LPX_K_SCALE     301   /* lp->scale */
  1.1165 +#define LPX_K_DUAL      302   /* lp->dual */
  1.1166 +#define LPX_K_PRICE     303   /* lp->price */
  1.1167 +#define LPX_K_RELAX     304   /* lp->relax */
  1.1168 +#define LPX_K_TOLBND    305   /* lp->tol_bnd */
  1.1169 +#define LPX_K_TOLDJ     306   /* lp->tol_dj */
  1.1170 +#define LPX_K_TOLPIV    307   /* lp->tol_piv */
  1.1171 +#define LPX_K_ROUND     308   /* lp->round */
  1.1172 +#define LPX_K_OBJLL     309   /* lp->obj_ll */
  1.1173 +#define LPX_K_OBJUL     310   /* lp->obj_ul */
  1.1174 +#define LPX_K_ITLIM     311   /* lp->it_lim */
  1.1175 +#define LPX_K_ITCNT     312   /* lp->it_cnt */
  1.1176 +#define LPX_K_TMLIM     313   /* lp->tm_lim */
  1.1177 +#define LPX_K_OUTFRQ    314   /* lp->out_frq */
  1.1178 +#define LPX_K_OUTDLY    315   /* lp->out_dly */
  1.1179 +#define LPX_K_BRANCH    316   /* lp->branch */
  1.1180 +#define LPX_K_BTRACK    317   /* lp->btrack */
  1.1181 +#define LPX_K_TOLINT    318   /* lp->tol_int */
  1.1182 +#define LPX_K_TOLOBJ    319   /* lp->tol_obj */
  1.1183 +#define LPX_K_MPSINFO   320   /* lp->mps_info */
  1.1184 +#define LPX_K_MPSOBJ    321   /* lp->mps_obj */
  1.1185 +#define LPX_K_MPSORIG   322   /* lp->mps_orig */
  1.1186 +#define LPX_K_MPSWIDE   323   /* lp->mps_wide */
  1.1187 +#define LPX_K_MPSFREE   324   /* lp->mps_free */
  1.1188 +#define LPX_K_MPSSKIP   325   /* lp->mps_skip */
  1.1189 +#define LPX_K_LPTORIG   326   /* lp->lpt_orig */
  1.1190 +#define LPX_K_PRESOL    327   /* lp->presol */
  1.1191 +#define LPX_K_BINARIZE  328   /* lp->binarize */
  1.1192 +#define LPX_K_USECUTS   329   /* lp->use_cuts */
  1.1193 +#define LPX_K_BFTYPE    330   /* lp->bfcp->type */
  1.1194 +#define LPX_K_MIPGAP    331   /* lp->mip_gap */
  1.1195 +
  1.1196 +#define LPX_C_COVER     0x01  /* mixed cover cuts */
  1.1197 +#define LPX_C_CLIQUE    0x02  /* clique cuts */
  1.1198 +#define LPX_C_GOMORY    0x04  /* Gomory's mixed integer cuts */
  1.1199 +#define LPX_C_MIR       0x08  /* mixed integer rounding cuts */
  1.1200 +#define LPX_C_ALL       0xFF  /* all cuts */
  1.1201 +
  1.1202 +typedef struct
  1.1203 +{     /* this structure contains results reported by the routines which
  1.1204 +         checks Karush-Kuhn-Tucker conditions (for details see comments
  1.1205 +         to those routines) */
  1.1206 +      /*--------------------------------------------------------------*/
  1.1207 +      /* xR - A * xS = 0 (KKT.PE) */
  1.1208 +      double pe_ae_max;
  1.1209 +      /* largest absolute error */
  1.1210 +      int    pe_ae_row;
  1.1211 +      /* number of row with largest absolute error */
  1.1212 +      double pe_re_max;
  1.1213 +      /* largest relative error */
  1.1214 +      int    pe_re_row;
  1.1215 +      /* number of row with largest relative error */
  1.1216 +      int    pe_quality;
  1.1217 +      /* quality of primal solution:
  1.1218 +         'H' - high
  1.1219 +         'M' - medium
  1.1220 +         'L' - low
  1.1221 +         '?' - primal solution is wrong */
  1.1222 +      /*--------------------------------------------------------------*/
  1.1223 +      /* l[k] <= x[k] <= u[k] (KKT.PB) */
  1.1224 +      double pb_ae_max;
  1.1225 +      /* largest absolute error */
  1.1226 +      int    pb_ae_ind;
  1.1227 +      /* number of variable with largest absolute error */
  1.1228 +      double pb_re_max;
  1.1229 +      /* largest relative error */
  1.1230 +      int    pb_re_ind;
  1.1231 +      /* number of variable with largest relative error */
  1.1232 +      int    pb_quality;
  1.1233 +      /* quality of primal feasibility:
  1.1234 +         'H' - high
  1.1235 +         'M' - medium
  1.1236 +         'L' - low
  1.1237 +         '?' - primal solution is infeasible */
  1.1238 +      /*--------------------------------------------------------------*/
  1.1239 +      /* A' * (dR - cR) + (dS - cS) = 0 (KKT.DE) */
  1.1240 +      double de_ae_max;
  1.1241 +      /* largest absolute error */
  1.1242 +      int    de_ae_col;
  1.1243 +      /* number of column with largest absolute error */
  1.1244 +      double de_re_max;
  1.1245 +      /* largest relative error */
  1.1246 +      int    de_re_col;
  1.1247 +      /* number of column with largest relative error */
  1.1248 +      int    de_quality;
  1.1249 +      /* quality of dual solution:
  1.1250 +         'H' - high
  1.1251 +         'M' - medium
  1.1252 +         'L' - low
  1.1253 +         '?' - dual solution is wrong */
  1.1254 +      /*--------------------------------------------------------------*/
  1.1255 +      /* d[k] >= 0 or d[k] <= 0 (KKT.DB) */
  1.1256 +      double db_ae_max;
  1.1257 +      /* largest absolute error */
  1.1258 +      int    db_ae_ind;
  1.1259 +      /* number of variable with largest absolute error */
  1.1260 +      double db_re_max;
  1.1261 +      /* largest relative error */
  1.1262 +      int    db_re_ind;
  1.1263 +      /* number of variable with largest relative error */
  1.1264 +      int    db_quality;
  1.1265 +      /* quality of dual feasibility:
  1.1266 +         'H' - high
  1.1267 +         'M' - medium
  1.1268 +         'L' - low
  1.1269 +         '?' - dual solution is infeasible */
  1.1270 +      /*--------------------------------------------------------------*/
  1.1271 +      /* (x[k] - bound of x[k]) * d[k] = 0 (KKT.CS) */
  1.1272 +      double cs_ae_max;
  1.1273 +      /* largest absolute error */
  1.1274 +      int    cs_ae_ind;
  1.1275 +      /* number of variable with largest absolute error */
  1.1276 +      double cs_re_max;
  1.1277 +      /* largest relative error */
  1.1278 +      int    cs_re_ind;
  1.1279 +      /* number of variable with largest relative error */
  1.1280 +      int    cs_quality;
  1.1281 +      /* quality of complementary slackness:
  1.1282 +         'H' - high
  1.1283 +         'M' - medium
  1.1284 +         'L' - low
  1.1285 +         '?' - primal and dual solutions are not complementary */
  1.1286 +} LPXKKT;
  1.1287 +
  1.1288 +#define lpx_create_prob _glp_lpx_create_prob
  1.1289 +LPX *lpx_create_prob(void);
  1.1290 +/* create problem object */
  1.1291 +
  1.1292 +#define lpx_set_prob_name _glp_lpx_set_prob_name
  1.1293 +void lpx_set_prob_name(LPX *lp, const char *name);
  1.1294 +/* assign (change) problem name */
  1.1295 +
  1.1296 +#define lpx_set_obj_name _glp_lpx_set_obj_name
  1.1297 +void lpx_set_obj_name(LPX *lp, const char *name);
  1.1298 +/* assign (change) objective function name */
  1.1299 +
  1.1300 +#define lpx_set_obj_dir _glp_lpx_set_obj_dir
  1.1301 +void lpx_set_obj_dir(LPX *lp, int dir);
  1.1302 +/* set (change) optimization direction flag */
  1.1303 +
  1.1304 +#define lpx_add_rows _glp_lpx_add_rows
  1.1305 +int lpx_add_rows(LPX *lp, int nrs);
  1.1306 +/* add new rows to problem object */
  1.1307 +
  1.1308 +#define lpx_add_cols _glp_lpx_add_cols
  1.1309 +int lpx_add_cols(LPX *lp, int ncs);
  1.1310 +/* add new columns to problem object */
  1.1311 +
  1.1312 +#define lpx_set_row_name _glp_lpx_set_row_name
  1.1313 +void lpx_set_row_name(LPX *lp, int i, const char *name);
  1.1314 +/* assign (change) row name */
  1.1315 +
  1.1316 +#define lpx_set_col_name _glp_lpx_set_col_name
  1.1317 +void lpx_set_col_name(LPX *lp, int j, const char *name);
  1.1318 +/* assign (change) column name */
  1.1319 +
  1.1320 +#define lpx_set_row_bnds _glp_lpx_set_row_bnds
  1.1321 +void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub);
  1.1322 +/* set (change) row bounds */
  1.1323 +
  1.1324 +#define lpx_set_col_bnds _glp_lpx_set_col_bnds
  1.1325 +void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub);
  1.1326 +/* set (change) column bounds */
  1.1327 +
  1.1328 +#define lpx_set_obj_coef _glp_lpx_set_obj_coef
  1.1329 +void lpx_set_obj_coef(glp_prob *lp, int j, double coef);
  1.1330 +/* set (change) obj. coefficient or constant term */
  1.1331 +
  1.1332 +#define lpx_set_mat_row _glp_lpx_set_mat_row
  1.1333 +void lpx_set_mat_row(LPX *lp, int i, int len, const int ind[],
  1.1334 +      const double val[]);
  1.1335 +/* set (replace) row of the constraint matrix */
  1.1336 +
  1.1337 +#define lpx_set_mat_col _glp_lpx_set_mat_col
  1.1338 +void lpx_set_mat_col(LPX *lp, int j, int len, const int ind[],
  1.1339 +      const double val[]);
  1.1340 +/* set (replace) column of the constraint matrix */
  1.1341 +
  1.1342 +#define lpx_load_matrix _glp_lpx_load_matrix
  1.1343 +void lpx_load_matrix(LPX *lp, int ne, const int ia[], const int ja[],
  1.1344 +      const double ar[]);
  1.1345 +/* load (replace) the whole constraint matrix */
  1.1346 +
  1.1347 +#define lpx_del_rows _glp_lpx_del_rows
  1.1348 +void lpx_del_rows(LPX *lp, int nrs, const int num[]);
  1.1349 +/* delete specified rows from problem object */
  1.1350 +
  1.1351 +#define lpx_del_cols _glp_lpx_del_cols
  1.1352 +void lpx_del_cols(LPX *lp, int ncs, const int num[]);
  1.1353 +/* delete specified columns from problem object */
  1.1354 +
  1.1355 +#define lpx_delete_prob _glp_lpx_delete_prob
  1.1356 +void lpx_delete_prob(LPX *lp);
  1.1357 +/* delete problem object */
  1.1358 +
  1.1359 +#define lpx_get_prob_name _glp_lpx_get_prob_name
  1.1360 +const char *lpx_get_prob_name(LPX *lp);
  1.1361 +/* retrieve problem name */
  1.1362 +
  1.1363 +#define lpx_get_obj_name _glp_lpx_get_obj_name
  1.1364 +const char *lpx_get_obj_name(LPX *lp);
  1.1365 +/* retrieve objective function name */
  1.1366 +
  1.1367 +#define lpx_get_obj_dir _glp_lpx_get_obj_dir
  1.1368 +int lpx_get_obj_dir(LPX *lp);
  1.1369 +/* retrieve optimization direction flag */
  1.1370 +
  1.1371 +#define lpx_get_num_rows _glp_lpx_get_num_rows
  1.1372 +int lpx_get_num_rows(LPX *lp);
  1.1373 +/* retrieve number of rows */
  1.1374 +
  1.1375 +#define lpx_get_num_cols _glp_lpx_get_num_cols
  1.1376 +int lpx_get_num_cols(LPX *lp);
  1.1377 +/* retrieve number of columns */
  1.1378 +
  1.1379 +#define lpx_get_row_name _glp_lpx_get_row_name
  1.1380 +const char *lpx_get_row_name(LPX *lp, int i);
  1.1381 +/* retrieve row name */
  1.1382 +
  1.1383 +#define lpx_get_col_name _glp_lpx_get_col_name
  1.1384 +const char *lpx_get_col_name(LPX *lp, int j);
  1.1385 +/* retrieve column name */
  1.1386 +
  1.1387 +#define lpx_get_row_type _glp_lpx_get_row_type
  1.1388 +int lpx_get_row_type(LPX *lp, int i);
  1.1389 +/* retrieve row type */
  1.1390 +
  1.1391 +#define lpx_get_row_lb _glp_lpx_get_row_lb
  1.1392 +double lpx_get_row_lb(LPX *lp, int i);
  1.1393 +/* retrieve row lower bound */
  1.1394 +
  1.1395 +#define lpx_get_row_ub _glp_lpx_get_row_ub
  1.1396 +double lpx_get_row_ub(LPX *lp, int i);
  1.1397 +/* retrieve row upper bound */
  1.1398 +
  1.1399 +#define lpx_get_row_bnds _glp_lpx_get_row_bnds
  1.1400 +void lpx_get_row_bnds(LPX *lp, int i, int *typx, double *lb,
  1.1401 +      double *ub);
  1.1402 +/* retrieve row bounds */
  1.1403 +
  1.1404 +#define lpx_get_col_type _glp_lpx_get_col_type
  1.1405 +int lpx_get_col_type(LPX *lp, int j);
  1.1406 +/* retrieve column type */
  1.1407 +
  1.1408 +#define lpx_get_col_lb _glp_lpx_get_col_lb
  1.1409 +double lpx_get_col_lb(LPX *lp, int j);
  1.1410 +/* retrieve column lower bound */
  1.1411 +
  1.1412 +#define lpx_get_col_ub _glp_lpx_get_col_ub
  1.1413 +double lpx_get_col_ub(LPX *lp, int j);
  1.1414 +/* retrieve column upper bound */
  1.1415 +
  1.1416 +#define lpx_get_col_bnds _glp_lpx_get_col_bnds
  1.1417 +void lpx_get_col_bnds(LPX *lp, int j, int *typx, double *lb,
  1.1418 +      double *ub);
  1.1419 +/* retrieve column bounds */
  1.1420 +
  1.1421 +#define lpx_get_obj_coef _glp_lpx_get_obj_coef
  1.1422 +double lpx_get_obj_coef(LPX *lp, int j);
  1.1423 +/* retrieve obj. coefficient or constant term */
  1.1424 +
  1.1425 +#define lpx_get_num_nz _glp_lpx_get_num_nz
  1.1426 +int lpx_get_num_nz(LPX *lp);
  1.1427 +/* retrieve number of constraint coefficients */
  1.1428 +
  1.1429 +#define lpx_get_mat_row _glp_lpx_get_mat_row
  1.1430 +int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[]);
  1.1431 +/* retrieve row of the constraint matrix */
  1.1432 +
  1.1433 +#define lpx_get_mat_col _glp_lpx_get_mat_col
  1.1434 +int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[]);
  1.1435 +/* retrieve column of the constraint matrix */
  1.1436 +
  1.1437 +#define lpx_create_index _glp_lpx_create_index
  1.1438 +void lpx_create_index(LPX *lp);
  1.1439 +/* create the name index */
  1.1440 +
  1.1441 +#define lpx_find_row _glp_lpx_find_row
  1.1442 +int lpx_find_row(LPX *lp, const char *name);
  1.1443 +/* find row by its name */
  1.1444 +
  1.1445 +#define lpx_find_col _glp_lpx_find_col
  1.1446 +int lpx_find_col(LPX *lp, const char *name);
  1.1447 +/* find column by its name */
  1.1448 +
  1.1449 +#define lpx_delete_index _glp_lpx_delete_index
  1.1450 +void lpx_delete_index(LPX *lp);
  1.1451 +/* delete the name index */
  1.1452 +
  1.1453 +#define lpx_scale_prob _glp_lpx_scale_prob
  1.1454 +void lpx_scale_prob(LPX *lp);
  1.1455 +/* scale problem data */
  1.1456 +
  1.1457 +#define lpx_unscale_prob _glp_lpx_unscale_prob
  1.1458 +void lpx_unscale_prob(LPX *lp);
  1.1459 +/* unscale problem data */
  1.1460 +
  1.1461 +#define lpx_set_row_stat _glp_lpx_set_row_stat
  1.1462 +void lpx_set_row_stat(LPX *lp, int i, int stat);
  1.1463 +/* set (change) row status */
  1.1464 +
  1.1465 +#define lpx_set_col_stat _glp_lpx_set_col_stat
  1.1466 +void lpx_set_col_stat(LPX *lp, int j, int stat);
  1.1467 +/* set (change) column status */
  1.1468 +
  1.1469 +#define lpx_std_basis _glp_lpx_std_basis
  1.1470 +void lpx_std_basis(LPX *lp);
  1.1471 +/* construct standard initial LP basis */
  1.1472 +
  1.1473 +#define lpx_adv_basis _glp_lpx_adv_basis
  1.1474 +void lpx_adv_basis(LPX *lp);
  1.1475 +/* construct advanced initial LP basis */
  1.1476 +
  1.1477 +#define lpx_cpx_basis _glp_lpx_cpx_basis
  1.1478 +void lpx_cpx_basis(LPX *lp);
  1.1479 +/* construct Bixby's initial LP basis */
  1.1480 +
  1.1481 +#define lpx_simplex _glp_lpx_simplex
  1.1482 +int lpx_simplex(LPX *lp);
  1.1483 +/* easy-to-use driver to the simplex method */
  1.1484 +
  1.1485 +#define lpx_exact _glp_lpx_exact
  1.1486 +int lpx_exact(LPX *lp);
  1.1487 +/* easy-to-use driver to the exact simplex method */
  1.1488 +
  1.1489 +#define lpx_get_status _glp_lpx_get_status
  1.1490 +int lpx_get_status(LPX *lp);
  1.1491 +/* retrieve generic status of basic solution */
  1.1492 +
  1.1493 +#define lpx_get_prim_stat _glp_lpx_get_prim_stat
  1.1494 +int lpx_get_prim_stat(LPX *lp);
  1.1495 +/* retrieve primal status of basic solution */
  1.1496 +
  1.1497 +#define lpx_get_dual_stat _glp_lpx_get_dual_stat
  1.1498 +int lpx_get_dual_stat(LPX *lp);
  1.1499 +/* retrieve dual status of basic solution */
  1.1500 +
  1.1501 +#define lpx_get_obj_val _glp_lpx_get_obj_val
  1.1502 +double lpx_get_obj_val(LPX *lp);
  1.1503 +/* retrieve objective value (basic solution) */
  1.1504 +
  1.1505 +#define lpx_get_row_stat _glp_lpx_get_row_stat
  1.1506 +int lpx_get_row_stat(LPX *lp, int i);
  1.1507 +/* retrieve row status (basic solution) */
  1.1508 +
  1.1509 +#define lpx_get_row_prim _glp_lpx_get_row_prim
  1.1510 +double lpx_get_row_prim(LPX *lp, int i);
  1.1511 +/* retrieve row primal value (basic solution) */
  1.1512 +
  1.1513 +#define lpx_get_row_dual _glp_lpx_get_row_dual
  1.1514 +double lpx_get_row_dual(LPX *lp, int i);
  1.1515 +/* retrieve row dual value (basic solution) */
  1.1516 +
  1.1517 +#define lpx_get_row_info _glp_lpx_get_row_info
  1.1518 +void lpx_get_row_info(LPX *lp, int i, int *tagx, double *vx,
  1.1519 +      double *dx);
  1.1520 +/* obtain row solution information */
  1.1521 +
  1.1522 +#define lpx_get_col_stat _glp_lpx_get_col_stat
  1.1523 +int lpx_get_col_stat(LPX *lp, int j);
  1.1524 +/* retrieve column status (basic solution) */
  1.1525 +
  1.1526 +#define lpx_get_col_prim _glp_lpx_get_col_prim
  1.1527 +double lpx_get_col_prim(LPX *lp, int j);
  1.1528 +/* retrieve column primal value (basic solution) */
  1.1529 +
  1.1530 +#define lpx_get_col_dual _glp_lpx_get_col_dual
  1.1531 +double lpx_get_col_dual(glp_prob *lp, int j);
  1.1532 +/* retrieve column dual value (basic solution) */
  1.1533 +
  1.1534 +#define lpx_get_col_info _glp_lpx_get_col_info
  1.1535 +void lpx_get_col_info(LPX *lp, int j, int *tagx, double *vx,
  1.1536 +      double *dx);
  1.1537 +/* obtain column solution information (obsolete) */
  1.1538 +
  1.1539 +#define lpx_get_ray_info _glp_lpx_get_ray_info
  1.1540 +int lpx_get_ray_info(LPX *lp);
  1.1541 +/* determine what causes primal unboundness */
  1.1542 +
  1.1543 +#define lpx_check_kkt _glp_lpx_check_kkt
  1.1544 +void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt);
  1.1545 +/* check Karush-Kuhn-Tucker conditions */
  1.1546 +
  1.1547 +#define lpx_warm_up _glp_lpx_warm_up
  1.1548 +int lpx_warm_up(LPX *lp);
  1.1549 +/* "warm up" LP basis */
  1.1550 +
  1.1551 +#define lpx_eval_tab_row _glp_lpx_eval_tab_row
  1.1552 +int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[]);
  1.1553 +/* compute row of the simplex table */
  1.1554 +
  1.1555 +#define lpx_eval_tab_col _glp_lpx_eval_tab_col
  1.1556 +int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[]);
  1.1557 +/* compute column of the simplex table */
  1.1558 +
  1.1559 +#define lpx_transform_row _glp_lpx_transform_row
  1.1560 +int lpx_transform_row(LPX *lp, int len, int ind[], double val[]);
  1.1561 +/* transform explicitly specified row */
  1.1562 +
  1.1563 +#define lpx_transform_col _glp_lpx_transform_col
  1.1564 +int lpx_transform_col(LPX *lp, int len, int ind[], double val[]);
  1.1565 +/* transform explicitly specified column */
  1.1566 +
  1.1567 +#define lpx_prim_ratio_test _glp_lpx_prim_ratio_test
  1.1568 +int lpx_prim_ratio_test(LPX *lp, int len, const int ind[],
  1.1569 +      const double val[], int how, double tol);
  1.1570 +/* perform primal ratio test */
  1.1571 +
  1.1572 +#define lpx_dual_ratio_test _glp_lpx_dual_ratio_test
  1.1573 +int lpx_dual_ratio_test(LPX *lp, int len, const int ind[],
  1.1574 +      const double val[], int how, double tol);
  1.1575 +/* perform dual ratio test */
  1.1576 +
  1.1577 +#define lpx_interior _glp_lpx_interior
  1.1578 +int lpx_interior(LPX *lp);
  1.1579 +/* easy-to-use driver to the interior point method */
  1.1580 +
  1.1581 +#define lpx_ipt_status _glp_lpx_ipt_status
  1.1582 +int lpx_ipt_status(LPX *lp);
  1.1583 +/* retrieve status of interior-point solution */
  1.1584 +
  1.1585 +#define lpx_ipt_obj_val _glp_lpx_ipt_obj_val
  1.1586 +double lpx_ipt_obj_val(LPX *lp);
  1.1587 +/* retrieve objective value (interior point) */
  1.1588 +
  1.1589 +#define lpx_ipt_row_prim _glp_lpx_ipt_row_prim
  1.1590 +double lpx_ipt_row_prim(LPX *lp, int i);
  1.1591 +/* retrieve row primal value (interior point) */
  1.1592 +
  1.1593 +#define lpx_ipt_row_dual _glp_lpx_ipt_row_dual
  1.1594 +double lpx_ipt_row_dual(LPX *lp, int i);
  1.1595 +/* retrieve row dual value (interior point) */
  1.1596 +
  1.1597 +#define lpx_ipt_col_prim _glp_lpx_ipt_col_prim
  1.1598 +double lpx_ipt_col_prim(LPX *lp, int j);
  1.1599 +/* retrieve column primal value (interior point) */
  1.1600 +
  1.1601 +#define lpx_ipt_col_dual _glp_lpx_ipt_col_dual
  1.1602 +double lpx_ipt_col_dual(LPX *lp, int j);
  1.1603 +/* retrieve column dual value (interior point) */
  1.1604 +
  1.1605 +#define lpx_set_class _glp_lpx_set_class
  1.1606 +void lpx_set_class(LPX *lp, int klass);
  1.1607 +/* set problem class */
  1.1608 +
  1.1609 +#define lpx_get_class _glp_lpx_get_class
  1.1610 +int lpx_get_class(LPX *lp);
  1.1611 +/* determine problem klass */
  1.1612 +
  1.1613 +#define lpx_set_col_kind _glp_lpx_set_col_kind
  1.1614 +void lpx_set_col_kind(LPX *lp, int j, int kind);
  1.1615 +/* set (change) column kind */
  1.1616 +
  1.1617 +#define lpx_get_col_kind _glp_lpx_get_col_kind
  1.1618 +int lpx_get_col_kind(LPX *lp, int j);
  1.1619 +/* retrieve column kind */
  1.1620 +
  1.1621 +#define lpx_get_num_int _glp_lpx_get_num_int
  1.1622 +int lpx_get_num_int(LPX *lp);
  1.1623 +/* retrieve number of integer columns */
  1.1624 +
  1.1625 +#define lpx_get_num_bin _glp_lpx_get_num_bin
  1.1626 +int lpx_get_num_bin(LPX *lp);
  1.1627 +/* retrieve number of binary columns */
  1.1628 +
  1.1629 +#define lpx_integer _glp_lpx_integer
  1.1630 +int lpx_integer(LPX *lp);
  1.1631 +/* easy-to-use driver to the branch-and-bound method */
  1.1632 +
  1.1633 +#define lpx_intopt _glp_lpx_intopt
  1.1634 +int lpx_intopt(LPX *lp);
  1.1635 +/* easy-to-use driver to the branch-and-bound method */
  1.1636 +
  1.1637 +#define lpx_mip_status _glp_lpx_mip_status
  1.1638 +int lpx_mip_status(LPX *lp);
  1.1639 +/* retrieve status of MIP solution */
  1.1640 +
  1.1641 +#define lpx_mip_obj_val _glp_lpx_mip_obj_val
  1.1642 +double lpx_mip_obj_val(LPX *lp);
  1.1643 +/* retrieve objective value (MIP solution) */
  1.1644 +
  1.1645 +#define lpx_mip_row_val _glp_lpx_mip_row_val
  1.1646 +double lpx_mip_row_val(LPX *lp, int i);
  1.1647 +/* retrieve row value (MIP solution) */
  1.1648 +
  1.1649 +#define lpx_mip_col_val _glp_lpx_mip_col_val
  1.1650 +double lpx_mip_col_val(LPX *lp, int j);
  1.1651 +/* retrieve column value (MIP solution) */
  1.1652 +
  1.1653 +#define lpx_check_int _glp_lpx_check_int
  1.1654 +void lpx_check_int(LPX *lp, LPXKKT *kkt);
  1.1655 +/* check integer feasibility conditions */
  1.1656 +
  1.1657 +#define lpx_reset_parms _glp_lpx_reset_parms
  1.1658 +void lpx_reset_parms(LPX *lp);
  1.1659 +/* reset control parameters to default values */
  1.1660 +
  1.1661 +#define lpx_set_int_parm _glp_lpx_set_int_parm
  1.1662 +void lpx_set_int_parm(LPX *lp, int parm, int val);
  1.1663 +/* set (change) integer control parameter */
  1.1664 +
  1.1665 +#define lpx_get_int_parm _glp_lpx_get_int_parm
  1.1666 +int lpx_get_int_parm(LPX *lp, int parm);
  1.1667 +/* query integer control parameter */
  1.1668 +
  1.1669 +#define lpx_set_real_parm _glp_lpx_set_real_parm
  1.1670 +void lpx_set_real_parm(LPX *lp, int parm, double val);
  1.1671 +/* set (change) real control parameter */
  1.1672 +
  1.1673 +#define lpx_get_real_parm _glp_lpx_get_real_parm
  1.1674 +double lpx_get_real_parm(LPX *lp, int parm);
  1.1675 +/* query real control parameter */
  1.1676 +
  1.1677 +#define lpx_read_mps _glp_lpx_read_mps
  1.1678 +LPX *lpx_read_mps(const char *fname);
  1.1679 +/* read problem data in fixed MPS format */
  1.1680 +
  1.1681 +#define lpx_write_mps _glp_lpx_write_mps
  1.1682 +int lpx_write_mps(LPX *lp, const char *fname);
  1.1683 +/* write problem data in fixed MPS format */
  1.1684 +
  1.1685 +#define lpx_read_bas _glp_lpx_read_bas
  1.1686 +int lpx_read_bas(LPX *lp, const char *fname);
  1.1687 +/* read LP basis in fixed MPS format */
  1.1688 +
  1.1689 +#define lpx_write_bas _glp_lpx_write_bas
  1.1690 +int lpx_write_bas(LPX *lp, const char *fname);
  1.1691 +/* write LP basis in fixed MPS format */
  1.1692 +
  1.1693 +#define lpx_read_freemps _glp_lpx_read_freemps
  1.1694 +LPX *lpx_read_freemps(const char *fname);
  1.1695 +/* read problem data in free MPS format */
  1.1696 +
  1.1697 +#define lpx_write_freemps _glp_lpx_write_freemps
  1.1698 +int lpx_write_freemps(LPX *lp, const char *fname);
  1.1699 +/* write problem data in free MPS format */
  1.1700 +
  1.1701 +#define lpx_read_cpxlp _glp_lpx_read_cpxlp
  1.1702 +LPX *lpx_read_cpxlp(const char *fname);
  1.1703 +/* read problem data in CPLEX LP format */
  1.1704 +
  1.1705 +#define lpx_write_cpxlp _glp_lpx_write_cpxlp
  1.1706 +int lpx_write_cpxlp(LPX *lp, const char *fname);
  1.1707 +/* write problem data in CPLEX LP format */
  1.1708 +
  1.1709 +#define lpx_read_model _glp_lpx_read_model
  1.1710 +LPX *lpx_read_model(const char *model, const char *data,
  1.1711 +      const char *output);
  1.1712 +/* read LP/MIP model written in GNU MathProg language */
  1.1713 +
  1.1714 +#define lpx_print_prob _glp_lpx_print_prob
  1.1715 +int lpx_print_prob(LPX *lp, const char *fname);
  1.1716 +/* write problem data in plain text format */
  1.1717 +
  1.1718 +#define lpx_print_sol _glp_lpx_print_sol
  1.1719 +int lpx_print_sol(LPX *lp, const char *fname);
  1.1720 +/* write LP problem solution in printable format */
  1.1721 +
  1.1722 +#define lpx_print_sens_bnds _glp_lpx_print_sens_bnds
  1.1723 +int lpx_print_sens_bnds(LPX *lp, const char *fname);
  1.1724 +/* write bounds sensitivity information */
  1.1725 +
  1.1726 +#define lpx_print_ips _glp_lpx_print_ips
  1.1727 +int lpx_print_ips(LPX *lp, const char *fname);
  1.1728 +/* write interior point solution in printable format */
  1.1729 +
  1.1730 +#define lpx_print_mip _glp_lpx_print_mip
  1.1731 +int lpx_print_mip(LPX *lp, const char *fname);
  1.1732 +/* write MIP problem solution in printable format */
  1.1733 +
  1.1734 +#define lpx_is_b_avail _glp_lpx_is_b_avail
  1.1735 +int lpx_is_b_avail(LPX *lp);
  1.1736 +/* check if LP basis is available */
  1.1737 +
  1.1738 +#define lpx_write_pb _glp_lpx_write_pb
  1.1739 +int lpx_write_pb(LPX *lp, const char *fname, int normalized,
  1.1740 +      int binarize);
  1.1741 +/* write problem data in (normalized) OPB format */
  1.1742 +
  1.1743 +#define lpx_main _glp_lpx_main
  1.1744 +int lpx_main(int argc, const char *argv[]);
  1.1745 +/* stand-alone LP/MIP solver */
  1.1746 +
  1.1747 +#ifdef __cplusplus
  1.1748 +}
  1.1749 +#endif
  1.1750 +
  1.1751 +#endif
  1.1752 +
  1.1753 +/* eof */