include/glpk.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glpk.h */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #ifndef GLPK_H
    26 #define GLPK_H
    27 
    28 #include <stdarg.h>
    29 #include <stddef.h>
    30 
    31 #ifdef __cplusplus
    32 extern "C" {
    33 #endif
    34 
    35 /* library version numbers: */
    36 #define GLP_MAJOR_VERSION  4
    37 #define GLP_MINOR_VERSION  45
    38 
    39 #ifndef GLP_PROB_DEFINED
    40 #define GLP_PROB_DEFINED
    41 typedef struct { double _opaque_prob[100]; } glp_prob;
    42 /* LP/MIP problem object */
    43 #endif
    44 
    45 /* optimization direction flag: */
    46 #define GLP_MIN            1  /* minimization */
    47 #define GLP_MAX            2  /* maximization */
    48 
    49 /* kind of structural variable: */
    50 #define GLP_CV             1  /* continuous variable */
    51 #define GLP_IV             2  /* integer variable */
    52 #define GLP_BV             3  /* binary variable */
    53 
    54 /* type of auxiliary/structural variable: */
    55 #define GLP_FR             1  /* free variable */
    56 #define GLP_LO             2  /* variable with lower bound */
    57 #define GLP_UP             3  /* variable with upper bound */
    58 #define GLP_DB             4  /* double-bounded variable */
    59 #define GLP_FX             5  /* fixed variable */
    60 
    61 /* status of auxiliary/structural variable: */
    62 #define GLP_BS             1  /* basic variable */
    63 #define GLP_NL             2  /* non-basic variable on lower bound */
    64 #define GLP_NU             3  /* non-basic variable on upper bound */
    65 #define GLP_NF             4  /* non-basic free variable */
    66 #define GLP_NS             5  /* non-basic fixed variable */
    67 
    68 /* scaling options: */
    69 #define GLP_SF_GM       0x01  /* perform geometric mean scaling */
    70 #define GLP_SF_EQ       0x10  /* perform equilibration scaling */
    71 #define GLP_SF_2N       0x20  /* round scale factors to power of two */
    72 #define GLP_SF_SKIP     0x40  /* skip if problem is well scaled */
    73 #define GLP_SF_AUTO     0x80  /* choose scaling options automatically */
    74 
    75 /* solution indicator: */
    76 #define GLP_SOL            1  /* basic solution */
    77 #define GLP_IPT            2  /* interior-point solution */
    78 #define GLP_MIP            3  /* mixed integer solution */
    79 
    80 /* solution status: */
    81 #define GLP_UNDEF          1  /* solution is undefined */
    82 #define GLP_FEAS           2  /* solution is feasible */
    83 #define GLP_INFEAS         3  /* solution is infeasible */
    84 #define GLP_NOFEAS         4  /* no feasible solution exists */
    85 #define GLP_OPT            5  /* solution is optimal */
    86 #define GLP_UNBND          6  /* solution is unbounded */
    87 
    88 typedef struct
    89 {     /* basis factorization control parameters */
    90       int msg_lev;            /* (reserved) */
    91       int type;               /* factorization type: */
    92 #define GLP_BF_FT          1  /* LUF + Forrest-Tomlin */
    93 #define GLP_BF_BG          2  /* LUF + Schur compl. + Bartels-Golub */
    94 #define GLP_BF_GR          3  /* LUF + Schur compl. + Givens rotation */
    95       int lu_size;            /* luf.sv_size */
    96       double piv_tol;         /* luf.piv_tol */
    97       int piv_lim;            /* luf.piv_lim */
    98       int suhl;               /* luf.suhl */
    99       double eps_tol;         /* luf.eps_tol */
   100       double max_gro;         /* luf.max_gro */
   101       int nfs_max;            /* fhv.hh_max */
   102       double upd_tol;         /* fhv.upd_tol */
   103       int nrs_max;            /* lpf.n_max */
   104       int rs_size;            /* lpf.v_size */
   105       double foo_bar[38];     /* (reserved) */
   106 } glp_bfcp;
   107 
   108 typedef struct
   109 {     /* simplex method control parameters */
   110       int msg_lev;            /* message level: */
   111 #define GLP_MSG_OFF        0  /* no output */
   112 #define GLP_MSG_ERR        1  /* warning and error messages only */
   113 #define GLP_MSG_ON         2  /* normal output */
   114 #define GLP_MSG_ALL        3  /* full output */
   115 #define GLP_MSG_DBG        4  /* debug output */
   116       int meth;               /* simplex method option: */
   117 #define GLP_PRIMAL         1  /* use primal simplex */
   118 #define GLP_DUALP          2  /* use dual; if it fails, use primal */
   119 #define GLP_DUAL           3  /* use dual simplex */
   120       int pricing;            /* pricing technique: */
   121 #define GLP_PT_STD      0x11  /* standard (Dantzig rule) */
   122 #define GLP_PT_PSE      0x22  /* projected steepest edge */
   123       int r_test;             /* ratio test technique: */
   124 #define GLP_RT_STD      0x11  /* standard (textbook) */
   125 #define GLP_RT_HAR      0x22  /* two-pass Harris' ratio test */
   126       double tol_bnd;         /* spx.tol_bnd */
   127       double tol_dj;          /* spx.tol_dj */
   128       double tol_piv;         /* spx.tol_piv */
   129       double obj_ll;          /* spx.obj_ll */
   130       double obj_ul;          /* spx.obj_ul */
   131       int it_lim;             /* spx.it_lim */
   132       int tm_lim;             /* spx.tm_lim (milliseconds) */
   133       int out_frq;            /* spx.out_frq */
   134       int out_dly;            /* spx.out_dly (milliseconds) */
   135       int presolve;           /* enable/disable using LP presolver */
   136       double foo_bar[36];     /* (reserved) */
   137 } glp_smcp;
   138 
   139 typedef struct
   140 {     /* interior-point solver control parameters */
   141       int msg_lev;            /* message level (see glp_smcp) */
   142       int ord_alg;            /* ordering algorithm: */
   143 #define GLP_ORD_NONE       0  /* natural (original) ordering */
   144 #define GLP_ORD_QMD        1  /* quotient minimum degree (QMD) */
   145 #define GLP_ORD_AMD        2  /* approx. minimum degree (AMD) */
   146 #define GLP_ORD_SYMAMD     3  /* approx. minimum degree (SYMAMD) */
   147       double foo_bar[48];     /* (reserved) */
   148 } glp_iptcp;
   149 
   150 #ifndef GLP_TREE_DEFINED
   151 #define GLP_TREE_DEFINED
   152 typedef struct { double _opaque_tree[100]; } glp_tree;
   153 /* branch-and-bound tree */
   154 #endif
   155 
   156 typedef struct
   157 {     /* integer optimizer control parameters */
   158       int msg_lev;            /* message level (see glp_smcp) */
   159       int br_tech;            /* branching technique: */
   160 #define GLP_BR_FFV         1  /* first fractional variable */
   161 #define GLP_BR_LFV         2  /* last fractional variable */
   162 #define GLP_BR_MFV         3  /* most fractional variable */
   163 #define GLP_BR_DTH         4  /* heuristic by Driebeck and Tomlin */
   164 #define GLP_BR_PCH         5  /* hybrid pseudocost heuristic */
   165       int bt_tech;            /* backtracking technique: */
   166 #define GLP_BT_DFS         1  /* depth first search */
   167 #define GLP_BT_BFS         2  /* breadth first search */
   168 #define GLP_BT_BLB         3  /* best local bound */
   169 #define GLP_BT_BPH         4  /* best projection heuristic */
   170       double tol_int;         /* mip.tol_int */
   171       double tol_obj;         /* mip.tol_obj */
   172       int tm_lim;             /* mip.tm_lim (milliseconds) */
   173       int out_frq;            /* mip.out_frq (milliseconds) */
   174       int out_dly;            /* mip.out_dly (milliseconds) */
   175       void (*cb_func)(glp_tree *T, void *info);
   176                               /* mip.cb_func */
   177       void *cb_info;          /* mip.cb_info */
   178       int cb_size;            /* mip.cb_size */
   179       int pp_tech;            /* preprocessing technique: */
   180 #define GLP_PP_NONE        0  /* disable preprocessing */
   181 #define GLP_PP_ROOT        1  /* preprocessing only on root level */
   182 #define GLP_PP_ALL         2  /* preprocessing on all levels */
   183       double mip_gap;         /* relative MIP gap tolerance */
   184       int mir_cuts;           /* MIR cuts       (GLP_ON/GLP_OFF) */
   185       int gmi_cuts;           /* Gomory's cuts  (GLP_ON/GLP_OFF) */
   186       int cov_cuts;           /* cover cuts     (GLP_ON/GLP_OFF) */
   187       int clq_cuts;           /* clique cuts    (GLP_ON/GLP_OFF) */
   188       int presolve;           /* enable/disable using MIP presolver */
   189       int binarize;           /* try to binarize integer variables */
   190       int fp_heur;            /* feasibility pump heuristic */
   191 #if 1 /* 28/V-2010 */
   192       int alien;              /* use alien solver */
   193 #endif
   194       double foo_bar[29];     /* (reserved) */
   195 } glp_iocp;
   196 
   197 typedef struct
   198 {     /* additional row attributes */
   199       int level;
   200       /* subproblem level at which the row was added */
   201       int origin;
   202       /* row origin flag: */
   203 #define GLP_RF_REG         0  /* regular constraint */
   204 #define GLP_RF_LAZY        1  /* "lazy" constraint */
   205 #define GLP_RF_CUT         2  /* cutting plane constraint */
   206       int klass;
   207       /* row class descriptor: */
   208 #define GLP_RF_GMI         1  /* Gomory's mixed integer cut */
   209 #define GLP_RF_MIR         2  /* mixed integer rounding cut */
   210 #define GLP_RF_COV         3  /* mixed cover cut */
   211 #define GLP_RF_CLQ         4  /* clique cut */
   212       double foo_bar[7];
   213       /* (reserved) */
   214 } glp_attr;
   215 
   216 /* enable/disable flag: */
   217 #define GLP_ON             1  /* enable something */
   218 #define GLP_OFF            0  /* disable something */
   219 
   220 /* reason codes: */
   221 #define GLP_IROWGEN     0x01  /* request for row generation */
   222 #define GLP_IBINGO      0x02  /* better integer solution found */
   223 #define GLP_IHEUR       0x03  /* request for heuristic solution */
   224 #define GLP_ICUTGEN     0x04  /* request for cut generation */
   225 #define GLP_IBRANCH     0x05  /* request for branching */
   226 #define GLP_ISELECT     0x06  /* request for subproblem selection */
   227 #define GLP_IPREPRO     0x07  /* request for preprocessing */
   228 
   229 /* branch selection indicator: */
   230 #define GLP_NO_BRNCH       0  /* select no branch */
   231 #define GLP_DN_BRNCH       1  /* select down-branch */
   232 #define GLP_UP_BRNCH       2  /* select up-branch */
   233 
   234 /* return codes: */
   235 #define GLP_EBADB       0x01  /* invalid basis */
   236 #define GLP_ESING       0x02  /* singular matrix */
   237 #define GLP_ECOND       0x03  /* ill-conditioned matrix */
   238 #define GLP_EBOUND      0x04  /* invalid bounds */
   239 #define GLP_EFAIL       0x05  /* solver failed */
   240 #define GLP_EOBJLL      0x06  /* objective lower limit reached */
   241 #define GLP_EOBJUL      0x07  /* objective upper limit reached */
   242 #define GLP_EITLIM      0x08  /* iteration limit exceeded */
   243 #define GLP_ETMLIM      0x09  /* time limit exceeded */
   244 #define GLP_ENOPFS      0x0A  /* no primal feasible solution */
   245 #define GLP_ENODFS      0x0B  /* no dual feasible solution */
   246 #define GLP_EROOT       0x0C  /* root LP optimum not provided */
   247 #define GLP_ESTOP       0x0D  /* search terminated by application */
   248 #define GLP_EMIPGAP     0x0E  /* relative mip gap tolerance reached */
   249 #define GLP_ENOFEAS     0x0F  /* no primal/dual feasible solution */
   250 #define GLP_ENOCVG      0x10  /* no convergence */
   251 #define GLP_EINSTAB     0x11  /* numerical instability */
   252 #define GLP_EDATA       0x12  /* invalid data */
   253 #define GLP_ERANGE      0x13  /* result out of range */
   254 
   255 /* condition indicator: */
   256 #define GLP_KKT_PE         1  /* primal equalities */
   257 #define GLP_KKT_PB         2  /* primal bounds */
   258 #define GLP_KKT_DE         3  /* dual equalities */
   259 #define GLP_KKT_DB         4  /* dual bounds */
   260 #define GLP_KKT_CS         5  /* complementary slackness */
   261 
   262 /* MPS file format: */
   263 #define GLP_MPS_DECK       1  /* fixed (ancient) */
   264 #define GLP_MPS_FILE       2  /* free (modern) */
   265 
   266 typedef struct
   267 {     /* MPS format control parameters */
   268       int blank;
   269       /* character code to replace blanks in symbolic names */
   270       char *obj_name;
   271       /* objective row name */
   272       double tol_mps;
   273       /* zero tolerance for MPS data */
   274       double foo_bar[17];
   275       /* (reserved for use in the future) */
   276 } glp_mpscp;
   277 
   278 typedef struct
   279 {     /* CPLEX LP format control parameters */
   280       double foo_bar[20];
   281       /* (reserved for use in the future) */
   282 } glp_cpxcp;
   283 
   284 #ifndef GLP_TRAN_DEFINED
   285 #define GLP_TRAN_DEFINED
   286 typedef struct { double _opaque_tran[100]; } glp_tran;
   287 /* MathProg translator workspace */
   288 #endif
   289 
   290 glp_prob *glp_create_prob(void);
   291 /* create problem object */
   292 
   293 void glp_set_prob_name(glp_prob *P, const char *name);
   294 /* assign (change) problem name */
   295 
   296 void glp_set_obj_name(glp_prob *P, const char *name);
   297 /* assign (change) objective function name */
   298 
   299 void glp_set_obj_dir(glp_prob *P, int dir);
   300 /* set (change) optimization direction flag */
   301 
   302 int glp_add_rows(glp_prob *P, int nrs);
   303 /* add new rows to problem object */
   304 
   305 int glp_add_cols(glp_prob *P, int ncs);
   306 /* add new columns to problem object */
   307 
   308 void glp_set_row_name(glp_prob *P, int i, const char *name);
   309 /* assign (change) row name */
   310 
   311 void glp_set_col_name(glp_prob *P, int j, const char *name);
   312 /* assign (change) column name */
   313 
   314 void glp_set_row_bnds(glp_prob *P, int i, int type, double lb,
   315       double ub);
   316 /* set (change) row bounds */
   317 
   318 void glp_set_col_bnds(glp_prob *P, int j, int type, double lb,
   319       double ub);
   320 /* set (change) column bounds */
   321 
   322 void glp_set_obj_coef(glp_prob *P, int j, double coef);
   323 /* set (change) obj. coefficient or constant term */
   324 
   325 void glp_set_mat_row(glp_prob *P, int i, int len, const int ind[],
   326       const double val[]);
   327 /* set (replace) row of the constraint matrix */
   328 
   329 void glp_set_mat_col(glp_prob *P, int j, int len, const int ind[],
   330       const double val[]);
   331 /* set (replace) column of the constraint matrix */
   332 
   333 void glp_load_matrix(glp_prob *P, int ne, const int ia[],
   334       const int ja[], const double ar[]);
   335 /* load (replace) the whole constraint matrix */
   336 
   337 int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[]);
   338 /* check for duplicate elements in sparse matrix */
   339 
   340 void glp_sort_matrix(glp_prob *P);
   341 /* sort elements of the constraint matrix */
   342 
   343 void glp_del_rows(glp_prob *P, int nrs, const int num[]);
   344 /* delete specified rows from problem object */
   345 
   346 void glp_del_cols(glp_prob *P, int ncs, const int num[]);
   347 /* delete specified columns from problem object */
   348 
   349 void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);
   350 /* copy problem object content */
   351 
   352 void glp_erase_prob(glp_prob *P);
   353 /* erase problem object content */
   354 
   355 void glp_delete_prob(glp_prob *P);
   356 /* delete problem object */
   357 
   358 const char *glp_get_prob_name(glp_prob *P);
   359 /* retrieve problem name */
   360 
   361 const char *glp_get_obj_name(glp_prob *P);
   362 /* retrieve objective function name */
   363 
   364 int glp_get_obj_dir(glp_prob *P);
   365 /* retrieve optimization direction flag */
   366 
   367 int glp_get_num_rows(glp_prob *P);
   368 /* retrieve number of rows */
   369 
   370 int glp_get_num_cols(glp_prob *P);
   371 /* retrieve number of columns */
   372 
   373 const char *glp_get_row_name(glp_prob *P, int i);
   374 /* retrieve row name */
   375 
   376 const char *glp_get_col_name(glp_prob *P, int j);
   377 /* retrieve column name */
   378 
   379 int glp_get_row_type(glp_prob *P, int i);
   380 /* retrieve row type */
   381 
   382 double glp_get_row_lb(glp_prob *P, int i);
   383 /* retrieve row lower bound */
   384 
   385 double glp_get_row_ub(glp_prob *P, int i);
   386 /* retrieve row upper bound */
   387 
   388 int glp_get_col_type(glp_prob *P, int j);
   389 /* retrieve column type */
   390 
   391 double glp_get_col_lb(glp_prob *P, int j);
   392 /* retrieve column lower bound */
   393 
   394 double glp_get_col_ub(glp_prob *P, int j);
   395 /* retrieve column upper bound */
   396 
   397 double glp_get_obj_coef(glp_prob *P, int j);
   398 /* retrieve obj. coefficient or constant term */
   399 
   400 int glp_get_num_nz(glp_prob *P);
   401 /* retrieve number of constraint coefficients */
   402 
   403 int glp_get_mat_row(glp_prob *P, int i, int ind[], double val[]);
   404 /* retrieve row of the constraint matrix */
   405 
   406 int glp_get_mat_col(glp_prob *P, int j, int ind[], double val[]);
   407 /* retrieve column of the constraint matrix */
   408 
   409 void glp_create_index(glp_prob *P);
   410 /* create the name index */
   411 
   412 int glp_find_row(glp_prob *P, const char *name);
   413 /* find row by its name */
   414 
   415 int glp_find_col(glp_prob *P, const char *name);
   416 /* find column by its name */
   417 
   418 void glp_delete_index(glp_prob *P);
   419 /* delete the name index */
   420 
   421 void glp_set_rii(glp_prob *P, int i, double rii);
   422 /* set (change) row scale factor */
   423 
   424 void glp_set_sjj(glp_prob *P, int j, double sjj);
   425 /* set (change) column scale factor */
   426 
   427 double glp_get_rii(glp_prob *P, int i);
   428 /* retrieve row scale factor */
   429 
   430 double glp_get_sjj(glp_prob *P, int j);
   431 /* retrieve column scale factor */
   432 
   433 void glp_scale_prob(glp_prob *P, int flags);
   434 /* scale problem data */
   435 
   436 void glp_unscale_prob(glp_prob *P);
   437 /* unscale problem data */
   438 
   439 void glp_set_row_stat(glp_prob *P, int i, int stat);
   440 /* set (change) row status */
   441 
   442 void glp_set_col_stat(glp_prob *P, int j, int stat);
   443 /* set (change) column status */
   444 
   445 void glp_std_basis(glp_prob *P);
   446 /* construct standard initial LP basis */
   447 
   448 void glp_adv_basis(glp_prob *P, int flags);
   449 /* construct advanced initial LP basis */
   450 
   451 void glp_cpx_basis(glp_prob *P);
   452 /* construct Bixby's initial LP basis */
   453 
   454 int glp_simplex(glp_prob *P, const glp_smcp *parm);
   455 /* solve LP problem with the simplex method */
   456 
   457 int glp_exact(glp_prob *P, const glp_smcp *parm);
   458 /* solve LP problem in exact arithmetic */
   459 
   460 void glp_init_smcp(glp_smcp *parm);
   461 /* initialize simplex method control parameters */
   462 
   463 int glp_get_status(glp_prob *P);
   464 /* retrieve generic status of basic solution */
   465 
   466 int glp_get_prim_stat(glp_prob *P);
   467 /* retrieve status of primal basic solution */
   468 
   469 int glp_get_dual_stat(glp_prob *P);
   470 /* retrieve status of dual basic solution */
   471 
   472 double glp_get_obj_val(glp_prob *P);
   473 /* retrieve objective value (basic solution) */
   474 
   475 int glp_get_row_stat(glp_prob *P, int i);
   476 /* retrieve row status */
   477 
   478 double glp_get_row_prim(glp_prob *P, int i);
   479 /* retrieve row primal value (basic solution) */
   480 
   481 double glp_get_row_dual(glp_prob *P, int i);
   482 /* retrieve row dual value (basic solution) */
   483 
   484 int glp_get_col_stat(glp_prob *P, int j);
   485 /* retrieve column status */
   486 
   487 double glp_get_col_prim(glp_prob *P, int j);
   488 /* retrieve column primal value (basic solution) */
   489 
   490 double glp_get_col_dual(glp_prob *P, int j);
   491 /* retrieve column dual value (basic solution) */
   492 
   493 int glp_get_unbnd_ray(glp_prob *P);
   494 /* determine variable causing unboundedness */
   495 
   496 int glp_interior(glp_prob *P, const glp_iptcp *parm);
   497 /* solve LP problem with the interior-point method */
   498 
   499 void glp_init_iptcp(glp_iptcp *parm);
   500 /* initialize interior-point solver control parameters */
   501 
   502 int glp_ipt_status(glp_prob *P);
   503 /* retrieve status of interior-point solution */
   504 
   505 double glp_ipt_obj_val(glp_prob *P);
   506 /* retrieve objective value (interior point) */
   507 
   508 double glp_ipt_row_prim(glp_prob *P, int i);
   509 /* retrieve row primal value (interior point) */
   510 
   511 double glp_ipt_row_dual(glp_prob *P, int i);
   512 /* retrieve row dual value (interior point) */
   513 
   514 double glp_ipt_col_prim(glp_prob *P, int j);
   515 /* retrieve column primal value (interior point) */
   516 
   517 double glp_ipt_col_dual(glp_prob *P, int j);
   518 /* retrieve column dual value (interior point) */
   519 
   520 void glp_set_col_kind(glp_prob *P, int j, int kind);
   521 /* set (change) column kind */
   522 
   523 int glp_get_col_kind(glp_prob *P, int j);
   524 /* retrieve column kind */
   525 
   526 int glp_get_num_int(glp_prob *P);
   527 /* retrieve number of integer columns */
   528 
   529 int glp_get_num_bin(glp_prob *P);
   530 /* retrieve number of binary columns */
   531 
   532 int glp_intopt(glp_prob *P, const glp_iocp *parm);
   533 /* solve MIP problem with the branch-and-bound method */
   534 
   535 void glp_init_iocp(glp_iocp *parm);
   536 /* initialize integer optimizer control parameters */
   537 
   538 int glp_mip_status(glp_prob *P);
   539 /* retrieve status of MIP solution */
   540 
   541 double glp_mip_obj_val(glp_prob *P);
   542 /* retrieve objective value (MIP solution) */
   543 
   544 double glp_mip_row_val(glp_prob *P, int i);
   545 /* retrieve row value (MIP solution) */
   546 
   547 double glp_mip_col_val(glp_prob *P, int j);
   548 /* retrieve column value (MIP solution) */
   549 
   550 int glp_print_sol(glp_prob *P, const char *fname);
   551 /* write basic solution in printable format */
   552 
   553 int glp_read_sol(glp_prob *P, const char *fname);
   554 /* read basic solution from text file */
   555 
   556 int glp_write_sol(glp_prob *P, const char *fname);
   557 /* write basic solution to text file */
   558 
   559 int glp_print_ranges(glp_prob *P, int len, const int list[],
   560       int flags, const char *fname);
   561 /* print sensitivity analysis report */
   562 
   563 int glp_print_ipt(glp_prob *P, const char *fname);
   564 /* write interior-point solution in printable format */
   565 
   566 int glp_read_ipt(glp_prob *P, const char *fname);
   567 /* read interior-point solution from text file */
   568 
   569 int glp_write_ipt(glp_prob *P, const char *fname);
   570 /* write interior-point solution to text file */
   571 
   572 int glp_print_mip(glp_prob *P, const char *fname);
   573 /* write MIP solution in printable format */
   574 
   575 int glp_read_mip(glp_prob *P, const char *fname);
   576 /* read MIP solution from text file */
   577 
   578 int glp_write_mip(glp_prob *P, const char *fname);
   579 /* write MIP solution to text file */
   580 
   581 int glp_bf_exists(glp_prob *P);
   582 /* check if the basis factorization exists */
   583 
   584 int glp_factorize(glp_prob *P);
   585 /* compute the basis factorization */
   586 
   587 int glp_bf_updated(glp_prob *P);
   588 /* check if the basis factorization has been updated */
   589 
   590 void glp_get_bfcp(glp_prob *P, glp_bfcp *parm);
   591 /* retrieve basis factorization control parameters */
   592 
   593 void glp_set_bfcp(glp_prob *P, const glp_bfcp *parm);
   594 /* change basis factorization control parameters */
   595 
   596 int glp_get_bhead(glp_prob *P, int k);
   597 /* retrieve the basis header information */
   598 
   599 int glp_get_row_bind(glp_prob *P, int i);
   600 /* retrieve row index in the basis header */
   601 
   602 int glp_get_col_bind(glp_prob *P, int j);
   603 /* retrieve column index in the basis header */
   604 
   605 void glp_ftran(glp_prob *P, double x[]);
   606 /* perform forward transformation (solve system B*x = b) */
   607 
   608 void glp_btran(glp_prob *P, double x[]);
   609 /* perform backward transformation (solve system B'*x = b) */
   610 
   611 int glp_warm_up(glp_prob *P);
   612 /* "warm up" LP basis */
   613 
   614 int glp_eval_tab_row(glp_prob *P, int k, int ind[], double val[]);
   615 /* compute row of the simplex tableau */
   616 
   617 int glp_eval_tab_col(glp_prob *P, int k, int ind[], double val[]);
   618 /* compute column of the simplex tableau */
   619 
   620 int glp_transform_row(glp_prob *P, int len, int ind[], double val[]);
   621 /* transform explicitly specified row */
   622 
   623 int glp_transform_col(glp_prob *P, int len, int ind[], double val[]);
   624 /* transform explicitly specified column */
   625 
   626 int glp_prim_rtest(glp_prob *P, int len, const int ind[],
   627       const double val[], int dir, double eps);
   628 /* perform primal ratio test */
   629 
   630 int glp_dual_rtest(glp_prob *P, int len, const int ind[],
   631       const double val[], int dir, double eps);
   632 /* perform dual ratio test */
   633 
   634 void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1,
   635       double *value2, int *var2);
   636 /* analyze active bound of non-basic variable */
   637 
   638 void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
   639       double *value1, double *coef2, int *var2, double *value2);
   640 /* analyze objective coefficient at basic variable */
   641 
   642 int glp_ios_reason(glp_tree *T);
   643 /* determine reason for calling the callback routine */
   644 
   645 glp_prob *glp_ios_get_prob(glp_tree *T);
   646 /* access the problem object */
   647 
   648 void glp_ios_tree_size(glp_tree *T, int *a_cnt, int *n_cnt,
   649       int *t_cnt);
   650 /* determine size of the branch-and-bound tree */
   651 
   652 int glp_ios_curr_node(glp_tree *T);
   653 /* determine current active subproblem */
   654 
   655 int glp_ios_next_node(glp_tree *T, int p);
   656 /* determine next active subproblem */
   657 
   658 int glp_ios_prev_node(glp_tree *T, int p);
   659 /* determine previous active subproblem */
   660 
   661 int glp_ios_up_node(glp_tree *T, int p);
   662 /* determine parent subproblem */
   663 
   664 int glp_ios_node_level(glp_tree *T, int p);
   665 /* determine subproblem level */
   666 
   667 double glp_ios_node_bound(glp_tree *T, int p);
   668 /* determine subproblem local bound */
   669 
   670 int glp_ios_best_node(glp_tree *T);
   671 /* find active subproblem with best local bound */
   672 
   673 double glp_ios_mip_gap(glp_tree *T);
   674 /* compute relative MIP gap */
   675 
   676 void *glp_ios_node_data(glp_tree *T, int p);
   677 /* access subproblem application-specific data */
   678 
   679 void glp_ios_row_attr(glp_tree *T, int i, glp_attr *attr);
   680 /* retrieve additional row attributes */
   681 
   682 int glp_ios_pool_size(glp_tree *T);
   683 /* determine current size of the cut pool */
   684 
   685 int glp_ios_add_row(glp_tree *T,
   686       const char *name, int klass, int flags, int len, const int ind[],
   687       const double val[], int type, double rhs);
   688 /* add row (constraint) to the cut pool */
   689 
   690 void glp_ios_del_row(glp_tree *T, int i);
   691 /* remove row (constraint) from the cut pool */
   692 
   693 void glp_ios_clear_pool(glp_tree *T);
   694 /* remove all rows (constraints) from the cut pool */
   695 
   696 int glp_ios_can_branch(glp_tree *T, int j);
   697 /* check if can branch upon specified variable */
   698 
   699 void glp_ios_branch_upon(glp_tree *T, int j, int sel);
   700 /* choose variable to branch upon */
   701 
   702 void glp_ios_select_node(glp_tree *T, int p);
   703 /* select subproblem to continue the search */
   704 
   705 int glp_ios_heur_sol(glp_tree *T, const double x[]);
   706 /* provide solution found by heuristic */
   707 
   708 void glp_ios_terminate(glp_tree *T);
   709 /* terminate the solution process */
   710 
   711 void glp_init_mpscp(glp_mpscp *parm);
   712 /* initialize MPS format control parameters */
   713 
   714 int glp_read_mps(glp_prob *P, int fmt, const glp_mpscp *parm,
   715       const char *fname);
   716 /* read problem data in MPS format */
   717 
   718 int glp_write_mps(glp_prob *P, int fmt, const glp_mpscp *parm,
   719       const char *fname);
   720 /* write problem data in MPS format */
   721 
   722 void glp_init_cpxcp(glp_cpxcp *parm);
   723 /* initialize CPLEX LP format control parameters */
   724 
   725 int glp_read_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname);
   726 /* read problem data in CPLEX LP format */
   727 
   728 int glp_write_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname);
   729 /* write problem data in CPLEX LP format */
   730 
   731 int glp_read_prob(glp_prob *P, int flags, const char *fname);
   732 /* read problem data in GLPK format */
   733 
   734 int glp_write_prob(glp_prob *P, int flags, const char *fname);
   735 /* write problem data in GLPK format */
   736 
   737 glp_tran *glp_mpl_alloc_wksp(void);
   738 /* allocate the MathProg translator workspace */
   739 
   740 int glp_mpl_read_model(glp_tran *tran, const char *fname, int skip);
   741 /* read and translate model section */
   742 
   743 int glp_mpl_read_data(glp_tran *tran, const char *fname);
   744 /* read and translate data section */
   745 
   746 int glp_mpl_generate(glp_tran *tran, const char *fname);
   747 /* generate the model */
   748 
   749 void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob);
   750 /* build LP/MIP problem instance from the model */
   751 
   752 int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol);
   753 /* postsolve the model */
   754 
   755 void glp_mpl_free_wksp(glp_tran *tran);
   756 /* free the MathProg translator workspace */
   757 
   758 int glp_main(int argc, const char *argv[]);
   759 /* stand-alone LP/MIP solver */
   760 
   761 /**********************************************************************/
   762 
   763 #ifndef GLP_LONG_DEFINED
   764 #define GLP_LONG_DEFINED
   765 typedef struct { int lo, hi; } glp_long;
   766 /* long integer data type */
   767 #endif
   768 
   769 int glp_init_env(void);
   770 /* initialize GLPK environment */
   771 
   772 const char *glp_version(void);
   773 /* determine library version */
   774 
   775 int glp_free_env(void);
   776 /* free GLPK environment */
   777 
   778 void glp_printf(const char *fmt, ...);
   779 /* write formatted output to terminal */
   780 
   781 void glp_vprintf(const char *fmt, va_list arg);
   782 /* write formatted output to terminal */
   783 
   784 int glp_term_out(int flag);
   785 /* enable/disable terminal output */
   786 
   787 void glp_term_hook(int (*func)(void *info, const char *s), void *info);
   788 /* install hook to intercept terminal output */
   789 
   790 int glp_open_tee(const char *fname);
   791 /* start copying terminal output to text file */
   792 
   793 int glp_close_tee(void);
   794 /* stop copying terminal output to text file */
   795 
   796 #ifndef GLP_ERROR_DEFINED
   797 #define GLP_ERROR_DEFINED
   798 typedef void (*_glp_error)(const char *fmt, ...);
   799 #endif
   800 
   801 #define glp_error glp_error_(__FILE__, __LINE__)
   802 _glp_error glp_error_(const char *file, int line);
   803 /* display error message and terminate execution */
   804 
   805 #define glp_assert(expr) \
   806       ((void)((expr) || (glp_assert_(#expr, __FILE__, __LINE__), 1)))
   807 void glp_assert_(const char *expr, const char *file, int line);
   808 /* check for logical condition */
   809 
   810 void glp_error_hook(void (*func)(void *info), void *info);
   811 /* install hook to intercept abnormal termination */
   812 
   813 void *glp_malloc(int size);
   814 /* allocate memory block */
   815 
   816 void *glp_calloc(int n, int size);
   817 /* allocate memory block */
   818 
   819 void glp_free(void *ptr);
   820 /* free memory block */
   821 
   822 void glp_mem_limit(int limit);
   823 /* set memory usage limit */
   824 
   825 void glp_mem_usage(int *count, int *cpeak, glp_long *total,
   826       glp_long *tpeak);
   827 /* get memory usage information */
   828 
   829 glp_long glp_time(void);
   830 /* determine current universal time */
   831 
   832 double glp_difftime(glp_long t1, glp_long t0);
   833 /* compute difference between two time values */
   834 
   835 /**********************************************************************/
   836 
   837 #ifndef GLP_DATA_DEFINED
   838 #define GLP_DATA_DEFINED
   839 typedef struct { double _opaque_data[100]; } glp_data;
   840 /* plain data file */
   841 #endif
   842 
   843 glp_data *glp_sdf_open_file(const char *fname);
   844 /* open plain data file */
   845 
   846 void glp_sdf_set_jump(glp_data *data, void *jump);
   847 /* set up error handling */
   848 
   849 void glp_sdf_error(glp_data *data, const char *fmt, ...);
   850 /* print error message */
   851 
   852 void glp_sdf_warning(glp_data *data, const char *fmt, ...);
   853 /* print warning message */
   854 
   855 int glp_sdf_read_int(glp_data *data);
   856 /* read integer number */
   857 
   858 double glp_sdf_read_num(glp_data *data);
   859 /* read floating-point number */
   860 
   861 const char *glp_sdf_read_item(glp_data *data);
   862 /* read data item */
   863 
   864 const char *glp_sdf_read_text(glp_data *data);
   865 /* read text until end of line */
   866 
   867 int glp_sdf_line(glp_data *data);
   868 /* determine current line number */
   869 
   870 void glp_sdf_close_file(glp_data *data);
   871 /* close plain data file */
   872 
   873 /**********************************************************************/
   874 
   875 typedef struct _glp_graph glp_graph;
   876 typedef struct _glp_vertex glp_vertex;
   877 typedef struct _glp_arc glp_arc;
   878 
   879 struct _glp_graph
   880 {     /* graph descriptor */
   881       void *pool; /* DMP *pool; */
   882       /* memory pool to store graph components */
   883       char *name;
   884       /* graph name (1 to 255 chars); NULL means no name is assigned
   885          to the graph */
   886       int nv_max;
   887       /* length of the vertex list (enlarged automatically) */
   888       int nv;
   889       /* number of vertices in the graph, 0 <= nv <= nv_max */
   890       int na;
   891       /* number of arcs in the graph, na >= 0 */
   892       glp_vertex **v; /* glp_vertex *v[1+nv_max]; */
   893       /* v[i], 1 <= i <= nv, is a pointer to i-th vertex */
   894       void *index; /* AVL *index; */
   895       /* vertex index to find vertices by their names; NULL means the
   896          index does not exist */
   897       int v_size;
   898       /* size of data associated with each vertex (0 to 256 bytes) */
   899       int a_size;
   900       /* size of data associated with each arc (0 to 256 bytes) */
   901 };
   902 
   903 struct _glp_vertex
   904 {     /* vertex descriptor */
   905       int i;
   906       /* vertex ordinal number, 1 <= i <= nv */
   907       char *name;
   908       /* vertex name (1 to 255 chars); NULL means no name is assigned
   909          to the vertex */
   910       void *entry; /* AVLNODE *entry; */
   911       /* pointer to corresponding entry in the vertex index; NULL means
   912          that either the index does not exist or the vertex has no name
   913          assigned */
   914       void *data;
   915       /* pointer to data associated with the vertex */
   916       void *temp;
   917       /* working pointer */
   918       glp_arc *in;
   919       /* pointer to the (unordered) list of incoming arcs */
   920       glp_arc *out;
   921       /* pointer to the (unordered) list of outgoing arcs */
   922 };
   923 
   924 struct _glp_arc
   925 {     /* arc descriptor */
   926       glp_vertex *tail;
   927       /* pointer to the tail endpoint */
   928       glp_vertex *head;
   929       /* pointer to the head endpoint */
   930       void *data;
   931       /* pointer to data associated with the arc */
   932       void *temp;
   933       /* working pointer */
   934       glp_arc *t_prev;
   935       /* pointer to previous arc having the same tail endpoint */
   936       glp_arc *t_next;
   937       /* pointer to next arc having the same tail endpoint */
   938       glp_arc *h_prev;
   939       /* pointer to previous arc having the same head endpoint */
   940       glp_arc *h_next;
   941       /* pointer to next arc having the same head endpoint */
   942 };
   943 
   944 glp_graph *glp_create_graph(int v_size, int a_size);
   945 /* create graph */
   946 
   947 void glp_set_graph_name(glp_graph *G, const char *name);
   948 /* assign (change) graph name */
   949 
   950 int glp_add_vertices(glp_graph *G, int nadd);
   951 /* add new vertices to graph */
   952 
   953 void glp_set_vertex_name(glp_graph *G, int i, const char *name);
   954 /* assign (change) vertex name */
   955 
   956 glp_arc *glp_add_arc(glp_graph *G, int i, int j);
   957 /* add new arc to graph */
   958 
   959 void glp_del_vertices(glp_graph *G, int ndel, const int num[]);
   960 /* delete vertices from graph */
   961 
   962 void glp_del_arc(glp_graph *G, glp_arc *a);
   963 /* delete arc from graph */
   964 
   965 void glp_erase_graph(glp_graph *G, int v_size, int a_size);
   966 /* erase graph content */
   967 
   968 void glp_delete_graph(glp_graph *G);
   969 /* delete graph */
   970 
   971 void glp_create_v_index(glp_graph *G);
   972 /* create vertex name index */
   973 
   974 int glp_find_vertex(glp_graph *G, const char *name);
   975 /* find vertex by its name */
   976 
   977 void glp_delete_v_index(glp_graph *G);
   978 /* delete vertex name index */
   979 
   980 int glp_read_graph(glp_graph *G, const char *fname);
   981 /* read graph from plain text file */
   982 
   983 int glp_write_graph(glp_graph *G, const char *fname);
   984 /* write graph to plain text file */
   985 
   986 void glp_mincost_lp(glp_prob *P, glp_graph *G, int names, int v_rhs,
   987       int a_low, int a_cap, int a_cost);
   988 /* convert minimum cost flow problem to LP */
   989 
   990 int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, int a_cap,
   991       int a_cost, double *sol, int a_x, int v_pi);
   992 /* find minimum-cost flow with out-of-kilter algorithm */
   993 
   994 void glp_maxflow_lp(glp_prob *P, glp_graph *G, int names, int s,
   995       int t, int a_cap);
   996 /* convert maximum flow problem to LP */
   997 
   998 int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap,
   999       double *sol, int a_x, int v_cut);
  1000 /* find maximal flow with Ford-Fulkerson algorithm */
  1001 
  1002 int glp_check_asnprob(glp_graph *G, int v_set);
  1003 /* check correctness of assignment problem data */
  1004 
  1005 /* assignment problem formulation: */
  1006 #define GLP_ASN_MIN        1  /* perfect matching (minimization) */
  1007 #define GLP_ASN_MAX        2  /* perfect matching (maximization) */
  1008 #define GLP_ASN_MMP        3  /* maximum matching */
  1009 
  1010 int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, int names,
  1011       int v_set, int a_cost);
  1012 /* convert assignment problem to LP */
  1013 
  1014 int glp_asnprob_okalg(int form, glp_graph *G, int v_set, int a_cost,
  1015       double *sol, int a_x);
  1016 /* solve assignment problem with out-of-kilter algorithm */
  1017 
  1018 int glp_asnprob_hall(glp_graph *G, int v_set, int a_x);
  1019 /* find bipartite matching of maximum cardinality */
  1020 
  1021 double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls);
  1022 /* solve critical path problem */
  1023 
  1024 int glp_read_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
  1025       int a_cost, const char *fname);
  1026 /* read min-cost flow problem data in DIMACS format */
  1027 
  1028 int glp_write_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap,
  1029       int a_cost, const char *fname);
  1030 /* write min-cost flow problem data in DIMACS format */
  1031 
  1032 int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap,
  1033       const char *fname);
  1034 /* read maximum flow problem data in DIMACS format */
  1035 
  1036 int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap,
  1037       const char *fname);
  1038 /* write maximum flow problem data in DIMACS format */
  1039 
  1040 int glp_read_asnprob(glp_graph *G, int v_set, int a_cost, const char
  1041       *fname);
  1042 /* read assignment problem data in DIMACS format */
  1043 
  1044 int glp_write_asnprob(glp_graph *G, int v_set, int a_cost, const char
  1045       *fname);
  1046 /* write assignment problem data in DIMACS format */
  1047 
  1048 int glp_read_ccdata(glp_graph *G, int v_wgt, const char *fname);
  1049 /* read graph in DIMACS clique/coloring format */
  1050 
  1051 int glp_write_ccdata(glp_graph *G, int v_wgt, const char *fname);
  1052 /* write graph in DIMACS clique/coloring format */
  1053 
  1054 int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
  1055       const int parm[1+15]);
  1056 /* Klingman's network problem generator */
  1057 
  1058 int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
  1059       const int parm[1+14]);
  1060 /* grid-like network problem generator */
  1061 
  1062 int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap,
  1063       const int parm[1+5]);
  1064 /* Goldfarb's maximum flow problem generator */
  1065 
  1066 int glp_weak_comp(glp_graph *G, int v_num);
  1067 /* find all weakly connected components of graph */
  1068 
  1069 int glp_strong_comp(glp_graph *G, int v_num);
  1070 /* find all strongly connected components of graph */
  1071 
  1072 int glp_top_sort(glp_graph *G, int v_num);
  1073 /* topological sorting of acyclic digraph */
  1074 
  1075 int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, int v_set);
  1076 /* find maximum weight clique with exact algorithm */
  1077 
  1078 /***********************************************************************
  1079 *  NOTE: All symbols defined below are obsolete and kept here only for
  1080 *        backward compatibility.
  1081 ***********************************************************************/
  1082 
  1083 #define LPX glp_prob
  1084 
  1085 /* problem class: */
  1086 #define LPX_LP          100   /* linear programming (LP) */
  1087 #define LPX_MIP         101   /* mixed integer programming (MIP) */
  1088 
  1089 /* type of auxiliary/structural variable: */
  1090 #define LPX_FR          110   /* free variable */
  1091 #define LPX_LO          111   /* variable with lower bound */
  1092 #define LPX_UP          112   /* variable with upper bound */
  1093 #define LPX_DB          113   /* double-bounded variable */
  1094 #define LPX_FX          114   /* fixed variable */
  1095 
  1096 /* optimization direction flag: */
  1097 #define LPX_MIN         120   /* minimization */
  1098 #define LPX_MAX         121   /* maximization */
  1099 
  1100 /* status of primal basic solution: */
  1101 #define LPX_P_UNDEF     132   /* primal solution is undefined */
  1102 #define LPX_P_FEAS      133   /* solution is primal feasible */
  1103 #define LPX_P_INFEAS    134   /* solution is primal infeasible */
  1104 #define LPX_P_NOFEAS    135   /* no primal feasible solution exists */
  1105 
  1106 /* status of dual basic solution: */
  1107 #define LPX_D_UNDEF     136   /* dual solution is undefined */
  1108 #define LPX_D_FEAS      137   /* solution is dual feasible */
  1109 #define LPX_D_INFEAS    138   /* solution is dual infeasible */
  1110 #define LPX_D_NOFEAS    139   /* no dual feasible solution exists */
  1111 
  1112 /* status of auxiliary/structural variable: */
  1113 #define LPX_BS          140   /* basic variable */
  1114 #define LPX_NL          141   /* non-basic variable on lower bound */
  1115 #define LPX_NU          142   /* non-basic variable on upper bound */
  1116 #define LPX_NF          143   /* non-basic free variable */
  1117 #define LPX_NS          144   /* non-basic fixed variable */
  1118 
  1119 /* status of interior-point solution: */
  1120 #define LPX_T_UNDEF     150   /* interior solution is undefined */
  1121 #define LPX_T_OPT       151   /* interior solution is optimal */
  1122 
  1123 /* kind of structural variable: */
  1124 #define LPX_CV          160   /* continuous variable */
  1125 #define LPX_IV          161   /* integer variable */
  1126 
  1127 /* status of integer solution: */
  1128 #define LPX_I_UNDEF     170   /* integer solution is undefined */
  1129 #define LPX_I_OPT       171   /* integer solution is optimal */
  1130 #define LPX_I_FEAS      172   /* integer solution is feasible */
  1131 #define LPX_I_NOFEAS    173   /* no integer solution exists */
  1132 
  1133 /* status codes reported by the routine lpx_get_status: */
  1134 #define LPX_OPT         180   /* optimal */
  1135 #define LPX_FEAS        181   /* feasible */
  1136 #define LPX_INFEAS      182   /* infeasible */
  1137 #define LPX_NOFEAS      183   /* no feasible */
  1138 #define LPX_UNBND       184   /* unbounded */
  1139 #define LPX_UNDEF       185   /* undefined */
  1140 
  1141 /* exit codes returned by solver routines: */
  1142 #define LPX_E_OK        200   /* success */
  1143 #define LPX_E_EMPTY     201   /* empty problem */
  1144 #define LPX_E_BADB      202   /* invalid initial basis */
  1145 #define LPX_E_INFEAS    203   /* infeasible initial solution */
  1146 #define LPX_E_FAULT     204   /* unable to start the search */
  1147 #define LPX_E_OBJLL     205   /* objective lower limit reached */
  1148 #define LPX_E_OBJUL     206   /* objective upper limit reached */
  1149 #define LPX_E_ITLIM     207   /* iterations limit exhausted */
  1150 #define LPX_E_TMLIM     208   /* time limit exhausted */
  1151 #define LPX_E_NOFEAS    209   /* no feasible solution */
  1152 #define LPX_E_INSTAB    210   /* numerical instability */
  1153 #define LPX_E_SING      211   /* problems with basis matrix */
  1154 #define LPX_E_NOCONV    212   /* no convergence (interior) */
  1155 #define LPX_E_NOPFS     213   /* no primal feas. sol. (LP presolver) */
  1156 #define LPX_E_NODFS     214   /* no dual feas. sol. (LP presolver) */
  1157 #define LPX_E_MIPGAP    215   /* relative mip gap tolerance reached */
  1158 
  1159 /* control parameter identifiers: */
  1160 #define LPX_K_MSGLEV    300   /* lp->msg_lev */
  1161 #define LPX_K_SCALE     301   /* lp->scale */
  1162 #define LPX_K_DUAL      302   /* lp->dual */
  1163 #define LPX_K_PRICE     303   /* lp->price */
  1164 #define LPX_K_RELAX     304   /* lp->relax */
  1165 #define LPX_K_TOLBND    305   /* lp->tol_bnd */
  1166 #define LPX_K_TOLDJ     306   /* lp->tol_dj */
  1167 #define LPX_K_TOLPIV    307   /* lp->tol_piv */
  1168 #define LPX_K_ROUND     308   /* lp->round */
  1169 #define LPX_K_OBJLL     309   /* lp->obj_ll */
  1170 #define LPX_K_OBJUL     310   /* lp->obj_ul */
  1171 #define LPX_K_ITLIM     311   /* lp->it_lim */
  1172 #define LPX_K_ITCNT     312   /* lp->it_cnt */
  1173 #define LPX_K_TMLIM     313   /* lp->tm_lim */
  1174 #define LPX_K_OUTFRQ    314   /* lp->out_frq */
  1175 #define LPX_K_OUTDLY    315   /* lp->out_dly */
  1176 #define LPX_K_BRANCH    316   /* lp->branch */
  1177 #define LPX_K_BTRACK    317   /* lp->btrack */
  1178 #define LPX_K_TOLINT    318   /* lp->tol_int */
  1179 #define LPX_K_TOLOBJ    319   /* lp->tol_obj */
  1180 #define LPX_K_MPSINFO   320   /* lp->mps_info */
  1181 #define LPX_K_MPSOBJ    321   /* lp->mps_obj */
  1182 #define LPX_K_MPSORIG   322   /* lp->mps_orig */
  1183 #define LPX_K_MPSWIDE   323   /* lp->mps_wide */
  1184 #define LPX_K_MPSFREE   324   /* lp->mps_free */
  1185 #define LPX_K_MPSSKIP   325   /* lp->mps_skip */
  1186 #define LPX_K_LPTORIG   326   /* lp->lpt_orig */
  1187 #define LPX_K_PRESOL    327   /* lp->presol */
  1188 #define LPX_K_BINARIZE  328   /* lp->binarize */
  1189 #define LPX_K_USECUTS   329   /* lp->use_cuts */
  1190 #define LPX_K_BFTYPE    330   /* lp->bfcp->type */
  1191 #define LPX_K_MIPGAP    331   /* lp->mip_gap */
  1192 
  1193 #define LPX_C_COVER     0x01  /* mixed cover cuts */
  1194 #define LPX_C_CLIQUE    0x02  /* clique cuts */
  1195 #define LPX_C_GOMORY    0x04  /* Gomory's mixed integer cuts */
  1196 #define LPX_C_MIR       0x08  /* mixed integer rounding cuts */
  1197 #define LPX_C_ALL       0xFF  /* all cuts */
  1198 
  1199 typedef struct
  1200 {     /* this structure contains results reported by the routines which
  1201          checks Karush-Kuhn-Tucker conditions (for details see comments
  1202          to those routines) */
  1203       /*--------------------------------------------------------------*/
  1204       /* xR - A * xS = 0 (KKT.PE) */
  1205       double pe_ae_max;
  1206       /* largest absolute error */
  1207       int    pe_ae_row;
  1208       /* number of row with largest absolute error */
  1209       double pe_re_max;
  1210       /* largest relative error */
  1211       int    pe_re_row;
  1212       /* number of row with largest relative error */
  1213       int    pe_quality;
  1214       /* quality of primal solution:
  1215          'H' - high
  1216          'M' - medium
  1217          'L' - low
  1218          '?' - primal solution is wrong */
  1219       /*--------------------------------------------------------------*/
  1220       /* l[k] <= x[k] <= u[k] (KKT.PB) */
  1221       double pb_ae_max;
  1222       /* largest absolute error */
  1223       int    pb_ae_ind;
  1224       /* number of variable with largest absolute error */
  1225       double pb_re_max;
  1226       /* largest relative error */
  1227       int    pb_re_ind;
  1228       /* number of variable with largest relative error */
  1229       int    pb_quality;
  1230       /* quality of primal feasibility:
  1231          'H' - high
  1232          'M' - medium
  1233          'L' - low
  1234          '?' - primal solution is infeasible */
  1235       /*--------------------------------------------------------------*/
  1236       /* A' * (dR - cR) + (dS - cS) = 0 (KKT.DE) */
  1237       double de_ae_max;
  1238       /* largest absolute error */
  1239       int    de_ae_col;
  1240       /* number of column with largest absolute error */
  1241       double de_re_max;
  1242       /* largest relative error */
  1243       int    de_re_col;
  1244       /* number of column with largest relative error */
  1245       int    de_quality;
  1246       /* quality of dual solution:
  1247          'H' - high
  1248          'M' - medium
  1249          'L' - low
  1250          '?' - dual solution is wrong */
  1251       /*--------------------------------------------------------------*/
  1252       /* d[k] >= 0 or d[k] <= 0 (KKT.DB) */
  1253       double db_ae_max;
  1254       /* largest absolute error */
  1255       int    db_ae_ind;
  1256       /* number of variable with largest absolute error */
  1257       double db_re_max;
  1258       /* largest relative error */
  1259       int    db_re_ind;
  1260       /* number of variable with largest relative error */
  1261       int    db_quality;
  1262       /* quality of dual feasibility:
  1263          'H' - high
  1264          'M' - medium
  1265          'L' - low
  1266          '?' - dual solution is infeasible */
  1267       /*--------------------------------------------------------------*/
  1268       /* (x[k] - bound of x[k]) * d[k] = 0 (KKT.CS) */
  1269       double cs_ae_max;
  1270       /* largest absolute error */
  1271       int    cs_ae_ind;
  1272       /* number of variable with largest absolute error */
  1273       double cs_re_max;
  1274       /* largest relative error */
  1275       int    cs_re_ind;
  1276       /* number of variable with largest relative error */
  1277       int    cs_quality;
  1278       /* quality of complementary slackness:
  1279          'H' - high
  1280          'M' - medium
  1281          'L' - low
  1282          '?' - primal and dual solutions are not complementary */
  1283 } LPXKKT;
  1284 
  1285 #define lpx_create_prob _glp_lpx_create_prob
  1286 LPX *lpx_create_prob(void);
  1287 /* create problem object */
  1288 
  1289 #define lpx_set_prob_name _glp_lpx_set_prob_name
  1290 void lpx_set_prob_name(LPX *lp, const char *name);
  1291 /* assign (change) problem name */
  1292 
  1293 #define lpx_set_obj_name _glp_lpx_set_obj_name
  1294 void lpx_set_obj_name(LPX *lp, const char *name);
  1295 /* assign (change) objective function name */
  1296 
  1297 #define lpx_set_obj_dir _glp_lpx_set_obj_dir
  1298 void lpx_set_obj_dir(LPX *lp, int dir);
  1299 /* set (change) optimization direction flag */
  1300 
  1301 #define lpx_add_rows _glp_lpx_add_rows
  1302 int lpx_add_rows(LPX *lp, int nrs);
  1303 /* add new rows to problem object */
  1304 
  1305 #define lpx_add_cols _glp_lpx_add_cols
  1306 int lpx_add_cols(LPX *lp, int ncs);
  1307 /* add new columns to problem object */
  1308 
  1309 #define lpx_set_row_name _glp_lpx_set_row_name
  1310 void lpx_set_row_name(LPX *lp, int i, const char *name);
  1311 /* assign (change) row name */
  1312 
  1313 #define lpx_set_col_name _glp_lpx_set_col_name
  1314 void lpx_set_col_name(LPX *lp, int j, const char *name);
  1315 /* assign (change) column name */
  1316 
  1317 #define lpx_set_row_bnds _glp_lpx_set_row_bnds
  1318 void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub);
  1319 /* set (change) row bounds */
  1320 
  1321 #define lpx_set_col_bnds _glp_lpx_set_col_bnds
  1322 void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub);
  1323 /* set (change) column bounds */
  1324 
  1325 #define lpx_set_obj_coef _glp_lpx_set_obj_coef
  1326 void lpx_set_obj_coef(glp_prob *lp, int j, double coef);
  1327 /* set (change) obj. coefficient or constant term */
  1328 
  1329 #define lpx_set_mat_row _glp_lpx_set_mat_row
  1330 void lpx_set_mat_row(LPX *lp, int i, int len, const int ind[],
  1331       const double val[]);
  1332 /* set (replace) row of the constraint matrix */
  1333 
  1334 #define lpx_set_mat_col _glp_lpx_set_mat_col
  1335 void lpx_set_mat_col(LPX *lp, int j, int len, const int ind[],
  1336       const double val[]);
  1337 /* set (replace) column of the constraint matrix */
  1338 
  1339 #define lpx_load_matrix _glp_lpx_load_matrix
  1340 void lpx_load_matrix(LPX *lp, int ne, const int ia[], const int ja[],
  1341       const double ar[]);
  1342 /* load (replace) the whole constraint matrix */
  1343 
  1344 #define lpx_del_rows _glp_lpx_del_rows
  1345 void lpx_del_rows(LPX *lp, int nrs, const int num[]);
  1346 /* delete specified rows from problem object */
  1347 
  1348 #define lpx_del_cols _glp_lpx_del_cols
  1349 void lpx_del_cols(LPX *lp, int ncs, const int num[]);
  1350 /* delete specified columns from problem object */
  1351 
  1352 #define lpx_delete_prob _glp_lpx_delete_prob
  1353 void lpx_delete_prob(LPX *lp);
  1354 /* delete problem object */
  1355 
  1356 #define lpx_get_prob_name _glp_lpx_get_prob_name
  1357 const char *lpx_get_prob_name(LPX *lp);
  1358 /* retrieve problem name */
  1359 
  1360 #define lpx_get_obj_name _glp_lpx_get_obj_name
  1361 const char *lpx_get_obj_name(LPX *lp);
  1362 /* retrieve objective function name */
  1363 
  1364 #define lpx_get_obj_dir _glp_lpx_get_obj_dir
  1365 int lpx_get_obj_dir(LPX *lp);
  1366 /* retrieve optimization direction flag */
  1367 
  1368 #define lpx_get_num_rows _glp_lpx_get_num_rows
  1369 int lpx_get_num_rows(LPX *lp);
  1370 /* retrieve number of rows */
  1371 
  1372 #define lpx_get_num_cols _glp_lpx_get_num_cols
  1373 int lpx_get_num_cols(LPX *lp);
  1374 /* retrieve number of columns */
  1375 
  1376 #define lpx_get_row_name _glp_lpx_get_row_name
  1377 const char *lpx_get_row_name(LPX *lp, int i);
  1378 /* retrieve row name */
  1379 
  1380 #define lpx_get_col_name _glp_lpx_get_col_name
  1381 const char *lpx_get_col_name(LPX *lp, int j);
  1382 /* retrieve column name */
  1383 
  1384 #define lpx_get_row_type _glp_lpx_get_row_type
  1385 int lpx_get_row_type(LPX *lp, int i);
  1386 /* retrieve row type */
  1387 
  1388 #define lpx_get_row_lb _glp_lpx_get_row_lb
  1389 double lpx_get_row_lb(LPX *lp, int i);
  1390 /* retrieve row lower bound */
  1391 
  1392 #define lpx_get_row_ub _glp_lpx_get_row_ub
  1393 double lpx_get_row_ub(LPX *lp, int i);
  1394 /* retrieve row upper bound */
  1395 
  1396 #define lpx_get_row_bnds _glp_lpx_get_row_bnds
  1397 void lpx_get_row_bnds(LPX *lp, int i, int *typx, double *lb,
  1398       double *ub);
  1399 /* retrieve row bounds */
  1400 
  1401 #define lpx_get_col_type _glp_lpx_get_col_type
  1402 int lpx_get_col_type(LPX *lp, int j);
  1403 /* retrieve column type */
  1404 
  1405 #define lpx_get_col_lb _glp_lpx_get_col_lb
  1406 double lpx_get_col_lb(LPX *lp, int j);
  1407 /* retrieve column lower bound */
  1408 
  1409 #define lpx_get_col_ub _glp_lpx_get_col_ub
  1410 double lpx_get_col_ub(LPX *lp, int j);
  1411 /* retrieve column upper bound */
  1412 
  1413 #define lpx_get_col_bnds _glp_lpx_get_col_bnds
  1414 void lpx_get_col_bnds(LPX *lp, int j, int *typx, double *lb,
  1415       double *ub);
  1416 /* retrieve column bounds */
  1417 
  1418 #define lpx_get_obj_coef _glp_lpx_get_obj_coef
  1419 double lpx_get_obj_coef(LPX *lp, int j);
  1420 /* retrieve obj. coefficient or constant term */
  1421 
  1422 #define lpx_get_num_nz _glp_lpx_get_num_nz
  1423 int lpx_get_num_nz(LPX *lp);
  1424 /* retrieve number of constraint coefficients */
  1425 
  1426 #define lpx_get_mat_row _glp_lpx_get_mat_row
  1427 int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[]);
  1428 /* retrieve row of the constraint matrix */
  1429 
  1430 #define lpx_get_mat_col _glp_lpx_get_mat_col
  1431 int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[]);
  1432 /* retrieve column of the constraint matrix */
  1433 
  1434 #define lpx_create_index _glp_lpx_create_index
  1435 void lpx_create_index(LPX *lp);
  1436 /* create the name index */
  1437 
  1438 #define lpx_find_row _glp_lpx_find_row
  1439 int lpx_find_row(LPX *lp, const char *name);
  1440 /* find row by its name */
  1441 
  1442 #define lpx_find_col _glp_lpx_find_col
  1443 int lpx_find_col(LPX *lp, const char *name);
  1444 /* find column by its name */
  1445 
  1446 #define lpx_delete_index _glp_lpx_delete_index
  1447 void lpx_delete_index(LPX *lp);
  1448 /* delete the name index */
  1449 
  1450 #define lpx_scale_prob _glp_lpx_scale_prob
  1451 void lpx_scale_prob(LPX *lp);
  1452 /* scale problem data */
  1453 
  1454 #define lpx_unscale_prob _glp_lpx_unscale_prob
  1455 void lpx_unscale_prob(LPX *lp);
  1456 /* unscale problem data */
  1457 
  1458 #define lpx_set_row_stat _glp_lpx_set_row_stat
  1459 void lpx_set_row_stat(LPX *lp, int i, int stat);
  1460 /* set (change) row status */
  1461 
  1462 #define lpx_set_col_stat _glp_lpx_set_col_stat
  1463 void lpx_set_col_stat(LPX *lp, int j, int stat);
  1464 /* set (change) column status */
  1465 
  1466 #define lpx_std_basis _glp_lpx_std_basis
  1467 void lpx_std_basis(LPX *lp);
  1468 /* construct standard initial LP basis */
  1469 
  1470 #define lpx_adv_basis _glp_lpx_adv_basis
  1471 void lpx_adv_basis(LPX *lp);
  1472 /* construct advanced initial LP basis */
  1473 
  1474 #define lpx_cpx_basis _glp_lpx_cpx_basis
  1475 void lpx_cpx_basis(LPX *lp);
  1476 /* construct Bixby's initial LP basis */
  1477 
  1478 #define lpx_simplex _glp_lpx_simplex
  1479 int lpx_simplex(LPX *lp);
  1480 /* easy-to-use driver to the simplex method */
  1481 
  1482 #define lpx_exact _glp_lpx_exact
  1483 int lpx_exact(LPX *lp);
  1484 /* easy-to-use driver to the exact simplex method */
  1485 
  1486 #define lpx_get_status _glp_lpx_get_status
  1487 int lpx_get_status(LPX *lp);
  1488 /* retrieve generic status of basic solution */
  1489 
  1490 #define lpx_get_prim_stat _glp_lpx_get_prim_stat
  1491 int lpx_get_prim_stat(LPX *lp);
  1492 /* retrieve primal status of basic solution */
  1493 
  1494 #define lpx_get_dual_stat _glp_lpx_get_dual_stat
  1495 int lpx_get_dual_stat(LPX *lp);
  1496 /* retrieve dual status of basic solution */
  1497 
  1498 #define lpx_get_obj_val _glp_lpx_get_obj_val
  1499 double lpx_get_obj_val(LPX *lp);
  1500 /* retrieve objective value (basic solution) */
  1501 
  1502 #define lpx_get_row_stat _glp_lpx_get_row_stat
  1503 int lpx_get_row_stat(LPX *lp, int i);
  1504 /* retrieve row status (basic solution) */
  1505 
  1506 #define lpx_get_row_prim _glp_lpx_get_row_prim
  1507 double lpx_get_row_prim(LPX *lp, int i);
  1508 /* retrieve row primal value (basic solution) */
  1509 
  1510 #define lpx_get_row_dual _glp_lpx_get_row_dual
  1511 double lpx_get_row_dual(LPX *lp, int i);
  1512 /* retrieve row dual value (basic solution) */
  1513 
  1514 #define lpx_get_row_info _glp_lpx_get_row_info
  1515 void lpx_get_row_info(LPX *lp, int i, int *tagx, double *vx,
  1516       double *dx);
  1517 /* obtain row solution information */
  1518 
  1519 #define lpx_get_col_stat _glp_lpx_get_col_stat
  1520 int lpx_get_col_stat(LPX *lp, int j);
  1521 /* retrieve column status (basic solution) */
  1522 
  1523 #define lpx_get_col_prim _glp_lpx_get_col_prim
  1524 double lpx_get_col_prim(LPX *lp, int j);
  1525 /* retrieve column primal value (basic solution) */
  1526 
  1527 #define lpx_get_col_dual _glp_lpx_get_col_dual
  1528 double lpx_get_col_dual(glp_prob *lp, int j);
  1529 /* retrieve column dual value (basic solution) */
  1530 
  1531 #define lpx_get_col_info _glp_lpx_get_col_info
  1532 void lpx_get_col_info(LPX *lp, int j, int *tagx, double *vx,
  1533       double *dx);
  1534 /* obtain column solution information (obsolete) */
  1535 
  1536 #define lpx_get_ray_info _glp_lpx_get_ray_info
  1537 int lpx_get_ray_info(LPX *lp);
  1538 /* determine what causes primal unboundness */
  1539 
  1540 #define lpx_check_kkt _glp_lpx_check_kkt
  1541 void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt);
  1542 /* check Karush-Kuhn-Tucker conditions */
  1543 
  1544 #define lpx_warm_up _glp_lpx_warm_up
  1545 int lpx_warm_up(LPX *lp);
  1546 /* "warm up" LP basis */
  1547 
  1548 #define lpx_eval_tab_row _glp_lpx_eval_tab_row
  1549 int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[]);
  1550 /* compute row of the simplex table */
  1551 
  1552 #define lpx_eval_tab_col _glp_lpx_eval_tab_col
  1553 int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[]);
  1554 /* compute column of the simplex table */
  1555 
  1556 #define lpx_transform_row _glp_lpx_transform_row
  1557 int lpx_transform_row(LPX *lp, int len, int ind[], double val[]);
  1558 /* transform explicitly specified row */
  1559 
  1560 #define lpx_transform_col _glp_lpx_transform_col
  1561 int lpx_transform_col(LPX *lp, int len, int ind[], double val[]);
  1562 /* transform explicitly specified column */
  1563 
  1564 #define lpx_prim_ratio_test _glp_lpx_prim_ratio_test
  1565 int lpx_prim_ratio_test(LPX *lp, int len, const int ind[],
  1566       const double val[], int how, double tol);
  1567 /* perform primal ratio test */
  1568 
  1569 #define lpx_dual_ratio_test _glp_lpx_dual_ratio_test
  1570 int lpx_dual_ratio_test(LPX *lp, int len, const int ind[],
  1571       const double val[], int how, double tol);
  1572 /* perform dual ratio test */
  1573 
  1574 #define lpx_interior _glp_lpx_interior
  1575 int lpx_interior(LPX *lp);
  1576 /* easy-to-use driver to the interior point method */
  1577 
  1578 #define lpx_ipt_status _glp_lpx_ipt_status
  1579 int lpx_ipt_status(LPX *lp);
  1580 /* retrieve status of interior-point solution */
  1581 
  1582 #define lpx_ipt_obj_val _glp_lpx_ipt_obj_val
  1583 double lpx_ipt_obj_val(LPX *lp);
  1584 /* retrieve objective value (interior point) */
  1585 
  1586 #define lpx_ipt_row_prim _glp_lpx_ipt_row_prim
  1587 double lpx_ipt_row_prim(LPX *lp, int i);
  1588 /* retrieve row primal value (interior point) */
  1589 
  1590 #define lpx_ipt_row_dual _glp_lpx_ipt_row_dual
  1591 double lpx_ipt_row_dual(LPX *lp, int i);
  1592 /* retrieve row dual value (interior point) */
  1593 
  1594 #define lpx_ipt_col_prim _glp_lpx_ipt_col_prim
  1595 double lpx_ipt_col_prim(LPX *lp, int j);
  1596 /* retrieve column primal value (interior point) */
  1597 
  1598 #define lpx_ipt_col_dual _glp_lpx_ipt_col_dual
  1599 double lpx_ipt_col_dual(LPX *lp, int j);
  1600 /* retrieve column dual value (interior point) */
  1601 
  1602 #define lpx_set_class _glp_lpx_set_class
  1603 void lpx_set_class(LPX *lp, int klass);
  1604 /* set problem class */
  1605 
  1606 #define lpx_get_class _glp_lpx_get_class
  1607 int lpx_get_class(LPX *lp);
  1608 /* determine problem klass */
  1609 
  1610 #define lpx_set_col_kind _glp_lpx_set_col_kind
  1611 void lpx_set_col_kind(LPX *lp, int j, int kind);
  1612 /* set (change) column kind */
  1613 
  1614 #define lpx_get_col_kind _glp_lpx_get_col_kind
  1615 int lpx_get_col_kind(LPX *lp, int j);
  1616 /* retrieve column kind */
  1617 
  1618 #define lpx_get_num_int _glp_lpx_get_num_int
  1619 int lpx_get_num_int(LPX *lp);
  1620 /* retrieve number of integer columns */
  1621 
  1622 #define lpx_get_num_bin _glp_lpx_get_num_bin
  1623 int lpx_get_num_bin(LPX *lp);
  1624 /* retrieve number of binary columns */
  1625 
  1626 #define lpx_integer _glp_lpx_integer
  1627 int lpx_integer(LPX *lp);
  1628 /* easy-to-use driver to the branch-and-bound method */
  1629 
  1630 #define lpx_intopt _glp_lpx_intopt
  1631 int lpx_intopt(LPX *lp);
  1632 /* easy-to-use driver to the branch-and-bound method */
  1633 
  1634 #define lpx_mip_status _glp_lpx_mip_status
  1635 int lpx_mip_status(LPX *lp);
  1636 /* retrieve status of MIP solution */
  1637 
  1638 #define lpx_mip_obj_val _glp_lpx_mip_obj_val
  1639 double lpx_mip_obj_val(LPX *lp);
  1640 /* retrieve objective value (MIP solution) */
  1641 
  1642 #define lpx_mip_row_val _glp_lpx_mip_row_val
  1643 double lpx_mip_row_val(LPX *lp, int i);
  1644 /* retrieve row value (MIP solution) */
  1645 
  1646 #define lpx_mip_col_val _glp_lpx_mip_col_val
  1647 double lpx_mip_col_val(LPX *lp, int j);
  1648 /* retrieve column value (MIP solution) */
  1649 
  1650 #define lpx_check_int _glp_lpx_check_int
  1651 void lpx_check_int(LPX *lp, LPXKKT *kkt);
  1652 /* check integer feasibility conditions */
  1653 
  1654 #define lpx_reset_parms _glp_lpx_reset_parms
  1655 void lpx_reset_parms(LPX *lp);
  1656 /* reset control parameters to default values */
  1657 
  1658 #define lpx_set_int_parm _glp_lpx_set_int_parm
  1659 void lpx_set_int_parm(LPX *lp, int parm, int val);
  1660 /* set (change) integer control parameter */
  1661 
  1662 #define lpx_get_int_parm _glp_lpx_get_int_parm
  1663 int lpx_get_int_parm(LPX *lp, int parm);
  1664 /* query integer control parameter */
  1665 
  1666 #define lpx_set_real_parm _glp_lpx_set_real_parm
  1667 void lpx_set_real_parm(LPX *lp, int parm, double val);
  1668 /* set (change) real control parameter */
  1669 
  1670 #define lpx_get_real_parm _glp_lpx_get_real_parm
  1671 double lpx_get_real_parm(LPX *lp, int parm);
  1672 /* query real control parameter */
  1673 
  1674 #define lpx_read_mps _glp_lpx_read_mps
  1675 LPX *lpx_read_mps(const char *fname);
  1676 /* read problem data in fixed MPS format */
  1677 
  1678 #define lpx_write_mps _glp_lpx_write_mps
  1679 int lpx_write_mps(LPX *lp, const char *fname);
  1680 /* write problem data in fixed MPS format */
  1681 
  1682 #define lpx_read_bas _glp_lpx_read_bas
  1683 int lpx_read_bas(LPX *lp, const char *fname);
  1684 /* read LP basis in fixed MPS format */
  1685 
  1686 #define lpx_write_bas _glp_lpx_write_bas
  1687 int lpx_write_bas(LPX *lp, const char *fname);
  1688 /* write LP basis in fixed MPS format */
  1689 
  1690 #define lpx_read_freemps _glp_lpx_read_freemps
  1691 LPX *lpx_read_freemps(const char *fname);
  1692 /* read problem data in free MPS format */
  1693 
  1694 #define lpx_write_freemps _glp_lpx_write_freemps
  1695 int lpx_write_freemps(LPX *lp, const char *fname);
  1696 /* write problem data in free MPS format */
  1697 
  1698 #define lpx_read_cpxlp _glp_lpx_read_cpxlp
  1699 LPX *lpx_read_cpxlp(const char *fname);
  1700 /* read problem data in CPLEX LP format */
  1701 
  1702 #define lpx_write_cpxlp _glp_lpx_write_cpxlp
  1703 int lpx_write_cpxlp(LPX *lp, const char *fname);
  1704 /* write problem data in CPLEX LP format */
  1705 
  1706 #define lpx_read_model _glp_lpx_read_model
  1707 LPX *lpx_read_model(const char *model, const char *data,
  1708       const char *output);
  1709 /* read LP/MIP model written in GNU MathProg language */
  1710 
  1711 #define lpx_print_prob _glp_lpx_print_prob
  1712 int lpx_print_prob(LPX *lp, const char *fname);
  1713 /* write problem data in plain text format */
  1714 
  1715 #define lpx_print_sol _glp_lpx_print_sol
  1716 int lpx_print_sol(LPX *lp, const char *fname);
  1717 /* write LP problem solution in printable format */
  1718 
  1719 #define lpx_print_sens_bnds _glp_lpx_print_sens_bnds
  1720 int lpx_print_sens_bnds(LPX *lp, const char *fname);
  1721 /* write bounds sensitivity information */
  1722 
  1723 #define lpx_print_ips _glp_lpx_print_ips
  1724 int lpx_print_ips(LPX *lp, const char *fname);
  1725 /* write interior point solution in printable format */
  1726 
  1727 #define lpx_print_mip _glp_lpx_print_mip
  1728 int lpx_print_mip(LPX *lp, const char *fname);
  1729 /* write MIP problem solution in printable format */
  1730 
  1731 #define lpx_is_b_avail _glp_lpx_is_b_avail
  1732 int lpx_is_b_avail(LPX *lp);
  1733 /* check if LP basis is available */
  1734 
  1735 #define lpx_write_pb _glp_lpx_write_pb
  1736 int lpx_write_pb(LPX *lp, const char *fname, int normalized,
  1737       int binarize);
  1738 /* write problem data in (normalized) OPB format */
  1739 
  1740 #define lpx_main _glp_lpx_main
  1741 int lpx_main(int argc, const char *argv[]);
  1742 /* stand-alone LP/MIP solver */
  1743 
  1744 #ifdef __cplusplus
  1745 }
  1746 #endif
  1747 
  1748 #endif
  1749 
  1750 /* eof */