src/glpspm.c
changeset 1 c445c931472f
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/glpspm.c	Mon Dec 06 13:09:21 2010 +0100
     1.3 @@ -0,0 +1,846 @@
     1.4 +/* glpspm.c */
     1.5 +
     1.6 +/***********************************************************************
     1.7 +*  This code is part of GLPK (GNU Linear Programming Kit).
     1.8 +*
     1.9 +*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
    1.10 +*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
    1.11 +*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
    1.12 +*  E-mail: <mao@gnu.org>.
    1.13 +*
    1.14 +*  GLPK is free software: you can redistribute it and/or modify it
    1.15 +*  under the terms of the GNU General Public License as published by
    1.16 +*  the Free Software Foundation, either version 3 of the License, or
    1.17 +*  (at your option) any later version.
    1.18 +*
    1.19 +*  GLPK is distributed in the hope that it will be useful, but WITHOUT
    1.20 +*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    1.21 +*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    1.22 +*  License for more details.
    1.23 +*
    1.24 +*  You should have received a copy of the GNU General Public License
    1.25 +*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    1.26 +***********************************************************************/
    1.27 +
    1.28 +#include "glphbm.h"
    1.29 +#include "glprgr.h"
    1.30 +#include "glpspm.h"
    1.31 +
    1.32 +/***********************************************************************
    1.33 +*  NAME
    1.34 +*
    1.35 +*  spm_create_mat - create general sparse matrix
    1.36 +*
    1.37 +*  SYNOPSIS
    1.38 +*
    1.39 +*  #include "glpspm.h"
    1.40 +*  SPM *spm_create_mat(int m, int n);
    1.41 +*
    1.42 +*  DESCRIPTION
    1.43 +*
    1.44 +*  The routine spm_create_mat creates a general sparse matrix having
    1.45 +*  m rows and n columns. Being created the matrix is zero (empty), i.e.
    1.46 +*  has no elements.
    1.47 +*
    1.48 +*  RETURNS
    1.49 +*
    1.50 +*  The routine returns a pointer to the matrix created. */
    1.51 +
    1.52 +SPM *spm_create_mat(int m, int n)
    1.53 +{     SPM *A;
    1.54 +      xassert(0 <= m && m < INT_MAX);
    1.55 +      xassert(0 <= n && n < INT_MAX);
    1.56 +      A = xmalloc(sizeof(SPM));
    1.57 +      A->m = m;
    1.58 +      A->n = n;
    1.59 +      if (m == 0 || n == 0)
    1.60 +      {  A->pool = NULL;
    1.61 +         A->row = NULL;
    1.62 +         A->col = NULL;
    1.63 +      }
    1.64 +      else
    1.65 +      {  int i, j;
    1.66 +         A->pool = dmp_create_pool();
    1.67 +         A->row = xcalloc(1+m, sizeof(SPME *));
    1.68 +         for (i = 1; i <= m; i++) A->row[i] = NULL;
    1.69 +         A->col = xcalloc(1+n, sizeof(SPME *));
    1.70 +         for (j = 1; j <= n; j++) A->col[j] = NULL;
    1.71 +      }
    1.72 +      return A;
    1.73 +}
    1.74 +
    1.75 +/***********************************************************************
    1.76 +*  NAME
    1.77 +*
    1.78 +*  spm_new_elem - add new element to sparse matrix
    1.79 +*
    1.80 +*  SYNOPSIS
    1.81 +*
    1.82 +*  #include "glpspm.h"
    1.83 +*  SPME *spm_new_elem(SPM *A, int i, int j, double val);
    1.84 +*
    1.85 +*  DESCRIPTION
    1.86 +*
    1.87 +*  The routine spm_new_elem adds a new element to the specified sparse
    1.88 +*  matrix. Parameters i, j, and val specify the row number, the column
    1.89 +*  number, and a numerical value of the element, respectively.
    1.90 +*
    1.91 +*  RETURNS
    1.92 +*
    1.93 +*  The routine returns a pointer to the new element added. */
    1.94 +
    1.95 +SPME *spm_new_elem(SPM *A, int i, int j, double val)
    1.96 +{     SPME *e;
    1.97 +      xassert(1 <= i && i <= A->m);
    1.98 +      xassert(1 <= j && j <= A->n);
    1.99 +      e = dmp_get_atom(A->pool, sizeof(SPME));
   1.100 +      e->i = i;
   1.101 +      e->j = j;
   1.102 +      e->val = val;
   1.103 +      e->r_prev = NULL;
   1.104 +      e->r_next = A->row[i];
   1.105 +      if (e->r_next != NULL) e->r_next->r_prev = e;
   1.106 +      e->c_prev = NULL;
   1.107 +      e->c_next = A->col[j];
   1.108 +      if (e->c_next != NULL) e->c_next->c_prev = e;
   1.109 +      A->row[i] = A->col[j] = e;
   1.110 +      return e;
   1.111 +}
   1.112 +
   1.113 +/***********************************************************************
   1.114 +*  NAME
   1.115 +*
   1.116 +*  spm_delete_mat - delete general sparse matrix
   1.117 +*
   1.118 +*  SYNOPSIS
   1.119 +*
   1.120 +*  #include "glpspm.h"
   1.121 +*  void spm_delete_mat(SPM *A);
   1.122 +*
   1.123 +*  DESCRIPTION
   1.124 +*
   1.125 +*  The routine deletes the specified general sparse matrix freeing all
   1.126 +*  the memory allocated to this object. */
   1.127 +
   1.128 +void spm_delete_mat(SPM *A)
   1.129 +{     /* delete sparse matrix */
   1.130 +      if (A->pool != NULL) dmp_delete_pool(A->pool);
   1.131 +      if (A->row != NULL) xfree(A->row);
   1.132 +      if (A->col != NULL) xfree(A->col);
   1.133 +      xfree(A);
   1.134 +      return;
   1.135 +}
   1.136 +
   1.137 +/***********************************************************************
   1.138 +*  NAME
   1.139 +*
   1.140 +*  spm_test_mat_e - create test sparse matrix of E(n,c) class
   1.141 +*
   1.142 +*  SYNOPSIS
   1.143 +*
   1.144 +*  #include "glpspm.h"
   1.145 +*  SPM *spm_test_mat_e(int n, int c);
   1.146 +*
   1.147 +*  DESCRIPTION
   1.148 +*
   1.149 +*  The routine spm_test_mat_e creates a test sparse matrix of E(n,c)
   1.150 +*  class as described in the book: Ole 0sterby, Zahari Zlatev. Direct
   1.151 +*  Methods for Sparse Matrices. Springer-Verlag, 1983.
   1.152 +*
   1.153 +*  Matrix of E(n,c) class is a symmetric positive definite matrix of
   1.154 +*  the order n. It has the number 4 on its main diagonal and the number
   1.155 +*  -1 on its four co-diagonals, two of which are neighbour to the main
   1.156 +*  diagonal and two others are shifted from the main diagonal on the
   1.157 +*  distance c.
   1.158 +*
   1.159 +*  It is necessary that n >= 3 and 2 <= c <= n-1.
   1.160 +*
   1.161 +*  RETURNS
   1.162 +*
   1.163 +*  The routine returns a pointer to the matrix created. */
   1.164 +
   1.165 +SPM *spm_test_mat_e(int n, int c)
   1.166 +{     SPM *A;
   1.167 +      int i;
   1.168 +      xassert(n >= 3 && 2 <= c && c <= n-1);
   1.169 +      A = spm_create_mat(n, n);
   1.170 +      for (i = 1; i <= n; i++)
   1.171 +         spm_new_elem(A, i, i, 4.0);
   1.172 +      for (i = 1; i <= n-1; i++)
   1.173 +      {  spm_new_elem(A, i, i+1, -1.0);
   1.174 +         spm_new_elem(A, i+1, i, -1.0);
   1.175 +      }
   1.176 +      for (i = 1; i <= n-c; i++)
   1.177 +      {  spm_new_elem(A, i, i+c, -1.0);
   1.178 +         spm_new_elem(A, i+c, i, -1.0);
   1.179 +      }
   1.180 +      return A;
   1.181 +}
   1.182 +
   1.183 +/***********************************************************************
   1.184 +*  NAME
   1.185 +*
   1.186 +*  spm_test_mat_d - create test sparse matrix of D(n,c) class
   1.187 +*
   1.188 +*  SYNOPSIS
   1.189 +*
   1.190 +*  #include "glpspm.h"
   1.191 +*  SPM *spm_test_mat_d(int n, int c);
   1.192 +*
   1.193 +*  DESCRIPTION
   1.194 +*
   1.195 +*  The routine spm_test_mat_d creates a test sparse matrix of D(n,c)
   1.196 +*  class as described in the book: Ole 0sterby, Zahari Zlatev. Direct
   1.197 +*  Methods for Sparse Matrices. Springer-Verlag, 1983.
   1.198 +*
   1.199 +*  Matrix of D(n,c) class is a non-singular matrix of the order n. It
   1.200 +*  has unity main diagonal, three co-diagonals above the main diagonal
   1.201 +*  on the distance c, which are cyclically continued below the main
   1.202 +*  diagonal, and a triangle block of the size 10x10 in the upper right
   1.203 +*  corner.
   1.204 +*
   1.205 +*  It is necessary that n >= 14 and 1 <= c <= n-13.
   1.206 +*
   1.207 +*  RETURNS
   1.208 +*
   1.209 +*  The routine returns a pointer to the matrix created. */
   1.210 +
   1.211 +SPM *spm_test_mat_d(int n, int c)
   1.212 +{     SPM *A;
   1.213 +      int i, j;
   1.214 +      xassert(n >= 14 && 1 <= c && c <= n-13);
   1.215 +      A = spm_create_mat(n, n);
   1.216 +      for (i = 1; i <= n; i++)
   1.217 +         spm_new_elem(A, i, i, 1.0);
   1.218 +      for (i = 1; i <= n-c; i++)
   1.219 +         spm_new_elem(A, i, i+c, (double)(i+1));
   1.220 +      for (i = n-c+1; i <= n; i++)
   1.221 +         spm_new_elem(A, i, i-n+c, (double)(i+1));
   1.222 +      for (i = 1; i <= n-c-1; i++)
   1.223 +         spm_new_elem(A, i, i+c+1, (double)(-i));
   1.224 +      for (i = n-c; i <= n; i++)
   1.225 +         spm_new_elem(A, i, i-n+c+1, (double)(-i));
   1.226 +      for (i = 1; i <= n-c-2; i++)
   1.227 +         spm_new_elem(A, i, i+c+2, 16.0);
   1.228 +      for (i = n-c-1; i <= n; i++)
   1.229 +         spm_new_elem(A, i, i-n+c+2, 16.0);
   1.230 +      for (j = 1; j <= 10; j++)
   1.231 +         for (i = 1; i <= 11-j; i++)
   1.232 +            spm_new_elem(A, i, n-11+i+j, 100.0 * (double)j);
   1.233 +      return A;
   1.234 +}
   1.235 +
   1.236 +/***********************************************************************
   1.237 +*  NAME
   1.238 +*
   1.239 +*  spm_show_mat - write sparse matrix pattern in BMP file format
   1.240 +*
   1.241 +*  SYNOPSIS
   1.242 +*
   1.243 +*  #include "glpspm.h"
   1.244 +*  int spm_show_mat(const SPM *A, const char *fname);
   1.245 +*
   1.246 +*  DESCRIPTION
   1.247 +*
   1.248 +*  The routine spm_show_mat writes pattern of the specified sparse
   1.249 +*  matrix in uncompressed BMP file format (Windows bitmap) to a binary
   1.250 +*  file whose name is specified by the character string fname.
   1.251 +*
   1.252 +*  Each pixel corresponds to one matrix element. The pixel colors have
   1.253 +*  the following meaning:
   1.254 +*
   1.255 +*  Black    structurally zero element
   1.256 +*  White    positive element
   1.257 +*  Cyan     negative element
   1.258 +*  Green    zero element
   1.259 +*  Red      duplicate element
   1.260 +*
   1.261 +*  RETURNS
   1.262 +*
   1.263 +*  If no error occured, the routine returns zero. Otherwise, it prints
   1.264 +*  an appropriate error message and returns non-zero. */
   1.265 +
   1.266 +int spm_show_mat(const SPM *A, const char *fname)
   1.267 +{     int m = A->m;
   1.268 +      int n = A->n;
   1.269 +      int i, j, k, ret;
   1.270 +      char *map;
   1.271 +      xprintf("spm_show_mat: writing matrix pattern to `%s'...\n",
   1.272 +         fname);
   1.273 +      xassert(1 <= m && m <= 32767);
   1.274 +      xassert(1 <= n && n <= 32767);
   1.275 +      map = xmalloc(m * n);
   1.276 +      memset(map, 0x08, m * n);
   1.277 +      for (i = 1; i <= m; i++)
   1.278 +      {  SPME *e;
   1.279 +         for (e = A->row[i]; e != NULL; e = e->r_next)
   1.280 +         {  j = e->j;
   1.281 +            xassert(1 <= j && j <= n);
   1.282 +            k = n * (i - 1) + (j - 1);
   1.283 +            if (map[k] != 0x08)
   1.284 +               map[k] = 0x0C;
   1.285 +            else if (e->val > 0.0)
   1.286 +               map[k] = 0x0F;
   1.287 +            else if (e->val < 0.0)
   1.288 +               map[k] = 0x0B;
   1.289 +            else
   1.290 +               map[k] = 0x0A;
   1.291 +         }
   1.292 +      }
   1.293 +      ret = rgr_write_bmp16(fname, m, n, map);
   1.294 +      xfree(map);
   1.295 +      return ret;
   1.296 +}
   1.297 +
   1.298 +/***********************************************************************
   1.299 +*  NAME
   1.300 +*
   1.301 +*  spm_read_hbm - read sparse matrix in Harwell-Boeing format
   1.302 +*
   1.303 +*  SYNOPSIS
   1.304 +*
   1.305 +*  #include "glpspm.h"
   1.306 +*  SPM *spm_read_hbm(const char *fname);
   1.307 +*
   1.308 +*  DESCRIPTION
   1.309 +*
   1.310 +*  The routine spm_read_hbm reads a sparse matrix in the Harwell-Boeing
   1.311 +*  format from a text file whose name is the character string fname.
   1.312 +*
   1.313 +*  Detailed description of the Harwell-Boeing format recognised by this
   1.314 +*  routine can be found in the following report:
   1.315 +*
   1.316 +*  I.S.Duff, R.G.Grimes, J.G.Lewis. User's Guide for the Harwell-Boeing
   1.317 +*  Sparse Matrix Collection (Release I), TR/PA/92/86, October 1992.
   1.318 +*
   1.319 +*  NOTE
   1.320 +*
   1.321 +*  The routine spm_read_hbm reads the matrix "as is", due to which zero
   1.322 +*  and/or duplicate elements can appear in the matrix.
   1.323 +*
   1.324 +*  RETURNS
   1.325 +*
   1.326 +*  If no error occured, the routine returns a pointer to the matrix
   1.327 +*  created. Otherwise, the routine prints an appropriate error message
   1.328 +*  and returns NULL. */
   1.329 +
   1.330 +SPM *spm_read_hbm(const char *fname)
   1.331 +{     SPM *A = NULL;
   1.332 +      HBM *hbm;
   1.333 +      int nrow, ncol, nnzero, i, j, beg, end, ptr, *colptr, *rowind;
   1.334 +      double val, *values;
   1.335 +      char *mxtype;
   1.336 +      hbm = hbm_read_mat(fname);
   1.337 +      if (hbm == NULL)
   1.338 +      {  xprintf("spm_read_hbm: unable to read matrix\n");
   1.339 +         goto fini;
   1.340 +      }
   1.341 +      mxtype = hbm->mxtype;
   1.342 +      nrow = hbm->nrow;
   1.343 +      ncol = hbm->ncol;
   1.344 +      nnzero = hbm->nnzero;
   1.345 +      colptr = hbm->colptr;
   1.346 +      rowind = hbm->rowind;
   1.347 +      values = hbm->values;
   1.348 +      if (!(strcmp(mxtype, "RSA") == 0 || strcmp(mxtype, "PSA") == 0 ||
   1.349 +            strcmp(mxtype, "RUA") == 0 || strcmp(mxtype, "PUA") == 0 ||
   1.350 +            strcmp(mxtype, "RRA") == 0 || strcmp(mxtype, "PRA") == 0))
   1.351 +      {  xprintf("spm_read_hbm: matrix type `%s' not supported\n",
   1.352 +            mxtype);
   1.353 +         goto fini;
   1.354 +      }
   1.355 +      A = spm_create_mat(nrow, ncol);
   1.356 +      if (mxtype[1] == 'S' || mxtype[1] == 'U')
   1.357 +         xassert(nrow == ncol);
   1.358 +      for (j = 1; j <= ncol; j++)
   1.359 +      {  beg = colptr[j];
   1.360 +         end = colptr[j+1];
   1.361 +         xassert(1 <= beg && beg <= end && end <= nnzero + 1);
   1.362 +         for (ptr = beg; ptr < end; ptr++)
   1.363 +         {  i = rowind[ptr];
   1.364 +            xassert(1 <= i && i <= nrow);
   1.365 +            if (mxtype[0] == 'R')
   1.366 +               val = values[ptr];
   1.367 +            else
   1.368 +               val = 1.0;
   1.369 +            spm_new_elem(A, i, j, val);
   1.370 +            if (mxtype[1] == 'S' && i != j)
   1.371 +               spm_new_elem(A, j, i, val);
   1.372 +         }
   1.373 +      }
   1.374 +fini: if (hbm != NULL) hbm_free_mat(hbm);
   1.375 +      return A;
   1.376 +}
   1.377 +
   1.378 +/***********************************************************************
   1.379 +*  NAME
   1.380 +*
   1.381 +*  spm_count_nnz - determine number of non-zeros in sparse matrix
   1.382 +*
   1.383 +*  SYNOPSIS
   1.384 +*
   1.385 +*  #include "glpspm.h"
   1.386 +*  int spm_count_nnz(const SPM *A);
   1.387 +*
   1.388 +*  RETURNS
   1.389 +*
   1.390 +*  The routine spm_count_nnz returns the number of structural non-zero
   1.391 +*  elements in the specified sparse matrix. */
   1.392 +
   1.393 +int spm_count_nnz(const SPM *A)
   1.394 +{     SPME *e;
   1.395 +      int i, nnz = 0;
   1.396 +      for (i = 1; i <= A->m; i++)
   1.397 +         for (e = A->row[i]; e != NULL; e = e->r_next) nnz++;
   1.398 +      return nnz;
   1.399 +}
   1.400 +
   1.401 +/***********************************************************************
   1.402 +*  NAME
   1.403 +*
   1.404 +*  spm_drop_zeros - remove zero elements from sparse matrix
   1.405 +*
   1.406 +*  SYNOPSIS
   1.407 +*
   1.408 +*  #include "glpspm.h"
   1.409 +*  int spm_drop_zeros(SPM *A, double eps);
   1.410 +*
   1.411 +*  DESCRIPTION
   1.412 +*
   1.413 +*  The routine spm_drop_zeros removes all elements from the specified
   1.414 +*  sparse matrix, whose absolute value is less than eps.
   1.415 +*
   1.416 +*  If the parameter eps is 0, only zero elements are removed from the
   1.417 +*  matrix.
   1.418 +*
   1.419 +*  RETURNS
   1.420 +*
   1.421 +*  The routine returns the number of elements removed. */
   1.422 +
   1.423 +int spm_drop_zeros(SPM *A, double eps)
   1.424 +{     SPME *e, *next;
   1.425 +      int i, count = 0;
   1.426 +      for (i = 1; i <= A->m; i++)
   1.427 +      {  for (e = A->row[i]; e != NULL; e = next)
   1.428 +         {  next = e->r_next;
   1.429 +            if (e->val == 0.0 || fabs(e->val) < eps)
   1.430 +            {  /* remove element from the row list */
   1.431 +               if (e->r_prev == NULL)
   1.432 +                  A->row[e->i] = e->r_next;
   1.433 +               else
   1.434 +                  e->r_prev->r_next = e->r_next;
   1.435 +               if (e->r_next == NULL)
   1.436 +                  ;
   1.437 +               else
   1.438 +                  e->r_next->r_prev = e->r_prev;
   1.439 +               /* remove element from the column list */
   1.440 +               if (e->c_prev == NULL)
   1.441 +                  A->col[e->j] = e->c_next;
   1.442 +               else
   1.443 +                  e->c_prev->c_next = e->c_next;
   1.444 +               if (e->c_next == NULL)
   1.445 +                  ;
   1.446 +               else
   1.447 +                  e->c_next->c_prev = e->c_prev;
   1.448 +               /* return element to the memory pool */
   1.449 +               dmp_free_atom(A->pool, e, sizeof(SPME));
   1.450 +               count++;
   1.451 +            }
   1.452 +         }
   1.453 +      }
   1.454 +      return count;
   1.455 +}
   1.456 +
   1.457 +/***********************************************************************
   1.458 +*  NAME
   1.459 +*
   1.460 +*  spm_read_mat - read sparse matrix from text file
   1.461 +*
   1.462 +*  SYNOPSIS
   1.463 +*
   1.464 +*  #include "glpspm.h"
   1.465 +*  SPM *spm_read_mat(const char *fname);
   1.466 +*
   1.467 +*  DESCRIPTION
   1.468 +*
   1.469 +*  The routine reads a sparse matrix from a text file whose name is
   1.470 +*  specified by the parameter fname.
   1.471 +*
   1.472 +*  For the file format see description of the routine spm_write_mat.
   1.473 +*
   1.474 +*  RETURNS
   1.475 +*
   1.476 +*  On success the routine returns a pointer to the matrix created,
   1.477 +*  otherwise NULL. */
   1.478 +
   1.479 +#if 1
   1.480 +SPM *spm_read_mat(const char *fname)
   1.481 +{     xassert(fname != fname);
   1.482 +      return NULL;
   1.483 +}
   1.484 +#else
   1.485 +SPM *spm_read_mat(const char *fname)
   1.486 +{     SPM *A = NULL;
   1.487 +      PDS *pds;
   1.488 +      jmp_buf jump;
   1.489 +      int i, j, k, m, n, nnz, fail = 0;
   1.490 +      double val;
   1.491 +      xprintf("spm_read_mat: reading matrix from `%s'...\n", fname);
   1.492 +      pds = pds_open_file(fname);
   1.493 +      if (pds == NULL)
   1.494 +      {  xprintf("spm_read_mat: unable to open `%s' - %s\n", fname,
   1.495 +            strerror(errno));
   1.496 +         fail = 1;
   1.497 +         goto done;
   1.498 +      }
   1.499 +      if (setjmp(jump))
   1.500 +      {  fail = 1;
   1.501 +         goto done;
   1.502 +      }
   1.503 +      pds_set_jump(pds, jump);
   1.504 +      /* number of rows, number of columns, number of non-zeros */
   1.505 +      m = pds_scan_int(pds);
   1.506 +      if (m < 0)
   1.507 +         pds_error(pds, "invalid number of rows\n");
   1.508 +      n = pds_scan_int(pds);
   1.509 +      if (n < 0)
   1.510 +         pds_error(pds, "invalid number of columns\n");
   1.511 +      nnz = pds_scan_int(pds);
   1.512 +      if (nnz < 0)
   1.513 +         pds_error(pds, "invalid number of non-zeros\n");
   1.514 +      /* create matrix */
   1.515 +      xprintf("spm_read_mat: %d rows, %d columns, %d non-zeros\n",
   1.516 +         m, n, nnz);
   1.517 +      A = spm_create_mat(m, n);
   1.518 +      /* read matrix elements */
   1.519 +      for (k = 1; k <= nnz; k++)
   1.520 +      {  /* row index, column index, element value */
   1.521 +         i = pds_scan_int(pds);
   1.522 +         if (!(1 <= i && i <= m))
   1.523 +            pds_error(pds, "row index out of range\n");
   1.524 +         j = pds_scan_int(pds);
   1.525 +         if (!(1 <= j && j <= n))
   1.526 +            pds_error(pds, "column index out of range\n");
   1.527 +         val = pds_scan_num(pds);
   1.528 +         /* add new element to the matrix */
   1.529 +         spm_new_elem(A, i, j, val);
   1.530 +      }
   1.531 +      xprintf("spm_read_mat: %d lines were read\n", pds->count);
   1.532 +done: if (pds != NULL) pds_close_file(pds);
   1.533 +      if (fail && A != NULL) spm_delete_mat(A), A = NULL;
   1.534 +      return A;
   1.535 +}
   1.536 +#endif
   1.537 +
   1.538 +/***********************************************************************
   1.539 +*  NAME
   1.540 +*
   1.541 +*  spm_write_mat - write sparse matrix to text file
   1.542 +*
   1.543 +*  SYNOPSIS
   1.544 +*
   1.545 +*  #include "glpspm.h"
   1.546 +*  int spm_write_mat(const SPM *A, const char *fname);
   1.547 +*
   1.548 +*  DESCRIPTION
   1.549 +*
   1.550 +*  The routine spm_write_mat writes the specified sparse matrix to a
   1.551 +*  text file whose name is specified by the parameter fname. This file
   1.552 +*  can be read back with the routine spm_read_mat.
   1.553 +*
   1.554 +*  RETURNS
   1.555 +*
   1.556 +*  On success the routine returns zero, otherwise non-zero.
   1.557 +*
   1.558 +*  FILE FORMAT
   1.559 +*
   1.560 +*  The file created by the routine spm_write_mat is a plain text file,
   1.561 +*  which contains the following information:
   1.562 +*
   1.563 +*     m n nnz
   1.564 +*     row[1] col[1] val[1]
   1.565 +*     row[2] col[2] val[2]
   1.566 +*     . . .
   1.567 +*     row[nnz] col[nnz] val[nnz]
   1.568 +*
   1.569 +*  where:
   1.570 +*  m is the number of rows;
   1.571 +*  n is the number of columns;
   1.572 +*  nnz is the number of non-zeros;
   1.573 +*  row[k], k = 1,...,nnz, are row indices;
   1.574 +*  col[k], k = 1,...,nnz, are column indices;
   1.575 +*  val[k], k = 1,...,nnz, are element values. */
   1.576 +
   1.577 +#if 1
   1.578 +int spm_write_mat(const SPM *A, const char *fname)
   1.579 +{     xassert(A != A);
   1.580 +      xassert(fname != fname);
   1.581 +      return 0;
   1.582 +}
   1.583 +#else
   1.584 +int spm_write_mat(const SPM *A, const char *fname)
   1.585 +{     FILE *fp;
   1.586 +      int i, nnz, ret = 0;
   1.587 +      xprintf("spm_write_mat: writing matrix to `%s'...\n", fname);
   1.588 +      fp = fopen(fname, "w");
   1.589 +      if (fp == NULL)
   1.590 +      {  xprintf("spm_write_mat: unable to create `%s' - %s\n", fname,
   1.591 +            strerror(errno));
   1.592 +         ret = 1;
   1.593 +         goto done;
   1.594 +      }
   1.595 +      /* number of rows, number of columns, number of non-zeros */
   1.596 +      nnz = spm_count_nnz(A);
   1.597 +      fprintf(fp, "%d %d %d\n", A->m, A->n, nnz);
   1.598 +      /* walk through rows of the matrix */
   1.599 +      for (i = 1; i <= A->m; i++)
   1.600 +      {  SPME *e;
   1.601 +         /* walk through elements of i-th row */
   1.602 +         for (e = A->row[i]; e != NULL; e = e->r_next)
   1.603 +         {  /* row index, column index, element value */
   1.604 +            fprintf(fp, "%d %d %.*g\n", e->i, e->j, DBL_DIG, e->val);
   1.605 +         }
   1.606 +      }
   1.607 +      fflush(fp);
   1.608 +      if (ferror(fp))
   1.609 +      {  xprintf("spm_write_mat: writing error on `%s' - %s\n", fname,
   1.610 +            strerror(errno));
   1.611 +         ret = 1;
   1.612 +         goto done;
   1.613 +      }
   1.614 +      xprintf("spm_write_mat: %d lines were written\n", 1 + nnz);
   1.615 +done: if (fp != NULL) fclose(fp);
   1.616 +      return ret;
   1.617 +}
   1.618 +#endif
   1.619 +
   1.620 +/***********************************************************************
   1.621 +*  NAME
   1.622 +*
   1.623 +*  spm_transpose - transpose sparse matrix
   1.624 +*
   1.625 +*  SYNOPSIS
   1.626 +*
   1.627 +*  #include "glpspm.h"
   1.628 +*  SPM *spm_transpose(const SPM *A);
   1.629 +*
   1.630 +*  RETURNS
   1.631 +*
   1.632 +*  The routine computes and returns sparse matrix B, which is a matrix
   1.633 +*  transposed to sparse matrix A. */
   1.634 +
   1.635 +SPM *spm_transpose(const SPM *A)
   1.636 +{     SPM *B;
   1.637 +      int i;
   1.638 +      B = spm_create_mat(A->n, A->m);
   1.639 +      for (i = 1; i <= A->m; i++)
   1.640 +      {  SPME *e;
   1.641 +         for (e = A->row[i]; e != NULL; e = e->r_next)
   1.642 +            spm_new_elem(B, e->j, i, e->val);
   1.643 +      }
   1.644 +      return B;
   1.645 +}
   1.646 +
   1.647 +SPM *spm_add_sym(const SPM *A, const SPM *B)
   1.648 +{     /* add two sparse matrices (symbolic phase) */
   1.649 +      SPM *C;
   1.650 +      int i, j, *flag;
   1.651 +      xassert(A->m == B->m);
   1.652 +      xassert(A->n == B->n);
   1.653 +      /* create resultant matrix */
   1.654 +      C = spm_create_mat(A->m, A->n);
   1.655 +      /* allocate and clear the flag array */
   1.656 +      flag = xcalloc(1+C->n, sizeof(int));
   1.657 +      for (j = 1; j <= C->n; j++)
   1.658 +         flag[j] = 0;
   1.659 +      /* compute pattern of C = A + B */
   1.660 +      for (i = 1; i <= C->m; i++)
   1.661 +      {  SPME *e;
   1.662 +         /* at the beginning i-th row of C is empty */
   1.663 +         /* (i-th row of C) := (i-th row of C) union (i-th row of A) */
   1.664 +         for (e = A->row[i]; e != NULL; e = e->r_next)
   1.665 +         {  /* (note that i-th row of A may have duplicate elements) */
   1.666 +            j = e->j;
   1.667 +            if (!flag[j])
   1.668 +            {  spm_new_elem(C, i, j, 0.0);
   1.669 +               flag[j] = 1;
   1.670 +            }
   1.671 +         }
   1.672 +         /* (i-th row of C) := (i-th row of C) union (i-th row of B) */
   1.673 +         for (e = B->row[i]; e != NULL; e = e->r_next)
   1.674 +         {  /* (note that i-th row of B may have duplicate elements) */
   1.675 +            j = e->j;
   1.676 +            if (!flag[j])
   1.677 +            {  spm_new_elem(C, i, j, 0.0);
   1.678 +               flag[j] = 1;
   1.679 +            }
   1.680 +         }
   1.681 +         /* reset the flag array */
   1.682 +         for (e = C->row[i]; e != NULL; e = e->r_next)
   1.683 +            flag[e->j] = 0;
   1.684 +      }
   1.685 +      /* check and deallocate the flag array */
   1.686 +      for (j = 1; j <= C->n; j++)
   1.687 +         xassert(!flag[j]);
   1.688 +      xfree(flag);
   1.689 +      return C;
   1.690 +}
   1.691 +
   1.692 +void spm_add_num(SPM *C, double alfa, const SPM *A, double beta,
   1.693 +      const SPM *B)
   1.694 +{     /* add two sparse matrices (numeric phase) */
   1.695 +      int i, j;
   1.696 +      double *work;
   1.697 +      /* allocate and clear the working array */
   1.698 +      work = xcalloc(1+C->n, sizeof(double));
   1.699 +      for (j = 1; j <= C->n; j++)
   1.700 +         work[j] = 0.0;
   1.701 +      /* compute matrix C = alfa * A + beta * B */
   1.702 +      for (i = 1; i <= C->n; i++)
   1.703 +      {  SPME *e;
   1.704 +         /* work := alfa * (i-th row of A) + beta * (i-th row of B) */
   1.705 +         /* (note that A and/or B may have duplicate elements) */
   1.706 +         for (e = A->row[i]; e != NULL; e = e->r_next)
   1.707 +            work[e->j] += alfa * e->val;
   1.708 +         for (e = B->row[i]; e != NULL; e = e->r_next)
   1.709 +            work[e->j] += beta * e->val;
   1.710 +         /* (i-th row of C) := work, work := 0 */
   1.711 +         for (e = C->row[i]; e != NULL; e = e->r_next)
   1.712 +         {  j = e->j;
   1.713 +            e->val = work[j];
   1.714 +            work[j] = 0.0;
   1.715 +         }
   1.716 +      }
   1.717 +      /* check and deallocate the working array */
   1.718 +      for (j = 1; j <= C->n; j++)
   1.719 +         xassert(work[j] == 0.0);
   1.720 +      xfree(work);
   1.721 +      return;
   1.722 +}
   1.723 +
   1.724 +SPM *spm_add_mat(double alfa, const SPM *A, double beta, const SPM *B)
   1.725 +{     /* add two sparse matrices (driver routine) */
   1.726 +      SPM *C;
   1.727 +      C = spm_add_sym(A, B);
   1.728 +      spm_add_num(C, alfa, A, beta, B);
   1.729 +      return C;
   1.730 +}
   1.731 +
   1.732 +SPM *spm_mul_sym(const SPM *A, const SPM *B)
   1.733 +{     /* multiply two sparse matrices (symbolic phase) */
   1.734 +      int i, j, k, *flag;
   1.735 +      SPM *C;
   1.736 +      xassert(A->n == B->m);
   1.737 +      /* create resultant matrix */
   1.738 +      C = spm_create_mat(A->m, B->n);
   1.739 +      /* allocate and clear the flag array */
   1.740 +      flag = xcalloc(1+C->n, sizeof(int));
   1.741 +      for (j = 1; j <= C->n; j++)
   1.742 +         flag[j] = 0;
   1.743 +      /* compute pattern of C = A * B */
   1.744 +      for (i = 1; i <= C->m; i++)
   1.745 +      {  SPME *e, *ee;
   1.746 +         /* compute pattern of i-th row of C */
   1.747 +         for (e = A->row[i]; e != NULL; e = e->r_next)
   1.748 +         {  k = e->j;
   1.749 +            for (ee = B->row[k]; ee != NULL; ee = ee->r_next)
   1.750 +            {  j = ee->j;
   1.751 +               /* if a[i,k] != 0 and b[k,j] != 0 then c[i,j] != 0 */
   1.752 +               if (!flag[j])
   1.753 +               {  /* c[i,j] does not exist, so create it */
   1.754 +                  spm_new_elem(C, i, j, 0.0);
   1.755 +                  flag[j] = 1;
   1.756 +               }
   1.757 +            }
   1.758 +         }
   1.759 +         /* reset the flag array */
   1.760 +         for (e = C->row[i]; e != NULL; e = e->r_next)
   1.761 +            flag[e->j] = 0;
   1.762 +      }
   1.763 +      /* check and deallocate the flag array */
   1.764 +      for (j = 1; j <= C->n; j++)
   1.765 +         xassert(!flag[j]);
   1.766 +      xfree(flag);
   1.767 +      return C;
   1.768 +}
   1.769 +
   1.770 +void spm_mul_num(SPM *C, const SPM *A, const SPM *B)
   1.771 +{     /* multiply two sparse matrices (numeric phase) */
   1.772 +      int i, j;
   1.773 +      double *work;
   1.774 +      /* allocate and clear the working array */
   1.775 +      work = xcalloc(1+A->n, sizeof(double));
   1.776 +      for (j = 1; j <= A->n; j++)
   1.777 +         work[j] = 0.0;
   1.778 +      /* compute matrix C = A * B */
   1.779 +      for (i = 1; i <= C->m; i++)
   1.780 +      {  SPME *e, *ee;
   1.781 +         double temp;
   1.782 +         /* work := (i-th row of A) */
   1.783 +         /* (note that A may have duplicate elements) */
   1.784 +         for (e = A->row[i]; e != NULL; e = e->r_next)
   1.785 +            work[e->j] += e->val;
   1.786 +         /* compute i-th row of C */
   1.787 +         for (e = C->row[i]; e != NULL; e = e->r_next)
   1.788 +         {  j = e->j;
   1.789 +            /* c[i,j] := work * (j-th column of B) */
   1.790 +            temp = 0.0;
   1.791 +            for (ee = B->col[j]; ee != NULL; ee = ee->c_next)
   1.792 +               temp += work[ee->i] * ee->val;
   1.793 +            e->val = temp;
   1.794 +         }
   1.795 +         /* reset the working array */
   1.796 +         for (e = A->row[i]; e != NULL; e = e->r_next)
   1.797 +            work[e->j] = 0.0;
   1.798 +      }
   1.799 +      /* check and deallocate the working array */
   1.800 +      for (j = 1; j <= A->n; j++)
   1.801 +         xassert(work[j] == 0.0);
   1.802 +      xfree(work);
   1.803 +      return;
   1.804 +}
   1.805 +
   1.806 +SPM *spm_mul_mat(const SPM *A, const SPM *B)
   1.807 +{     /* multiply two sparse matrices (driver routine) */
   1.808 +      SPM *C;
   1.809 +      C = spm_mul_sym(A, B);
   1.810 +      spm_mul_num(C, A, B);
   1.811 +      return C;
   1.812 +}
   1.813 +
   1.814 +PER *spm_create_per(int n)
   1.815 +{     /* create permutation matrix */
   1.816 +      PER *P;
   1.817 +      int k;
   1.818 +      xassert(n >= 0);
   1.819 +      P = xmalloc(sizeof(PER));
   1.820 +      P->n = n;
   1.821 +      P->row = xcalloc(1+n, sizeof(int));
   1.822 +      P->col = xcalloc(1+n, sizeof(int));
   1.823 +      /* initially it is identity matrix */
   1.824 +      for (k = 1; k <= n; k++)
   1.825 +         P->row[k] = P->col[k] = k;
   1.826 +      return P;
   1.827 +}
   1.828 +
   1.829 +void spm_check_per(PER *P)
   1.830 +{     /* check permutation matrix for correctness */
   1.831 +      int i, j;
   1.832 +      xassert(P->n >= 0);
   1.833 +      for (i = 1; i <= P->n; i++)
   1.834 +      {  j = P->row[i];
   1.835 +         xassert(1 <= j && j <= P->n);
   1.836 +         xassert(P->col[j] == i);
   1.837 +      }
   1.838 +      return;
   1.839 +}
   1.840 +
   1.841 +void spm_delete_per(PER *P)
   1.842 +{     /* delete permutation matrix */
   1.843 +      xfree(P->row);
   1.844 +      xfree(P->col);
   1.845 +      xfree(P);
   1.846 +      return;
   1.847 +}
   1.848 +
   1.849 +/* eof */