src/glpspm.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glpspm.c */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glphbm.h"
    26 #include "glprgr.h"
    27 #include "glpspm.h"
    28 
    29 /***********************************************************************
    30 *  NAME
    31 *
    32 *  spm_create_mat - create general sparse matrix
    33 *
    34 *  SYNOPSIS
    35 *
    36 *  #include "glpspm.h"
    37 *  SPM *spm_create_mat(int m, int n);
    38 *
    39 *  DESCRIPTION
    40 *
    41 *  The routine spm_create_mat creates a general sparse matrix having
    42 *  m rows and n columns. Being created the matrix is zero (empty), i.e.
    43 *  has no elements.
    44 *
    45 *  RETURNS
    46 *
    47 *  The routine returns a pointer to the matrix created. */
    48 
    49 SPM *spm_create_mat(int m, int n)
    50 {     SPM *A;
    51       xassert(0 <= m && m < INT_MAX);
    52       xassert(0 <= n && n < INT_MAX);
    53       A = xmalloc(sizeof(SPM));
    54       A->m = m;
    55       A->n = n;
    56       if (m == 0 || n == 0)
    57       {  A->pool = NULL;
    58          A->row = NULL;
    59          A->col = NULL;
    60       }
    61       else
    62       {  int i, j;
    63          A->pool = dmp_create_pool();
    64          A->row = xcalloc(1+m, sizeof(SPME *));
    65          for (i = 1; i <= m; i++) A->row[i] = NULL;
    66          A->col = xcalloc(1+n, sizeof(SPME *));
    67          for (j = 1; j <= n; j++) A->col[j] = NULL;
    68       }
    69       return A;
    70 }
    71 
    72 /***********************************************************************
    73 *  NAME
    74 *
    75 *  spm_new_elem - add new element to sparse matrix
    76 *
    77 *  SYNOPSIS
    78 *
    79 *  #include "glpspm.h"
    80 *  SPME *spm_new_elem(SPM *A, int i, int j, double val);
    81 *
    82 *  DESCRIPTION
    83 *
    84 *  The routine spm_new_elem adds a new element to the specified sparse
    85 *  matrix. Parameters i, j, and val specify the row number, the column
    86 *  number, and a numerical value of the element, respectively.
    87 *
    88 *  RETURNS
    89 *
    90 *  The routine returns a pointer to the new element added. */
    91 
    92 SPME *spm_new_elem(SPM *A, int i, int j, double val)
    93 {     SPME *e;
    94       xassert(1 <= i && i <= A->m);
    95       xassert(1 <= j && j <= A->n);
    96       e = dmp_get_atom(A->pool, sizeof(SPME));
    97       e->i = i;
    98       e->j = j;
    99       e->val = val;
   100       e->r_prev = NULL;
   101       e->r_next = A->row[i];
   102       if (e->r_next != NULL) e->r_next->r_prev = e;
   103       e->c_prev = NULL;
   104       e->c_next = A->col[j];
   105       if (e->c_next != NULL) e->c_next->c_prev = e;
   106       A->row[i] = A->col[j] = e;
   107       return e;
   108 }
   109 
   110 /***********************************************************************
   111 *  NAME
   112 *
   113 *  spm_delete_mat - delete general sparse matrix
   114 *
   115 *  SYNOPSIS
   116 *
   117 *  #include "glpspm.h"
   118 *  void spm_delete_mat(SPM *A);
   119 *
   120 *  DESCRIPTION
   121 *
   122 *  The routine deletes the specified general sparse matrix freeing all
   123 *  the memory allocated to this object. */
   124 
   125 void spm_delete_mat(SPM *A)
   126 {     /* delete sparse matrix */
   127       if (A->pool != NULL) dmp_delete_pool(A->pool);
   128       if (A->row != NULL) xfree(A->row);
   129       if (A->col != NULL) xfree(A->col);
   130       xfree(A);
   131       return;
   132 }
   133 
   134 /***********************************************************************
   135 *  NAME
   136 *
   137 *  spm_test_mat_e - create test sparse matrix of E(n,c) class
   138 *
   139 *  SYNOPSIS
   140 *
   141 *  #include "glpspm.h"
   142 *  SPM *spm_test_mat_e(int n, int c);
   143 *
   144 *  DESCRIPTION
   145 *
   146 *  The routine spm_test_mat_e creates a test sparse matrix of E(n,c)
   147 *  class as described in the book: Ole 0sterby, Zahari Zlatev. Direct
   148 *  Methods for Sparse Matrices. Springer-Verlag, 1983.
   149 *
   150 *  Matrix of E(n,c) class is a symmetric positive definite matrix of
   151 *  the order n. It has the number 4 on its main diagonal and the number
   152 *  -1 on its four co-diagonals, two of which are neighbour to the main
   153 *  diagonal and two others are shifted from the main diagonal on the
   154 *  distance c.
   155 *
   156 *  It is necessary that n >= 3 and 2 <= c <= n-1.
   157 *
   158 *  RETURNS
   159 *
   160 *  The routine returns a pointer to the matrix created. */
   161 
   162 SPM *spm_test_mat_e(int n, int c)
   163 {     SPM *A;
   164       int i;
   165       xassert(n >= 3 && 2 <= c && c <= n-1);
   166       A = spm_create_mat(n, n);
   167       for (i = 1; i <= n; i++)
   168          spm_new_elem(A, i, i, 4.0);
   169       for (i = 1; i <= n-1; i++)
   170       {  spm_new_elem(A, i, i+1, -1.0);
   171          spm_new_elem(A, i+1, i, -1.0);
   172       }
   173       for (i = 1; i <= n-c; i++)
   174       {  spm_new_elem(A, i, i+c, -1.0);
   175          spm_new_elem(A, i+c, i, -1.0);
   176       }
   177       return A;
   178 }
   179 
   180 /***********************************************************************
   181 *  NAME
   182 *
   183 *  spm_test_mat_d - create test sparse matrix of D(n,c) class
   184 *
   185 *  SYNOPSIS
   186 *
   187 *  #include "glpspm.h"
   188 *  SPM *spm_test_mat_d(int n, int c);
   189 *
   190 *  DESCRIPTION
   191 *
   192 *  The routine spm_test_mat_d creates a test sparse matrix of D(n,c)
   193 *  class as described in the book: Ole 0sterby, Zahari Zlatev. Direct
   194 *  Methods for Sparse Matrices. Springer-Verlag, 1983.
   195 *
   196 *  Matrix of D(n,c) class is a non-singular matrix of the order n. It
   197 *  has unity main diagonal, three co-diagonals above the main diagonal
   198 *  on the distance c, which are cyclically continued below the main
   199 *  diagonal, and a triangle block of the size 10x10 in the upper right
   200 *  corner.
   201 *
   202 *  It is necessary that n >= 14 and 1 <= c <= n-13.
   203 *
   204 *  RETURNS
   205 *
   206 *  The routine returns a pointer to the matrix created. */
   207 
   208 SPM *spm_test_mat_d(int n, int c)
   209 {     SPM *A;
   210       int i, j;
   211       xassert(n >= 14 && 1 <= c && c <= n-13);
   212       A = spm_create_mat(n, n);
   213       for (i = 1; i <= n; i++)
   214          spm_new_elem(A, i, i, 1.0);
   215       for (i = 1; i <= n-c; i++)
   216          spm_new_elem(A, i, i+c, (double)(i+1));
   217       for (i = n-c+1; i <= n; i++)
   218          spm_new_elem(A, i, i-n+c, (double)(i+1));
   219       for (i = 1; i <= n-c-1; i++)
   220          spm_new_elem(A, i, i+c+1, (double)(-i));
   221       for (i = n-c; i <= n; i++)
   222          spm_new_elem(A, i, i-n+c+1, (double)(-i));
   223       for (i = 1; i <= n-c-2; i++)
   224          spm_new_elem(A, i, i+c+2, 16.0);
   225       for (i = n-c-1; i <= n; i++)
   226          spm_new_elem(A, i, i-n+c+2, 16.0);
   227       for (j = 1; j <= 10; j++)
   228          for (i = 1; i <= 11-j; i++)
   229             spm_new_elem(A, i, n-11+i+j, 100.0 * (double)j);
   230       return A;
   231 }
   232 
   233 /***********************************************************************
   234 *  NAME
   235 *
   236 *  spm_show_mat - write sparse matrix pattern in BMP file format
   237 *
   238 *  SYNOPSIS
   239 *
   240 *  #include "glpspm.h"
   241 *  int spm_show_mat(const SPM *A, const char *fname);
   242 *
   243 *  DESCRIPTION
   244 *
   245 *  The routine spm_show_mat writes pattern of the specified sparse
   246 *  matrix in uncompressed BMP file format (Windows bitmap) to a binary
   247 *  file whose name is specified by the character string fname.
   248 *
   249 *  Each pixel corresponds to one matrix element. The pixel colors have
   250 *  the following meaning:
   251 *
   252 *  Black    structurally zero element
   253 *  White    positive element
   254 *  Cyan     negative element
   255 *  Green    zero element
   256 *  Red      duplicate element
   257 *
   258 *  RETURNS
   259 *
   260 *  If no error occured, the routine returns zero. Otherwise, it prints
   261 *  an appropriate error message and returns non-zero. */
   262 
   263 int spm_show_mat(const SPM *A, const char *fname)
   264 {     int m = A->m;
   265       int n = A->n;
   266       int i, j, k, ret;
   267       char *map;
   268       xprintf("spm_show_mat: writing matrix pattern to `%s'...\n",
   269          fname);
   270       xassert(1 <= m && m <= 32767);
   271       xassert(1 <= n && n <= 32767);
   272       map = xmalloc(m * n);
   273       memset(map, 0x08, m * n);
   274       for (i = 1; i <= m; i++)
   275       {  SPME *e;
   276          for (e = A->row[i]; e != NULL; e = e->r_next)
   277          {  j = e->j;
   278             xassert(1 <= j && j <= n);
   279             k = n * (i - 1) + (j - 1);
   280             if (map[k] != 0x08)
   281                map[k] = 0x0C;
   282             else if (e->val > 0.0)
   283                map[k] = 0x0F;
   284             else if (e->val < 0.0)
   285                map[k] = 0x0B;
   286             else
   287                map[k] = 0x0A;
   288          }
   289       }
   290       ret = rgr_write_bmp16(fname, m, n, map);
   291       xfree(map);
   292       return ret;
   293 }
   294 
   295 /***********************************************************************
   296 *  NAME
   297 *
   298 *  spm_read_hbm - read sparse matrix in Harwell-Boeing format
   299 *
   300 *  SYNOPSIS
   301 *
   302 *  #include "glpspm.h"
   303 *  SPM *spm_read_hbm(const char *fname);
   304 *
   305 *  DESCRIPTION
   306 *
   307 *  The routine spm_read_hbm reads a sparse matrix in the Harwell-Boeing
   308 *  format from a text file whose name is the character string fname.
   309 *
   310 *  Detailed description of the Harwell-Boeing format recognised by this
   311 *  routine can be found in the following report:
   312 *
   313 *  I.S.Duff, R.G.Grimes, J.G.Lewis. User's Guide for the Harwell-Boeing
   314 *  Sparse Matrix Collection (Release I), TR/PA/92/86, October 1992.
   315 *
   316 *  NOTE
   317 *
   318 *  The routine spm_read_hbm reads the matrix "as is", due to which zero
   319 *  and/or duplicate elements can appear in the matrix.
   320 *
   321 *  RETURNS
   322 *
   323 *  If no error occured, the routine returns a pointer to the matrix
   324 *  created. Otherwise, the routine prints an appropriate error message
   325 *  and returns NULL. */
   326 
   327 SPM *spm_read_hbm(const char *fname)
   328 {     SPM *A = NULL;
   329       HBM *hbm;
   330       int nrow, ncol, nnzero, i, j, beg, end, ptr, *colptr, *rowind;
   331       double val, *values;
   332       char *mxtype;
   333       hbm = hbm_read_mat(fname);
   334       if (hbm == NULL)
   335       {  xprintf("spm_read_hbm: unable to read matrix\n");
   336          goto fini;
   337       }
   338       mxtype = hbm->mxtype;
   339       nrow = hbm->nrow;
   340       ncol = hbm->ncol;
   341       nnzero = hbm->nnzero;
   342       colptr = hbm->colptr;
   343       rowind = hbm->rowind;
   344       values = hbm->values;
   345       if (!(strcmp(mxtype, "RSA") == 0 || strcmp(mxtype, "PSA") == 0 ||
   346             strcmp(mxtype, "RUA") == 0 || strcmp(mxtype, "PUA") == 0 ||
   347             strcmp(mxtype, "RRA") == 0 || strcmp(mxtype, "PRA") == 0))
   348       {  xprintf("spm_read_hbm: matrix type `%s' not supported\n",
   349             mxtype);
   350          goto fini;
   351       }
   352       A = spm_create_mat(nrow, ncol);
   353       if (mxtype[1] == 'S' || mxtype[1] == 'U')
   354          xassert(nrow == ncol);
   355       for (j = 1; j <= ncol; j++)
   356       {  beg = colptr[j];
   357          end = colptr[j+1];
   358          xassert(1 <= beg && beg <= end && end <= nnzero + 1);
   359          for (ptr = beg; ptr < end; ptr++)
   360          {  i = rowind[ptr];
   361             xassert(1 <= i && i <= nrow);
   362             if (mxtype[0] == 'R')
   363                val = values[ptr];
   364             else
   365                val = 1.0;
   366             spm_new_elem(A, i, j, val);
   367             if (mxtype[1] == 'S' && i != j)
   368                spm_new_elem(A, j, i, val);
   369          }
   370       }
   371 fini: if (hbm != NULL) hbm_free_mat(hbm);
   372       return A;
   373 }
   374 
   375 /***********************************************************************
   376 *  NAME
   377 *
   378 *  spm_count_nnz - determine number of non-zeros in sparse matrix
   379 *
   380 *  SYNOPSIS
   381 *
   382 *  #include "glpspm.h"
   383 *  int spm_count_nnz(const SPM *A);
   384 *
   385 *  RETURNS
   386 *
   387 *  The routine spm_count_nnz returns the number of structural non-zero
   388 *  elements in the specified sparse matrix. */
   389 
   390 int spm_count_nnz(const SPM *A)
   391 {     SPME *e;
   392       int i, nnz = 0;
   393       for (i = 1; i <= A->m; i++)
   394          for (e = A->row[i]; e != NULL; e = e->r_next) nnz++;
   395       return nnz;
   396 }
   397 
   398 /***********************************************************************
   399 *  NAME
   400 *
   401 *  spm_drop_zeros - remove zero elements from sparse matrix
   402 *
   403 *  SYNOPSIS
   404 *
   405 *  #include "glpspm.h"
   406 *  int spm_drop_zeros(SPM *A, double eps);
   407 *
   408 *  DESCRIPTION
   409 *
   410 *  The routine spm_drop_zeros removes all elements from the specified
   411 *  sparse matrix, whose absolute value is less than eps.
   412 *
   413 *  If the parameter eps is 0, only zero elements are removed from the
   414 *  matrix.
   415 *
   416 *  RETURNS
   417 *
   418 *  The routine returns the number of elements removed. */
   419 
   420 int spm_drop_zeros(SPM *A, double eps)
   421 {     SPME *e, *next;
   422       int i, count = 0;
   423       for (i = 1; i <= A->m; i++)
   424       {  for (e = A->row[i]; e != NULL; e = next)
   425          {  next = e->r_next;
   426             if (e->val == 0.0 || fabs(e->val) < eps)
   427             {  /* remove element from the row list */
   428                if (e->r_prev == NULL)
   429                   A->row[e->i] = e->r_next;
   430                else
   431                   e->r_prev->r_next = e->r_next;
   432                if (e->r_next == NULL)
   433                   ;
   434                else
   435                   e->r_next->r_prev = e->r_prev;
   436                /* remove element from the column list */
   437                if (e->c_prev == NULL)
   438                   A->col[e->j] = e->c_next;
   439                else
   440                   e->c_prev->c_next = e->c_next;
   441                if (e->c_next == NULL)
   442                   ;
   443                else
   444                   e->c_next->c_prev = e->c_prev;
   445                /* return element to the memory pool */
   446                dmp_free_atom(A->pool, e, sizeof(SPME));
   447                count++;
   448             }
   449          }
   450       }
   451       return count;
   452 }
   453 
   454 /***********************************************************************
   455 *  NAME
   456 *
   457 *  spm_read_mat - read sparse matrix from text file
   458 *
   459 *  SYNOPSIS
   460 *
   461 *  #include "glpspm.h"
   462 *  SPM *spm_read_mat(const char *fname);
   463 *
   464 *  DESCRIPTION
   465 *
   466 *  The routine reads a sparse matrix from a text file whose name is
   467 *  specified by the parameter fname.
   468 *
   469 *  For the file format see description of the routine spm_write_mat.
   470 *
   471 *  RETURNS
   472 *
   473 *  On success the routine returns a pointer to the matrix created,
   474 *  otherwise NULL. */
   475 
   476 #if 1
   477 SPM *spm_read_mat(const char *fname)
   478 {     xassert(fname != fname);
   479       return NULL;
   480 }
   481 #else
   482 SPM *spm_read_mat(const char *fname)
   483 {     SPM *A = NULL;
   484       PDS *pds;
   485       jmp_buf jump;
   486       int i, j, k, m, n, nnz, fail = 0;
   487       double val;
   488       xprintf("spm_read_mat: reading matrix from `%s'...\n", fname);
   489       pds = pds_open_file(fname);
   490       if (pds == NULL)
   491       {  xprintf("spm_read_mat: unable to open `%s' - %s\n", fname,
   492             strerror(errno));
   493          fail = 1;
   494          goto done;
   495       }
   496       if (setjmp(jump))
   497       {  fail = 1;
   498          goto done;
   499       }
   500       pds_set_jump(pds, jump);
   501       /* number of rows, number of columns, number of non-zeros */
   502       m = pds_scan_int(pds);
   503       if (m < 0)
   504          pds_error(pds, "invalid number of rows\n");
   505       n = pds_scan_int(pds);
   506       if (n < 0)
   507          pds_error(pds, "invalid number of columns\n");
   508       nnz = pds_scan_int(pds);
   509       if (nnz < 0)
   510          pds_error(pds, "invalid number of non-zeros\n");
   511       /* create matrix */
   512       xprintf("spm_read_mat: %d rows, %d columns, %d non-zeros\n",
   513          m, n, nnz);
   514       A = spm_create_mat(m, n);
   515       /* read matrix elements */
   516       for (k = 1; k <= nnz; k++)
   517       {  /* row index, column index, element value */
   518          i = pds_scan_int(pds);
   519          if (!(1 <= i && i <= m))
   520             pds_error(pds, "row index out of range\n");
   521          j = pds_scan_int(pds);
   522          if (!(1 <= j && j <= n))
   523             pds_error(pds, "column index out of range\n");
   524          val = pds_scan_num(pds);
   525          /* add new element to the matrix */
   526          spm_new_elem(A, i, j, val);
   527       }
   528       xprintf("spm_read_mat: %d lines were read\n", pds->count);
   529 done: if (pds != NULL) pds_close_file(pds);
   530       if (fail && A != NULL) spm_delete_mat(A), A = NULL;
   531       return A;
   532 }
   533 #endif
   534 
   535 /***********************************************************************
   536 *  NAME
   537 *
   538 *  spm_write_mat - write sparse matrix to text file
   539 *
   540 *  SYNOPSIS
   541 *
   542 *  #include "glpspm.h"
   543 *  int spm_write_mat(const SPM *A, const char *fname);
   544 *
   545 *  DESCRIPTION
   546 *
   547 *  The routine spm_write_mat writes the specified sparse matrix to a
   548 *  text file whose name is specified by the parameter fname. This file
   549 *  can be read back with the routine spm_read_mat.
   550 *
   551 *  RETURNS
   552 *
   553 *  On success the routine returns zero, otherwise non-zero.
   554 *
   555 *  FILE FORMAT
   556 *
   557 *  The file created by the routine spm_write_mat is a plain text file,
   558 *  which contains the following information:
   559 *
   560 *     m n nnz
   561 *     row[1] col[1] val[1]
   562 *     row[2] col[2] val[2]
   563 *     . . .
   564 *     row[nnz] col[nnz] val[nnz]
   565 *
   566 *  where:
   567 *  m is the number of rows;
   568 *  n is the number of columns;
   569 *  nnz is the number of non-zeros;
   570 *  row[k], k = 1,...,nnz, are row indices;
   571 *  col[k], k = 1,...,nnz, are column indices;
   572 *  val[k], k = 1,...,nnz, are element values. */
   573 
   574 #if 1
   575 int spm_write_mat(const SPM *A, const char *fname)
   576 {     xassert(A != A);
   577       xassert(fname != fname);
   578       return 0;
   579 }
   580 #else
   581 int spm_write_mat(const SPM *A, const char *fname)
   582 {     FILE *fp;
   583       int i, nnz, ret = 0;
   584       xprintf("spm_write_mat: writing matrix to `%s'...\n", fname);
   585       fp = fopen(fname, "w");
   586       if (fp == NULL)
   587       {  xprintf("spm_write_mat: unable to create `%s' - %s\n", fname,
   588             strerror(errno));
   589          ret = 1;
   590          goto done;
   591       }
   592       /* number of rows, number of columns, number of non-zeros */
   593       nnz = spm_count_nnz(A);
   594       fprintf(fp, "%d %d %d\n", A->m, A->n, nnz);
   595       /* walk through rows of the matrix */
   596       for (i = 1; i <= A->m; i++)
   597       {  SPME *e;
   598          /* walk through elements of i-th row */
   599          for (e = A->row[i]; e != NULL; e = e->r_next)
   600          {  /* row index, column index, element value */
   601             fprintf(fp, "%d %d %.*g\n", e->i, e->j, DBL_DIG, e->val);
   602          }
   603       }
   604       fflush(fp);
   605       if (ferror(fp))
   606       {  xprintf("spm_write_mat: writing error on `%s' - %s\n", fname,
   607             strerror(errno));
   608          ret = 1;
   609          goto done;
   610       }
   611       xprintf("spm_write_mat: %d lines were written\n", 1 + nnz);
   612 done: if (fp != NULL) fclose(fp);
   613       return ret;
   614 }
   615 #endif
   616 
   617 /***********************************************************************
   618 *  NAME
   619 *
   620 *  spm_transpose - transpose sparse matrix
   621 *
   622 *  SYNOPSIS
   623 *
   624 *  #include "glpspm.h"
   625 *  SPM *spm_transpose(const SPM *A);
   626 *
   627 *  RETURNS
   628 *
   629 *  The routine computes and returns sparse matrix B, which is a matrix
   630 *  transposed to sparse matrix A. */
   631 
   632 SPM *spm_transpose(const SPM *A)
   633 {     SPM *B;
   634       int i;
   635       B = spm_create_mat(A->n, A->m);
   636       for (i = 1; i <= A->m; i++)
   637       {  SPME *e;
   638          for (e = A->row[i]; e != NULL; e = e->r_next)
   639             spm_new_elem(B, e->j, i, e->val);
   640       }
   641       return B;
   642 }
   643 
   644 SPM *spm_add_sym(const SPM *A, const SPM *B)
   645 {     /* add two sparse matrices (symbolic phase) */
   646       SPM *C;
   647       int i, j, *flag;
   648       xassert(A->m == B->m);
   649       xassert(A->n == B->n);
   650       /* create resultant matrix */
   651       C = spm_create_mat(A->m, A->n);
   652       /* allocate and clear the flag array */
   653       flag = xcalloc(1+C->n, sizeof(int));
   654       for (j = 1; j <= C->n; j++)
   655          flag[j] = 0;
   656       /* compute pattern of C = A + B */
   657       for (i = 1; i <= C->m; i++)
   658       {  SPME *e;
   659          /* at the beginning i-th row of C is empty */
   660          /* (i-th row of C) := (i-th row of C) union (i-th row of A) */
   661          for (e = A->row[i]; e != NULL; e = e->r_next)
   662          {  /* (note that i-th row of A may have duplicate elements) */
   663             j = e->j;
   664             if (!flag[j])
   665             {  spm_new_elem(C, i, j, 0.0);
   666                flag[j] = 1;
   667             }
   668          }
   669          /* (i-th row of C) := (i-th row of C) union (i-th row of B) */
   670          for (e = B->row[i]; e != NULL; e = e->r_next)
   671          {  /* (note that i-th row of B may have duplicate elements) */
   672             j = e->j;
   673             if (!flag[j])
   674             {  spm_new_elem(C, i, j, 0.0);
   675                flag[j] = 1;
   676             }
   677          }
   678          /* reset the flag array */
   679          for (e = C->row[i]; e != NULL; e = e->r_next)
   680             flag[e->j] = 0;
   681       }
   682       /* check and deallocate the flag array */
   683       for (j = 1; j <= C->n; j++)
   684          xassert(!flag[j]);
   685       xfree(flag);
   686       return C;
   687 }
   688 
   689 void spm_add_num(SPM *C, double alfa, const SPM *A, double beta,
   690       const SPM *B)
   691 {     /* add two sparse matrices (numeric phase) */
   692       int i, j;
   693       double *work;
   694       /* allocate and clear the working array */
   695       work = xcalloc(1+C->n, sizeof(double));
   696       for (j = 1; j <= C->n; j++)
   697          work[j] = 0.0;
   698       /* compute matrix C = alfa * A + beta * B */
   699       for (i = 1; i <= C->n; i++)
   700       {  SPME *e;
   701          /* work := alfa * (i-th row of A) + beta * (i-th row of B) */
   702          /* (note that A and/or B may have duplicate elements) */
   703          for (e = A->row[i]; e != NULL; e = e->r_next)
   704             work[e->j] += alfa * e->val;
   705          for (e = B->row[i]; e != NULL; e = e->r_next)
   706             work[e->j] += beta * e->val;
   707          /* (i-th row of C) := work, work := 0 */
   708          for (e = C->row[i]; e != NULL; e = e->r_next)
   709          {  j = e->j;
   710             e->val = work[j];
   711             work[j] = 0.0;
   712          }
   713       }
   714       /* check and deallocate the working array */
   715       for (j = 1; j <= C->n; j++)
   716          xassert(work[j] == 0.0);
   717       xfree(work);
   718       return;
   719 }
   720 
   721 SPM *spm_add_mat(double alfa, const SPM *A, double beta, const SPM *B)
   722 {     /* add two sparse matrices (driver routine) */
   723       SPM *C;
   724       C = spm_add_sym(A, B);
   725       spm_add_num(C, alfa, A, beta, B);
   726       return C;
   727 }
   728 
   729 SPM *spm_mul_sym(const SPM *A, const SPM *B)
   730 {     /* multiply two sparse matrices (symbolic phase) */
   731       int i, j, k, *flag;
   732       SPM *C;
   733       xassert(A->n == B->m);
   734       /* create resultant matrix */
   735       C = spm_create_mat(A->m, B->n);
   736       /* allocate and clear the flag array */
   737       flag = xcalloc(1+C->n, sizeof(int));
   738       for (j = 1; j <= C->n; j++)
   739          flag[j] = 0;
   740       /* compute pattern of C = A * B */
   741       for (i = 1; i <= C->m; i++)
   742       {  SPME *e, *ee;
   743          /* compute pattern of i-th row of C */
   744          for (e = A->row[i]; e != NULL; e = e->r_next)
   745          {  k = e->j;
   746             for (ee = B->row[k]; ee != NULL; ee = ee->r_next)
   747             {  j = ee->j;
   748                /* if a[i,k] != 0 and b[k,j] != 0 then c[i,j] != 0 */
   749                if (!flag[j])
   750                {  /* c[i,j] does not exist, so create it */
   751                   spm_new_elem(C, i, j, 0.0);
   752                   flag[j] = 1;
   753                }
   754             }
   755          }
   756          /* reset the flag array */
   757          for (e = C->row[i]; e != NULL; e = e->r_next)
   758             flag[e->j] = 0;
   759       }
   760       /* check and deallocate the flag array */
   761       for (j = 1; j <= C->n; j++)
   762          xassert(!flag[j]);
   763       xfree(flag);
   764       return C;
   765 }
   766 
   767 void spm_mul_num(SPM *C, const SPM *A, const SPM *B)
   768 {     /* multiply two sparse matrices (numeric phase) */
   769       int i, j;
   770       double *work;
   771       /* allocate and clear the working array */
   772       work = xcalloc(1+A->n, sizeof(double));
   773       for (j = 1; j <= A->n; j++)
   774          work[j] = 0.0;
   775       /* compute matrix C = A * B */
   776       for (i = 1; i <= C->m; i++)
   777       {  SPME *e, *ee;
   778          double temp;
   779          /* work := (i-th row of A) */
   780          /* (note that A may have duplicate elements) */
   781          for (e = A->row[i]; e != NULL; e = e->r_next)
   782             work[e->j] += e->val;
   783          /* compute i-th row of C */
   784          for (e = C->row[i]; e != NULL; e = e->r_next)
   785          {  j = e->j;
   786             /* c[i,j] := work * (j-th column of B) */
   787             temp = 0.0;
   788             for (ee = B->col[j]; ee != NULL; ee = ee->c_next)
   789                temp += work[ee->i] * ee->val;
   790             e->val = temp;
   791          }
   792          /* reset the working array */
   793          for (e = A->row[i]; e != NULL; e = e->r_next)
   794             work[e->j] = 0.0;
   795       }
   796       /* check and deallocate the working array */
   797       for (j = 1; j <= A->n; j++)
   798          xassert(work[j] == 0.0);
   799       xfree(work);
   800       return;
   801 }
   802 
   803 SPM *spm_mul_mat(const SPM *A, const SPM *B)
   804 {     /* multiply two sparse matrices (driver routine) */
   805       SPM *C;
   806       C = spm_mul_sym(A, B);
   807       spm_mul_num(C, A, B);
   808       return C;
   809 }
   810 
   811 PER *spm_create_per(int n)
   812 {     /* create permutation matrix */
   813       PER *P;
   814       int k;
   815       xassert(n >= 0);
   816       P = xmalloc(sizeof(PER));
   817       P->n = n;
   818       P->row = xcalloc(1+n, sizeof(int));
   819       P->col = xcalloc(1+n, sizeof(int));
   820       /* initially it is identity matrix */
   821       for (k = 1; k <= n; k++)
   822          P->row[k] = P->col[k] = k;
   823       return P;
   824 }
   825 
   826 void spm_check_per(PER *P)
   827 {     /* check permutation matrix for correctness */
   828       int i, j;
   829       xassert(P->n >= 0);
   830       for (i = 1; i <= P->n; i++)
   831       {  j = P->row[i];
   832          xassert(1 <= j && j <= P->n);
   833          xassert(P->col[j] == i);
   834       }
   835       return;
   836 }
   837 
   838 void spm_delete_per(PER *P)
   839 {     /* delete permutation matrix */
   840       xfree(P->row);
   841       xfree(P->col);
   842       xfree(P);
   843       return;
   844 }
   845 
   846 /* eof */