doc/glpk01.tex
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 %* glpk01.tex *%
     2 
     3 \chapter{Introduction}
     4 
     5 GLPK (\underline{G}NU \underline{L}inear \underline{P}rogramming
     6 \underline{K}it) is a set of routines written in the ANSI C programming
     7 language and organized in the form of a callable library. It is intended
     8 for solving linear programming (LP), mixed integer programming (MIP),
     9 and other related problems.
    10 
    11 \section{LP problem}
    12 \label{seclp}
    13 
    14 GLPK assumes the following formulation of {\it linear programming (LP)}
    15 problem:
    16 
    17 \medskip
    18 
    19 \noindent
    20 \hspace{.5in} minimize (or maximize)
    21 $$z = c_1x_{m+1} + c_2x_{m+2} + \dots + c_nx_{m+n} + c_0 \eqno (1.1)$$
    22 \hspace{.5in} subject to linear constraints
    23 $$
    24 \begin{array}{r@{\:}c@{\:}r@{\:}c@{\:}r@{\:}c@{\:}r}
    25 x_1&=&a_{11}x_{m+1}&+&a_{12}x_{m+2}&+ \dots +&a_{1n}x_{m+n} \\
    26 x_2&=&a_{21}x_{m+1}&+&a_{22}x_{m+2}&+ \dots +&a_{2n}x_{m+n} \\
    27 \multicolumn{7}{c}
    28 {.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .} \\
    29 x_m&=&a_{m1}x_{m+1}&+&a_{m2}x_{m+2}&+ \dots +&a_{mn}x_{m+n} \\
    30 \end{array} \eqno (1.2)
    31 $$
    32 \hspace{.5in} and bounds of variables
    33 $$
    34 \begin{array}{r@{\:}c@{\:}c@{\:}c@{\:}l}
    35 l_1&\leq&x_1&\leq&u_1 \\
    36 l_2&\leq&x_2&\leq&u_2 \\
    37 \multicolumn{5}{c}{.\ \ .\ \ .\ \ .\ \ .}\\
    38 l_{m+n}&\leq&x_{m+n}&\leq&u_{m+n} \\
    39 \end{array} \eqno (1.3)
    40 $$
    41 where: $x_1, x_2, \dots, x_m$ are auxiliary variables;
    42 $x_{m+1}, x_{m+2}, \dots, x_{m+n}$ are\linebreak structural variables;
    43 $z$ is the objective function;
    44 $c_1, c_2, \dots, c_n$ are objective coefficients;
    45 $c_0$ is the constant term (``shift'') of the objective function;
    46 $a_{11}, a_{12}, \dots, a_{mn}$ are constraint coefficients;
    47 $l_1, l_2, \dots, l_{m+n}$ are lower bounds of variables;
    48 $u_1, u_2, \dots, u_{m+n}$ are upper bounds of variables.
    49 
    50 Auxiliary variables are also called {\it rows}, because they correspond
    51 to rows of the constraint matrix (i.e. a matrix built of the constraint
    52 coefficients). Similarly, structural variables are also called
    53 {\it columns}, because they correspond to columns of the constraint
    54 matrix.
    55 
    56 Bounds of variables can be finite as well as infinite. Besides, lower
    57 and upper bounds can be equal to each other. Thus, the following types
    58 of variables are possible:
    59 \begin{center}
    60 \begin{tabular}{r@{}c@{}ll}
    61 \multicolumn{3}{c}{Bounds of variable} & Type of variable \\
    62 \hline
    63 $-\infty <$ &$\ x_k\ $& $< +\infty$ & Free (unbounded) variable \\
    64 $l_k \leq$ &$\ x_k\ $& $< +\infty$  & Variable with lower bound \\
    65 $-\infty <$ &$\ x_k\ $& $\leq u_k$  & Variable with upper bound \\
    66 $l_k \leq$ &$\ x_k\ $& $\leq u_k$   & Double-bounded variable \\
    67 $l_k =$ &$\ x_k\ $& $= u_k$         & Fixed variable \\
    68 \end{tabular}
    69 \end{center}
    70 \noindent
    71 Note that the types of variables shown above are applicable to
    72 structural as well as to auxiliary variables.
    73 
    74 To solve the LP problem (1.1)---(1.3) is to find such values of all
    75 structural and auxiliary variables, which:
    76 
    77 $\bullet$ satisfy to all the linear constraints (1.2), and
    78 
    79 $\bullet$ are within their bounds (1.3), and
    80 
    81 $\bullet$ provide the smallest (in case of minimization) or the largest
    82 (in case of maximization) value of the objective function (1.1).
    83 
    84 \section{MIP problem}
    85 
    86 {\it Mixed integer linear programming (MIP)} problem is LP problem in
    87 which some variables are additionally required to be integer.
    88 
    89 GLPK assumes that MIP problem has the same formulation as ordinary
    90 (pure) LP problem (1.1)---(1.3), i.e. includes auxiliary and structural
    91 variables, which may have lower and/or upper bounds. However, in case of
    92 MIP problem some variables may be required to be integer. This
    93 additional constraint means that a value of each {\it integer variable}
    94 must be only integer number. (Should note that GLPK allows only
    95 structural variables to be of integer kind.)
    96 
    97 \section{Using the package}
    98 
    99 \subsection{Brief example}
   100 
   101 In order to understand what GLPK is from the user's standpoint,
   102 consider the following simple LP problem:
   103 
   104 \medskip
   105 
   106 \noindent
   107 \hspace{.5in} maximize
   108 $$z = 10 x_1 + 6 x_2 + 4 x_3$$
   109 \hspace{.5in} subject to
   110 $$
   111 \begin{array}{r@{\:}c@{\:}r@{\:}c@{\:}r@{\:}c@{\:}r}
   112 x_1 &+&x_2 &+&x_3 &\leq 100 \\
   113 10 x_1 &+& 4 x_2 & +&5 x_3 & \leq 600 \\
   114 2 x_1 &+& 2 x_2 & +& 6 x_3 & \leq 300 \\
   115 \end{array}
   116 $$
   117 \hspace{.5in} where all variables are non-negative
   118 $$x_1 \geq 0, \ x_2 \geq 0, \ x_3 \geq 0$$
   119 
   120 At first this LP problem should be transformed to the standard form
   121 (1.1)---(1.3). This can be easily done by introducing auxiliary
   122 variables, by one for each original inequality constraint. Thus, the
   123 problem can be reformulated as follows:
   124 
   125 \medskip
   126 
   127 \noindent
   128 \hspace{.5in} maximize
   129 $$z = 10 x_1 + 6 x_2 + 4 x_3$$
   130 \hspace{.5in} subject to
   131 $$
   132 \begin{array}{r@{\:}c@{\:}r@{\:}c@{\:}r@{\:}c@{\:}r}
   133 p& = &x_1 &+&x_2 &+&x_3 \\
   134 q& = &10 x_1 &+& 4 x_2 &+& 5 x_3 \\
   135 r& = &2  x_1 &+& 2 x_2 &+& 6 x_3 \\
   136 \end{array}
   137 $$
   138 \hspace{.5in} and bounds of variables
   139 $$
   140 \begin{array}{ccc}
   141 \nonumber -\infty < p \leq 100 && 0 \leq x_1 < +\infty \\
   142 \nonumber -\infty < q \leq 600 && 0 \leq x_2 < +\infty \\
   143 \nonumber -\infty < r \leq 300 && 0 \leq x_3 < +\infty \\
   144 \end{array}
   145 $$
   146 where $p, q, r$ are auxiliary variables (rows), and $x_1, x_2, x_3$ are
   147 structural variables (columns).
   148 
   149 The example C program shown below uses GLPK API routines in order to
   150 solve this LP problem.\footnote{If you just need to solve LP or MIP
   151 instance, you may write it in MPS or CPLEX LP format and then use the
   152 GLPK stand-alone solver to obtain a solution. This is much less
   153 time-consuming than programming in C with GLPK API routines.}
   154 
   155 \newpage
   156 
   157 \begin{verbatim}
   158 /* sample.c */
   159 
   160 #include <stdio.h>
   161 #include <stdlib.h>
   162 #include <glpk.h>
   163 
   164 int main(void)
   165 {     glp_prob *lp;
   166       int ia[1+1000], ja[1+1000];
   167       double ar[1+1000], z, x1, x2, x3;
   168 s1:   lp = glp_create_prob();
   169 s2:   glp_set_prob_name(lp, "sample");
   170 s3:   glp_set_obj_dir(lp, GLP_MAX);
   171 s4:   glp_add_rows(lp, 3);
   172 s5:   glp_set_row_name(lp, 1, "p");
   173 s6:   glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
   174 s7:   glp_set_row_name(lp, 2, "q");
   175 s8:   glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
   176 s9:   glp_set_row_name(lp, 3, "r");
   177 s10:  glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
   178 s11:  glp_add_cols(lp, 3);
   179 s12:  glp_set_col_name(lp, 1, "x1");
   180 s13:  glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
   181 s14:  glp_set_obj_coef(lp, 1, 10.0);
   182 s15:  glp_set_col_name(lp, 2, "x2");
   183 s16:  glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
   184 s17:  glp_set_obj_coef(lp, 2, 6.0);
   185 s18:  glp_set_col_name(lp, 3, "x3");
   186 s19:  glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
   187 s20:  glp_set_obj_coef(lp, 3, 4.0);
   188 s21:  ia[1] = 1, ja[1] = 1, ar[1] =  1.0; /* a[1,1] =  1 */
   189 s22:  ia[2] = 1, ja[2] = 2, ar[2] =  1.0; /* a[1,2] =  1 */
   190 s23:  ia[3] = 1, ja[3] = 3, ar[3] =  1.0; /* a[1,3] =  1 */
   191 s24:  ia[4] = 2, ja[4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */
   192 s25:  ia[5] = 3, ja[5] = 1, ar[5] =  2.0; /* a[3,1] =  2 */
   193 s26:  ia[6] = 2, ja[6] = 2, ar[6] =  4.0; /* a[2,2] =  4 */
   194 s27:  ia[7] = 3, ja[7] = 2, ar[7] =  2.0; /* a[3,2] =  2 */
   195 s28:  ia[8] = 2, ja[8] = 3, ar[8] =  5.0; /* a[2,3] =  5 */
   196 s29:  ia[9] = 3, ja[9] = 3, ar[9] =  6.0; /* a[3,3] =  6 */
   197 s30:  glp_load_matrix(lp, 9, ia, ja, ar);
   198 s31:  glp_simplex(lp, NULL);
   199 s32:  z = glp_get_obj_val(lp);
   200 s33:  x1 = glp_get_col_prim(lp, 1);
   201 s34:  x2 = glp_get_col_prim(lp, 2);
   202 s35:  x3 = glp_get_col_prim(lp, 3);
   203 s36:  printf("\nz = %g; x1 = %g; x2 = %g; x3 = %g\n",
   204          z, x1, x2, x3);
   205 s37:  glp_delete_prob(lp);
   206       return 0;
   207 }
   208 
   209 /* eof */
   210 \end{verbatim}
   211 
   212 The statement \verb|s1| creates a problem object. Being created the
   213 object is initially empty. The statement \verb|s2| assigns a symbolic
   214 name to the problem object.
   215 
   216 The statement \verb|s3| calls the routine \verb|glp_set_obj_dir| in
   217 order to set the optimization direction flag, where \verb|GLP_MAX| means
   218 maximization.
   219 
   220 The statement \verb|s4| adds three rows to the problem object.
   221 
   222 The statement \verb|s5| assigns the symbolic name `\verb|p|' to the
   223 first row, and the statement \verb|s6| sets the type and bounds of the
   224 first row, where \verb|GLP_UP| means that the row has an upper bound.
   225 The statements \verb|s7|, \verb|s8|, \verb|s9|, \verb|s10| are used in
   226 the same way in order to assign the symbolic names `\verb|q|' and
   227 `\verb|r|' to the second and third rows and set their types and bounds.
   228 
   229 The statement \verb|s11| adds three columns to the problem object.
   230 
   231 The statement \verb|s12| assigns the symbolic name `\verb|x1|' to the
   232 first column, the statement \verb|s13| sets the type and bounds of the
   233 first column, where \verb|GLP_LO| means that the column has an lower
   234 bound, and the statement \verb|s14| sets the objective coefficient for
   235 the first column. The statements \verb|s15|---\verb|s20| are used in the
   236 same way in order to assign the symbolic names `\verb|x2|' and
   237 `\verb|x3|' to the second and third columns and set their types, bounds,
   238 and objective coefficients.
   239 
   240 The statements \verb|s21|---\verb|s29| prepare non-zero elements of the
   241 constraint matrix (i.e. constraint coefficients). Row indices of each
   242 element are stored in the array \verb|ia|, column indices are stored in
   243 the array \verb|ja|, and numerical values of corresponding elements are
   244 stored in the array \verb|ar|. Then the statement \verb|s30| calls
   245 the routine \verb|glp_load_matrix|, which loads information from these
   246 three arrays into the problem object.
   247 
   248 Now all data have been entered into the problem object, and therefore
   249 the statement \verb|s31| calls the routine \verb|glp_simplex|, which is
   250 a driver to the simplex method, in order to solve the LP problem. This
   251 routine finds an optimal solution and stores all relevant information
   252 back into the problem object.
   253 
   254 The statement \verb|s32| obtains a computed value of the objective
   255 function, and the statements \verb|s33|---\verb|s35| obtain computed
   256 values of structural variables (columns), which correspond to the
   257 optimal basic solution found by the solver.
   258 
   259 The statement \verb|s36| writes the optimal solution to the standard
   260 output. The printout may look like follows:
   261 
   262 {\footnotesize
   263 \begin{verbatim}
   264 *     0:   objval =   0.000000000e+00   infeas =   0.000000000e+00 (0)
   265 *     2:   objval =   7.333333333e+02   infeas =   0.000000000e+00 (0)
   266 OPTIMAL SOLUTION FOUND
   267 
   268 z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0
   269 \end{verbatim}
   270 
   271 }
   272 
   273 Finally, the statement \verb|s37| calls the routine
   274 \verb|glp_delete_prob|, which frees all the memory allocated to the
   275 problem object.
   276 
   277 \subsection{Compiling}
   278 
   279 The GLPK package has the only header file \verb|glpk.h|, which should
   280 be available on compiling a C (or C++) program using GLPK API routines.
   281 
   282 If the header file is installed in the default location
   283 \verb|/usr/local/include|, the following typical command may be used to
   284 compile, say, the example C program described above with the GNU C
   285 compiler:
   286 
   287 \begin{verbatim}
   288    $ gcc -c sample.c
   289 \end{verbatim}
   290 
   291 If \verb|glpk.h| is not in the default location, the corresponding
   292 directory containing it should be made known to the C compiler through
   293 \verb|-I| option, for example:
   294 
   295 \begin{verbatim}
   296    $ gcc -I/foo/bar/glpk-4.15/include -c sample.c
   297 \end{verbatim}
   298 
   299 In any case the compilation results in an object file \verb|sample.o|.
   300 
   301 \subsection{Linking}
   302 
   303 The GLPK library is a single file \verb|libglpk.a|. (On systems which
   304 support shared libraries there may be also a shared version of the
   305 library \verb|libglpk.so|.)
   306 
   307 If the library is installed in the default
   308 location \verb|/usr/local/lib|, the following typical command may be
   309 used to link, say, the example C program described above against with
   310 the library:
   311 
   312 \begin{verbatim}
   313    $ gcc sample.o -lglpk -lm
   314 \end{verbatim}
   315 
   316 If the GLPK library is not in the default location, the corresponding
   317 directory containing it should be made known to the linker through
   318 \verb|-L| option, for example:
   319 
   320 \begin{verbatim}
   321    $ gcc -L/foo/bar/glpk-4.15 sample.o -lglpk -lm
   322 \end{verbatim}
   323 
   324 Depending on configuration of the package linking against with the GLPK
   325 library may require the following optional libraries:
   326 
   327 \bigskip
   328 
   329 \begin{tabular}{@{}ll}
   330 \verb|-lgmp|  & the GNU MP bignum library; \\
   331 \verb|-lz|    & the zlib data compression library; \\
   332 \verb|-lltdl| & the GNU ltdl shared support library. \\
   333 \end{tabular}
   334 
   335 \bigskip
   336 
   337 \noindent
   338 in which case corresponding libraries should be also made known to the
   339 linker, for example:
   340 
   341 \begin{verbatim}
   342    $ gcc sample.o -lglpk -lz -lltdl -lm
   343 \end{verbatim}
   344 
   345 For more details about configuration options of the GLPK package see
   346 Appendix \ref{install}, page \pageref{install}.
   347 
   348 %* eof *%