alpar@1
|
1 |
%* glpk01.tex *%
|
alpar@1
|
2 |
|
alpar@1
|
3 |
\chapter{Introduction}
|
alpar@1
|
4 |
|
alpar@1
|
5 |
GLPK (\underline{G}NU \underline{L}inear \underline{P}rogramming
|
alpar@1
|
6 |
\underline{K}it) is a set of routines written in the ANSI C programming
|
alpar@1
|
7 |
language and organized in the form of a callable library. It is intended
|
alpar@1
|
8 |
for solving linear programming (LP), mixed integer programming (MIP),
|
alpar@1
|
9 |
and other related problems.
|
alpar@1
|
10 |
|
alpar@1
|
11 |
\section{LP problem}
|
alpar@1
|
12 |
\label{seclp}
|
alpar@1
|
13 |
|
alpar@1
|
14 |
GLPK assumes the following formulation of {\it linear programming (LP)}
|
alpar@1
|
15 |
problem:
|
alpar@1
|
16 |
|
alpar@1
|
17 |
\medskip
|
alpar@1
|
18 |
|
alpar@1
|
19 |
\noindent
|
alpar@1
|
20 |
\hspace{.5in} minimize (or maximize)
|
alpar@1
|
21 |
$$z = c_1x_{m+1} + c_2x_{m+2} + \dots + c_nx_{m+n} + c_0 \eqno (1.1)$$
|
alpar@1
|
22 |
\hspace{.5in} subject to linear constraints
|
alpar@1
|
23 |
$$
|
alpar@1
|
24 |
\begin{array}{r@{\:}c@{\:}r@{\:}c@{\:}r@{\:}c@{\:}r}
|
alpar@1
|
25 |
x_1&=&a_{11}x_{m+1}&+&a_{12}x_{m+2}&+ \dots +&a_{1n}x_{m+n} \\
|
alpar@1
|
26 |
x_2&=&a_{21}x_{m+1}&+&a_{22}x_{m+2}&+ \dots +&a_{2n}x_{m+n} \\
|
alpar@1
|
27 |
\multicolumn{7}{c}
|
alpar@1
|
28 |
{.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .} \\
|
alpar@1
|
29 |
x_m&=&a_{m1}x_{m+1}&+&a_{m2}x_{m+2}&+ \dots +&a_{mn}x_{m+n} \\
|
alpar@1
|
30 |
\end{array} \eqno (1.2)
|
alpar@1
|
31 |
$$
|
alpar@1
|
32 |
\hspace{.5in} and bounds of variables
|
alpar@1
|
33 |
$$
|
alpar@1
|
34 |
\begin{array}{r@{\:}c@{\:}c@{\:}c@{\:}l}
|
alpar@1
|
35 |
l_1&\leq&x_1&\leq&u_1 \\
|
alpar@1
|
36 |
l_2&\leq&x_2&\leq&u_2 \\
|
alpar@1
|
37 |
\multicolumn{5}{c}{.\ \ .\ \ .\ \ .\ \ .}\\
|
alpar@1
|
38 |
l_{m+n}&\leq&x_{m+n}&\leq&u_{m+n} \\
|
alpar@1
|
39 |
\end{array} \eqno (1.3)
|
alpar@1
|
40 |
$$
|
alpar@1
|
41 |
where: $x_1, x_2, \dots, x_m$ are auxiliary variables;
|
alpar@1
|
42 |
$x_{m+1}, x_{m+2}, \dots, x_{m+n}$ are\linebreak structural variables;
|
alpar@1
|
43 |
$z$ is the objective function;
|
alpar@1
|
44 |
$c_1, c_2, \dots, c_n$ are objective coefficients;
|
alpar@1
|
45 |
$c_0$ is the constant term (``shift'') of the objective function;
|
alpar@1
|
46 |
$a_{11}, a_{12}, \dots, a_{mn}$ are constraint coefficients;
|
alpar@1
|
47 |
$l_1, l_2, \dots, l_{m+n}$ are lower bounds of variables;
|
alpar@1
|
48 |
$u_1, u_2, \dots, u_{m+n}$ are upper bounds of variables.
|
alpar@1
|
49 |
|
alpar@1
|
50 |
Auxiliary variables are also called {\it rows}, because they correspond
|
alpar@1
|
51 |
to rows of the constraint matrix (i.e. a matrix built of the constraint
|
alpar@1
|
52 |
coefficients). Similarly, structural variables are also called
|
alpar@1
|
53 |
{\it columns}, because they correspond to columns of the constraint
|
alpar@1
|
54 |
matrix.
|
alpar@1
|
55 |
|
alpar@1
|
56 |
Bounds of variables can be finite as well as infinite. Besides, lower
|
alpar@1
|
57 |
and upper bounds can be equal to each other. Thus, the following types
|
alpar@1
|
58 |
of variables are possible:
|
alpar@1
|
59 |
\begin{center}
|
alpar@1
|
60 |
\begin{tabular}{r@{}c@{}ll}
|
alpar@1
|
61 |
\multicolumn{3}{c}{Bounds of variable} & Type of variable \\
|
alpar@1
|
62 |
\hline
|
alpar@1
|
63 |
$-\infty <$ &$\ x_k\ $& $< +\infty$ & Free (unbounded) variable \\
|
alpar@1
|
64 |
$l_k \leq$ &$\ x_k\ $& $< +\infty$ & Variable with lower bound \\
|
alpar@1
|
65 |
$-\infty <$ &$\ x_k\ $& $\leq u_k$ & Variable with upper bound \\
|
alpar@1
|
66 |
$l_k \leq$ &$\ x_k\ $& $\leq u_k$ & Double-bounded variable \\
|
alpar@1
|
67 |
$l_k =$ &$\ x_k\ $& $= u_k$ & Fixed variable \\
|
alpar@1
|
68 |
\end{tabular}
|
alpar@1
|
69 |
\end{center}
|
alpar@1
|
70 |
\noindent
|
alpar@1
|
71 |
Note that the types of variables shown above are applicable to
|
alpar@1
|
72 |
structural as well as to auxiliary variables.
|
alpar@1
|
73 |
|
alpar@1
|
74 |
To solve the LP problem (1.1)---(1.3) is to find such values of all
|
alpar@1
|
75 |
structural and auxiliary variables, which:
|
alpar@1
|
76 |
|
alpar@1
|
77 |
$\bullet$ satisfy to all the linear constraints (1.2), and
|
alpar@1
|
78 |
|
alpar@1
|
79 |
$\bullet$ are within their bounds (1.3), and
|
alpar@1
|
80 |
|
alpar@1
|
81 |
$\bullet$ provide the smallest (in case of minimization) or the largest
|
alpar@1
|
82 |
(in case of maximization) value of the objective function (1.1).
|
alpar@1
|
83 |
|
alpar@1
|
84 |
\section{MIP problem}
|
alpar@1
|
85 |
|
alpar@1
|
86 |
{\it Mixed integer linear programming (MIP)} problem is LP problem in
|
alpar@1
|
87 |
which some variables are additionally required to be integer.
|
alpar@1
|
88 |
|
alpar@1
|
89 |
GLPK assumes that MIP problem has the same formulation as ordinary
|
alpar@1
|
90 |
(pure) LP problem (1.1)---(1.3), i.e. includes auxiliary and structural
|
alpar@1
|
91 |
variables, which may have lower and/or upper bounds. However, in case of
|
alpar@1
|
92 |
MIP problem some variables may be required to be integer. This
|
alpar@1
|
93 |
additional constraint means that a value of each {\it integer variable}
|
alpar@1
|
94 |
must be only integer number. (Should note that GLPK allows only
|
alpar@1
|
95 |
structural variables to be of integer kind.)
|
alpar@1
|
96 |
|
alpar@1
|
97 |
\section{Using the package}
|
alpar@1
|
98 |
|
alpar@1
|
99 |
\subsection{Brief example}
|
alpar@1
|
100 |
|
alpar@1
|
101 |
In order to understand what GLPK is from the user's standpoint,
|
alpar@1
|
102 |
consider the following simple LP problem:
|
alpar@1
|
103 |
|
alpar@1
|
104 |
\medskip
|
alpar@1
|
105 |
|
alpar@1
|
106 |
\noindent
|
alpar@1
|
107 |
\hspace{.5in} maximize
|
alpar@1
|
108 |
$$z = 10 x_1 + 6 x_2 + 4 x_3$$
|
alpar@1
|
109 |
\hspace{.5in} subject to
|
alpar@1
|
110 |
$$
|
alpar@1
|
111 |
\begin{array}{r@{\:}c@{\:}r@{\:}c@{\:}r@{\:}c@{\:}r}
|
alpar@1
|
112 |
x_1 &+&x_2 &+&x_3 &\leq 100 \\
|
alpar@1
|
113 |
10 x_1 &+& 4 x_2 & +&5 x_3 & \leq 600 \\
|
alpar@1
|
114 |
2 x_1 &+& 2 x_2 & +& 6 x_3 & \leq 300 \\
|
alpar@1
|
115 |
\end{array}
|
alpar@1
|
116 |
$$
|
alpar@1
|
117 |
\hspace{.5in} where all variables are non-negative
|
alpar@1
|
118 |
$$x_1 \geq 0, \ x_2 \geq 0, \ x_3 \geq 0$$
|
alpar@1
|
119 |
|
alpar@1
|
120 |
At first this LP problem should be transformed to the standard form
|
alpar@1
|
121 |
(1.1)---(1.3). This can be easily done by introducing auxiliary
|
alpar@1
|
122 |
variables, by one for each original inequality constraint. Thus, the
|
alpar@1
|
123 |
problem can be reformulated as follows:
|
alpar@1
|
124 |
|
alpar@1
|
125 |
\medskip
|
alpar@1
|
126 |
|
alpar@1
|
127 |
\noindent
|
alpar@1
|
128 |
\hspace{.5in} maximize
|
alpar@1
|
129 |
$$z = 10 x_1 + 6 x_2 + 4 x_3$$
|
alpar@1
|
130 |
\hspace{.5in} subject to
|
alpar@1
|
131 |
$$
|
alpar@1
|
132 |
\begin{array}{r@{\:}c@{\:}r@{\:}c@{\:}r@{\:}c@{\:}r}
|
alpar@1
|
133 |
p& = &x_1 &+&x_2 &+&x_3 \\
|
alpar@1
|
134 |
q& = &10 x_1 &+& 4 x_2 &+& 5 x_3 \\
|
alpar@1
|
135 |
r& = &2 x_1 &+& 2 x_2 &+& 6 x_3 \\
|
alpar@1
|
136 |
\end{array}
|
alpar@1
|
137 |
$$
|
alpar@1
|
138 |
\hspace{.5in} and bounds of variables
|
alpar@1
|
139 |
$$
|
alpar@1
|
140 |
\begin{array}{ccc}
|
alpar@1
|
141 |
\nonumber -\infty < p \leq 100 && 0 \leq x_1 < +\infty \\
|
alpar@1
|
142 |
\nonumber -\infty < q \leq 600 && 0 \leq x_2 < +\infty \\
|
alpar@1
|
143 |
\nonumber -\infty < r \leq 300 && 0 \leq x_3 < +\infty \\
|
alpar@1
|
144 |
\end{array}
|
alpar@1
|
145 |
$$
|
alpar@1
|
146 |
where $p, q, r$ are auxiliary variables (rows), and $x_1, x_2, x_3$ are
|
alpar@1
|
147 |
structural variables (columns).
|
alpar@1
|
148 |
|
alpar@1
|
149 |
The example C program shown below uses GLPK API routines in order to
|
alpar@1
|
150 |
solve this LP problem.\footnote{If you just need to solve LP or MIP
|
alpar@1
|
151 |
instance, you may write it in MPS or CPLEX LP format and then use the
|
alpar@1
|
152 |
GLPK stand-alone solver to obtain a solution. This is much less
|
alpar@1
|
153 |
time-consuming than programming in C with GLPK API routines.}
|
alpar@1
|
154 |
|
alpar@1
|
155 |
\newpage
|
alpar@1
|
156 |
|
alpar@1
|
157 |
\begin{verbatim}
|
alpar@1
|
158 |
/* sample.c */
|
alpar@1
|
159 |
|
alpar@1
|
160 |
#include <stdio.h>
|
alpar@1
|
161 |
#include <stdlib.h>
|
alpar@1
|
162 |
#include <glpk.h>
|
alpar@1
|
163 |
|
alpar@1
|
164 |
int main(void)
|
alpar@1
|
165 |
{ glp_prob *lp;
|
alpar@1
|
166 |
int ia[1+1000], ja[1+1000];
|
alpar@1
|
167 |
double ar[1+1000], z, x1, x2, x3;
|
alpar@1
|
168 |
s1: lp = glp_create_prob();
|
alpar@1
|
169 |
s2: glp_set_prob_name(lp, "sample");
|
alpar@1
|
170 |
s3: glp_set_obj_dir(lp, GLP_MAX);
|
alpar@1
|
171 |
s4: glp_add_rows(lp, 3);
|
alpar@1
|
172 |
s5: glp_set_row_name(lp, 1, "p");
|
alpar@1
|
173 |
s6: glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
|
alpar@1
|
174 |
s7: glp_set_row_name(lp, 2, "q");
|
alpar@1
|
175 |
s8: glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
|
alpar@1
|
176 |
s9: glp_set_row_name(lp, 3, "r");
|
alpar@1
|
177 |
s10: glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
|
alpar@1
|
178 |
s11: glp_add_cols(lp, 3);
|
alpar@1
|
179 |
s12: glp_set_col_name(lp, 1, "x1");
|
alpar@1
|
180 |
s13: glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
|
alpar@1
|
181 |
s14: glp_set_obj_coef(lp, 1, 10.0);
|
alpar@1
|
182 |
s15: glp_set_col_name(lp, 2, "x2");
|
alpar@1
|
183 |
s16: glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
|
alpar@1
|
184 |
s17: glp_set_obj_coef(lp, 2, 6.0);
|
alpar@1
|
185 |
s18: glp_set_col_name(lp, 3, "x3");
|
alpar@1
|
186 |
s19: glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
|
alpar@1
|
187 |
s20: glp_set_obj_coef(lp, 3, 4.0);
|
alpar@1
|
188 |
s21: ia[1] = 1, ja[1] = 1, ar[1] = 1.0; /* a[1,1] = 1 */
|
alpar@1
|
189 |
s22: ia[2] = 1, ja[2] = 2, ar[2] = 1.0; /* a[1,2] = 1 */
|
alpar@1
|
190 |
s23: ia[3] = 1, ja[3] = 3, ar[3] = 1.0; /* a[1,3] = 1 */
|
alpar@1
|
191 |
s24: ia[4] = 2, ja[4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */
|
alpar@1
|
192 |
s25: ia[5] = 3, ja[5] = 1, ar[5] = 2.0; /* a[3,1] = 2 */
|
alpar@1
|
193 |
s26: ia[6] = 2, ja[6] = 2, ar[6] = 4.0; /* a[2,2] = 4 */
|
alpar@1
|
194 |
s27: ia[7] = 3, ja[7] = 2, ar[7] = 2.0; /* a[3,2] = 2 */
|
alpar@1
|
195 |
s28: ia[8] = 2, ja[8] = 3, ar[8] = 5.0; /* a[2,3] = 5 */
|
alpar@1
|
196 |
s29: ia[9] = 3, ja[9] = 3, ar[9] = 6.0; /* a[3,3] = 6 */
|
alpar@1
|
197 |
s30: glp_load_matrix(lp, 9, ia, ja, ar);
|
alpar@1
|
198 |
s31: glp_simplex(lp, NULL);
|
alpar@1
|
199 |
s32: z = glp_get_obj_val(lp);
|
alpar@1
|
200 |
s33: x1 = glp_get_col_prim(lp, 1);
|
alpar@1
|
201 |
s34: x2 = glp_get_col_prim(lp, 2);
|
alpar@1
|
202 |
s35: x3 = glp_get_col_prim(lp, 3);
|
alpar@1
|
203 |
s36: printf("\nz = %g; x1 = %g; x2 = %g; x3 = %g\n",
|
alpar@1
|
204 |
z, x1, x2, x3);
|
alpar@1
|
205 |
s37: glp_delete_prob(lp);
|
alpar@1
|
206 |
return 0;
|
alpar@1
|
207 |
}
|
alpar@1
|
208 |
|
alpar@1
|
209 |
/* eof */
|
alpar@1
|
210 |
\end{verbatim}
|
alpar@1
|
211 |
|
alpar@1
|
212 |
The statement \verb|s1| creates a problem object. Being created the
|
alpar@1
|
213 |
object is initially empty. The statement \verb|s2| assigns a symbolic
|
alpar@1
|
214 |
name to the problem object.
|
alpar@1
|
215 |
|
alpar@1
|
216 |
The statement \verb|s3| calls the routine \verb|glp_set_obj_dir| in
|
alpar@1
|
217 |
order to set the optimization direction flag, where \verb|GLP_MAX| means
|
alpar@1
|
218 |
maximization.
|
alpar@1
|
219 |
|
alpar@1
|
220 |
The statement \verb|s4| adds three rows to the problem object.
|
alpar@1
|
221 |
|
alpar@1
|
222 |
The statement \verb|s5| assigns the symbolic name `\verb|p|' to the
|
alpar@1
|
223 |
first row, and the statement \verb|s6| sets the type and bounds of the
|
alpar@1
|
224 |
first row, where \verb|GLP_UP| means that the row has an upper bound.
|
alpar@1
|
225 |
The statements \verb|s7|, \verb|s8|, \verb|s9|, \verb|s10| are used in
|
alpar@1
|
226 |
the same way in order to assign the symbolic names `\verb|q|' and
|
alpar@1
|
227 |
`\verb|r|' to the second and third rows and set their types and bounds.
|
alpar@1
|
228 |
|
alpar@1
|
229 |
The statement \verb|s11| adds three columns to the problem object.
|
alpar@1
|
230 |
|
alpar@1
|
231 |
The statement \verb|s12| assigns the symbolic name `\verb|x1|' to the
|
alpar@1
|
232 |
first column, the statement \verb|s13| sets the type and bounds of the
|
alpar@1
|
233 |
first column, where \verb|GLP_LO| means that the column has an lower
|
alpar@1
|
234 |
bound, and the statement \verb|s14| sets the objective coefficient for
|
alpar@1
|
235 |
the first column. The statements \verb|s15|---\verb|s20| are used in the
|
alpar@1
|
236 |
same way in order to assign the symbolic names `\verb|x2|' and
|
alpar@1
|
237 |
`\verb|x3|' to the second and third columns and set their types, bounds,
|
alpar@1
|
238 |
and objective coefficients.
|
alpar@1
|
239 |
|
alpar@1
|
240 |
The statements \verb|s21|---\verb|s29| prepare non-zero elements of the
|
alpar@1
|
241 |
constraint matrix (i.e. constraint coefficients). Row indices of each
|
alpar@1
|
242 |
element are stored in the array \verb|ia|, column indices are stored in
|
alpar@1
|
243 |
the array \verb|ja|, and numerical values of corresponding elements are
|
alpar@1
|
244 |
stored in the array \verb|ar|. Then the statement \verb|s30| calls
|
alpar@1
|
245 |
the routine \verb|glp_load_matrix|, which loads information from these
|
alpar@1
|
246 |
three arrays into the problem object.
|
alpar@1
|
247 |
|
alpar@1
|
248 |
Now all data have been entered into the problem object, and therefore
|
alpar@1
|
249 |
the statement \verb|s31| calls the routine \verb|glp_simplex|, which is
|
alpar@1
|
250 |
a driver to the simplex method, in order to solve the LP problem. This
|
alpar@1
|
251 |
routine finds an optimal solution and stores all relevant information
|
alpar@1
|
252 |
back into the problem object.
|
alpar@1
|
253 |
|
alpar@1
|
254 |
The statement \verb|s32| obtains a computed value of the objective
|
alpar@1
|
255 |
function, and the statements \verb|s33|---\verb|s35| obtain computed
|
alpar@1
|
256 |
values of structural variables (columns), which correspond to the
|
alpar@1
|
257 |
optimal basic solution found by the solver.
|
alpar@1
|
258 |
|
alpar@1
|
259 |
The statement \verb|s36| writes the optimal solution to the standard
|
alpar@1
|
260 |
output. The printout may look like follows:
|
alpar@1
|
261 |
|
alpar@1
|
262 |
{\footnotesize
|
alpar@1
|
263 |
\begin{verbatim}
|
alpar@1
|
264 |
* 0: objval = 0.000000000e+00 infeas = 0.000000000e+00 (0)
|
alpar@1
|
265 |
* 2: objval = 7.333333333e+02 infeas = 0.000000000e+00 (0)
|
alpar@1
|
266 |
OPTIMAL SOLUTION FOUND
|
alpar@1
|
267 |
|
alpar@1
|
268 |
z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0
|
alpar@1
|
269 |
\end{verbatim}
|
alpar@1
|
270 |
|
alpar@1
|
271 |
}
|
alpar@1
|
272 |
|
alpar@1
|
273 |
Finally, the statement \verb|s37| calls the routine
|
alpar@1
|
274 |
\verb|glp_delete_prob|, which frees all the memory allocated to the
|
alpar@1
|
275 |
problem object.
|
alpar@1
|
276 |
|
alpar@1
|
277 |
\subsection{Compiling}
|
alpar@1
|
278 |
|
alpar@1
|
279 |
The GLPK package has the only header file \verb|glpk.h|, which should
|
alpar@1
|
280 |
be available on compiling a C (or C++) program using GLPK API routines.
|
alpar@1
|
281 |
|
alpar@1
|
282 |
If the header file is installed in the default location
|
alpar@1
|
283 |
\verb|/usr/local/include|, the following typical command may be used to
|
alpar@1
|
284 |
compile, say, the example C program described above with the GNU C
|
alpar@1
|
285 |
compiler:
|
alpar@1
|
286 |
|
alpar@1
|
287 |
\begin{verbatim}
|
alpar@1
|
288 |
$ gcc -c sample.c
|
alpar@1
|
289 |
\end{verbatim}
|
alpar@1
|
290 |
|
alpar@1
|
291 |
If \verb|glpk.h| is not in the default location, the corresponding
|
alpar@1
|
292 |
directory containing it should be made known to the C compiler through
|
alpar@1
|
293 |
\verb|-I| option, for example:
|
alpar@1
|
294 |
|
alpar@1
|
295 |
\begin{verbatim}
|
alpar@1
|
296 |
$ gcc -I/foo/bar/glpk-4.15/include -c sample.c
|
alpar@1
|
297 |
\end{verbatim}
|
alpar@1
|
298 |
|
alpar@1
|
299 |
In any case the compilation results in an object file \verb|sample.o|.
|
alpar@1
|
300 |
|
alpar@1
|
301 |
\subsection{Linking}
|
alpar@1
|
302 |
|
alpar@1
|
303 |
The GLPK library is a single file \verb|libglpk.a|. (On systems which
|
alpar@1
|
304 |
support shared libraries there may be also a shared version of the
|
alpar@1
|
305 |
library \verb|libglpk.so|.)
|
alpar@1
|
306 |
|
alpar@1
|
307 |
If the library is installed in the default
|
alpar@1
|
308 |
location \verb|/usr/local/lib|, the following typical command may be
|
alpar@1
|
309 |
used to link, say, the example C program described above against with
|
alpar@1
|
310 |
the library:
|
alpar@1
|
311 |
|
alpar@1
|
312 |
\begin{verbatim}
|
alpar@1
|
313 |
$ gcc sample.o -lglpk -lm
|
alpar@1
|
314 |
\end{verbatim}
|
alpar@1
|
315 |
|
alpar@1
|
316 |
If the GLPK library is not in the default location, the corresponding
|
alpar@1
|
317 |
directory containing it should be made known to the linker through
|
alpar@1
|
318 |
\verb|-L| option, for example:
|
alpar@1
|
319 |
|
alpar@1
|
320 |
\begin{verbatim}
|
alpar@1
|
321 |
$ gcc -L/foo/bar/glpk-4.15 sample.o -lglpk -lm
|
alpar@1
|
322 |
\end{verbatim}
|
alpar@1
|
323 |
|
alpar@1
|
324 |
Depending on configuration of the package linking against with the GLPK
|
alpar@1
|
325 |
library may require the following optional libraries:
|
alpar@1
|
326 |
|
alpar@1
|
327 |
\bigskip
|
alpar@1
|
328 |
|
alpar@1
|
329 |
\begin{tabular}{@{}ll}
|
alpar@1
|
330 |
\verb|-lgmp| & the GNU MP bignum library; \\
|
alpar@1
|
331 |
\verb|-lz| & the zlib data compression library; \\
|
alpar@1
|
332 |
\verb|-lltdl| & the GNU ltdl shared support library. \\
|
alpar@1
|
333 |
\end{tabular}
|
alpar@1
|
334 |
|
alpar@1
|
335 |
\bigskip
|
alpar@1
|
336 |
|
alpar@1
|
337 |
\noindent
|
alpar@1
|
338 |
in which case corresponding libraries should be also made known to the
|
alpar@1
|
339 |
linker, for example:
|
alpar@1
|
340 |
|
alpar@1
|
341 |
\begin{verbatim}
|
alpar@1
|
342 |
$ gcc sample.o -lglpk -lz -lltdl -lm
|
alpar@1
|
343 |
\end{verbatim}
|
alpar@1
|
344 |
|
alpar@1
|
345 |
For more details about configuration options of the GLPK package see
|
alpar@1
|
346 |
Appendix \ref{install}, page \pageref{install}.
|
alpar@1
|
347 |
|
alpar@1
|
348 |
%* eof *%
|