src/amd/amd_aat.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* ========================================================================= */
     2 /* === AMD_aat ============================================================= */
     3 /* ========================================================================= */
     4 
     5 /* ------------------------------------------------------------------------- */
     6 /* AMD, Copyright (c) Timothy A. Davis,                                      */
     7 /* Patrick R. Amestoy, and Iain S. Duff.  See ../README.txt for License.     */
     8 /* email: davis at cise.ufl.edu    CISE Department, Univ. of Florida.        */
     9 /* web: http://www.cise.ufl.edu/research/sparse/amd                          */
    10 /* ------------------------------------------------------------------------- */
    11 
    12 /* AMD_aat:  compute the symmetry of the pattern of A, and count the number of
    13  * nonzeros each column of A+A' (excluding the diagonal).  Assumes the input
    14  * matrix has no errors, with sorted columns and no duplicates
    15  * (AMD_valid (n, n, Ap, Ai) must be AMD_OK, but this condition is not
    16  * checked).
    17  */
    18 
    19 #include "amd_internal.h"
    20 
    21 GLOBAL size_t AMD_aat   /* returns nz in A+A' */
    22 (
    23     Int n,
    24     const Int Ap [ ],
    25     const Int Ai [ ],
    26     Int Len [ ],        /* Len [j]: length of column j of A+A', excl diagonal*/
    27     Int Tp [ ],         /* workspace of size n */
    28     double Info [ ]
    29 )
    30 {
    31     Int p1, p2, p, i, j, pj, pj2, k, nzdiag, nzboth, nz ;
    32     double sym ;
    33     size_t nzaat ;
    34 
    35 #ifndef NDEBUG
    36     AMD_debug_init ("AMD AAT") ;
    37     for (k = 0 ; k < n ; k++) Tp [k] = EMPTY ;
    38     ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ;
    39 #endif
    40 
    41     if (Info != (double *) NULL)
    42     {
    43         /* clear the Info array, if it exists */
    44         for (i = 0 ; i < AMD_INFO ; i++)
    45         {
    46             Info [i] = EMPTY ;
    47         }
    48         Info [AMD_STATUS] = AMD_OK ;
    49     }
    50 
    51     for (k = 0 ; k < n ; k++)
    52     {
    53         Len [k] = 0 ;
    54     }
    55 
    56     nzdiag = 0 ;
    57     nzboth = 0 ;
    58     nz = Ap [n] ;
    59 
    60     for (k = 0 ; k < n ; k++)
    61     {
    62         p1 = Ap [k] ;
    63         p2 = Ap [k+1] ;
    64         AMD_DEBUG2 (("\nAAT Column: "ID" p1: "ID" p2: "ID"\n", k, p1, p2)) ;
    65 
    66         /* construct A+A' */
    67         for (p = p1 ; p < p2 ; )
    68         {
    69             /* scan the upper triangular part of A */
    70             j = Ai [p] ;
    71             if (j < k)
    72             {
    73                 /* entry A (j,k) is in the strictly upper triangular part,
    74                  * add both A (j,k) and A (k,j) to the matrix A+A' */
    75                 Len [j]++ ;
    76                 Len [k]++ ;
    77                 AMD_DEBUG3 (("    upper ("ID","ID") ("ID","ID")\n", j,k, k,j));
    78                 p++ ;
    79             }
    80             else if (j == k)
    81             {
    82                 /* skip the diagonal */
    83                 p++ ;
    84                 nzdiag++ ;
    85                 break ;
    86             }
    87             else /* j > k */
    88             {
    89                 /* first entry below the diagonal */
    90                 break ;
    91             }
    92             /* scan lower triangular part of A, in column j until reaching
    93              * row k.  Start where last scan left off. */
    94             ASSERT (Tp [j] != EMPTY) ;
    95             ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ;
    96             pj2 = Ap [j+1] ;
    97             for (pj = Tp [j] ; pj < pj2 ; )
    98             {
    99                 i = Ai [pj] ;
   100                 if (i < k)
   101                 {
   102                     /* A (i,j) is only in the lower part, not in upper.
   103                      * add both A (i,j) and A (j,i) to the matrix A+A' */
   104                     Len [i]++ ;
   105                     Len [j]++ ;
   106                     AMD_DEBUG3 (("    lower ("ID","ID") ("ID","ID")\n",
   107                         i,j, j,i)) ;
   108                     pj++ ;
   109                 }
   110                 else if (i == k)
   111                 {
   112                     /* entry A (k,j) in lower part and A (j,k) in upper */
   113                     pj++ ;
   114                     nzboth++ ;
   115                     break ;
   116                 }
   117                 else /* i > k */
   118                 {
   119                     /* consider this entry later, when k advances to i */
   120                     break ;
   121                 }
   122             }
   123             Tp [j] = pj ;
   124         }
   125         /* Tp [k] points to the entry just below the diagonal in column k */
   126         Tp [k] = p ;
   127     }
   128 
   129     /* clean up, for remaining mismatched entries */
   130     for (j = 0 ; j < n ; j++)
   131     {
   132         for (pj = Tp [j] ; pj < Ap [j+1] ; pj++)
   133         {
   134             i = Ai [pj] ;
   135             /* A (i,j) is only in the lower part, not in upper.
   136              * add both A (i,j) and A (j,i) to the matrix A+A' */
   137             Len [i]++ ;
   138             Len [j]++ ;
   139             AMD_DEBUG3 (("    lower cleanup ("ID","ID") ("ID","ID")\n",
   140                 i,j, j,i)) ;
   141         }
   142     }
   143 
   144     /* --------------------------------------------------------------------- */
   145     /* compute the symmetry of the nonzero pattern of A */
   146     /* --------------------------------------------------------------------- */
   147 
   148     /* Given a matrix A, the symmetry of A is:
   149      *  B = tril (spones (A), -1) + triu (spones (A), 1) ;
   150      *  sym = nnz (B & B') / nnz (B) ;
   151      *  or 1 if nnz (B) is zero.
   152      */
   153 
   154     if (nz == nzdiag)
   155     {
   156         sym = 1 ;
   157     }
   158     else
   159     {
   160         sym = (2 * (double) nzboth) / ((double) (nz - nzdiag)) ;
   161     }
   162 
   163     nzaat = 0 ;
   164     for (k = 0 ; k < n ; k++)
   165     {
   166         nzaat += Len [k] ;
   167     }
   168 
   169     AMD_DEBUG1 (("AMD nz in A+A', excluding diagonal (nzaat) = %g\n",
   170         (double) nzaat)) ;
   171     AMD_DEBUG1 (("   nzboth: "ID" nz: "ID" nzdiag: "ID" symmetry: %g\n",
   172                 nzboth, nz, nzdiag, sym)) ;
   173 
   174     if (Info != (double *) NULL)
   175     {
   176         Info [AMD_STATUS] = AMD_OK ;
   177         Info [AMD_N] = n ;
   178         Info [AMD_NZ] = nz ;
   179         Info [AMD_SYMMETRY] = sym ;         /* symmetry of pattern of A */
   180         Info [AMD_NZDIAG] = nzdiag ;        /* nonzeros on diagonal of A */
   181         Info [AMD_NZ_A_PLUS_AT] = nzaat ;   /* nonzeros in A+A' */
   182     }
   183 
   184     return (nzaat) ;
   185 }