src/glpfhv.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glpfhv.h (LP basis factorization, FHV eta file version) */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #ifndef GLPFHV_H
    26 #define GLPFHV_H
    27 
    28 #include "glpluf.h"
    29 
    30 /***********************************************************************
    31 *  The structure FHV defines the factorization of the basis mxm-matrix
    32 *  B, where m is the number of rows in corresponding problem instance.
    33 *
    34 *  This factorization is the following sextet:
    35 *
    36 *     [B] = (F, H, V, P0, P, Q),                                     (1)
    37 *
    38 *  where F, H, and V are such matrices that
    39 *
    40 *     B = F * H * V,                                                 (2)
    41 *
    42 *  and P0, P, and Q are such permutation matrices that the matrix
    43 *
    44 *     L = P0 * F * inv(P0)                                           (3)
    45 *
    46 *  is lower triangular with unity diagonal, and the matrix
    47 *
    48 *     U = P * V * Q                                                  (4)
    49 *
    50 *  is upper triangular. All the matrices have the same order m, which
    51 *  is the order of the basis matrix B.
    52 *
    53 *  The matrices F, V, P, and Q are stored in the structure LUF (see the
    54 *  module GLPLUF), which is a member of the structure FHV.
    55 *
    56 *  The matrix H is stored in the form of eta file using row-like format
    57 *  as follows:
    58 *
    59 *     H = H[1] * H[2] * ... * H[nfs],                                (5)
    60 *
    61 *  where H[k], k = 1, 2, ..., nfs, is a row-like factor, which differs
    62 *  from the unity matrix only by one row, nfs is current number of row-
    63 *  like factors. After the factorization has been built for some given
    64 *  basis matrix B the matrix H has no factors and thus it is the unity
    65 *  matrix. Then each time when the factorization is recomputed for an
    66 *  adjacent basis matrix, the next factor H[k], k = 1, 2, ... is built
    67 *  and added to the end of the eta file H.
    68 *
    69 *  Being sparse vectors non-trivial rows of the factors H[k] are stored
    70 *  in the right part of the sparse vector area (SVA) in the same manner
    71 *  as rows and columns of the matrix F.
    72 *
    73 *  For more details see the program documentation. */
    74 
    75 typedef struct FHV FHV;
    76 
    77 struct FHV
    78 {     /* LP basis factorization */
    79       int m_max;
    80       /* maximal value of m (increased automatically, if necessary) */
    81       int m;
    82       /* the order of matrices B, F, H, V, P0, P, Q */
    83       int valid;
    84       /* the factorization is valid only if this flag is set */
    85       LUF *luf;
    86       /* LU-factorization (contains the matrices F, V, P, Q) */
    87       /*--------------------------------------------------------------*/
    88       /* matrix H in the form of eta file */
    89       int hh_max;
    90       /* maximal number of row-like factors (which limits the number of
    91          updates of the factorization) */
    92       int hh_nfs;
    93       /* current number of row-like factors (0 <= hh_nfs <= hh_max) */
    94       int *hh_ind; /* int hh_ind[1+hh_max]; */
    95       /* hh_ind[k], k = 1, ..., nfs, is the number of a non-trivial row
    96          of factor H[k] */
    97       int *hh_ptr; /* int hh_ptr[1+hh_max]; */
    98       /* hh_ptr[k], k = 1, ..., nfs, is a pointer to the first element
    99          of the non-trivial row of factor H[k] in the SVA */
   100       int *hh_len; /* int hh_len[1+hh_max]; */
   101       /* hh_len[k], k = 1, ..., nfs, is the number of non-zero elements
   102          in the non-trivial row of factor H[k] */
   103       /*--------------------------------------------------------------*/
   104       /* matrix P0 */
   105       int *p0_row; /* int p0_row[1+m_max]; */
   106       /* p0_row[i] = j means that p0[i,j] = 1 */
   107       int *p0_col; /* int p0_col[1+m_max]; */
   108       /* p0_col[j] = i means that p0[i,j] = 1 */
   109       /* if i-th row or column of the matrix F corresponds to i'-th row
   110          or column of the matrix L = P0*F*inv(P0), then p0_row[i'] = i
   111          and p0_col[i] = i' */
   112       /*--------------------------------------------------------------*/
   113       /* working arrays */
   114       int *cc_ind; /* int cc_ind[1+m_max]; */
   115       /* integer working array */
   116       double *cc_val; /* double cc_val[1+m_max]; */
   117       /* floating-point working array */
   118       /*--------------------------------------------------------------*/
   119       /* control parameters */
   120       double upd_tol;
   121       /* update tolerance; if after updating the factorization absolute
   122          value of some diagonal element u[k,k] of matrix U = P*V*Q is
   123          less than upd_tol * max(|u[k,*]|, |u[*,k]|), the factorization
   124          is considered as inaccurate */
   125       /*--------------------------------------------------------------*/
   126       /* some statistics */
   127       int nnz_h;
   128       /* current number of non-zeros in all factors of matrix H */
   129 };
   130 
   131 /* return codes: */
   132 #define FHV_ESING    1  /* singular matrix */
   133 #define FHV_ECOND    2  /* ill-conditioned matrix */
   134 #define FHV_ECHECK   3  /* insufficient accuracy */
   135 #define FHV_ELIMIT   4  /* update limit reached */
   136 #define FHV_EROOM    5  /* SVA overflow */
   137 
   138 #define fhv_create_it _glp_fhv_create_it
   139 FHV *fhv_create_it(void);
   140 /* create LP basis factorization */
   141 
   142 #define fhv_factorize _glp_fhv_factorize
   143 int fhv_factorize(FHV *fhv, int m, int (*col)(void *info, int j,
   144       int ind[], double val[]), void *info);
   145 /* compute LP basis factorization */
   146 
   147 #define fhv_h_solve _glp_fhv_h_solve
   148 void fhv_h_solve(FHV *fhv, int tr, double x[]);
   149 /* solve system H*x = b or H'*x = b */
   150 
   151 #define fhv_ftran _glp_fhv_ftran
   152 void fhv_ftran(FHV *fhv, double x[]);
   153 /* perform forward transformation (solve system B*x = b) */
   154 
   155 #define fhv_btran _glp_fhv_btran
   156 void fhv_btran(FHV *fhv, double x[]);
   157 /* perform backward transformation (solve system B'*x = b) */
   158 
   159 #define fhv_update_it _glp_fhv_update_it
   160 int fhv_update_it(FHV *fhv, int j, int len, const int ind[],
   161       const double val[]);
   162 /* update LP basis factorization */
   163 
   164 #define fhv_delete_it _glp_fhv_delete_it
   165 void fhv_delete_it(FHV *fhv);
   166 /* delete LP basis factorization */
   167 
   168 #endif
   169 
   170 /* eof */