alpar@1
|
1 |
/* glpfhv.h (LP basis factorization, FHV eta file version) */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#ifndef GLPFHV_H
|
alpar@1
|
26 |
#define GLPFHV_H
|
alpar@1
|
27 |
|
alpar@1
|
28 |
#include "glpluf.h"
|
alpar@1
|
29 |
|
alpar@1
|
30 |
/***********************************************************************
|
alpar@1
|
31 |
* The structure FHV defines the factorization of the basis mxm-matrix
|
alpar@1
|
32 |
* B, where m is the number of rows in corresponding problem instance.
|
alpar@1
|
33 |
*
|
alpar@1
|
34 |
* This factorization is the following sextet:
|
alpar@1
|
35 |
*
|
alpar@1
|
36 |
* [B] = (F, H, V, P0, P, Q), (1)
|
alpar@1
|
37 |
*
|
alpar@1
|
38 |
* where F, H, and V are such matrices that
|
alpar@1
|
39 |
*
|
alpar@1
|
40 |
* B = F * H * V, (2)
|
alpar@1
|
41 |
*
|
alpar@1
|
42 |
* and P0, P, and Q are such permutation matrices that the matrix
|
alpar@1
|
43 |
*
|
alpar@1
|
44 |
* L = P0 * F * inv(P0) (3)
|
alpar@1
|
45 |
*
|
alpar@1
|
46 |
* is lower triangular with unity diagonal, and the matrix
|
alpar@1
|
47 |
*
|
alpar@1
|
48 |
* U = P * V * Q (4)
|
alpar@1
|
49 |
*
|
alpar@1
|
50 |
* is upper triangular. All the matrices have the same order m, which
|
alpar@1
|
51 |
* is the order of the basis matrix B.
|
alpar@1
|
52 |
*
|
alpar@1
|
53 |
* The matrices F, V, P, and Q are stored in the structure LUF (see the
|
alpar@1
|
54 |
* module GLPLUF), which is a member of the structure FHV.
|
alpar@1
|
55 |
*
|
alpar@1
|
56 |
* The matrix H is stored in the form of eta file using row-like format
|
alpar@1
|
57 |
* as follows:
|
alpar@1
|
58 |
*
|
alpar@1
|
59 |
* H = H[1] * H[2] * ... * H[nfs], (5)
|
alpar@1
|
60 |
*
|
alpar@1
|
61 |
* where H[k], k = 1, 2, ..., nfs, is a row-like factor, which differs
|
alpar@1
|
62 |
* from the unity matrix only by one row, nfs is current number of row-
|
alpar@1
|
63 |
* like factors. After the factorization has been built for some given
|
alpar@1
|
64 |
* basis matrix B the matrix H has no factors and thus it is the unity
|
alpar@1
|
65 |
* matrix. Then each time when the factorization is recomputed for an
|
alpar@1
|
66 |
* adjacent basis matrix, the next factor H[k], k = 1, 2, ... is built
|
alpar@1
|
67 |
* and added to the end of the eta file H.
|
alpar@1
|
68 |
*
|
alpar@1
|
69 |
* Being sparse vectors non-trivial rows of the factors H[k] are stored
|
alpar@1
|
70 |
* in the right part of the sparse vector area (SVA) in the same manner
|
alpar@1
|
71 |
* as rows and columns of the matrix F.
|
alpar@1
|
72 |
*
|
alpar@1
|
73 |
* For more details see the program documentation. */
|
alpar@1
|
74 |
|
alpar@1
|
75 |
typedef struct FHV FHV;
|
alpar@1
|
76 |
|
alpar@1
|
77 |
struct FHV
|
alpar@1
|
78 |
{ /* LP basis factorization */
|
alpar@1
|
79 |
int m_max;
|
alpar@1
|
80 |
/* maximal value of m (increased automatically, if necessary) */
|
alpar@1
|
81 |
int m;
|
alpar@1
|
82 |
/* the order of matrices B, F, H, V, P0, P, Q */
|
alpar@1
|
83 |
int valid;
|
alpar@1
|
84 |
/* the factorization is valid only if this flag is set */
|
alpar@1
|
85 |
LUF *luf;
|
alpar@1
|
86 |
/* LU-factorization (contains the matrices F, V, P, Q) */
|
alpar@1
|
87 |
/*--------------------------------------------------------------*/
|
alpar@1
|
88 |
/* matrix H in the form of eta file */
|
alpar@1
|
89 |
int hh_max;
|
alpar@1
|
90 |
/* maximal number of row-like factors (which limits the number of
|
alpar@1
|
91 |
updates of the factorization) */
|
alpar@1
|
92 |
int hh_nfs;
|
alpar@1
|
93 |
/* current number of row-like factors (0 <= hh_nfs <= hh_max) */
|
alpar@1
|
94 |
int *hh_ind; /* int hh_ind[1+hh_max]; */
|
alpar@1
|
95 |
/* hh_ind[k], k = 1, ..., nfs, is the number of a non-trivial row
|
alpar@1
|
96 |
of factor H[k] */
|
alpar@1
|
97 |
int *hh_ptr; /* int hh_ptr[1+hh_max]; */
|
alpar@1
|
98 |
/* hh_ptr[k], k = 1, ..., nfs, is a pointer to the first element
|
alpar@1
|
99 |
of the non-trivial row of factor H[k] in the SVA */
|
alpar@1
|
100 |
int *hh_len; /* int hh_len[1+hh_max]; */
|
alpar@1
|
101 |
/* hh_len[k], k = 1, ..., nfs, is the number of non-zero elements
|
alpar@1
|
102 |
in the non-trivial row of factor H[k] */
|
alpar@1
|
103 |
/*--------------------------------------------------------------*/
|
alpar@1
|
104 |
/* matrix P0 */
|
alpar@1
|
105 |
int *p0_row; /* int p0_row[1+m_max]; */
|
alpar@1
|
106 |
/* p0_row[i] = j means that p0[i,j] = 1 */
|
alpar@1
|
107 |
int *p0_col; /* int p0_col[1+m_max]; */
|
alpar@1
|
108 |
/* p0_col[j] = i means that p0[i,j] = 1 */
|
alpar@1
|
109 |
/* if i-th row or column of the matrix F corresponds to i'-th row
|
alpar@1
|
110 |
or column of the matrix L = P0*F*inv(P0), then p0_row[i'] = i
|
alpar@1
|
111 |
and p0_col[i] = i' */
|
alpar@1
|
112 |
/*--------------------------------------------------------------*/
|
alpar@1
|
113 |
/* working arrays */
|
alpar@1
|
114 |
int *cc_ind; /* int cc_ind[1+m_max]; */
|
alpar@1
|
115 |
/* integer working array */
|
alpar@1
|
116 |
double *cc_val; /* double cc_val[1+m_max]; */
|
alpar@1
|
117 |
/* floating-point working array */
|
alpar@1
|
118 |
/*--------------------------------------------------------------*/
|
alpar@1
|
119 |
/* control parameters */
|
alpar@1
|
120 |
double upd_tol;
|
alpar@1
|
121 |
/* update tolerance; if after updating the factorization absolute
|
alpar@1
|
122 |
value of some diagonal element u[k,k] of matrix U = P*V*Q is
|
alpar@1
|
123 |
less than upd_tol * max(|u[k,*]|, |u[*,k]|), the factorization
|
alpar@1
|
124 |
is considered as inaccurate */
|
alpar@1
|
125 |
/*--------------------------------------------------------------*/
|
alpar@1
|
126 |
/* some statistics */
|
alpar@1
|
127 |
int nnz_h;
|
alpar@1
|
128 |
/* current number of non-zeros in all factors of matrix H */
|
alpar@1
|
129 |
};
|
alpar@1
|
130 |
|
alpar@1
|
131 |
/* return codes: */
|
alpar@1
|
132 |
#define FHV_ESING 1 /* singular matrix */
|
alpar@1
|
133 |
#define FHV_ECOND 2 /* ill-conditioned matrix */
|
alpar@1
|
134 |
#define FHV_ECHECK 3 /* insufficient accuracy */
|
alpar@1
|
135 |
#define FHV_ELIMIT 4 /* update limit reached */
|
alpar@1
|
136 |
#define FHV_EROOM 5 /* SVA overflow */
|
alpar@1
|
137 |
|
alpar@1
|
138 |
#define fhv_create_it _glp_fhv_create_it
|
alpar@1
|
139 |
FHV *fhv_create_it(void);
|
alpar@1
|
140 |
/* create LP basis factorization */
|
alpar@1
|
141 |
|
alpar@1
|
142 |
#define fhv_factorize _glp_fhv_factorize
|
alpar@1
|
143 |
int fhv_factorize(FHV *fhv, int m, int (*col)(void *info, int j,
|
alpar@1
|
144 |
int ind[], double val[]), void *info);
|
alpar@1
|
145 |
/* compute LP basis factorization */
|
alpar@1
|
146 |
|
alpar@1
|
147 |
#define fhv_h_solve _glp_fhv_h_solve
|
alpar@1
|
148 |
void fhv_h_solve(FHV *fhv, int tr, double x[]);
|
alpar@1
|
149 |
/* solve system H*x = b or H'*x = b */
|
alpar@1
|
150 |
|
alpar@1
|
151 |
#define fhv_ftran _glp_fhv_ftran
|
alpar@1
|
152 |
void fhv_ftran(FHV *fhv, double x[]);
|
alpar@1
|
153 |
/* perform forward transformation (solve system B*x = b) */
|
alpar@1
|
154 |
|
alpar@1
|
155 |
#define fhv_btran _glp_fhv_btran
|
alpar@1
|
156 |
void fhv_btran(FHV *fhv, double x[]);
|
alpar@1
|
157 |
/* perform backward transformation (solve system B'*x = b) */
|
alpar@1
|
158 |
|
alpar@1
|
159 |
#define fhv_update_it _glp_fhv_update_it
|
alpar@1
|
160 |
int fhv_update_it(FHV *fhv, int j, int len, const int ind[],
|
alpar@1
|
161 |
const double val[]);
|
alpar@1
|
162 |
/* update LP basis factorization */
|
alpar@1
|
163 |
|
alpar@1
|
164 |
#define fhv_delete_it _glp_fhv_delete_it
|
alpar@1
|
165 |
void fhv_delete_it(FHV *fhv);
|
alpar@1
|
166 |
/* delete LP basis factorization */
|
alpar@1
|
167 |
|
alpar@1
|
168 |
#endif
|
alpar@1
|
169 |
|
alpar@1
|
170 |
/* eof */
|