src/glpnpp04.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glpnpp04.c */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpnpp.h"
    26 
    27 /***********************************************************************
    28 *  NAME
    29 *
    30 *  npp_binarize_prob - binarize MIP problem
    31 *
    32 *  SYNOPSIS
    33 *
    34 *  #include "glpnpp.h"
    35 *  int npp_binarize_prob(NPP *npp);
    36 *
    37 *  DESCRIPTION
    38 *
    39 *  The routine npp_binarize_prob replaces in the original MIP problem
    40 *  every integer variable:
    41 *
    42 *     l[q] <= x[q] <= u[q],                                          (1)
    43 *
    44 *  where l[q] < u[q], by an equivalent sum of binary variables.
    45 *
    46 *  RETURNS
    47 *
    48 *  The routine returns the number of integer variables for which the
    49 *  transformation failed, because u[q] - l[q] > d_max.
    50 *
    51 *  PROBLEM TRANSFORMATION
    52 *
    53 *  If variable x[q] has non-zero lower bound, it is first processed
    54 *  with the routine npp_lbnd_col. Thus, we can assume that:
    55 *
    56 *     0 <= x[q] <= u[q].                                             (2)
    57 *
    58 *  If u[q] = 1, variable x[q] is already binary, so further processing
    59 *  is not needed. Let, therefore, that 2 <= u[q] <= d_max, and n be a
    60 *  smallest integer such that u[q] <= 2^n - 1 (n >= 2, since u[q] >= 2).
    61 *  Then variable x[q] can be replaced by the following sum:
    62 *
    63 *            n-1
    64 *     x[q] = sum 2^k x[k],                                           (3)
    65 *            k=0
    66 *
    67 *  where x[k] are binary columns (variables). If u[q] < 2^n - 1, the
    68 *  following additional inequality constraint must be also included in
    69 *  the transformed problem:
    70 *
    71 *     n-1
    72 *     sum 2^k x[k] <= u[q].                                          (4)
    73 *     k=0
    74 *
    75 *  Note: Assuming that in the transformed problem x[q] becomes binary
    76 *  variable x[0], this transformation causes new n-1 binary variables
    77 *  to appear.
    78 *
    79 *  Substituting x[q] from (3) to the objective row gives:
    80 *
    81 *     z = sum c[j] x[j] + c[0] =
    82 *          j
    83 *
    84 *       = sum c[j] x[j] + c[q] x[q] + c[0] =
    85 *         j!=q
    86 *                              n-1
    87 *       = sum c[j] x[j] + c[q] sum 2^k x[k] + c[0] =
    88 *         j!=q                 k=0
    89 *                         n-1
    90 *       = sum c[j] x[j] + sum c[k] x[k] + c[0],
    91 *         j!=q            k=0
    92 *
    93 *  where:
    94 *
    95 *     c[k] = 2^k c[q],  k = 0, ..., n-1.                             (5)
    96 *
    97 *  And substituting x[q] from (3) to i-th constraint row i gives:
    98 *
    99 *     L[i] <= sum a[i,j] x[j] <= U[i]  ==>
   100 *              j
   101 *
   102 *     L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i]  ==>
   103 *             j!=q
   104 *                                      n-1
   105 *     L[i] <= sum a[i,j] x[j] + a[i,q] sum 2^k x[k] <= U[i]  ==>
   106 *             j!=q                     k=0
   107 *                               n-1
   108 *     L[i] <= sum a[i,j] x[j] + sum a[i,k] x[k] <= U[i],
   109 *             j!=q              k=0
   110 *
   111 *  where:
   112 *
   113 *     a[i,k] = 2^k a[i,q],  k = 0, ..., n-1.                         (6)
   114 *
   115 *  RECOVERING SOLUTION
   116 *
   117 *  Value of variable x[q] is computed with formula (3). */
   118 
   119 struct binarize
   120 {     int q;
   121       /* column reference number for x[q] = x[0] */
   122       int j;
   123       /* column reference number for x[1]; x[2] has reference number
   124          j+1, x[3] - j+2, etc. */
   125       int n;
   126       /* total number of binary variables, n >= 2 */
   127 };
   128 
   129 static int rcv_binarize_prob(NPP *npp, void *info);
   130 
   131 int npp_binarize_prob(NPP *npp)
   132 {     /* binarize MIP problem */
   133       struct binarize *info;
   134       NPPROW *row;
   135       NPPCOL *col, *bin;
   136       NPPAIJ *aij;
   137       int u, n, k, temp, nfails, nvars, nbins, nrows;
   138       /* new variables will be added to the end of the column list, so
   139          we go from the end to beginning of the column list */
   140       nfails = nvars = nbins = nrows = 0;
   141       for (col = npp->c_tail; col != NULL; col = col->prev)
   142       {  /* skip continuous variable */
   143          if (!col->is_int) continue;
   144          /* skip fixed variable */
   145          if (col->lb == col->ub) continue;
   146          /* skip binary variable */
   147          if (col->lb == 0.0 && col->ub == 1.0) continue;
   148          /* check if the transformation is applicable */
   149          if (col->lb < -1e6 || col->ub > +1e6 ||
   150              col->ub - col->lb > 4095.0)
   151          {  /* unfortunately, not */
   152             nfails++;
   153             continue;
   154          }
   155          /* process integer non-binary variable x[q] */
   156          nvars++;
   157          /* make x[q] non-negative, if its lower bound is non-zero */
   158          if (col->lb != 0.0)
   159             npp_lbnd_col(npp, col);
   160          /* now 0 <= x[q] <= u[q] */
   161          xassert(col->lb == 0.0);
   162          u = (int)col->ub;
   163          xassert(col->ub == (double)u);
   164          /* if x[q] is binary, further processing is not needed */
   165          if (u == 1) continue;
   166          /* determine smallest n such that u <= 2^n - 1 (thus, n is the
   167             number of binary variables needed) */
   168          n = 2, temp = 4;
   169          while (u >= temp)
   170             n++, temp += temp;
   171          nbins += n;
   172          /* create transformation stack entry */
   173          info = npp_push_tse(npp,
   174             rcv_binarize_prob, sizeof(struct binarize));
   175          info->q = col->j;
   176          info->j = 0; /* will be set below */
   177          info->n = n;
   178          /* if u < 2^n - 1, we need one additional row for (4) */
   179          if (u < temp - 1)
   180          {  row = npp_add_row(npp), nrows++;
   181             row->lb = -DBL_MAX, row->ub = u;
   182          }
   183          else
   184             row = NULL;
   185          /* in the transformed problem variable x[q] becomes binary
   186             variable x[0], so its objective and constraint coefficients
   187             are not changed */
   188          col->ub = 1.0;
   189          /* include x[0] into constraint (4) */
   190          if (row != NULL)
   191             npp_add_aij(npp, row, col, 1.0);
   192          /* add other binary variables x[1], ..., x[n-1] */
   193          for (k = 1, temp = 2; k < n; k++, temp += temp)
   194          {  /* add new binary variable x[k] */
   195             bin = npp_add_col(npp);
   196             bin->is_int = 1;
   197             bin->lb = 0.0, bin->ub = 1.0;
   198             bin->coef = (double)temp * col->coef;
   199             /* store column reference number for x[1] */
   200             if (info->j == 0)
   201                info->j = bin->j;
   202             else
   203                xassert(info->j + (k-1) == bin->j);
   204             /* duplicate constraint coefficients for x[k]; this also
   205                automatically includes x[k] into constraint (4) */
   206             for (aij = col->ptr; aij != NULL; aij = aij->c_next)
   207                npp_add_aij(npp, aij->row, bin, (double)temp * aij->val);
   208          }
   209       }
   210       if (nvars > 0)
   211          xprintf("%d integer variable(s) were replaced by %d binary one"
   212             "s\n", nvars, nbins);
   213       if (nrows > 0)
   214          xprintf("%d row(s) were added due to binarization\n", nrows);
   215       if (nfails > 0)
   216          xprintf("Binarization failed for %d integer variable(s)\n",
   217             nfails);
   218       return nfails;
   219 }
   220 
   221 static int rcv_binarize_prob(NPP *npp, void *_info)
   222 {     /* recovery binarized variable */
   223       struct binarize *info = _info;
   224       int k, temp;
   225       double sum;
   226       /* compute value of x[q]; see formula (3) */
   227       sum = npp->c_value[info->q];
   228       for (k = 1, temp = 2; k < info->n; k++, temp += temp)
   229          sum += (double)temp * npp->c_value[info->j + (k-1)];
   230       npp->c_value[info->q] = sum;
   231       return 0;
   232 }
   233 
   234 /**********************************************************************/
   235 
   236 struct elem
   237 {     /* linear form element a[j] x[j] */
   238       double aj;
   239       /* non-zero coefficient value */
   240       NPPCOL *xj;
   241       /* pointer to variable (column) */
   242       struct elem *next;
   243       /* pointer to another term */
   244 };
   245 
   246 static struct elem *copy_form(NPP *npp, NPPROW *row, double s)
   247 {     /* copy linear form */
   248       NPPAIJ *aij;
   249       struct elem *ptr, *e;
   250       ptr = NULL;
   251       for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   252       {  e = dmp_get_atom(npp->pool, sizeof(struct elem));
   253          e->aj = s * aij->val;
   254          e->xj = aij->col;
   255          e->next = ptr;
   256          ptr = e;
   257       }
   258       return ptr;
   259 }
   260 
   261 static void drop_form(NPP *npp, struct elem *ptr)
   262 {     /* drop linear form */
   263       struct elem *e;
   264       while (ptr != NULL)
   265       {  e = ptr;
   266          ptr = e->next;
   267          dmp_free_atom(npp->pool, e, sizeof(struct elem));
   268       }
   269       return;
   270 }
   271 
   272 /***********************************************************************
   273 *  NAME
   274 *
   275 *  npp_is_packing - test if constraint is packing inequality
   276 *
   277 *  SYNOPSIS
   278 *
   279 *  #include "glpnpp.h"
   280 *  int npp_is_packing(NPP *npp, NPPROW *row);
   281 *
   282 *  RETURNS
   283 *
   284 *  If the specified row (constraint) is packing inequality (see below),
   285 *  the routine npp_is_packing returns non-zero. Otherwise, it returns
   286 *  zero.
   287 *
   288 *  PACKING INEQUALITIES
   289 *
   290 *  In canonical format the packing inequality is the following:
   291 *
   292 *     sum  x[j] <= 1,                                                (1)
   293 *    j in J
   294 *
   295 *  where all variables x[j] are binary. This inequality expresses the
   296 *  condition that in any integer feasible solution at most one variable
   297 *  from set J can take non-zero (unity) value while other variables
   298 *  must be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because
   299 *  if J is empty or |J| = 1, the inequality (1) is redundant.
   300 *
   301 *  In general case the packing inequality may include original variables
   302 *  x[j] as well as their complements x~[j]:
   303 *
   304 *     sum   x[j] + sum   x~[j] <= 1,                                 (2)
   305 *    j in Jp      j in Jn
   306 *
   307 *  where Jp and Jn are not intersected. Therefore, using substitution
   308 *  x~[j] = 1 - x[j] gives the packing inequality in generalized format:
   309 *
   310 *     sum   x[j] - sum   x[j] <= 1 - |Jn|.                           (3)
   311 *    j in Jp      j in Jn */
   312 
   313 int npp_is_packing(NPP *npp, NPPROW *row)
   314 {     /* test if constraint is packing inequality */
   315       NPPCOL *col;
   316       NPPAIJ *aij;
   317       int b;
   318       xassert(npp == npp);
   319       if (!(row->lb == -DBL_MAX && row->ub != +DBL_MAX))
   320          return 0;
   321       b = 1;
   322       for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   323       {  col = aij->col;
   324          if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
   325             return 0;
   326          if (aij->val == +1.0)
   327             ;
   328          else if (aij->val == -1.0)
   329             b--;
   330          else
   331             return 0;
   332       }
   333       if (row->ub != (double)b) return 0;
   334       return 1;
   335 }
   336 
   337 /***********************************************************************
   338 *  NAME
   339 *
   340 *  npp_hidden_packing - identify hidden packing inequality
   341 *
   342 *  SYNOPSIS
   343 *
   344 *  #include "glpnpp.h"
   345 *  int npp_hidden_packing(NPP *npp, NPPROW *row);
   346 *
   347 *  DESCRIPTION
   348 *
   349 *  The routine npp_hidden_packing processes specified inequality
   350 *  constraint, which includes only binary variables, and the number of
   351 *  the variables is not less than two. If the original inequality is
   352 *  equivalent to a packing inequality, the routine replaces it by this
   353 *  equivalent inequality. If the original constraint is double-sided
   354 *  inequality, it is replaced by a pair of single-sided inequalities,
   355 *  if necessary.
   356 *
   357 *  RETURNS
   358 *
   359 *  If the original inequality constraint was replaced by equivalent
   360 *  packing inequality, the routine npp_hidden_packing returns non-zero.
   361 *  Otherwise, it returns zero.
   362 *
   363 *  PROBLEM TRANSFORMATION
   364 *
   365 *  Consider an inequality constraint:
   366 *
   367 *     sum  a[j] x[j] <= b,                                           (1)
   368 *    j in J
   369 *
   370 *  where all variables x[j] are binary, and |J| >= 2. (In case of '>='
   371 *  inequality it can be transformed to '<=' format by multiplying both
   372 *  its sides by -1.)
   373 *
   374 *  Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
   375 *  x[j] = 1 - x~[j] for all j in Jn, we have:
   376 *
   377 *     sum   a[j] x[j] <= b  ==>
   378 *    j in J
   379 *
   380 *     sum   a[j] x[j] + sum   a[j] x[j] <= b  ==>
   381 *    j in Jp           j in Jn
   382 *
   383 *     sum   a[j] x[j] + sum   a[j] (1 - x~[j]) <= b  ==>
   384 *    j in Jp           j in Jn
   385 *
   386 *     sum   a[j] x[j] - sum   a[j] x~[j] <= b - sum   a[j].
   387 *    j in Jp           j in Jn                 j in Jn
   388 *
   389 *  Thus, meaning the transformation above, we can assume that in
   390 *  inequality (1) all coefficients a[j] are positive. Moreover, we can
   391 *  assume that a[j] <= b. In fact, let a[j] > b; then the following
   392 *  three cases are possible:
   393 *
   394 *  1) b < 0. In this case inequality (1) is infeasible, so the problem
   395 *     has no feasible solution (see the routine npp_analyze_row);
   396 *
   397 *  2) b = 0. In this case inequality (1) is a forcing inequality on its
   398 *     upper bound (see the routine npp_forcing row), from which it
   399 *     follows that all variables x[j] should be fixed at zero;
   400 *
   401 *  3) b > 0. In this case inequality (1) defines an implied zero upper
   402 *     bound for variable x[j] (see the routine npp_implied_bounds), from
   403 *     which it follows that x[j] should be fixed at zero.
   404 *
   405 *  It is assumed that all three cases listed above have been recognized
   406 *  by the routine npp_process_prob, which performs basic MIP processing
   407 *  prior to a call the routine npp_hidden_packing. So, if one of these
   408 *  cases occurs, we should just skip processing such constraint.
   409 *
   410 *  Thus, let 0 < a[j] <= b. Then it is obvious that constraint (1) is
   411 *  equivalent to packing inquality only if:
   412 *
   413 *     a[j] + a[k] > b + eps                                          (2)
   414 *
   415 *  for all j, k in J, j != k, where eps is an absolute tolerance for
   416 *  row (linear form) value. Checking the condition (2) for all j and k,
   417 *  j != k, requires time O(|J|^2). However, this time can be reduced to
   418 *  O(|J|), if use minimal a[j] and a[k], in which case it is sufficient
   419 *  to check the condition (2) only once.
   420 *
   421 *  Once the original inequality (1) is replaced by equivalent packing
   422 *  inequality, we need to perform back substitution x~[j] = 1 - x[j] for
   423 *  all j in Jn (see above).
   424 *
   425 *  RECOVERING SOLUTION
   426 *
   427 *  None needed. */
   428 
   429 static int hidden_packing(NPP *npp, struct elem *ptr, double *_b)
   430 {     /* process inequality constraint: sum a[j] x[j] <= b;
   431          0 - specified row is NOT hidden packing inequality;
   432          1 - specified row is packing inequality;
   433          2 - specified row is hidden packing inequality. */
   434       struct elem *e, *ej, *ek;
   435       int neg;
   436       double b = *_b, eps;
   437       xassert(npp == npp);
   438       /* a[j] must be non-zero, x[j] must be binary, for all j in J */
   439       for (e = ptr; e != NULL; e = e->next)
   440       {  xassert(e->aj != 0.0);
   441          xassert(e->xj->is_int);
   442          xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
   443       }
   444       /* check if the specified inequality constraint already has the
   445          form of packing inequality */
   446       neg = 0; /* neg is |Jn| */
   447       for (e = ptr; e != NULL; e = e->next)
   448       {  if (e->aj == +1.0)
   449             ;
   450          else if (e->aj == -1.0)
   451             neg++;
   452          else
   453             break;
   454       }
   455       if (e == NULL)
   456       {  /* all coefficients a[j] are +1 or -1; check rhs b */
   457          if (b == (double)(1 - neg))
   458          {  /* it is packing inequality; no processing is needed */
   459             return 1;
   460          }
   461       }
   462       /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
   463          positive; the result is a~[j] = |a[j]| and new rhs b */
   464       for (e = ptr; e != NULL; e = e->next)
   465          if (e->aj < 0) b -= e->aj;
   466       /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
   467       /* if a[j] > b, skip processing--this case must not appear */
   468       for (e = ptr; e != NULL; e = e->next)
   469          if (fabs(e->aj) > b) return 0;
   470       /* now 0 < a[j] <= b for all j in J */
   471       /* find two minimal coefficients a[j] and a[k], j != k */
   472       ej = NULL;
   473       for (e = ptr; e != NULL; e = e->next)
   474          if (ej == NULL || fabs(ej->aj) > fabs(e->aj)) ej = e;
   475       xassert(ej != NULL);
   476       ek = NULL;
   477       for (e = ptr; e != NULL; e = e->next)
   478          if (e != ej)
   479             if (ek == NULL || fabs(ek->aj) > fabs(e->aj)) ek = e;
   480       xassert(ek != NULL);
   481       /* the specified constraint is equivalent to packing inequality
   482          iff a[j] + a[k] > b + eps */
   483       eps = 1e-3 + 1e-6 * fabs(b);
   484       if (fabs(ej->aj) + fabs(ek->aj) <= b + eps) return 0;
   485       /* perform back substitution x~[j] = 1 - x[j] and construct the
   486          final equivalent packing inequality in generalized format */
   487       b = 1.0;
   488       for (e = ptr; e != NULL; e = e->next)
   489       {  if (e->aj > 0.0)
   490             e->aj = +1.0;
   491          else /* e->aj < 0.0 */
   492             e->aj = -1.0, b -= 1.0;
   493       }
   494       *_b = b;
   495       return 2;
   496 }
   497 
   498 int npp_hidden_packing(NPP *npp, NPPROW *row)
   499 {     /* identify hidden packing inequality */
   500       NPPROW *copy;
   501       NPPAIJ *aij;
   502       struct elem *ptr, *e;
   503       int kase, ret, count = 0;
   504       double b;
   505       /* the row must be inequality constraint */
   506       xassert(row->lb < row->ub);
   507       for (kase = 0; kase <= 1; kase++)
   508       {  if (kase == 0)
   509          {  /* process row upper bound */
   510             if (row->ub == +DBL_MAX) continue;
   511             ptr = copy_form(npp, row, +1.0);
   512             b = + row->ub;
   513          }
   514          else
   515          {  /* process row lower bound */
   516             if (row->lb == -DBL_MAX) continue;
   517             ptr = copy_form(npp, row, -1.0);
   518             b = - row->lb;
   519          }
   520          /* now the inequality has the form "sum a[j] x[j] <= b" */
   521          ret = hidden_packing(npp, ptr, &b);
   522          xassert(0 <= ret && ret <= 2);
   523          if (kase == 1 && ret == 1 || ret == 2)
   524          {  /* the original inequality has been identified as hidden
   525                packing inequality */
   526             count++;
   527 #ifdef GLP_DEBUG
   528             xprintf("Original constraint:\n");
   529             for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   530                xprintf(" %+g x%d", aij->val, aij->col->j);
   531             if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
   532             if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
   533             xprintf("\n");
   534             xprintf("Equivalent packing inequality:\n");
   535             for (e = ptr; e != NULL; e = e->next)
   536                xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
   537             xprintf(", <= %g\n", b);
   538 #endif
   539             if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
   540             {  /* the original row is single-sided inequality; no copy
   541                   is needed */
   542                copy = NULL;
   543             }
   544             else
   545             {  /* the original row is double-sided inequality; we need
   546                   to create its copy for other bound before replacing it
   547                   with the equivalent inequality */
   548                copy = npp_add_row(npp);
   549                if (kase == 0)
   550                {  /* the copy is for lower bound */
   551                   copy->lb = row->lb, copy->ub = +DBL_MAX;
   552                }
   553                else
   554                {  /* the copy is for upper bound */
   555                   copy->lb = -DBL_MAX, copy->ub = row->ub;
   556                }
   557                /* copy original row coefficients */
   558                for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   559                   npp_add_aij(npp, copy, aij->col, aij->val);
   560             }
   561             /* replace the original inequality by equivalent one */
   562             npp_erase_row(npp, row);
   563             row->lb = -DBL_MAX, row->ub = b;
   564             for (e = ptr; e != NULL; e = e->next)
   565                npp_add_aij(npp, row, e->xj, e->aj);
   566             /* continue processing lower bound for the copy */
   567             if (copy != NULL) row = copy;
   568          }
   569          drop_form(npp, ptr);
   570       }
   571       return count;
   572 }
   573 
   574 /***********************************************************************
   575 *  NAME
   576 *
   577 *  npp_implied_packing - identify implied packing inequality
   578 *
   579 *  SYNOPSIS
   580 *
   581 *  #include "glpnpp.h"
   582 *  int npp_implied_packing(NPP *npp, NPPROW *row, int which,
   583 *     NPPCOL *var[], char set[]);
   584 *
   585 *  DESCRIPTION
   586 *
   587 *  The routine npp_implied_packing processes specified row (constraint)
   588 *  of general format:
   589 *
   590 *     L <= sum a[j] x[j] <= U.                                       (1)
   591 *           j
   592 *
   593 *  If which = 0, only lower bound L, which must exist, is considered,
   594 *  while upper bound U is ignored. Similarly, if which = 1, only upper
   595 *  bound U, which must exist, is considered, while lower bound L is
   596 *  ignored. Thus, if the specified row is a double-sided inequality or
   597 *  equality constraint, this routine should be called twice for both
   598 *  lower and upper bounds.
   599 *
   600 *  The routine npp_implied_packing attempts to find a non-trivial (i.e.
   601 *  having not less than two binary variables) packing inequality:
   602 *
   603 *     sum   x[j] - sum   x[j] <= 1 - |Jn|,                           (2)
   604 *    j in Jp      j in Jn
   605 *
   606 *  which is relaxation of the constraint (1) in the sense that any
   607 *  solution satisfying to that constraint also satisfies to the packing
   608 *  inequality (2). If such relaxation exists, the routine stores
   609 *  pointers to descriptors of corresponding binary variables and their
   610 *  flags, resp., to locations var[1], var[2], ..., var[len] and set[1],
   611 *  set[2], ..., set[len], where set[j] = 0 means that j in Jp and
   612 *  set[j] = 1 means that j in Jn.
   613 *
   614 *  RETURNS
   615 *
   616 *  The routine npp_implied_packing returns len, which is the total
   617 *  number of binary variables in the packing inequality found, len >= 2.
   618 *  However, if the relaxation does not exist, the routine returns zero.
   619 *
   620 *  ALGORITHM
   621 *
   622 *  If which = 0, the constraint coefficients (1) are multiplied by -1
   623 *  and b is assigned -L; if which = 1, the constraint coefficients (1)
   624 *  are not changed and b is assigned +U. In both cases the specified
   625 *  constraint gets the following format:
   626 *
   627 *     sum a[j] x[j] <= b.                                            (3)
   628 *      j
   629 *
   630 *  (Note that (3) is a relaxation of (1), because one of bounds L or U
   631 *  is ignored.)
   632 *
   633 *  Let J be set of binary variables, Kp be set of non-binary (integer
   634 *  or continuous) variables with a[j] > 0, and Kn be set of non-binary
   635 *  variables with a[j] < 0. Then the inequality (3) can be written as
   636 *  follows:
   637 *
   638 *     sum  a[j] x[j] <= b - sum   a[j] x[j] - sum   a[j] x[j].       (4)
   639 *    j in J                j in Kp           j in Kn
   640 *
   641 *  To get rid of non-binary variables we can replace the inequality (4)
   642 *  by the following relaxed inequality:
   643 *
   644 *     sum  a[j] x[j] <= b~,                                          (5)
   645 *    j in J
   646 *
   647 *  where:
   648 *
   649 *     b~ = sup(b - sum   a[j] x[j] - sum   a[j] x[j]) =
   650 *                 j in Kp           j in Kn
   651 *
   652 *        = b - inf sum   a[j] x[j] - inf sum   a[j] x[j] =           (6)
   653 *                 j in Kp               j in Kn
   654 *
   655 *        = b - sum   a[j] l[j] - sum   a[j] u[j].
   656 *             j in Kp           j in Kn
   657 *
   658 *  Note that if lower bound l[j] (if j in Kp) or upper bound u[j]
   659 *  (if j in Kn) of some non-binary variable x[j] does not exist, then
   660 *  formally b = +oo, in which case further analysis is not performed.
   661 *
   662 *  Let Bp = {j in J: a[j] > 0}, Bn = {j in J: a[j] < 0}. To make all
   663 *  the inequality coefficients in (5) positive, we replace all x[j] in
   664 *  Bn by their complementaries, substituting x[j] = 1 - x~[j] for all
   665 *  j in Bn, that gives:
   666 *
   667 *     sum   a[j] x[j] - sum   a[j] x~[j] <= b~ - sum   a[j].         (7)
   668 *    j in Bp           j in Bn                  j in Bn
   669 *
   670 *  This inequality is a relaxation of the original constraint (1), and
   671 *  it is a binary knapsack inequality. Writing it in the standard format
   672 *  we have:
   673 *
   674 *     sum  alfa[j] z[j] <= beta,                                     (8)
   675 *    j in J
   676 *
   677 *  where:
   678 *               ( + a[j],   if j in Bp,
   679 *     alfa[j] = <                                                    (9)
   680 *               ( - a[j],   if j in Bn,
   681 *
   682 *               ( x[j],     if j in Bp,
   683 *        z[j] = <                                                   (10)
   684 *               ( 1 - x[j], if j in Bn,
   685 *
   686 *        beta = b~ - sum   a[j].                                    (11)
   687 *                   j in Bn
   688 *
   689 *  In the inequality (8) all coefficients are positive, therefore, the
   690 *  packing relaxation to be found for this inequality is the following:
   691 *
   692 *     sum  z[j] <= 1.                                               (12)
   693 *    j in P
   694 *
   695 *  It is obvious that set P within J, which we would like to find, must
   696 *  satisfy to the following condition:
   697 *
   698 *     alfa[j] + alfa[k] > beta + eps  for all j, k in P, j != k,    (13)
   699 *
   700 *  where eps is an absolute tolerance for value of the linear form.
   701 *  Thus, it is natural to take P = {j: alpha[j] > (beta + eps) / 2}.
   702 *  Moreover, if in the equality (8) there exist coefficients alfa[k],
   703 *  for which alfa[k] <= (beta + eps) / 2, but which, nevertheless,
   704 *  satisfies to the condition (13) for all j in P, *one* corresponding
   705 *  variable z[k] (having, for example, maximal coefficient alfa[k]) can
   706 *  be included in set P, that allows increasing the number of binary
   707 *  variables in (12) by one.
   708 *
   709 *  Once the set P has been built, for the inequality (12) we need to
   710 *  perform back substitution according to (10) in order to express it
   711 *  through the original binary variables. As the result of such back
   712 *  substitution the relaxed packing inequality get its final format (2),
   713 *  where Jp = J intersect Bp, and Jn = J intersect Bn. */
   714 
   715 int npp_implied_packing(NPP *npp, NPPROW *row, int which,
   716       NPPCOL *var[], char set[])
   717 {     struct elem *ptr, *e, *i, *k;
   718       int len = 0;
   719       double b, eps;
   720       /* build inequality (3) */
   721       if (which == 0)
   722       {  ptr = copy_form(npp, row, -1.0);
   723          xassert(row->lb != -DBL_MAX);
   724          b = - row->lb;
   725       }
   726       else if (which == 1)
   727       {  ptr = copy_form(npp, row, +1.0);
   728          xassert(row->ub != +DBL_MAX);
   729          b = + row->ub;
   730       }
   731       /* remove non-binary variables to build relaxed inequality (5);
   732          compute its right-hand side b~ with formula (6) */
   733       for (e = ptr; e != NULL; e = e->next)
   734       {  if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
   735          {  /* x[j] is non-binary variable */
   736             if (e->aj > 0.0)
   737             {  if (e->xj->lb == -DBL_MAX) goto done;
   738                b -= e->aj * e->xj->lb;
   739             }
   740             else /* e->aj < 0.0 */
   741             {  if (e->xj->ub == +DBL_MAX) goto done;
   742                b -= e->aj * e->xj->ub;
   743             }
   744             /* a[j] = 0 means that variable x[j] is removed */
   745             e->aj = 0.0;
   746          }
   747       }
   748       /* substitute x[j] = 1 - x~[j] to build knapsack inequality (8);
   749          compute its right-hand side beta with formula (11) */
   750       for (e = ptr; e != NULL; e = e->next)
   751          if (e->aj < 0.0) b -= e->aj;
   752       /* if beta is close to zero, the knapsack inequality is either
   753          infeasible or forcing inequality; this must never happen, so
   754          we skip further analysis */
   755       if (b < 1e-3) goto done;
   756       /* build set P as well as sets Jp and Jn, and determine x[k] as
   757          explained above in comments to the routine */
   758       eps = 1e-3 + 1e-6 * b;
   759       i = k = NULL;
   760       for (e = ptr; e != NULL; e = e->next)
   761       {  /* note that alfa[j] = |a[j]| */
   762          if (fabs(e->aj) > 0.5 * (b + eps))
   763          {  /* alfa[j] > (b + eps) / 2; include x[j] in set P, i.e. in
   764                set Jp or Jn */
   765             var[++len] = e->xj;
   766             set[len] = (char)(e->aj > 0.0 ? 0 : 1);
   767             /* alfa[i] = min alfa[j] over all j included in set P */
   768             if (i == NULL || fabs(i->aj) > fabs(e->aj)) i = e;
   769          }
   770          else if (fabs(e->aj) >= 1e-3)
   771          {  /* alfa[k] = max alfa[j] over all j not included in set P;
   772                we skip coefficient a[j] if it is close to zero to avoid
   773                numerically unreliable results */
   774             if (k == NULL || fabs(k->aj) < fabs(e->aj)) k = e;
   775          }
   776       }
   777       /* if alfa[k] satisfies to condition (13) for all j in P, include
   778          x[k] in P */
   779       if (i != NULL && k != NULL && fabs(i->aj) + fabs(k->aj) > b + eps)
   780       {  var[++len] = k->xj;
   781          set[len] = (char)(k->aj > 0.0 ? 0 : 1);
   782       }
   783       /* trivial packing inequality being redundant must never appear,
   784          so we just ignore it */
   785       if (len < 2) len = 0;
   786 done: drop_form(npp, ptr);
   787       return len;
   788 }
   789 
   790 /***********************************************************************
   791 *  NAME
   792 *
   793 *  npp_is_covering - test if constraint is covering inequality
   794 *
   795 *  SYNOPSIS
   796 *
   797 *  #include "glpnpp.h"
   798 *  int npp_is_covering(NPP *npp, NPPROW *row);
   799 *
   800 *  RETURNS
   801 *
   802 *  If the specified row (constraint) is covering inequality (see below),
   803 *  the routine npp_is_covering returns non-zero. Otherwise, it returns
   804 *  zero.
   805 *
   806 *  COVERING INEQUALITIES
   807 *
   808 *  In canonical format the covering inequality is the following:
   809 *
   810 *     sum  x[j] >= 1,                                                (1)
   811 *    j in J
   812 *
   813 *  where all variables x[j] are binary. This inequality expresses the
   814 *  condition that in any integer feasible solution variables in set J
   815 *  cannot be all equal to zero at the same time, i.e. at least one
   816 *  variable must take non-zero (unity) value. W.l.o.g. it is assumed
   817 *  that |J| >= 2, because if J is empty, the inequality (1) is
   818 *  infeasible, and if |J| = 1, the inequality (1) is a forcing row.
   819 *
   820 *  In general case the covering inequality may include original
   821 *  variables x[j] as well as their complements x~[j]:
   822 *
   823 *     sum   x[j] + sum   x~[j] >= 1,                                 (2)
   824 *    j in Jp      j in Jn
   825 *
   826 *  where Jp and Jn are not intersected. Therefore, using substitution
   827 *  x~[j] = 1 - x[j] gives the packing inequality in generalized format:
   828 *
   829 *     sum   x[j] - sum   x[j] >= 1 - |Jn|.                           (3)
   830 *    j in Jp      j in Jn
   831 *
   832 *  (May note that the inequality (3) cuts off infeasible solutions,
   833 *  where x[j] = 0 for all j in Jp and x[j] = 1 for all j in Jn.)
   834 *
   835 *  NOTE: If |J| = 2, the inequality (3) is equivalent to packing
   836 *        inequality (see the routine npp_is_packing). */
   837 
   838 int npp_is_covering(NPP *npp, NPPROW *row)
   839 {     /* test if constraint is covering inequality */
   840       NPPCOL *col;
   841       NPPAIJ *aij;
   842       int b;
   843       xassert(npp == npp);
   844       if (!(row->lb != -DBL_MAX && row->ub == +DBL_MAX))
   845          return 0;
   846       b = 1;
   847       for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   848       {  col = aij->col;
   849          if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
   850             return 0;
   851          if (aij->val == +1.0)
   852             ;
   853          else if (aij->val == -1.0)
   854             b--;
   855          else
   856             return 0;
   857       }
   858       if (row->lb != (double)b) return 0;
   859       return 1;
   860 }
   861 
   862 /***********************************************************************
   863 *  NAME
   864 *
   865 *  npp_hidden_covering - identify hidden covering inequality
   866 *
   867 *  SYNOPSIS
   868 *
   869 *  #include "glpnpp.h"
   870 *  int npp_hidden_covering(NPP *npp, NPPROW *row);
   871 *
   872 *  DESCRIPTION
   873 *
   874 *  The routine npp_hidden_covering processes specified inequality
   875 *  constraint, which includes only binary variables, and the number of
   876 *  the variables is not less than three. If the original inequality is
   877 *  equivalent to a covering inequality (see below), the routine
   878 *  replaces it by the equivalent inequality. If the original constraint
   879 *  is double-sided inequality, it is replaced by a pair of single-sided
   880 *  inequalities, if necessary.
   881 *
   882 *  RETURNS
   883 *
   884 *  If the original inequality constraint was replaced by equivalent
   885 *  covering inequality, the routine npp_hidden_covering returns
   886 *  non-zero. Otherwise, it returns zero.
   887 *
   888 *  PROBLEM TRANSFORMATION
   889 *
   890 *  Consider an inequality constraint:
   891 *
   892 *     sum  a[j] x[j] >= b,                                           (1)
   893 *    j in J
   894 *
   895 *  where all variables x[j] are binary, and |J| >= 3. (In case of '<='
   896 *  inequality it can be transformed to '>=' format by multiplying both
   897 *  its sides by -1.)
   898 *
   899 *  Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
   900 *  x[j] = 1 - x~[j] for all j in Jn, we have:
   901 *
   902 *     sum   a[j] x[j] >= b  ==>
   903 *    j in J
   904 *
   905 *     sum   a[j] x[j] + sum   a[j] x[j] >= b  ==>
   906 *    j in Jp           j in Jn
   907 *
   908 *     sum   a[j] x[j] + sum   a[j] (1 - x~[j]) >= b  ==>
   909 *    j in Jp           j in Jn
   910 *
   911 *     sum  m   a[j] x[j] - sum   a[j] x~[j] >= b - sum   a[j].
   912 *    j in Jp              j in Jn                 j in Jn
   913 *
   914 *  Thus, meaning the transformation above, we can assume that in
   915 *  inequality (1) all coefficients a[j] are positive. Moreover, we can
   916 *  assume that b > 0, because otherwise the inequality (1) would be
   917 *  redundant (see the routine npp_analyze_row). It is then obvious that
   918 *  constraint (1) is equivalent to covering inequality only if:
   919 *
   920 *     a[j] >= b,                                                     (2)
   921 *
   922 *  for all j in J.
   923 *
   924 *  Once the original inequality (1) is replaced by equivalent covering
   925 *  inequality, we need to perform back substitution x~[j] = 1 - x[j] for
   926 *  all j in Jn (see above).
   927 *
   928 *  RECOVERING SOLUTION
   929 *
   930 *  None needed. */
   931 
   932 static int hidden_covering(NPP *npp, struct elem *ptr, double *_b)
   933 {     /* process inequality constraint: sum a[j] x[j] >= b;
   934          0 - specified row is NOT hidden covering inequality;
   935          1 - specified row is covering inequality;
   936          2 - specified row is hidden covering inequality. */
   937       struct elem *e;
   938       int neg;
   939       double b = *_b, eps;
   940       xassert(npp == npp);
   941       /* a[j] must be non-zero, x[j] must be binary, for all j in J */
   942       for (e = ptr; e != NULL; e = e->next)
   943       {  xassert(e->aj != 0.0);
   944          xassert(e->xj->is_int);
   945          xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
   946       }
   947       /* check if the specified inequality constraint already has the
   948          form of covering inequality */
   949       neg = 0; /* neg is |Jn| */
   950       for (e = ptr; e != NULL; e = e->next)
   951       {  if (e->aj == +1.0)
   952             ;
   953          else if (e->aj == -1.0)
   954             neg++;
   955          else
   956             break;
   957       }
   958       if (e == NULL)
   959       {  /* all coefficients a[j] are +1 or -1; check rhs b */
   960          if (b == (double)(1 - neg))
   961          {  /* it is covering inequality; no processing is needed */
   962             return 1;
   963          }
   964       }
   965       /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
   966          positive; the result is a~[j] = |a[j]| and new rhs b */
   967       for (e = ptr; e != NULL; e = e->next)
   968          if (e->aj < 0) b -= e->aj;
   969       /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
   970       /* if b <= 0, skip processing--this case must not appear */
   971       if (b < 1e-3) return 0;
   972       /* now a[j] > 0 for all j in J, and b > 0 */
   973       /* the specified constraint is equivalent to covering inequality
   974          iff a[j] >= b for all j in J */
   975       eps = 1e-9 + 1e-12 * fabs(b);
   976       for (e = ptr; e != NULL; e = e->next)
   977          if (fabs(e->aj) < b - eps) return 0;
   978       /* perform back substitution x~[j] = 1 - x[j] and construct the
   979          final equivalent covering inequality in generalized format */
   980       b = 1.0;
   981       for (e = ptr; e != NULL; e = e->next)
   982       {  if (e->aj > 0.0)
   983             e->aj = +1.0;
   984          else /* e->aj < 0.0 */
   985             e->aj = -1.0, b -= 1.0;
   986       }
   987       *_b = b;
   988       return 2;
   989 }
   990 
   991 int npp_hidden_covering(NPP *npp, NPPROW *row)
   992 {     /* identify hidden covering inequality */
   993       NPPROW *copy;
   994       NPPAIJ *aij;
   995       struct elem *ptr, *e;
   996       int kase, ret, count = 0;
   997       double b;
   998       /* the row must be inequality constraint */
   999       xassert(row->lb < row->ub);
  1000       for (kase = 0; kase <= 1; kase++)
  1001       {  if (kase == 0)
  1002          {  /* process row lower bound */
  1003             if (row->lb == -DBL_MAX) continue;
  1004             ptr = copy_form(npp, row, +1.0);
  1005             b = + row->lb;
  1006          }
  1007          else
  1008          {  /* process row upper bound */
  1009             if (row->ub == +DBL_MAX) continue;
  1010             ptr = copy_form(npp, row, -1.0);
  1011             b = - row->ub;
  1012          }
  1013          /* now the inequality has the form "sum a[j] x[j] >= b" */
  1014          ret = hidden_covering(npp, ptr, &b);
  1015          xassert(0 <= ret && ret <= 2);
  1016          if (kase == 1 && ret == 1 || ret == 2)
  1017          {  /* the original inequality has been identified as hidden
  1018                covering inequality */
  1019             count++;
  1020 #ifdef GLP_DEBUG
  1021             xprintf("Original constraint:\n");
  1022             for (aij = row->ptr; aij != NULL; aij = aij->r_next)
  1023                xprintf(" %+g x%d", aij->val, aij->col->j);
  1024             if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
  1025             if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
  1026             xprintf("\n");
  1027             xprintf("Equivalent covering inequality:\n");
  1028             for (e = ptr; e != NULL; e = e->next)
  1029                xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
  1030             xprintf(", >= %g\n", b);
  1031 #endif
  1032             if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
  1033             {  /* the original row is single-sided inequality; no copy
  1034                   is needed */
  1035                copy = NULL;
  1036             }
  1037             else
  1038             {  /* the original row is double-sided inequality; we need
  1039                   to create its copy for other bound before replacing it
  1040                   with the equivalent inequality */
  1041                copy = npp_add_row(npp);
  1042                if (kase == 0)
  1043                {  /* the copy is for upper bound */
  1044                   copy->lb = -DBL_MAX, copy->ub = row->ub;
  1045                }
  1046                else
  1047                {  /* the copy is for lower bound */
  1048                   copy->lb = row->lb, copy->ub = +DBL_MAX;
  1049                }
  1050                /* copy original row coefficients */
  1051                for (aij = row->ptr; aij != NULL; aij = aij->r_next)
  1052                   npp_add_aij(npp, copy, aij->col, aij->val);
  1053             }
  1054             /* replace the original inequality by equivalent one */
  1055             npp_erase_row(npp, row);
  1056             row->lb = b, row->ub = +DBL_MAX;
  1057             for (e = ptr; e != NULL; e = e->next)
  1058                npp_add_aij(npp, row, e->xj, e->aj);
  1059             /* continue processing upper bound for the copy */
  1060             if (copy != NULL) row = copy;
  1061          }
  1062          drop_form(npp, ptr);
  1063       }
  1064       return count;
  1065 }
  1066 
  1067 /***********************************************************************
  1068 *  NAME
  1069 *
  1070 *  npp_is_partitioning - test if constraint is partitioning equality
  1071 *
  1072 *  SYNOPSIS
  1073 *
  1074 *  #include "glpnpp.h"
  1075 *  int npp_is_partitioning(NPP *npp, NPPROW *row);
  1076 *
  1077 *  RETURNS
  1078 *
  1079 *  If the specified row (constraint) is partitioning equality (see
  1080 *  below), the routine npp_is_partitioning returns non-zero. Otherwise,
  1081 *  it returns zero.
  1082 *
  1083 *  PARTITIONING EQUALITIES
  1084 *
  1085 *  In canonical format the partitioning equality is the following:
  1086 *
  1087 *     sum  x[j] = 1,                                                 (1)
  1088 *    j in J
  1089 *
  1090 *  where all variables x[j] are binary. This equality expresses the
  1091 *  condition that in any integer feasible solution exactly one variable
  1092 *  in set J must take non-zero (unity) value while other variables must
  1093 *  be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because if
  1094 *  J is empty, the inequality (1) is infeasible, and if |J| = 1, the
  1095 *  inequality (1) is a fixing row.
  1096 *
  1097 *  In general case the partitioning equality may include original
  1098 *  variables x[j] as well as their complements x~[j]:
  1099 *
  1100 *     sum   x[j] + sum   x~[j] = 1,                                  (2)
  1101 *    j in Jp      j in Jn
  1102 *
  1103 *  where Jp and Jn are not intersected. Therefore, using substitution
  1104 *  x~[j] = 1 - x[j] leads to the partitioning equality in generalized
  1105 *  format:
  1106 *
  1107 *     sum   x[j] - sum   x[j] = 1 - |Jn|.                            (3)
  1108 *    j in Jp      j in Jn */
  1109 
  1110 int npp_is_partitioning(NPP *npp, NPPROW *row)
  1111 {     /* test if constraint is partitioning equality */
  1112       NPPCOL *col;
  1113       NPPAIJ *aij;
  1114       int b;
  1115       xassert(npp == npp);
  1116       if (row->lb != row->ub) return 0;
  1117       b = 1;
  1118       for (aij = row->ptr; aij != NULL; aij = aij->r_next)
  1119       {  col = aij->col;
  1120          if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
  1121             return 0;
  1122          if (aij->val == +1.0)
  1123             ;
  1124          else if (aij->val == -1.0)
  1125             b--;
  1126          else
  1127             return 0;
  1128       }
  1129       if (row->lb != (double)b) return 0;
  1130       return 1;
  1131 }
  1132 
  1133 /***********************************************************************
  1134 *  NAME
  1135 *
  1136 *  npp_reduce_ineq_coef - reduce inequality constraint coefficients
  1137 *
  1138 *  SYNOPSIS
  1139 *
  1140 *  #include "glpnpp.h"
  1141 *  int npp_reduce_ineq_coef(NPP *npp, NPPROW *row);
  1142 *
  1143 *  DESCRIPTION
  1144 *
  1145 *  The routine npp_reduce_ineq_coef processes specified inequality
  1146 *  constraint attempting to replace it by an equivalent constraint,
  1147 *  where magnitude of coefficients at binary variables is smaller than
  1148 *  in the original constraint. If the inequality is double-sided, it is
  1149 *  replaced by a pair of single-sided inequalities, if necessary.
  1150 *
  1151 *  RETURNS
  1152 *
  1153 *  The routine npp_reduce_ineq_coef returns the number of coefficients
  1154 *  reduced.
  1155 *
  1156 *  BACKGROUND
  1157 *
  1158 *  Consider an inequality constraint:
  1159 *
  1160 *     sum  a[j] x[j] >= b.                                           (1)
  1161 *    j in J
  1162 *
  1163 *  (In case of '<=' inequality it can be transformed to '>=' format by
  1164 *  multiplying both its sides by -1.) Let x[k] be a binary variable;
  1165 *  other variables can be integer as well as continuous. We can write
  1166 *  constraint (1) as follows:
  1167 *
  1168 *     a[k] x[k] + t[k] >= b,                                         (2)
  1169 *
  1170 *  where:
  1171 *
  1172 *     t[k] = sum      a[j] x[j].                                     (3)
  1173 *           j in J\{k}
  1174 *
  1175 *  Since x[k] is binary, constraint (2) is equivalent to disjunction of
  1176 *  the following two constraints:
  1177 *
  1178 *     x[k] = 0,  t[k] >= b                                           (4)
  1179 *
  1180 *        OR
  1181 *
  1182 *     x[k] = 1,  t[k] >= b - a[k].                                   (5)
  1183 *
  1184 *  Let also that for the partial sum t[k] be known some its implied
  1185 *  lower bound inf t[k].
  1186 *
  1187 *  Case a[k] > 0. Let inf t[k] < b, since otherwise both constraints
  1188 *  (4) and (5) and therefore constraint (2) are redundant.
  1189 *  If inf t[k] > b - a[k], only constraint (5) is redundant, in which
  1190 *  case it can be replaced with the following redundant and therefore
  1191 *  equivalent constraint:
  1192 *
  1193 *     t[k] >= b - a'[k] = inf t[k],                                  (6)
  1194 *
  1195 *  where:
  1196 *
  1197 *     a'[k] = b - inf t[k].                                          (7)
  1198 *
  1199 *  Thus, the original constraint (2) is equivalent to the following
  1200 *  constraint with coefficient at variable x[k] changed:
  1201 *
  1202 *     a'[k] x[k] + t[k] >= b.                                        (8)
  1203 *
  1204 *  From inf t[k] < b it follows that a'[k] > 0, i.e. the coefficient
  1205 *  at x[k] keeps its sign. And from inf t[k] > b - a[k] it follows that
  1206 *  a'[k] < a[k], i.e. the coefficient reduces in magnitude.
  1207 *
  1208 *  Case a[k] < 0. Let inf t[k] < b - a[k], since otherwise both
  1209 *  constraints (4) and (5) and therefore constraint (2) are redundant.
  1210 *  If inf t[k] > b, only constraint (4) is redundant, in which case it
  1211 *  can be replaced with the following redundant and therefore equivalent
  1212 *  constraint:
  1213 *
  1214 *     t[k] >= b' = inf t[k].                                         (9)
  1215 *
  1216 *  Rewriting constraint (5) as follows:
  1217 *
  1218 *     t[k] >= b - a[k] = b' - a'[k],                                (10)
  1219 *
  1220 *  where:
  1221 *
  1222 *     a'[k] = a[k] + b' - b = a[k] + inf t[k] - b,                  (11)
  1223 *
  1224 *  we can see that disjunction of constraint (9) and (10) is equivalent
  1225 *  to disjunction of constraint (4) and (5), from which it follows that
  1226 *  the original constraint (2) is equivalent to the following constraint
  1227 *  with both coefficient at variable x[k] and right-hand side changed:
  1228 *
  1229 *     a'[k] x[k] + t[k] >= b'.                                      (12)
  1230 *
  1231 *  From inf t[k] < b - a[k] it follows that a'[k] < 0, i.e. the
  1232 *  coefficient at x[k] keeps its sign. And from inf t[k] > b it follows
  1233 *  that a'[k] > a[k], i.e. the coefficient reduces in magnitude.
  1234 *
  1235 *  PROBLEM TRANSFORMATION
  1236 *
  1237 *  In the routine npp_reduce_ineq_coef the following implied lower
  1238 *  bound of the partial sum (3) is used:
  1239 *
  1240 *     inf t[k] = sum       a[j] l[j] + sum       a[j] u[j],         (13)
  1241 *               j in Jp\{k}           k in Jn\{k}
  1242 *
  1243 *  where Jp = {j : a[j] > 0}, Jn = {j : a[j] < 0}, l[j] and u[j] are
  1244 *  lower and upper bounds, resp., of variable x[j].
  1245 *
  1246 *  In order to compute inf t[k] more efficiently, the following formula,
  1247 *  which is equivalent to (13), is actually used:
  1248 *
  1249 *                ( h - a[k] l[k] = h,        if a[k] > 0,
  1250 *     inf t[k] = <                                                  (14)
  1251 *                ( h - a[k] u[k] = h - a[k], if a[k] < 0,
  1252 *
  1253 *  where:
  1254 *
  1255 *     h = sum   a[j] l[j] + sum   a[j] u[j]                         (15)
  1256 *        j in Jp           j in Jn
  1257 *
  1258 *  is the implied lower bound of row (1).
  1259 *
  1260 *  Reduction of positive coefficient (a[k] > 0) does not change value
  1261 *  of h, since l[k] = 0. In case of reduction of negative coefficient
  1262 *  (a[k] < 0) from (11) it follows that:
  1263 *
  1264 *     delta a[k] = a'[k] - a[k] = inf t[k] - b  (> 0),              (16)
  1265 *
  1266 *  so new value of h (accounting that u[k] = 1) can be computed as
  1267 *  follows:
  1268 *
  1269 *     h := h + delta a[k] = h + (inf t[k] - b).                     (17)
  1270 *
  1271 *  RECOVERING SOLUTION
  1272 *
  1273 *  None needed. */
  1274 
  1275 static int reduce_ineq_coef(NPP *npp, struct elem *ptr, double *_b)
  1276 {     /* process inequality constraint: sum a[j] x[j] >= b */
  1277       /* returns: the number of coefficients reduced */
  1278       struct elem *e;
  1279       int count = 0;
  1280       double h, inf_t, new_a, b = *_b;
  1281       xassert(npp == npp);
  1282       /* compute h; see (15) */
  1283       h = 0.0;
  1284       for (e = ptr; e != NULL; e = e->next)
  1285       {  if (e->aj > 0.0)
  1286          {  if (e->xj->lb == -DBL_MAX) goto done;
  1287             h += e->aj * e->xj->lb;
  1288          }
  1289          else /* e->aj < 0.0 */
  1290          {  if (e->xj->ub == +DBL_MAX) goto done;
  1291             h += e->aj * e->xj->ub;
  1292          }
  1293       }
  1294       /* perform reduction of coefficients at binary variables */
  1295       for (e = ptr; e != NULL; e = e->next)
  1296       {  /* skip non-binary variable */
  1297          if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
  1298             continue;
  1299          if (e->aj > 0.0)
  1300          {  /* compute inf t[k]; see (14) */
  1301             inf_t = h;
  1302             if (b - e->aj < inf_t && inf_t < b)
  1303             {  /* compute reduced coefficient a'[k]; see (7) */
  1304                new_a = b - inf_t;
  1305                if (new_a >= +1e-3 &&
  1306                    e->aj - new_a >= 0.01 * (1.0 + e->aj))
  1307                {  /* accept a'[k] */
  1308 #ifdef GLP_DEBUG
  1309                   xprintf("+");
  1310 #endif
  1311                   e->aj = new_a;
  1312                   count++;
  1313                }
  1314             }
  1315          }
  1316          else /* e->aj < 0.0 */
  1317          {  /* compute inf t[k]; see (14) */
  1318             inf_t = h - e->aj;
  1319             if (b < inf_t && inf_t < b - e->aj)
  1320             {  /* compute reduced coefficient a'[k]; see (11) */
  1321                new_a = e->aj + (inf_t - b);
  1322                if (new_a <= -1e-3 &&
  1323                    new_a - e->aj >= 0.01 * (1.0 - e->aj))
  1324                {  /* accept a'[k] */
  1325 #ifdef GLP_DEBUG
  1326                   xprintf("-");
  1327 #endif
  1328                   e->aj = new_a;
  1329                   /* update h; see (17) */
  1330                   h += (inf_t - b);
  1331                   /* compute b'; see (9) */
  1332                   b = inf_t;
  1333                   count++;
  1334                }
  1335             }
  1336          }
  1337       }
  1338       *_b = b;
  1339 done: return count;
  1340 }
  1341 
  1342 int npp_reduce_ineq_coef(NPP *npp, NPPROW *row)
  1343 {     /* reduce inequality constraint coefficients */
  1344       NPPROW *copy;
  1345       NPPAIJ *aij;
  1346       struct elem *ptr, *e;
  1347       int kase, count[2];
  1348       double b;
  1349       /* the row must be inequality constraint */
  1350       xassert(row->lb < row->ub);
  1351       count[0] = count[1] = 0;
  1352       for (kase = 0; kase <= 1; kase++)
  1353       {  if (kase == 0)
  1354          {  /* process row lower bound */
  1355             if (row->lb == -DBL_MAX) continue;
  1356 #ifdef GLP_DEBUG
  1357             xprintf("L");
  1358 #endif
  1359             ptr = copy_form(npp, row, +1.0);
  1360             b = + row->lb;
  1361          }
  1362          else
  1363          {  /* process row upper bound */
  1364             if (row->ub == +DBL_MAX) continue;
  1365 #ifdef GLP_DEBUG
  1366             xprintf("U");
  1367 #endif
  1368             ptr = copy_form(npp, row, -1.0);
  1369             b = - row->ub;
  1370          }
  1371          /* now the inequality has the form "sum a[j] x[j] >= b" */
  1372          count[kase] = reduce_ineq_coef(npp, ptr, &b);
  1373          if (count[kase] > 0)
  1374          {  /* the original inequality has been replaced by equivalent
  1375                one with coefficients reduced */
  1376             if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
  1377             {  /* the original row is single-sided inequality; no copy
  1378                   is needed */
  1379                copy = NULL;
  1380             }
  1381             else
  1382             {  /* the original row is double-sided inequality; we need
  1383                   to create its copy for other bound before replacing it
  1384                   with the equivalent inequality */
  1385 #ifdef GLP_DEBUG
  1386                xprintf("*");
  1387 #endif
  1388                copy = npp_add_row(npp);
  1389                if (kase == 0)
  1390                {  /* the copy is for upper bound */
  1391                   copy->lb = -DBL_MAX, copy->ub = row->ub;
  1392                }
  1393                else
  1394                {  /* the copy is for lower bound */
  1395                   copy->lb = row->lb, copy->ub = +DBL_MAX;
  1396                }
  1397                /* copy original row coefficients */
  1398                for (aij = row->ptr; aij != NULL; aij = aij->r_next)
  1399                   npp_add_aij(npp, copy, aij->col, aij->val);
  1400             }
  1401             /* replace the original inequality by equivalent one */
  1402             npp_erase_row(npp, row);
  1403             row->lb = b, row->ub = +DBL_MAX;
  1404             for (e = ptr; e != NULL; e = e->next)
  1405                npp_add_aij(npp, row, e->xj, e->aj);
  1406             /* continue processing upper bound for the copy */
  1407             if (copy != NULL) row = copy;
  1408          }
  1409          drop_form(npp, ptr);
  1410       }
  1411       return count[0] + count[1];
  1412 }
  1413 
  1414 /* eof */