src/glpnpp04.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
/* glpnpp04.c */
alpar@1
     2
alpar@1
     3
/***********************************************************************
alpar@1
     4
*  This code is part of GLPK (GNU Linear Programming Kit).
alpar@1
     5
*
alpar@1
     6
*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@1
     7
*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
alpar@1
     8
*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@1
     9
*  E-mail: <mao@gnu.org>.
alpar@1
    10
*
alpar@1
    11
*  GLPK is free software: you can redistribute it and/or modify it
alpar@1
    12
*  under the terms of the GNU General Public License as published by
alpar@1
    13
*  the Free Software Foundation, either version 3 of the License, or
alpar@1
    14
*  (at your option) any later version.
alpar@1
    15
*
alpar@1
    16
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@1
    17
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@1
    18
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@1
    19
*  License for more details.
alpar@1
    20
*
alpar@1
    21
*  You should have received a copy of the GNU General Public License
alpar@1
    22
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@1
    23
***********************************************************************/
alpar@1
    24
alpar@1
    25
#include "glpnpp.h"
alpar@1
    26
alpar@1
    27
/***********************************************************************
alpar@1
    28
*  NAME
alpar@1
    29
*
alpar@1
    30
*  npp_binarize_prob - binarize MIP problem
alpar@1
    31
*
alpar@1
    32
*  SYNOPSIS
alpar@1
    33
*
alpar@1
    34
*  #include "glpnpp.h"
alpar@1
    35
*  int npp_binarize_prob(NPP *npp);
alpar@1
    36
*
alpar@1
    37
*  DESCRIPTION
alpar@1
    38
*
alpar@1
    39
*  The routine npp_binarize_prob replaces in the original MIP problem
alpar@1
    40
*  every integer variable:
alpar@1
    41
*
alpar@1
    42
*     l[q] <= x[q] <= u[q],                                          (1)
alpar@1
    43
*
alpar@1
    44
*  where l[q] < u[q], by an equivalent sum of binary variables.
alpar@1
    45
*
alpar@1
    46
*  RETURNS
alpar@1
    47
*
alpar@1
    48
*  The routine returns the number of integer variables for which the
alpar@1
    49
*  transformation failed, because u[q] - l[q] > d_max.
alpar@1
    50
*
alpar@1
    51
*  PROBLEM TRANSFORMATION
alpar@1
    52
*
alpar@1
    53
*  If variable x[q] has non-zero lower bound, it is first processed
alpar@1
    54
*  with the routine npp_lbnd_col. Thus, we can assume that:
alpar@1
    55
*
alpar@1
    56
*     0 <= x[q] <= u[q].                                             (2)
alpar@1
    57
*
alpar@1
    58
*  If u[q] = 1, variable x[q] is already binary, so further processing
alpar@1
    59
*  is not needed. Let, therefore, that 2 <= u[q] <= d_max, and n be a
alpar@1
    60
*  smallest integer such that u[q] <= 2^n - 1 (n >= 2, since u[q] >= 2).
alpar@1
    61
*  Then variable x[q] can be replaced by the following sum:
alpar@1
    62
*
alpar@1
    63
*            n-1
alpar@1
    64
*     x[q] = sum 2^k x[k],                                           (3)
alpar@1
    65
*            k=0
alpar@1
    66
*
alpar@1
    67
*  where x[k] are binary columns (variables). If u[q] < 2^n - 1, the
alpar@1
    68
*  following additional inequality constraint must be also included in
alpar@1
    69
*  the transformed problem:
alpar@1
    70
*
alpar@1
    71
*     n-1
alpar@1
    72
*     sum 2^k x[k] <= u[q].                                          (4)
alpar@1
    73
*     k=0
alpar@1
    74
*
alpar@1
    75
*  Note: Assuming that in the transformed problem x[q] becomes binary
alpar@1
    76
*  variable x[0], this transformation causes new n-1 binary variables
alpar@1
    77
*  to appear.
alpar@1
    78
*
alpar@1
    79
*  Substituting x[q] from (3) to the objective row gives:
alpar@1
    80
*
alpar@1
    81
*     z = sum c[j] x[j] + c[0] =
alpar@1
    82
*          j
alpar@1
    83
*
alpar@1
    84
*       = sum c[j] x[j] + c[q] x[q] + c[0] =
alpar@1
    85
*         j!=q
alpar@1
    86
*                              n-1
alpar@1
    87
*       = sum c[j] x[j] + c[q] sum 2^k x[k] + c[0] =
alpar@1
    88
*         j!=q                 k=0
alpar@1
    89
*                         n-1
alpar@1
    90
*       = sum c[j] x[j] + sum c[k] x[k] + c[0],
alpar@1
    91
*         j!=q            k=0
alpar@1
    92
*
alpar@1
    93
*  where:
alpar@1
    94
*
alpar@1
    95
*     c[k] = 2^k c[q],  k = 0, ..., n-1.                             (5)
alpar@1
    96
*
alpar@1
    97
*  And substituting x[q] from (3) to i-th constraint row i gives:
alpar@1
    98
*
alpar@1
    99
*     L[i] <= sum a[i,j] x[j] <= U[i]  ==>
alpar@1
   100
*              j
alpar@1
   101
*
alpar@1
   102
*     L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i]  ==>
alpar@1
   103
*             j!=q
alpar@1
   104
*                                      n-1
alpar@1
   105
*     L[i] <= sum a[i,j] x[j] + a[i,q] sum 2^k x[k] <= U[i]  ==>
alpar@1
   106
*             j!=q                     k=0
alpar@1
   107
*                               n-1
alpar@1
   108
*     L[i] <= sum a[i,j] x[j] + sum a[i,k] x[k] <= U[i],
alpar@1
   109
*             j!=q              k=0
alpar@1
   110
*
alpar@1
   111
*  where:
alpar@1
   112
*
alpar@1
   113
*     a[i,k] = 2^k a[i,q],  k = 0, ..., n-1.                         (6)
alpar@1
   114
*
alpar@1
   115
*  RECOVERING SOLUTION
alpar@1
   116
*
alpar@1
   117
*  Value of variable x[q] is computed with formula (3). */
alpar@1
   118
alpar@1
   119
struct binarize
alpar@1
   120
{     int q;
alpar@1
   121
      /* column reference number for x[q] = x[0] */
alpar@1
   122
      int j;
alpar@1
   123
      /* column reference number for x[1]; x[2] has reference number
alpar@1
   124
         j+1, x[3] - j+2, etc. */
alpar@1
   125
      int n;
alpar@1
   126
      /* total number of binary variables, n >= 2 */
alpar@1
   127
};
alpar@1
   128
alpar@1
   129
static int rcv_binarize_prob(NPP *npp, void *info);
alpar@1
   130
alpar@1
   131
int npp_binarize_prob(NPP *npp)
alpar@1
   132
{     /* binarize MIP problem */
alpar@1
   133
      struct binarize *info;
alpar@1
   134
      NPPROW *row;
alpar@1
   135
      NPPCOL *col, *bin;
alpar@1
   136
      NPPAIJ *aij;
alpar@1
   137
      int u, n, k, temp, nfails, nvars, nbins, nrows;
alpar@1
   138
      /* new variables will be added to the end of the column list, so
alpar@1
   139
         we go from the end to beginning of the column list */
alpar@1
   140
      nfails = nvars = nbins = nrows = 0;
alpar@1
   141
      for (col = npp->c_tail; col != NULL; col = col->prev)
alpar@1
   142
      {  /* skip continuous variable */
alpar@1
   143
         if (!col->is_int) continue;
alpar@1
   144
         /* skip fixed variable */
alpar@1
   145
         if (col->lb == col->ub) continue;
alpar@1
   146
         /* skip binary variable */
alpar@1
   147
         if (col->lb == 0.0 && col->ub == 1.0) continue;
alpar@1
   148
         /* check if the transformation is applicable */
alpar@1
   149
         if (col->lb < -1e6 || col->ub > +1e6 ||
alpar@1
   150
             col->ub - col->lb > 4095.0)
alpar@1
   151
         {  /* unfortunately, not */
alpar@1
   152
            nfails++;
alpar@1
   153
            continue;
alpar@1
   154
         }
alpar@1
   155
         /* process integer non-binary variable x[q] */
alpar@1
   156
         nvars++;
alpar@1
   157
         /* make x[q] non-negative, if its lower bound is non-zero */
alpar@1
   158
         if (col->lb != 0.0)
alpar@1
   159
            npp_lbnd_col(npp, col);
alpar@1
   160
         /* now 0 <= x[q] <= u[q] */
alpar@1
   161
         xassert(col->lb == 0.0);
alpar@1
   162
         u = (int)col->ub;
alpar@1
   163
         xassert(col->ub == (double)u);
alpar@1
   164
         /* if x[q] is binary, further processing is not needed */
alpar@1
   165
         if (u == 1) continue;
alpar@1
   166
         /* determine smallest n such that u <= 2^n - 1 (thus, n is the
alpar@1
   167
            number of binary variables needed) */
alpar@1
   168
         n = 2, temp = 4;
alpar@1
   169
         while (u >= temp)
alpar@1
   170
            n++, temp += temp;
alpar@1
   171
         nbins += n;
alpar@1
   172
         /* create transformation stack entry */
alpar@1
   173
         info = npp_push_tse(npp,
alpar@1
   174
            rcv_binarize_prob, sizeof(struct binarize));
alpar@1
   175
         info->q = col->j;
alpar@1
   176
         info->j = 0; /* will be set below */
alpar@1
   177
         info->n = n;
alpar@1
   178
         /* if u < 2^n - 1, we need one additional row for (4) */
alpar@1
   179
         if (u < temp - 1)
alpar@1
   180
         {  row = npp_add_row(npp), nrows++;
alpar@1
   181
            row->lb = -DBL_MAX, row->ub = u;
alpar@1
   182
         }
alpar@1
   183
         else
alpar@1
   184
            row = NULL;
alpar@1
   185
         /* in the transformed problem variable x[q] becomes binary
alpar@1
   186
            variable x[0], so its objective and constraint coefficients
alpar@1
   187
            are not changed */
alpar@1
   188
         col->ub = 1.0;
alpar@1
   189
         /* include x[0] into constraint (4) */
alpar@1
   190
         if (row != NULL)
alpar@1
   191
            npp_add_aij(npp, row, col, 1.0);
alpar@1
   192
         /* add other binary variables x[1], ..., x[n-1] */
alpar@1
   193
         for (k = 1, temp = 2; k < n; k++, temp += temp)
alpar@1
   194
         {  /* add new binary variable x[k] */
alpar@1
   195
            bin = npp_add_col(npp);
alpar@1
   196
            bin->is_int = 1;
alpar@1
   197
            bin->lb = 0.0, bin->ub = 1.0;
alpar@1
   198
            bin->coef = (double)temp * col->coef;
alpar@1
   199
            /* store column reference number for x[1] */
alpar@1
   200
            if (info->j == 0)
alpar@1
   201
               info->j = bin->j;
alpar@1
   202
            else
alpar@1
   203
               xassert(info->j + (k-1) == bin->j);
alpar@1
   204
            /* duplicate constraint coefficients for x[k]; this also
alpar@1
   205
               automatically includes x[k] into constraint (4) */
alpar@1
   206
            for (aij = col->ptr; aij != NULL; aij = aij->c_next)
alpar@1
   207
               npp_add_aij(npp, aij->row, bin, (double)temp * aij->val);
alpar@1
   208
         }
alpar@1
   209
      }
alpar@1
   210
      if (nvars > 0)
alpar@1
   211
         xprintf("%d integer variable(s) were replaced by %d binary one"
alpar@1
   212
            "s\n", nvars, nbins);
alpar@1
   213
      if (nrows > 0)
alpar@1
   214
         xprintf("%d row(s) were added due to binarization\n", nrows);
alpar@1
   215
      if (nfails > 0)
alpar@1
   216
         xprintf("Binarization failed for %d integer variable(s)\n",
alpar@1
   217
            nfails);
alpar@1
   218
      return nfails;
alpar@1
   219
}
alpar@1
   220
alpar@1
   221
static int rcv_binarize_prob(NPP *npp, void *_info)
alpar@1
   222
{     /* recovery binarized variable */
alpar@1
   223
      struct binarize *info = _info;
alpar@1
   224
      int k, temp;
alpar@1
   225
      double sum;
alpar@1
   226
      /* compute value of x[q]; see formula (3) */
alpar@1
   227
      sum = npp->c_value[info->q];
alpar@1
   228
      for (k = 1, temp = 2; k < info->n; k++, temp += temp)
alpar@1
   229
         sum += (double)temp * npp->c_value[info->j + (k-1)];
alpar@1
   230
      npp->c_value[info->q] = sum;
alpar@1
   231
      return 0;
alpar@1
   232
}
alpar@1
   233
alpar@1
   234
/**********************************************************************/
alpar@1
   235
alpar@1
   236
struct elem
alpar@1
   237
{     /* linear form element a[j] x[j] */
alpar@1
   238
      double aj;
alpar@1
   239
      /* non-zero coefficient value */
alpar@1
   240
      NPPCOL *xj;
alpar@1
   241
      /* pointer to variable (column) */
alpar@1
   242
      struct elem *next;
alpar@1
   243
      /* pointer to another term */
alpar@1
   244
};
alpar@1
   245
alpar@1
   246
static struct elem *copy_form(NPP *npp, NPPROW *row, double s)
alpar@1
   247
{     /* copy linear form */
alpar@1
   248
      NPPAIJ *aij;
alpar@1
   249
      struct elem *ptr, *e;
alpar@1
   250
      ptr = NULL;
alpar@1
   251
      for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
   252
      {  e = dmp_get_atom(npp->pool, sizeof(struct elem));
alpar@1
   253
         e->aj = s * aij->val;
alpar@1
   254
         e->xj = aij->col;
alpar@1
   255
         e->next = ptr;
alpar@1
   256
         ptr = e;
alpar@1
   257
      }
alpar@1
   258
      return ptr;
alpar@1
   259
}
alpar@1
   260
alpar@1
   261
static void drop_form(NPP *npp, struct elem *ptr)
alpar@1
   262
{     /* drop linear form */
alpar@1
   263
      struct elem *e;
alpar@1
   264
      while (ptr != NULL)
alpar@1
   265
      {  e = ptr;
alpar@1
   266
         ptr = e->next;
alpar@1
   267
         dmp_free_atom(npp->pool, e, sizeof(struct elem));
alpar@1
   268
      }
alpar@1
   269
      return;
alpar@1
   270
}
alpar@1
   271
alpar@1
   272
/***********************************************************************
alpar@1
   273
*  NAME
alpar@1
   274
*
alpar@1
   275
*  npp_is_packing - test if constraint is packing inequality
alpar@1
   276
*
alpar@1
   277
*  SYNOPSIS
alpar@1
   278
*
alpar@1
   279
*  #include "glpnpp.h"
alpar@1
   280
*  int npp_is_packing(NPP *npp, NPPROW *row);
alpar@1
   281
*
alpar@1
   282
*  RETURNS
alpar@1
   283
*
alpar@1
   284
*  If the specified row (constraint) is packing inequality (see below),
alpar@1
   285
*  the routine npp_is_packing returns non-zero. Otherwise, it returns
alpar@1
   286
*  zero.
alpar@1
   287
*
alpar@1
   288
*  PACKING INEQUALITIES
alpar@1
   289
*
alpar@1
   290
*  In canonical format the packing inequality is the following:
alpar@1
   291
*
alpar@1
   292
*     sum  x[j] <= 1,                                                (1)
alpar@1
   293
*    j in J
alpar@1
   294
*
alpar@1
   295
*  where all variables x[j] are binary. This inequality expresses the
alpar@1
   296
*  condition that in any integer feasible solution at most one variable
alpar@1
   297
*  from set J can take non-zero (unity) value while other variables
alpar@1
   298
*  must be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because
alpar@1
   299
*  if J is empty or |J| = 1, the inequality (1) is redundant.
alpar@1
   300
*
alpar@1
   301
*  In general case the packing inequality may include original variables
alpar@1
   302
*  x[j] as well as their complements x~[j]:
alpar@1
   303
*
alpar@1
   304
*     sum   x[j] + sum   x~[j] <= 1,                                 (2)
alpar@1
   305
*    j in Jp      j in Jn
alpar@1
   306
*
alpar@1
   307
*  where Jp and Jn are not intersected. Therefore, using substitution
alpar@1
   308
*  x~[j] = 1 - x[j] gives the packing inequality in generalized format:
alpar@1
   309
*
alpar@1
   310
*     sum   x[j] - sum   x[j] <= 1 - |Jn|.                           (3)
alpar@1
   311
*    j in Jp      j in Jn */
alpar@1
   312
alpar@1
   313
int npp_is_packing(NPP *npp, NPPROW *row)
alpar@1
   314
{     /* test if constraint is packing inequality */
alpar@1
   315
      NPPCOL *col;
alpar@1
   316
      NPPAIJ *aij;
alpar@1
   317
      int b;
alpar@1
   318
      xassert(npp == npp);
alpar@1
   319
      if (!(row->lb == -DBL_MAX && row->ub != +DBL_MAX))
alpar@1
   320
         return 0;
alpar@1
   321
      b = 1;
alpar@1
   322
      for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
   323
      {  col = aij->col;
alpar@1
   324
         if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
alpar@1
   325
            return 0;
alpar@1
   326
         if (aij->val == +1.0)
alpar@1
   327
            ;
alpar@1
   328
         else if (aij->val == -1.0)
alpar@1
   329
            b--;
alpar@1
   330
         else
alpar@1
   331
            return 0;
alpar@1
   332
      }
alpar@1
   333
      if (row->ub != (double)b) return 0;
alpar@1
   334
      return 1;
alpar@1
   335
}
alpar@1
   336
alpar@1
   337
/***********************************************************************
alpar@1
   338
*  NAME
alpar@1
   339
*
alpar@1
   340
*  npp_hidden_packing - identify hidden packing inequality
alpar@1
   341
*
alpar@1
   342
*  SYNOPSIS
alpar@1
   343
*
alpar@1
   344
*  #include "glpnpp.h"
alpar@1
   345
*  int npp_hidden_packing(NPP *npp, NPPROW *row);
alpar@1
   346
*
alpar@1
   347
*  DESCRIPTION
alpar@1
   348
*
alpar@1
   349
*  The routine npp_hidden_packing processes specified inequality
alpar@1
   350
*  constraint, which includes only binary variables, and the number of
alpar@1
   351
*  the variables is not less than two. If the original inequality is
alpar@1
   352
*  equivalent to a packing inequality, the routine replaces it by this
alpar@1
   353
*  equivalent inequality. If the original constraint is double-sided
alpar@1
   354
*  inequality, it is replaced by a pair of single-sided inequalities,
alpar@1
   355
*  if necessary.
alpar@1
   356
*
alpar@1
   357
*  RETURNS
alpar@1
   358
*
alpar@1
   359
*  If the original inequality constraint was replaced by equivalent
alpar@1
   360
*  packing inequality, the routine npp_hidden_packing returns non-zero.
alpar@1
   361
*  Otherwise, it returns zero.
alpar@1
   362
*
alpar@1
   363
*  PROBLEM TRANSFORMATION
alpar@1
   364
*
alpar@1
   365
*  Consider an inequality constraint:
alpar@1
   366
*
alpar@1
   367
*     sum  a[j] x[j] <= b,                                           (1)
alpar@1
   368
*    j in J
alpar@1
   369
*
alpar@1
   370
*  where all variables x[j] are binary, and |J| >= 2. (In case of '>='
alpar@1
   371
*  inequality it can be transformed to '<=' format by multiplying both
alpar@1
   372
*  its sides by -1.)
alpar@1
   373
*
alpar@1
   374
*  Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
alpar@1
   375
*  x[j] = 1 - x~[j] for all j in Jn, we have:
alpar@1
   376
*
alpar@1
   377
*     sum   a[j] x[j] <= b  ==>
alpar@1
   378
*    j in J
alpar@1
   379
*
alpar@1
   380
*     sum   a[j] x[j] + sum   a[j] x[j] <= b  ==>
alpar@1
   381
*    j in Jp           j in Jn
alpar@1
   382
*
alpar@1
   383
*     sum   a[j] x[j] + sum   a[j] (1 - x~[j]) <= b  ==>
alpar@1
   384
*    j in Jp           j in Jn
alpar@1
   385
*
alpar@1
   386
*     sum   a[j] x[j] - sum   a[j] x~[j] <= b - sum   a[j].
alpar@1
   387
*    j in Jp           j in Jn                 j in Jn
alpar@1
   388
*
alpar@1
   389
*  Thus, meaning the transformation above, we can assume that in
alpar@1
   390
*  inequality (1) all coefficients a[j] are positive. Moreover, we can
alpar@1
   391
*  assume that a[j] <= b. In fact, let a[j] > b; then the following
alpar@1
   392
*  three cases are possible:
alpar@1
   393
*
alpar@1
   394
*  1) b < 0. In this case inequality (1) is infeasible, so the problem
alpar@1
   395
*     has no feasible solution (see the routine npp_analyze_row);
alpar@1
   396
*
alpar@1
   397
*  2) b = 0. In this case inequality (1) is a forcing inequality on its
alpar@1
   398
*     upper bound (see the routine npp_forcing row), from which it
alpar@1
   399
*     follows that all variables x[j] should be fixed at zero;
alpar@1
   400
*
alpar@1
   401
*  3) b > 0. In this case inequality (1) defines an implied zero upper
alpar@1
   402
*     bound for variable x[j] (see the routine npp_implied_bounds), from
alpar@1
   403
*     which it follows that x[j] should be fixed at zero.
alpar@1
   404
*
alpar@1
   405
*  It is assumed that all three cases listed above have been recognized
alpar@1
   406
*  by the routine npp_process_prob, which performs basic MIP processing
alpar@1
   407
*  prior to a call the routine npp_hidden_packing. So, if one of these
alpar@1
   408
*  cases occurs, we should just skip processing such constraint.
alpar@1
   409
*
alpar@1
   410
*  Thus, let 0 < a[j] <= b. Then it is obvious that constraint (1) is
alpar@1
   411
*  equivalent to packing inquality only if:
alpar@1
   412
*
alpar@1
   413
*     a[j] + a[k] > b + eps                                          (2)
alpar@1
   414
*
alpar@1
   415
*  for all j, k in J, j != k, where eps is an absolute tolerance for
alpar@1
   416
*  row (linear form) value. Checking the condition (2) for all j and k,
alpar@1
   417
*  j != k, requires time O(|J|^2). However, this time can be reduced to
alpar@1
   418
*  O(|J|), if use minimal a[j] and a[k], in which case it is sufficient
alpar@1
   419
*  to check the condition (2) only once.
alpar@1
   420
*
alpar@1
   421
*  Once the original inequality (1) is replaced by equivalent packing
alpar@1
   422
*  inequality, we need to perform back substitution x~[j] = 1 - x[j] for
alpar@1
   423
*  all j in Jn (see above).
alpar@1
   424
*
alpar@1
   425
*  RECOVERING SOLUTION
alpar@1
   426
*
alpar@1
   427
*  None needed. */
alpar@1
   428
alpar@1
   429
static int hidden_packing(NPP *npp, struct elem *ptr, double *_b)
alpar@1
   430
{     /* process inequality constraint: sum a[j] x[j] <= b;
alpar@1
   431
         0 - specified row is NOT hidden packing inequality;
alpar@1
   432
         1 - specified row is packing inequality;
alpar@1
   433
         2 - specified row is hidden packing inequality. */
alpar@1
   434
      struct elem *e, *ej, *ek;
alpar@1
   435
      int neg;
alpar@1
   436
      double b = *_b, eps;
alpar@1
   437
      xassert(npp == npp);
alpar@1
   438
      /* a[j] must be non-zero, x[j] must be binary, for all j in J */
alpar@1
   439
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   440
      {  xassert(e->aj != 0.0);
alpar@1
   441
         xassert(e->xj->is_int);
alpar@1
   442
         xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
alpar@1
   443
      }
alpar@1
   444
      /* check if the specified inequality constraint already has the
alpar@1
   445
         form of packing inequality */
alpar@1
   446
      neg = 0; /* neg is |Jn| */
alpar@1
   447
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   448
      {  if (e->aj == +1.0)
alpar@1
   449
            ;
alpar@1
   450
         else if (e->aj == -1.0)
alpar@1
   451
            neg++;
alpar@1
   452
         else
alpar@1
   453
            break;
alpar@1
   454
      }
alpar@1
   455
      if (e == NULL)
alpar@1
   456
      {  /* all coefficients a[j] are +1 or -1; check rhs b */
alpar@1
   457
         if (b == (double)(1 - neg))
alpar@1
   458
         {  /* it is packing inequality; no processing is needed */
alpar@1
   459
            return 1;
alpar@1
   460
         }
alpar@1
   461
      }
alpar@1
   462
      /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
alpar@1
   463
         positive; the result is a~[j] = |a[j]| and new rhs b */
alpar@1
   464
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   465
         if (e->aj < 0) b -= e->aj;
alpar@1
   466
      /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
alpar@1
   467
      /* if a[j] > b, skip processing--this case must not appear */
alpar@1
   468
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   469
         if (fabs(e->aj) > b) return 0;
alpar@1
   470
      /* now 0 < a[j] <= b for all j in J */
alpar@1
   471
      /* find two minimal coefficients a[j] and a[k], j != k */
alpar@1
   472
      ej = NULL;
alpar@1
   473
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   474
         if (ej == NULL || fabs(ej->aj) > fabs(e->aj)) ej = e;
alpar@1
   475
      xassert(ej != NULL);
alpar@1
   476
      ek = NULL;
alpar@1
   477
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   478
         if (e != ej)
alpar@1
   479
            if (ek == NULL || fabs(ek->aj) > fabs(e->aj)) ek = e;
alpar@1
   480
      xassert(ek != NULL);
alpar@1
   481
      /* the specified constraint is equivalent to packing inequality
alpar@1
   482
         iff a[j] + a[k] > b + eps */
alpar@1
   483
      eps = 1e-3 + 1e-6 * fabs(b);
alpar@1
   484
      if (fabs(ej->aj) + fabs(ek->aj) <= b + eps) return 0;
alpar@1
   485
      /* perform back substitution x~[j] = 1 - x[j] and construct the
alpar@1
   486
         final equivalent packing inequality in generalized format */
alpar@1
   487
      b = 1.0;
alpar@1
   488
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   489
      {  if (e->aj > 0.0)
alpar@1
   490
            e->aj = +1.0;
alpar@1
   491
         else /* e->aj < 0.0 */
alpar@1
   492
            e->aj = -1.0, b -= 1.0;
alpar@1
   493
      }
alpar@1
   494
      *_b = b;
alpar@1
   495
      return 2;
alpar@1
   496
}
alpar@1
   497
alpar@1
   498
int npp_hidden_packing(NPP *npp, NPPROW *row)
alpar@1
   499
{     /* identify hidden packing inequality */
alpar@1
   500
      NPPROW *copy;
alpar@1
   501
      NPPAIJ *aij;
alpar@1
   502
      struct elem *ptr, *e;
alpar@1
   503
      int kase, ret, count = 0;
alpar@1
   504
      double b;
alpar@1
   505
      /* the row must be inequality constraint */
alpar@1
   506
      xassert(row->lb < row->ub);
alpar@1
   507
      for (kase = 0; kase <= 1; kase++)
alpar@1
   508
      {  if (kase == 0)
alpar@1
   509
         {  /* process row upper bound */
alpar@1
   510
            if (row->ub == +DBL_MAX) continue;
alpar@1
   511
            ptr = copy_form(npp, row, +1.0);
alpar@1
   512
            b = + row->ub;
alpar@1
   513
         }
alpar@1
   514
         else
alpar@1
   515
         {  /* process row lower bound */
alpar@1
   516
            if (row->lb == -DBL_MAX) continue;
alpar@1
   517
            ptr = copy_form(npp, row, -1.0);
alpar@1
   518
            b = - row->lb;
alpar@1
   519
         }
alpar@1
   520
         /* now the inequality has the form "sum a[j] x[j] <= b" */
alpar@1
   521
         ret = hidden_packing(npp, ptr, &b);
alpar@1
   522
         xassert(0 <= ret && ret <= 2);
alpar@1
   523
         if (kase == 1 && ret == 1 || ret == 2)
alpar@1
   524
         {  /* the original inequality has been identified as hidden
alpar@1
   525
               packing inequality */
alpar@1
   526
            count++;
alpar@1
   527
#ifdef GLP_DEBUG
alpar@1
   528
            xprintf("Original constraint:\n");
alpar@1
   529
            for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
   530
               xprintf(" %+g x%d", aij->val, aij->col->j);
alpar@1
   531
            if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
alpar@1
   532
            if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
alpar@1
   533
            xprintf("\n");
alpar@1
   534
            xprintf("Equivalent packing inequality:\n");
alpar@1
   535
            for (e = ptr; e != NULL; e = e->next)
alpar@1
   536
               xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
alpar@1
   537
            xprintf(", <= %g\n", b);
alpar@1
   538
#endif
alpar@1
   539
            if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
alpar@1
   540
            {  /* the original row is single-sided inequality; no copy
alpar@1
   541
                  is needed */
alpar@1
   542
               copy = NULL;
alpar@1
   543
            }
alpar@1
   544
            else
alpar@1
   545
            {  /* the original row is double-sided inequality; we need
alpar@1
   546
                  to create its copy for other bound before replacing it
alpar@1
   547
                  with the equivalent inequality */
alpar@1
   548
               copy = npp_add_row(npp);
alpar@1
   549
               if (kase == 0)
alpar@1
   550
               {  /* the copy is for lower bound */
alpar@1
   551
                  copy->lb = row->lb, copy->ub = +DBL_MAX;
alpar@1
   552
               }
alpar@1
   553
               else
alpar@1
   554
               {  /* the copy is for upper bound */
alpar@1
   555
                  copy->lb = -DBL_MAX, copy->ub = row->ub;
alpar@1
   556
               }
alpar@1
   557
               /* copy original row coefficients */
alpar@1
   558
               for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
   559
                  npp_add_aij(npp, copy, aij->col, aij->val);
alpar@1
   560
            }
alpar@1
   561
            /* replace the original inequality by equivalent one */
alpar@1
   562
            npp_erase_row(npp, row);
alpar@1
   563
            row->lb = -DBL_MAX, row->ub = b;
alpar@1
   564
            for (e = ptr; e != NULL; e = e->next)
alpar@1
   565
               npp_add_aij(npp, row, e->xj, e->aj);
alpar@1
   566
            /* continue processing lower bound for the copy */
alpar@1
   567
            if (copy != NULL) row = copy;
alpar@1
   568
         }
alpar@1
   569
         drop_form(npp, ptr);
alpar@1
   570
      }
alpar@1
   571
      return count;
alpar@1
   572
}
alpar@1
   573
alpar@1
   574
/***********************************************************************
alpar@1
   575
*  NAME
alpar@1
   576
*
alpar@1
   577
*  npp_implied_packing - identify implied packing inequality
alpar@1
   578
*
alpar@1
   579
*  SYNOPSIS
alpar@1
   580
*
alpar@1
   581
*  #include "glpnpp.h"
alpar@1
   582
*  int npp_implied_packing(NPP *npp, NPPROW *row, int which,
alpar@1
   583
*     NPPCOL *var[], char set[]);
alpar@1
   584
*
alpar@1
   585
*  DESCRIPTION
alpar@1
   586
*
alpar@1
   587
*  The routine npp_implied_packing processes specified row (constraint)
alpar@1
   588
*  of general format:
alpar@1
   589
*
alpar@1
   590
*     L <= sum a[j] x[j] <= U.                                       (1)
alpar@1
   591
*           j
alpar@1
   592
*
alpar@1
   593
*  If which = 0, only lower bound L, which must exist, is considered,
alpar@1
   594
*  while upper bound U is ignored. Similarly, if which = 1, only upper
alpar@1
   595
*  bound U, which must exist, is considered, while lower bound L is
alpar@1
   596
*  ignored. Thus, if the specified row is a double-sided inequality or
alpar@1
   597
*  equality constraint, this routine should be called twice for both
alpar@1
   598
*  lower and upper bounds.
alpar@1
   599
*
alpar@1
   600
*  The routine npp_implied_packing attempts to find a non-trivial (i.e.
alpar@1
   601
*  having not less than two binary variables) packing inequality:
alpar@1
   602
*
alpar@1
   603
*     sum   x[j] - sum   x[j] <= 1 - |Jn|,                           (2)
alpar@1
   604
*    j in Jp      j in Jn
alpar@1
   605
*
alpar@1
   606
*  which is relaxation of the constraint (1) in the sense that any
alpar@1
   607
*  solution satisfying to that constraint also satisfies to the packing
alpar@1
   608
*  inequality (2). If such relaxation exists, the routine stores
alpar@1
   609
*  pointers to descriptors of corresponding binary variables and their
alpar@1
   610
*  flags, resp., to locations var[1], var[2], ..., var[len] and set[1],
alpar@1
   611
*  set[2], ..., set[len], where set[j] = 0 means that j in Jp and
alpar@1
   612
*  set[j] = 1 means that j in Jn.
alpar@1
   613
*
alpar@1
   614
*  RETURNS
alpar@1
   615
*
alpar@1
   616
*  The routine npp_implied_packing returns len, which is the total
alpar@1
   617
*  number of binary variables in the packing inequality found, len >= 2.
alpar@1
   618
*  However, if the relaxation does not exist, the routine returns zero.
alpar@1
   619
*
alpar@1
   620
*  ALGORITHM
alpar@1
   621
*
alpar@1
   622
*  If which = 0, the constraint coefficients (1) are multiplied by -1
alpar@1
   623
*  and b is assigned -L; if which = 1, the constraint coefficients (1)
alpar@1
   624
*  are not changed and b is assigned +U. In both cases the specified
alpar@1
   625
*  constraint gets the following format:
alpar@1
   626
*
alpar@1
   627
*     sum a[j] x[j] <= b.                                            (3)
alpar@1
   628
*      j
alpar@1
   629
*
alpar@1
   630
*  (Note that (3) is a relaxation of (1), because one of bounds L or U
alpar@1
   631
*  is ignored.)
alpar@1
   632
*
alpar@1
   633
*  Let J be set of binary variables, Kp be set of non-binary (integer
alpar@1
   634
*  or continuous) variables with a[j] > 0, and Kn be set of non-binary
alpar@1
   635
*  variables with a[j] < 0. Then the inequality (3) can be written as
alpar@1
   636
*  follows:
alpar@1
   637
*
alpar@1
   638
*     sum  a[j] x[j] <= b - sum   a[j] x[j] - sum   a[j] x[j].       (4)
alpar@1
   639
*    j in J                j in Kp           j in Kn
alpar@1
   640
*
alpar@1
   641
*  To get rid of non-binary variables we can replace the inequality (4)
alpar@1
   642
*  by the following relaxed inequality:
alpar@1
   643
*
alpar@1
   644
*     sum  a[j] x[j] <= b~,                                          (5)
alpar@1
   645
*    j in J
alpar@1
   646
*
alpar@1
   647
*  where:
alpar@1
   648
*
alpar@1
   649
*     b~ = sup(b - sum   a[j] x[j] - sum   a[j] x[j]) =
alpar@1
   650
*                 j in Kp           j in Kn
alpar@1
   651
*
alpar@1
   652
*        = b - inf sum   a[j] x[j] - inf sum   a[j] x[j] =           (6)
alpar@1
   653
*                 j in Kp               j in Kn
alpar@1
   654
*
alpar@1
   655
*        = b - sum   a[j] l[j] - sum   a[j] u[j].
alpar@1
   656
*             j in Kp           j in Kn
alpar@1
   657
*
alpar@1
   658
*  Note that if lower bound l[j] (if j in Kp) or upper bound u[j]
alpar@1
   659
*  (if j in Kn) of some non-binary variable x[j] does not exist, then
alpar@1
   660
*  formally b = +oo, in which case further analysis is not performed.
alpar@1
   661
*
alpar@1
   662
*  Let Bp = {j in J: a[j] > 0}, Bn = {j in J: a[j] < 0}. To make all
alpar@1
   663
*  the inequality coefficients in (5) positive, we replace all x[j] in
alpar@1
   664
*  Bn by their complementaries, substituting x[j] = 1 - x~[j] for all
alpar@1
   665
*  j in Bn, that gives:
alpar@1
   666
*
alpar@1
   667
*     sum   a[j] x[j] - sum   a[j] x~[j] <= b~ - sum   a[j].         (7)
alpar@1
   668
*    j in Bp           j in Bn                  j in Bn
alpar@1
   669
*
alpar@1
   670
*  This inequality is a relaxation of the original constraint (1), and
alpar@1
   671
*  it is a binary knapsack inequality. Writing it in the standard format
alpar@1
   672
*  we have:
alpar@1
   673
*
alpar@1
   674
*     sum  alfa[j] z[j] <= beta,                                     (8)
alpar@1
   675
*    j in J
alpar@1
   676
*
alpar@1
   677
*  where:
alpar@1
   678
*               ( + a[j],   if j in Bp,
alpar@1
   679
*     alfa[j] = <                                                    (9)
alpar@1
   680
*               ( - a[j],   if j in Bn,
alpar@1
   681
*
alpar@1
   682
*               ( x[j],     if j in Bp,
alpar@1
   683
*        z[j] = <                                                   (10)
alpar@1
   684
*               ( 1 - x[j], if j in Bn,
alpar@1
   685
*
alpar@1
   686
*        beta = b~ - sum   a[j].                                    (11)
alpar@1
   687
*                   j in Bn
alpar@1
   688
*
alpar@1
   689
*  In the inequality (8) all coefficients are positive, therefore, the
alpar@1
   690
*  packing relaxation to be found for this inequality is the following:
alpar@1
   691
*
alpar@1
   692
*     sum  z[j] <= 1.                                               (12)
alpar@1
   693
*    j in P
alpar@1
   694
*
alpar@1
   695
*  It is obvious that set P within J, which we would like to find, must
alpar@1
   696
*  satisfy to the following condition:
alpar@1
   697
*
alpar@1
   698
*     alfa[j] + alfa[k] > beta + eps  for all j, k in P, j != k,    (13)
alpar@1
   699
*
alpar@1
   700
*  where eps is an absolute tolerance for value of the linear form.
alpar@1
   701
*  Thus, it is natural to take P = {j: alpha[j] > (beta + eps) / 2}.
alpar@1
   702
*  Moreover, if in the equality (8) there exist coefficients alfa[k],
alpar@1
   703
*  for which alfa[k] <= (beta + eps) / 2, but which, nevertheless,
alpar@1
   704
*  satisfies to the condition (13) for all j in P, *one* corresponding
alpar@1
   705
*  variable z[k] (having, for example, maximal coefficient alfa[k]) can
alpar@1
   706
*  be included in set P, that allows increasing the number of binary
alpar@1
   707
*  variables in (12) by one.
alpar@1
   708
*
alpar@1
   709
*  Once the set P has been built, for the inequality (12) we need to
alpar@1
   710
*  perform back substitution according to (10) in order to express it
alpar@1
   711
*  through the original binary variables. As the result of such back
alpar@1
   712
*  substitution the relaxed packing inequality get its final format (2),
alpar@1
   713
*  where Jp = J intersect Bp, and Jn = J intersect Bn. */
alpar@1
   714
alpar@1
   715
int npp_implied_packing(NPP *npp, NPPROW *row, int which,
alpar@1
   716
      NPPCOL *var[], char set[])
alpar@1
   717
{     struct elem *ptr, *e, *i, *k;
alpar@1
   718
      int len = 0;
alpar@1
   719
      double b, eps;
alpar@1
   720
      /* build inequality (3) */
alpar@1
   721
      if (which == 0)
alpar@1
   722
      {  ptr = copy_form(npp, row, -1.0);
alpar@1
   723
         xassert(row->lb != -DBL_MAX);
alpar@1
   724
         b = - row->lb;
alpar@1
   725
      }
alpar@1
   726
      else if (which == 1)
alpar@1
   727
      {  ptr = copy_form(npp, row, +1.0);
alpar@1
   728
         xassert(row->ub != +DBL_MAX);
alpar@1
   729
         b = + row->ub;
alpar@1
   730
      }
alpar@1
   731
      /* remove non-binary variables to build relaxed inequality (5);
alpar@1
   732
         compute its right-hand side b~ with formula (6) */
alpar@1
   733
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   734
      {  if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
alpar@1
   735
         {  /* x[j] is non-binary variable */
alpar@1
   736
            if (e->aj > 0.0)
alpar@1
   737
            {  if (e->xj->lb == -DBL_MAX) goto done;
alpar@1
   738
               b -= e->aj * e->xj->lb;
alpar@1
   739
            }
alpar@1
   740
            else /* e->aj < 0.0 */
alpar@1
   741
            {  if (e->xj->ub == +DBL_MAX) goto done;
alpar@1
   742
               b -= e->aj * e->xj->ub;
alpar@1
   743
            }
alpar@1
   744
            /* a[j] = 0 means that variable x[j] is removed */
alpar@1
   745
            e->aj = 0.0;
alpar@1
   746
         }
alpar@1
   747
      }
alpar@1
   748
      /* substitute x[j] = 1 - x~[j] to build knapsack inequality (8);
alpar@1
   749
         compute its right-hand side beta with formula (11) */
alpar@1
   750
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   751
         if (e->aj < 0.0) b -= e->aj;
alpar@1
   752
      /* if beta is close to zero, the knapsack inequality is either
alpar@1
   753
         infeasible or forcing inequality; this must never happen, so
alpar@1
   754
         we skip further analysis */
alpar@1
   755
      if (b < 1e-3) goto done;
alpar@1
   756
      /* build set P as well as sets Jp and Jn, and determine x[k] as
alpar@1
   757
         explained above in comments to the routine */
alpar@1
   758
      eps = 1e-3 + 1e-6 * b;
alpar@1
   759
      i = k = NULL;
alpar@1
   760
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   761
      {  /* note that alfa[j] = |a[j]| */
alpar@1
   762
         if (fabs(e->aj) > 0.5 * (b + eps))
alpar@1
   763
         {  /* alfa[j] > (b + eps) / 2; include x[j] in set P, i.e. in
alpar@1
   764
               set Jp or Jn */
alpar@1
   765
            var[++len] = e->xj;
alpar@1
   766
            set[len] = (char)(e->aj > 0.0 ? 0 : 1);
alpar@1
   767
            /* alfa[i] = min alfa[j] over all j included in set P */
alpar@1
   768
            if (i == NULL || fabs(i->aj) > fabs(e->aj)) i = e;
alpar@1
   769
         }
alpar@1
   770
         else if (fabs(e->aj) >= 1e-3)
alpar@1
   771
         {  /* alfa[k] = max alfa[j] over all j not included in set P;
alpar@1
   772
               we skip coefficient a[j] if it is close to zero to avoid
alpar@1
   773
               numerically unreliable results */
alpar@1
   774
            if (k == NULL || fabs(k->aj) < fabs(e->aj)) k = e;
alpar@1
   775
         }
alpar@1
   776
      }
alpar@1
   777
      /* if alfa[k] satisfies to condition (13) for all j in P, include
alpar@1
   778
         x[k] in P */
alpar@1
   779
      if (i != NULL && k != NULL && fabs(i->aj) + fabs(k->aj) > b + eps)
alpar@1
   780
      {  var[++len] = k->xj;
alpar@1
   781
         set[len] = (char)(k->aj > 0.0 ? 0 : 1);
alpar@1
   782
      }
alpar@1
   783
      /* trivial packing inequality being redundant must never appear,
alpar@1
   784
         so we just ignore it */
alpar@1
   785
      if (len < 2) len = 0;
alpar@1
   786
done: drop_form(npp, ptr);
alpar@1
   787
      return len;
alpar@1
   788
}
alpar@1
   789
alpar@1
   790
/***********************************************************************
alpar@1
   791
*  NAME
alpar@1
   792
*
alpar@1
   793
*  npp_is_covering - test if constraint is covering inequality
alpar@1
   794
*
alpar@1
   795
*  SYNOPSIS
alpar@1
   796
*
alpar@1
   797
*  #include "glpnpp.h"
alpar@1
   798
*  int npp_is_covering(NPP *npp, NPPROW *row);
alpar@1
   799
*
alpar@1
   800
*  RETURNS
alpar@1
   801
*
alpar@1
   802
*  If the specified row (constraint) is covering inequality (see below),
alpar@1
   803
*  the routine npp_is_covering returns non-zero. Otherwise, it returns
alpar@1
   804
*  zero.
alpar@1
   805
*
alpar@1
   806
*  COVERING INEQUALITIES
alpar@1
   807
*
alpar@1
   808
*  In canonical format the covering inequality is the following:
alpar@1
   809
*
alpar@1
   810
*     sum  x[j] >= 1,                                                (1)
alpar@1
   811
*    j in J
alpar@1
   812
*
alpar@1
   813
*  where all variables x[j] are binary. This inequality expresses the
alpar@1
   814
*  condition that in any integer feasible solution variables in set J
alpar@1
   815
*  cannot be all equal to zero at the same time, i.e. at least one
alpar@1
   816
*  variable must take non-zero (unity) value. W.l.o.g. it is assumed
alpar@1
   817
*  that |J| >= 2, because if J is empty, the inequality (1) is
alpar@1
   818
*  infeasible, and if |J| = 1, the inequality (1) is a forcing row.
alpar@1
   819
*
alpar@1
   820
*  In general case the covering inequality may include original
alpar@1
   821
*  variables x[j] as well as their complements x~[j]:
alpar@1
   822
*
alpar@1
   823
*     sum   x[j] + sum   x~[j] >= 1,                                 (2)
alpar@1
   824
*    j in Jp      j in Jn
alpar@1
   825
*
alpar@1
   826
*  where Jp and Jn are not intersected. Therefore, using substitution
alpar@1
   827
*  x~[j] = 1 - x[j] gives the packing inequality in generalized format:
alpar@1
   828
*
alpar@1
   829
*     sum   x[j] - sum   x[j] >= 1 - |Jn|.                           (3)
alpar@1
   830
*    j in Jp      j in Jn
alpar@1
   831
*
alpar@1
   832
*  (May note that the inequality (3) cuts off infeasible solutions,
alpar@1
   833
*  where x[j] = 0 for all j in Jp and x[j] = 1 for all j in Jn.)
alpar@1
   834
*
alpar@1
   835
*  NOTE: If |J| = 2, the inequality (3) is equivalent to packing
alpar@1
   836
*        inequality (see the routine npp_is_packing). */
alpar@1
   837
alpar@1
   838
int npp_is_covering(NPP *npp, NPPROW *row)
alpar@1
   839
{     /* test if constraint is covering inequality */
alpar@1
   840
      NPPCOL *col;
alpar@1
   841
      NPPAIJ *aij;
alpar@1
   842
      int b;
alpar@1
   843
      xassert(npp == npp);
alpar@1
   844
      if (!(row->lb != -DBL_MAX && row->ub == +DBL_MAX))
alpar@1
   845
         return 0;
alpar@1
   846
      b = 1;
alpar@1
   847
      for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
   848
      {  col = aij->col;
alpar@1
   849
         if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
alpar@1
   850
            return 0;
alpar@1
   851
         if (aij->val == +1.0)
alpar@1
   852
            ;
alpar@1
   853
         else if (aij->val == -1.0)
alpar@1
   854
            b--;
alpar@1
   855
         else
alpar@1
   856
            return 0;
alpar@1
   857
      }
alpar@1
   858
      if (row->lb != (double)b) return 0;
alpar@1
   859
      return 1;
alpar@1
   860
}
alpar@1
   861
alpar@1
   862
/***********************************************************************
alpar@1
   863
*  NAME
alpar@1
   864
*
alpar@1
   865
*  npp_hidden_covering - identify hidden covering inequality
alpar@1
   866
*
alpar@1
   867
*  SYNOPSIS
alpar@1
   868
*
alpar@1
   869
*  #include "glpnpp.h"
alpar@1
   870
*  int npp_hidden_covering(NPP *npp, NPPROW *row);
alpar@1
   871
*
alpar@1
   872
*  DESCRIPTION
alpar@1
   873
*
alpar@1
   874
*  The routine npp_hidden_covering processes specified inequality
alpar@1
   875
*  constraint, which includes only binary variables, and the number of
alpar@1
   876
*  the variables is not less than three. If the original inequality is
alpar@1
   877
*  equivalent to a covering inequality (see below), the routine
alpar@1
   878
*  replaces it by the equivalent inequality. If the original constraint
alpar@1
   879
*  is double-sided inequality, it is replaced by a pair of single-sided
alpar@1
   880
*  inequalities, if necessary.
alpar@1
   881
*
alpar@1
   882
*  RETURNS
alpar@1
   883
*
alpar@1
   884
*  If the original inequality constraint was replaced by equivalent
alpar@1
   885
*  covering inequality, the routine npp_hidden_covering returns
alpar@1
   886
*  non-zero. Otherwise, it returns zero.
alpar@1
   887
*
alpar@1
   888
*  PROBLEM TRANSFORMATION
alpar@1
   889
*
alpar@1
   890
*  Consider an inequality constraint:
alpar@1
   891
*
alpar@1
   892
*     sum  a[j] x[j] >= b,                                           (1)
alpar@1
   893
*    j in J
alpar@1
   894
*
alpar@1
   895
*  where all variables x[j] are binary, and |J| >= 3. (In case of '<='
alpar@1
   896
*  inequality it can be transformed to '>=' format by multiplying both
alpar@1
   897
*  its sides by -1.)
alpar@1
   898
*
alpar@1
   899
*  Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
alpar@1
   900
*  x[j] = 1 - x~[j] for all j in Jn, we have:
alpar@1
   901
*
alpar@1
   902
*     sum   a[j] x[j] >= b  ==>
alpar@1
   903
*    j in J
alpar@1
   904
*
alpar@1
   905
*     sum   a[j] x[j] + sum   a[j] x[j] >= b  ==>
alpar@1
   906
*    j in Jp           j in Jn
alpar@1
   907
*
alpar@1
   908
*     sum   a[j] x[j] + sum   a[j] (1 - x~[j]) >= b  ==>
alpar@1
   909
*    j in Jp           j in Jn
alpar@1
   910
*
alpar@1
   911
*     sum  m   a[j] x[j] - sum   a[j] x~[j] >= b - sum   a[j].
alpar@1
   912
*    j in Jp              j in Jn                 j in Jn
alpar@1
   913
*
alpar@1
   914
*  Thus, meaning the transformation above, we can assume that in
alpar@1
   915
*  inequality (1) all coefficients a[j] are positive. Moreover, we can
alpar@1
   916
*  assume that b > 0, because otherwise the inequality (1) would be
alpar@1
   917
*  redundant (see the routine npp_analyze_row). It is then obvious that
alpar@1
   918
*  constraint (1) is equivalent to covering inequality only if:
alpar@1
   919
*
alpar@1
   920
*     a[j] >= b,                                                     (2)
alpar@1
   921
*
alpar@1
   922
*  for all j in J.
alpar@1
   923
*
alpar@1
   924
*  Once the original inequality (1) is replaced by equivalent covering
alpar@1
   925
*  inequality, we need to perform back substitution x~[j] = 1 - x[j] for
alpar@1
   926
*  all j in Jn (see above).
alpar@1
   927
*
alpar@1
   928
*  RECOVERING SOLUTION
alpar@1
   929
*
alpar@1
   930
*  None needed. */
alpar@1
   931
alpar@1
   932
static int hidden_covering(NPP *npp, struct elem *ptr, double *_b)
alpar@1
   933
{     /* process inequality constraint: sum a[j] x[j] >= b;
alpar@1
   934
         0 - specified row is NOT hidden covering inequality;
alpar@1
   935
         1 - specified row is covering inequality;
alpar@1
   936
         2 - specified row is hidden covering inequality. */
alpar@1
   937
      struct elem *e;
alpar@1
   938
      int neg;
alpar@1
   939
      double b = *_b, eps;
alpar@1
   940
      xassert(npp == npp);
alpar@1
   941
      /* a[j] must be non-zero, x[j] must be binary, for all j in J */
alpar@1
   942
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   943
      {  xassert(e->aj != 0.0);
alpar@1
   944
         xassert(e->xj->is_int);
alpar@1
   945
         xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
alpar@1
   946
      }
alpar@1
   947
      /* check if the specified inequality constraint already has the
alpar@1
   948
         form of covering inequality */
alpar@1
   949
      neg = 0; /* neg is |Jn| */
alpar@1
   950
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   951
      {  if (e->aj == +1.0)
alpar@1
   952
            ;
alpar@1
   953
         else if (e->aj == -1.0)
alpar@1
   954
            neg++;
alpar@1
   955
         else
alpar@1
   956
            break;
alpar@1
   957
      }
alpar@1
   958
      if (e == NULL)
alpar@1
   959
      {  /* all coefficients a[j] are +1 or -1; check rhs b */
alpar@1
   960
         if (b == (double)(1 - neg))
alpar@1
   961
         {  /* it is covering inequality; no processing is needed */
alpar@1
   962
            return 1;
alpar@1
   963
         }
alpar@1
   964
      }
alpar@1
   965
      /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
alpar@1
   966
         positive; the result is a~[j] = |a[j]| and new rhs b */
alpar@1
   967
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   968
         if (e->aj < 0) b -= e->aj;
alpar@1
   969
      /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
alpar@1
   970
      /* if b <= 0, skip processing--this case must not appear */
alpar@1
   971
      if (b < 1e-3) return 0;
alpar@1
   972
      /* now a[j] > 0 for all j in J, and b > 0 */
alpar@1
   973
      /* the specified constraint is equivalent to covering inequality
alpar@1
   974
         iff a[j] >= b for all j in J */
alpar@1
   975
      eps = 1e-9 + 1e-12 * fabs(b);
alpar@1
   976
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   977
         if (fabs(e->aj) < b - eps) return 0;
alpar@1
   978
      /* perform back substitution x~[j] = 1 - x[j] and construct the
alpar@1
   979
         final equivalent covering inequality in generalized format */
alpar@1
   980
      b = 1.0;
alpar@1
   981
      for (e = ptr; e != NULL; e = e->next)
alpar@1
   982
      {  if (e->aj > 0.0)
alpar@1
   983
            e->aj = +1.0;
alpar@1
   984
         else /* e->aj < 0.0 */
alpar@1
   985
            e->aj = -1.0, b -= 1.0;
alpar@1
   986
      }
alpar@1
   987
      *_b = b;
alpar@1
   988
      return 2;
alpar@1
   989
}
alpar@1
   990
alpar@1
   991
int npp_hidden_covering(NPP *npp, NPPROW *row)
alpar@1
   992
{     /* identify hidden covering inequality */
alpar@1
   993
      NPPROW *copy;
alpar@1
   994
      NPPAIJ *aij;
alpar@1
   995
      struct elem *ptr, *e;
alpar@1
   996
      int kase, ret, count = 0;
alpar@1
   997
      double b;
alpar@1
   998
      /* the row must be inequality constraint */
alpar@1
   999
      xassert(row->lb < row->ub);
alpar@1
  1000
      for (kase = 0; kase <= 1; kase++)
alpar@1
  1001
      {  if (kase == 0)
alpar@1
  1002
         {  /* process row lower bound */
alpar@1
  1003
            if (row->lb == -DBL_MAX) continue;
alpar@1
  1004
            ptr = copy_form(npp, row, +1.0);
alpar@1
  1005
            b = + row->lb;
alpar@1
  1006
         }
alpar@1
  1007
         else
alpar@1
  1008
         {  /* process row upper bound */
alpar@1
  1009
            if (row->ub == +DBL_MAX) continue;
alpar@1
  1010
            ptr = copy_form(npp, row, -1.0);
alpar@1
  1011
            b = - row->ub;
alpar@1
  1012
         }
alpar@1
  1013
         /* now the inequality has the form "sum a[j] x[j] >= b" */
alpar@1
  1014
         ret = hidden_covering(npp, ptr, &b);
alpar@1
  1015
         xassert(0 <= ret && ret <= 2);
alpar@1
  1016
         if (kase == 1 && ret == 1 || ret == 2)
alpar@1
  1017
         {  /* the original inequality has been identified as hidden
alpar@1
  1018
               covering inequality */
alpar@1
  1019
            count++;
alpar@1
  1020
#ifdef GLP_DEBUG
alpar@1
  1021
            xprintf("Original constraint:\n");
alpar@1
  1022
            for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
  1023
               xprintf(" %+g x%d", aij->val, aij->col->j);
alpar@1
  1024
            if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
alpar@1
  1025
            if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
alpar@1
  1026
            xprintf("\n");
alpar@1
  1027
            xprintf("Equivalent covering inequality:\n");
alpar@1
  1028
            for (e = ptr; e != NULL; e = e->next)
alpar@1
  1029
               xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
alpar@1
  1030
            xprintf(", >= %g\n", b);
alpar@1
  1031
#endif
alpar@1
  1032
            if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
alpar@1
  1033
            {  /* the original row is single-sided inequality; no copy
alpar@1
  1034
                  is needed */
alpar@1
  1035
               copy = NULL;
alpar@1
  1036
            }
alpar@1
  1037
            else
alpar@1
  1038
            {  /* the original row is double-sided inequality; we need
alpar@1
  1039
                  to create its copy for other bound before replacing it
alpar@1
  1040
                  with the equivalent inequality */
alpar@1
  1041
               copy = npp_add_row(npp);
alpar@1
  1042
               if (kase == 0)
alpar@1
  1043
               {  /* the copy is for upper bound */
alpar@1
  1044
                  copy->lb = -DBL_MAX, copy->ub = row->ub;
alpar@1
  1045
               }
alpar@1
  1046
               else
alpar@1
  1047
               {  /* the copy is for lower bound */
alpar@1
  1048
                  copy->lb = row->lb, copy->ub = +DBL_MAX;
alpar@1
  1049
               }
alpar@1
  1050
               /* copy original row coefficients */
alpar@1
  1051
               for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
  1052
                  npp_add_aij(npp, copy, aij->col, aij->val);
alpar@1
  1053
            }
alpar@1
  1054
            /* replace the original inequality by equivalent one */
alpar@1
  1055
            npp_erase_row(npp, row);
alpar@1
  1056
            row->lb = b, row->ub = +DBL_MAX;
alpar@1
  1057
            for (e = ptr; e != NULL; e = e->next)
alpar@1
  1058
               npp_add_aij(npp, row, e->xj, e->aj);
alpar@1
  1059
            /* continue processing upper bound for the copy */
alpar@1
  1060
            if (copy != NULL) row = copy;
alpar@1
  1061
         }
alpar@1
  1062
         drop_form(npp, ptr);
alpar@1
  1063
      }
alpar@1
  1064
      return count;
alpar@1
  1065
}
alpar@1
  1066
alpar@1
  1067
/***********************************************************************
alpar@1
  1068
*  NAME
alpar@1
  1069
*
alpar@1
  1070
*  npp_is_partitioning - test if constraint is partitioning equality
alpar@1
  1071
*
alpar@1
  1072
*  SYNOPSIS
alpar@1
  1073
*
alpar@1
  1074
*  #include "glpnpp.h"
alpar@1
  1075
*  int npp_is_partitioning(NPP *npp, NPPROW *row);
alpar@1
  1076
*
alpar@1
  1077
*  RETURNS
alpar@1
  1078
*
alpar@1
  1079
*  If the specified row (constraint) is partitioning equality (see
alpar@1
  1080
*  below), the routine npp_is_partitioning returns non-zero. Otherwise,
alpar@1
  1081
*  it returns zero.
alpar@1
  1082
*
alpar@1
  1083
*  PARTITIONING EQUALITIES
alpar@1
  1084
*
alpar@1
  1085
*  In canonical format the partitioning equality is the following:
alpar@1
  1086
*
alpar@1
  1087
*     sum  x[j] = 1,                                                 (1)
alpar@1
  1088
*    j in J
alpar@1
  1089
*
alpar@1
  1090
*  where all variables x[j] are binary. This equality expresses the
alpar@1
  1091
*  condition that in any integer feasible solution exactly one variable
alpar@1
  1092
*  in set J must take non-zero (unity) value while other variables must
alpar@1
  1093
*  be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because if
alpar@1
  1094
*  J is empty, the inequality (1) is infeasible, and if |J| = 1, the
alpar@1
  1095
*  inequality (1) is a fixing row.
alpar@1
  1096
*
alpar@1
  1097
*  In general case the partitioning equality may include original
alpar@1
  1098
*  variables x[j] as well as their complements x~[j]:
alpar@1
  1099
*
alpar@1
  1100
*     sum   x[j] + sum   x~[j] = 1,                                  (2)
alpar@1
  1101
*    j in Jp      j in Jn
alpar@1
  1102
*
alpar@1
  1103
*  where Jp and Jn are not intersected. Therefore, using substitution
alpar@1
  1104
*  x~[j] = 1 - x[j] leads to the partitioning equality in generalized
alpar@1
  1105
*  format:
alpar@1
  1106
*
alpar@1
  1107
*     sum   x[j] - sum   x[j] = 1 - |Jn|.                            (3)
alpar@1
  1108
*    j in Jp      j in Jn */
alpar@1
  1109
alpar@1
  1110
int npp_is_partitioning(NPP *npp, NPPROW *row)
alpar@1
  1111
{     /* test if constraint is partitioning equality */
alpar@1
  1112
      NPPCOL *col;
alpar@1
  1113
      NPPAIJ *aij;
alpar@1
  1114
      int b;
alpar@1
  1115
      xassert(npp == npp);
alpar@1
  1116
      if (row->lb != row->ub) return 0;
alpar@1
  1117
      b = 1;
alpar@1
  1118
      for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
  1119
      {  col = aij->col;
alpar@1
  1120
         if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
alpar@1
  1121
            return 0;
alpar@1
  1122
         if (aij->val == +1.0)
alpar@1
  1123
            ;
alpar@1
  1124
         else if (aij->val == -1.0)
alpar@1
  1125
            b--;
alpar@1
  1126
         else
alpar@1
  1127
            return 0;
alpar@1
  1128
      }
alpar@1
  1129
      if (row->lb != (double)b) return 0;
alpar@1
  1130
      return 1;
alpar@1
  1131
}
alpar@1
  1132
alpar@1
  1133
/***********************************************************************
alpar@1
  1134
*  NAME
alpar@1
  1135
*
alpar@1
  1136
*  npp_reduce_ineq_coef - reduce inequality constraint coefficients
alpar@1
  1137
*
alpar@1
  1138
*  SYNOPSIS
alpar@1
  1139
*
alpar@1
  1140
*  #include "glpnpp.h"
alpar@1
  1141
*  int npp_reduce_ineq_coef(NPP *npp, NPPROW *row);
alpar@1
  1142
*
alpar@1
  1143
*  DESCRIPTION
alpar@1
  1144
*
alpar@1
  1145
*  The routine npp_reduce_ineq_coef processes specified inequality
alpar@1
  1146
*  constraint attempting to replace it by an equivalent constraint,
alpar@1
  1147
*  where magnitude of coefficients at binary variables is smaller than
alpar@1
  1148
*  in the original constraint. If the inequality is double-sided, it is
alpar@1
  1149
*  replaced by a pair of single-sided inequalities, if necessary.
alpar@1
  1150
*
alpar@1
  1151
*  RETURNS
alpar@1
  1152
*
alpar@1
  1153
*  The routine npp_reduce_ineq_coef returns the number of coefficients
alpar@1
  1154
*  reduced.
alpar@1
  1155
*
alpar@1
  1156
*  BACKGROUND
alpar@1
  1157
*
alpar@1
  1158
*  Consider an inequality constraint:
alpar@1
  1159
*
alpar@1
  1160
*     sum  a[j] x[j] >= b.                                           (1)
alpar@1
  1161
*    j in J
alpar@1
  1162
*
alpar@1
  1163
*  (In case of '<=' inequality it can be transformed to '>=' format by
alpar@1
  1164
*  multiplying both its sides by -1.) Let x[k] be a binary variable;
alpar@1
  1165
*  other variables can be integer as well as continuous. We can write
alpar@1
  1166
*  constraint (1) as follows:
alpar@1
  1167
*
alpar@1
  1168
*     a[k] x[k] + t[k] >= b,                                         (2)
alpar@1
  1169
*
alpar@1
  1170
*  where:
alpar@1
  1171
*
alpar@1
  1172
*     t[k] = sum      a[j] x[j].                                     (3)
alpar@1
  1173
*           j in J\{k}
alpar@1
  1174
*
alpar@1
  1175
*  Since x[k] is binary, constraint (2) is equivalent to disjunction of
alpar@1
  1176
*  the following two constraints:
alpar@1
  1177
*
alpar@1
  1178
*     x[k] = 0,  t[k] >= b                                           (4)
alpar@1
  1179
*
alpar@1
  1180
*        OR
alpar@1
  1181
*
alpar@1
  1182
*     x[k] = 1,  t[k] >= b - a[k].                                   (5)
alpar@1
  1183
*
alpar@1
  1184
*  Let also that for the partial sum t[k] be known some its implied
alpar@1
  1185
*  lower bound inf t[k].
alpar@1
  1186
*
alpar@1
  1187
*  Case a[k] > 0. Let inf t[k] < b, since otherwise both constraints
alpar@1
  1188
*  (4) and (5) and therefore constraint (2) are redundant.
alpar@1
  1189
*  If inf t[k] > b - a[k], only constraint (5) is redundant, in which
alpar@1
  1190
*  case it can be replaced with the following redundant and therefore
alpar@1
  1191
*  equivalent constraint:
alpar@1
  1192
*
alpar@1
  1193
*     t[k] >= b - a'[k] = inf t[k],                                  (6)
alpar@1
  1194
*
alpar@1
  1195
*  where:
alpar@1
  1196
*
alpar@1
  1197
*     a'[k] = b - inf t[k].                                          (7)
alpar@1
  1198
*
alpar@1
  1199
*  Thus, the original constraint (2) is equivalent to the following
alpar@1
  1200
*  constraint with coefficient at variable x[k] changed:
alpar@1
  1201
*
alpar@1
  1202
*     a'[k] x[k] + t[k] >= b.                                        (8)
alpar@1
  1203
*
alpar@1
  1204
*  From inf t[k] < b it follows that a'[k] > 0, i.e. the coefficient
alpar@1
  1205
*  at x[k] keeps its sign. And from inf t[k] > b - a[k] it follows that
alpar@1
  1206
*  a'[k] < a[k], i.e. the coefficient reduces in magnitude.
alpar@1
  1207
*
alpar@1
  1208
*  Case a[k] < 0. Let inf t[k] < b - a[k], since otherwise both
alpar@1
  1209
*  constraints (4) and (5) and therefore constraint (2) are redundant.
alpar@1
  1210
*  If inf t[k] > b, only constraint (4) is redundant, in which case it
alpar@1
  1211
*  can be replaced with the following redundant and therefore equivalent
alpar@1
  1212
*  constraint:
alpar@1
  1213
*
alpar@1
  1214
*     t[k] >= b' = inf t[k].                                         (9)
alpar@1
  1215
*
alpar@1
  1216
*  Rewriting constraint (5) as follows:
alpar@1
  1217
*
alpar@1
  1218
*     t[k] >= b - a[k] = b' - a'[k],                                (10)
alpar@1
  1219
*
alpar@1
  1220
*  where:
alpar@1
  1221
*
alpar@1
  1222
*     a'[k] = a[k] + b' - b = a[k] + inf t[k] - b,                  (11)
alpar@1
  1223
*
alpar@1
  1224
*  we can see that disjunction of constraint (9) and (10) is equivalent
alpar@1
  1225
*  to disjunction of constraint (4) and (5), from which it follows that
alpar@1
  1226
*  the original constraint (2) is equivalent to the following constraint
alpar@1
  1227
*  with both coefficient at variable x[k] and right-hand side changed:
alpar@1
  1228
*
alpar@1
  1229
*     a'[k] x[k] + t[k] >= b'.                                      (12)
alpar@1
  1230
*
alpar@1
  1231
*  From inf t[k] < b - a[k] it follows that a'[k] < 0, i.e. the
alpar@1
  1232
*  coefficient at x[k] keeps its sign. And from inf t[k] > b it follows
alpar@1
  1233
*  that a'[k] > a[k], i.e. the coefficient reduces in magnitude.
alpar@1
  1234
*
alpar@1
  1235
*  PROBLEM TRANSFORMATION
alpar@1
  1236
*
alpar@1
  1237
*  In the routine npp_reduce_ineq_coef the following implied lower
alpar@1
  1238
*  bound of the partial sum (3) is used:
alpar@1
  1239
*
alpar@1
  1240
*     inf t[k] = sum       a[j] l[j] + sum       a[j] u[j],         (13)
alpar@1
  1241
*               j in Jp\{k}           k in Jn\{k}
alpar@1
  1242
*
alpar@1
  1243
*  where Jp = {j : a[j] > 0}, Jn = {j : a[j] < 0}, l[j] and u[j] are
alpar@1
  1244
*  lower and upper bounds, resp., of variable x[j].
alpar@1
  1245
*
alpar@1
  1246
*  In order to compute inf t[k] more efficiently, the following formula,
alpar@1
  1247
*  which is equivalent to (13), is actually used:
alpar@1
  1248
*
alpar@1
  1249
*                ( h - a[k] l[k] = h,        if a[k] > 0,
alpar@1
  1250
*     inf t[k] = <                                                  (14)
alpar@1
  1251
*                ( h - a[k] u[k] = h - a[k], if a[k] < 0,
alpar@1
  1252
*
alpar@1
  1253
*  where:
alpar@1
  1254
*
alpar@1
  1255
*     h = sum   a[j] l[j] + sum   a[j] u[j]                         (15)
alpar@1
  1256
*        j in Jp           j in Jn
alpar@1
  1257
*
alpar@1
  1258
*  is the implied lower bound of row (1).
alpar@1
  1259
*
alpar@1
  1260
*  Reduction of positive coefficient (a[k] > 0) does not change value
alpar@1
  1261
*  of h, since l[k] = 0. In case of reduction of negative coefficient
alpar@1
  1262
*  (a[k] < 0) from (11) it follows that:
alpar@1
  1263
*
alpar@1
  1264
*     delta a[k] = a'[k] - a[k] = inf t[k] - b  (> 0),              (16)
alpar@1
  1265
*
alpar@1
  1266
*  so new value of h (accounting that u[k] = 1) can be computed as
alpar@1
  1267
*  follows:
alpar@1
  1268
*
alpar@1
  1269
*     h := h + delta a[k] = h + (inf t[k] - b).                     (17)
alpar@1
  1270
*
alpar@1
  1271
*  RECOVERING SOLUTION
alpar@1
  1272
*
alpar@1
  1273
*  None needed. */
alpar@1
  1274
alpar@1
  1275
static int reduce_ineq_coef(NPP *npp, struct elem *ptr, double *_b)
alpar@1
  1276
{     /* process inequality constraint: sum a[j] x[j] >= b */
alpar@1
  1277
      /* returns: the number of coefficients reduced */
alpar@1
  1278
      struct elem *e;
alpar@1
  1279
      int count = 0;
alpar@1
  1280
      double h, inf_t, new_a, b = *_b;
alpar@1
  1281
      xassert(npp == npp);
alpar@1
  1282
      /* compute h; see (15) */
alpar@1
  1283
      h = 0.0;
alpar@1
  1284
      for (e = ptr; e != NULL; e = e->next)
alpar@1
  1285
      {  if (e->aj > 0.0)
alpar@1
  1286
         {  if (e->xj->lb == -DBL_MAX) goto done;
alpar@1
  1287
            h += e->aj * e->xj->lb;
alpar@1
  1288
         }
alpar@1
  1289
         else /* e->aj < 0.0 */
alpar@1
  1290
         {  if (e->xj->ub == +DBL_MAX) goto done;
alpar@1
  1291
            h += e->aj * e->xj->ub;
alpar@1
  1292
         }
alpar@1
  1293
      }
alpar@1
  1294
      /* perform reduction of coefficients at binary variables */
alpar@1
  1295
      for (e = ptr; e != NULL; e = e->next)
alpar@1
  1296
      {  /* skip non-binary variable */
alpar@1
  1297
         if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
alpar@1
  1298
            continue;
alpar@1
  1299
         if (e->aj > 0.0)
alpar@1
  1300
         {  /* compute inf t[k]; see (14) */
alpar@1
  1301
            inf_t = h;
alpar@1
  1302
            if (b - e->aj < inf_t && inf_t < b)
alpar@1
  1303
            {  /* compute reduced coefficient a'[k]; see (7) */
alpar@1
  1304
               new_a = b - inf_t;
alpar@1
  1305
               if (new_a >= +1e-3 &&
alpar@1
  1306
                   e->aj - new_a >= 0.01 * (1.0 + e->aj))
alpar@1
  1307
               {  /* accept a'[k] */
alpar@1
  1308
#ifdef GLP_DEBUG
alpar@1
  1309
                  xprintf("+");
alpar@1
  1310
#endif
alpar@1
  1311
                  e->aj = new_a;
alpar@1
  1312
                  count++;
alpar@1
  1313
               }
alpar@1
  1314
            }
alpar@1
  1315
         }
alpar@1
  1316
         else /* e->aj < 0.0 */
alpar@1
  1317
         {  /* compute inf t[k]; see (14) */
alpar@1
  1318
            inf_t = h - e->aj;
alpar@1
  1319
            if (b < inf_t && inf_t < b - e->aj)
alpar@1
  1320
            {  /* compute reduced coefficient a'[k]; see (11) */
alpar@1
  1321
               new_a = e->aj + (inf_t - b);
alpar@1
  1322
               if (new_a <= -1e-3 &&
alpar@1
  1323
                   new_a - e->aj >= 0.01 * (1.0 - e->aj))
alpar@1
  1324
               {  /* accept a'[k] */
alpar@1
  1325
#ifdef GLP_DEBUG
alpar@1
  1326
                  xprintf("-");
alpar@1
  1327
#endif
alpar@1
  1328
                  e->aj = new_a;
alpar@1
  1329
                  /* update h; see (17) */
alpar@1
  1330
                  h += (inf_t - b);
alpar@1
  1331
                  /* compute b'; see (9) */
alpar@1
  1332
                  b = inf_t;
alpar@1
  1333
                  count++;
alpar@1
  1334
               }
alpar@1
  1335
            }
alpar@1
  1336
         }
alpar@1
  1337
      }
alpar@1
  1338
      *_b = b;
alpar@1
  1339
done: return count;
alpar@1
  1340
}
alpar@1
  1341
alpar@1
  1342
int npp_reduce_ineq_coef(NPP *npp, NPPROW *row)
alpar@1
  1343
{     /* reduce inequality constraint coefficients */
alpar@1
  1344
      NPPROW *copy;
alpar@1
  1345
      NPPAIJ *aij;
alpar@1
  1346
      struct elem *ptr, *e;
alpar@1
  1347
      int kase, count[2];
alpar@1
  1348
      double b;
alpar@1
  1349
      /* the row must be inequality constraint */
alpar@1
  1350
      xassert(row->lb < row->ub);
alpar@1
  1351
      count[0] = count[1] = 0;
alpar@1
  1352
      for (kase = 0; kase <= 1; kase++)
alpar@1
  1353
      {  if (kase == 0)
alpar@1
  1354
         {  /* process row lower bound */
alpar@1
  1355
            if (row->lb == -DBL_MAX) continue;
alpar@1
  1356
#ifdef GLP_DEBUG
alpar@1
  1357
            xprintf("L");
alpar@1
  1358
#endif
alpar@1
  1359
            ptr = copy_form(npp, row, +1.0);
alpar@1
  1360
            b = + row->lb;
alpar@1
  1361
         }
alpar@1
  1362
         else
alpar@1
  1363
         {  /* process row upper bound */
alpar@1
  1364
            if (row->ub == +DBL_MAX) continue;
alpar@1
  1365
#ifdef GLP_DEBUG
alpar@1
  1366
            xprintf("U");
alpar@1
  1367
#endif
alpar@1
  1368
            ptr = copy_form(npp, row, -1.0);
alpar@1
  1369
            b = - row->ub;
alpar@1
  1370
         }
alpar@1
  1371
         /* now the inequality has the form "sum a[j] x[j] >= b" */
alpar@1
  1372
         count[kase] = reduce_ineq_coef(npp, ptr, &b);
alpar@1
  1373
         if (count[kase] > 0)
alpar@1
  1374
         {  /* the original inequality has been replaced by equivalent
alpar@1
  1375
               one with coefficients reduced */
alpar@1
  1376
            if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
alpar@1
  1377
            {  /* the original row is single-sided inequality; no copy
alpar@1
  1378
                  is needed */
alpar@1
  1379
               copy = NULL;
alpar@1
  1380
            }
alpar@1
  1381
            else
alpar@1
  1382
            {  /* the original row is double-sided inequality; we need
alpar@1
  1383
                  to create its copy for other bound before replacing it
alpar@1
  1384
                  with the equivalent inequality */
alpar@1
  1385
#ifdef GLP_DEBUG
alpar@1
  1386
               xprintf("*");
alpar@1
  1387
#endif
alpar@1
  1388
               copy = npp_add_row(npp);
alpar@1
  1389
               if (kase == 0)
alpar@1
  1390
               {  /* the copy is for upper bound */
alpar@1
  1391
                  copy->lb = -DBL_MAX, copy->ub = row->ub;
alpar@1
  1392
               }
alpar@1
  1393
               else
alpar@1
  1394
               {  /* the copy is for lower bound */
alpar@1
  1395
                  copy->lb = row->lb, copy->ub = +DBL_MAX;
alpar@1
  1396
               }
alpar@1
  1397
               /* copy original row coefficients */
alpar@1
  1398
               for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
  1399
                  npp_add_aij(npp, copy, aij->col, aij->val);
alpar@1
  1400
            }
alpar@1
  1401
            /* replace the original inequality by equivalent one */
alpar@1
  1402
            npp_erase_row(npp, row);
alpar@1
  1403
            row->lb = b, row->ub = +DBL_MAX;
alpar@1
  1404
            for (e = ptr; e != NULL; e = e->next)
alpar@1
  1405
               npp_add_aij(npp, row, e->xj, e->aj);
alpar@1
  1406
            /* continue processing upper bound for the copy */
alpar@1
  1407
            if (copy != NULL) row = copy;
alpar@1
  1408
         }
alpar@1
  1409
         drop_form(npp, ptr);
alpar@1
  1410
      }
alpar@1
  1411
      return count[0] + count[1];
alpar@1
  1412
}
alpar@1
  1413
alpar@1
  1414
/* eof */