src/glpmat.c
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 05 Dec 2010 17:35:23 +0100
changeset 2 4c8956a7bdf4
permissions -rw-r--r--
Set up CMAKE build environment
     1 /* glpmat.c */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpenv.h"
    26 #include "glpmat.h"
    27 #include "glpqmd.h"
    28 #include "amd/amd.h"
    29 #include "colamd/colamd.h"
    30 
    31 /*----------------------------------------------------------------------
    32 -- check_fvs - check sparse vector in full-vector storage format.
    33 --
    34 -- SYNOPSIS
    35 --
    36 -- #include "glpmat.h"
    37 -- int check_fvs(int n, int nnz, int ind[], double vec[]);
    38 --
    39 -- DESCRIPTION
    40 --
    41 -- The routine check_fvs checks if a given vector of dimension n in
    42 -- full-vector storage format has correct representation.
    43 --
    44 -- RETURNS
    45 --
    46 -- The routine returns one of the following codes:
    47 --
    48 -- 0 - the vector is correct;
    49 -- 1 - the number of elements (n) is negative;
    50 -- 2 - the number of non-zero elements (nnz) is negative;
    51 -- 3 - some element index is out of range;
    52 -- 4 - some element index is duplicate;
    53 -- 5 - some non-zero element is out of pattern. */
    54 
    55 int check_fvs(int n, int nnz, int ind[], double vec[])
    56 {     int i, t, ret, *flag = NULL;
    57       /* check the number of elements */
    58       if (n < 0)
    59       {  ret = 1;
    60          goto done;
    61       }
    62       /* check the number of non-zero elements */
    63       if (nnz < 0)
    64       {  ret = 2;
    65          goto done;
    66       }
    67       /* check vector indices */
    68       flag = xcalloc(1+n, sizeof(int));
    69       for (i = 1; i <= n; i++) flag[i] = 0;
    70       for (t = 1; t <= nnz; t++)
    71       {  i = ind[t];
    72          if (!(1 <= i && i <= n))
    73          {  ret = 3;
    74             goto done;
    75          }
    76          if (flag[i])
    77          {  ret = 4;
    78             goto done;
    79          }
    80          flag[i] = 1;
    81       }
    82       /* check vector elements */
    83       for (i = 1; i <= n; i++)
    84       {  if (!flag[i] && vec[i] != 0.0)
    85          {  ret = 5;
    86             goto done;
    87          }
    88       }
    89       /* the vector is ok */
    90       ret = 0;
    91 done: if (flag != NULL) xfree(flag);
    92       return ret;
    93 }
    94 
    95 /*----------------------------------------------------------------------
    96 -- check_pattern - check pattern of sparse matrix.
    97 --
    98 -- SYNOPSIS
    99 --
   100 -- #include "glpmat.h"
   101 -- int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
   102 --
   103 -- DESCRIPTION
   104 --
   105 -- The routine check_pattern checks the pattern of a given mxn matrix
   106 -- in storage-by-rows format.
   107 --
   108 -- RETURNS
   109 --
   110 -- The routine returns one of the following codes:
   111 --
   112 -- 0 - the pattern is correct;
   113 -- 1 - the number of rows (m) is negative;
   114 -- 2 - the number of columns (n) is negative;
   115 -- 3 - A_ptr[1] is not 1;
   116 -- 4 - some column index is out of range;
   117 -- 5 - some column indices are duplicate. */
   118 
   119 int check_pattern(int m, int n, int A_ptr[], int A_ind[])
   120 {     int i, j, ptr, ret, *flag = NULL;
   121       /* check the number of rows */
   122       if (m < 0)
   123       {  ret = 1;
   124          goto done;
   125       }
   126       /* check the number of columns */
   127       if (n < 0)
   128       {  ret = 2;
   129          goto done;
   130       }
   131       /* check location A_ptr[1] */
   132       if (A_ptr[1] != 1)
   133       {  ret = 3;
   134          goto done;
   135       }
   136       /* check row patterns */
   137       flag = xcalloc(1+n, sizeof(int));
   138       for (j = 1; j <= n; j++) flag[j] = 0;
   139       for (i = 1; i <= m; i++)
   140       {  /* check pattern of row i */
   141          for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
   142          {  j = A_ind[ptr];
   143             /* check column index */
   144             if (!(1 <= j && j <= n))
   145             {  ret = 4;
   146                goto done;
   147             }
   148             /* check for duplication */
   149             if (flag[j])
   150             {  ret = 5;
   151                goto done;
   152             }
   153             flag[j] = 1;
   154          }
   155          /* clear flags */
   156          for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
   157          {  j = A_ind[ptr];
   158             flag[j] = 0;
   159          }
   160       }
   161       /* the pattern is ok */
   162       ret = 0;
   163 done: if (flag != NULL) xfree(flag);
   164       return ret;
   165 }
   166 
   167 /*----------------------------------------------------------------------
   168 -- transpose - transpose sparse matrix.
   169 --
   170 -- *Synopsis*
   171 --
   172 -- #include "glpmat.h"
   173 -- void transpose(int m, int n, int A_ptr[], int A_ind[],
   174 --    double A_val[], int AT_ptr[], int AT_ind[], double AT_val[]);
   175 --
   176 -- *Description*
   177 --
   178 -- For a given mxn sparse matrix A the routine transpose builds a nxm
   179 -- sparse matrix A' which is a matrix transposed to A.
   180 --
   181 -- The arrays A_ptr, A_ind, and A_val specify a given mxn matrix A to
   182 -- be transposed in storage-by-rows format. The parameter A_val can be
   183 -- NULL, in which case numeric values are not copied. The arrays A_ptr,
   184 -- A_ind, and A_val are not changed on exit.
   185 --
   186 -- On entry the arrays AT_ptr, AT_ind, and AT_val must be allocated,
   187 -- but their content is ignored. On exit the routine stores a resultant
   188 -- nxm matrix A' in these arrays in storage-by-rows format. Note that
   189 -- if the parameter A_val is NULL, the array AT_val is not used.
   190 --
   191 -- The routine transpose has a side effect that elements in rows of the
   192 -- resultant matrix A' follow in ascending their column indices. */
   193 
   194 void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
   195       int AT_ptr[], int AT_ind[], double AT_val[])
   196 {     int i, j, t, beg, end, pos, len;
   197       /* determine row lengths of resultant matrix */
   198       for (j = 1; j <= n; j++) AT_ptr[j] = 0;
   199       for (i = 1; i <= m; i++)
   200       {  beg = A_ptr[i], end = A_ptr[i+1];
   201          for (t = beg; t < end; t++) AT_ptr[A_ind[t]]++;
   202       }
   203       /* set up row pointers of resultant matrix */
   204       pos = 1;
   205       for (j = 1; j <= n; j++)
   206          len = AT_ptr[j], pos += len, AT_ptr[j] = pos;
   207       AT_ptr[n+1] = pos;
   208       /* build resultant matrix */
   209       for (i = m; i >= 1; i--)
   210       {  beg = A_ptr[i], end = A_ptr[i+1];
   211          for (t = beg; t < end; t++)
   212          {  pos = --AT_ptr[A_ind[t]];
   213             AT_ind[pos] = i;
   214             if (A_val != NULL) AT_val[pos] = A_val[t];
   215          }
   216       }
   217       return;
   218 }
   219 
   220 /*----------------------------------------------------------------------
   221 -- adat_symbolic - compute S = P*A*D*A'*P' (symbolic phase).
   222 --
   223 -- *Synopsis*
   224 --
   225 -- #include "glpmat.h"
   226 -- int *adat_symbolic(int m, int n, int P_per[], int A_ptr[],
   227 --    int A_ind[], int S_ptr[]);
   228 --
   229 -- *Description*
   230 --
   231 -- The routine adat_symbolic implements the symbolic phase to compute
   232 -- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
   233 -- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
   234 -- transposed to A, P' is an inverse of P.
   235 --
   236 -- The parameter m is the number of rows in A and the order of P.
   237 --
   238 -- The parameter n is the number of columns in A and the order of D.
   239 --
   240 -- The array P_per specifies permutation matrix P. It is not changed on
   241 -- exit.
   242 --
   243 -- The arrays A_ptr and A_ind specify the pattern of matrix A. They are
   244 -- not changed on exit.
   245 --
   246 -- On exit the routine stores the pattern of upper triangular part of
   247 -- matrix S without diagonal elements in the arrays S_ptr and S_ind in
   248 -- storage-by-rows format. The array S_ptr should be allocated on entry,
   249 -- however, its content is ignored. The array S_ind is allocated by the
   250 -- routine itself which returns a pointer to it.
   251 --
   252 -- *Returns*
   253 --
   254 -- The routine returns a pointer to the array S_ind. */
   255 
   256 int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
   257       int S_ptr[])
   258 {     int i, j, t, ii, jj, tt, k, size, len;
   259       int *S_ind, *AT_ptr, *AT_ind, *ind, *map, *temp;
   260       /* build the pattern of A', which is a matrix transposed to A, to
   261          efficiently access A in column-wise manner */
   262       AT_ptr = xcalloc(1+n+1, sizeof(int));
   263       AT_ind = xcalloc(A_ptr[m+1], sizeof(int));
   264       transpose(m, n, A_ptr, A_ind, NULL, AT_ptr, AT_ind, NULL);
   265       /* allocate the array S_ind */
   266       size = A_ptr[m+1] - 1;
   267       if (size < m) size = m;
   268       S_ind = xcalloc(1+size, sizeof(int));
   269       /* allocate and initialize working arrays */
   270       ind = xcalloc(1+m, sizeof(int));
   271       map = xcalloc(1+m, sizeof(int));
   272       for (jj = 1; jj <= m; jj++) map[jj] = 0;
   273       /* compute pattern of S; note that symbolically S = B*B', where
   274          B = P*A, B' is matrix transposed to B */
   275       S_ptr[1] = 1;
   276       for (ii = 1; ii <= m; ii++)
   277       {  /* compute pattern of ii-th row of S */
   278          len = 0;
   279          i = P_per[ii]; /* i-th row of A = ii-th row of B */
   280          for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
   281          {  k = A_ind[t];
   282             /* walk through k-th column of A */
   283             for (tt = AT_ptr[k]; tt < AT_ptr[k+1]; tt++)
   284             {  j = AT_ind[tt];
   285                jj = P_per[m+j]; /* j-th row of A = jj-th row of B */
   286                /* a[i,k] != 0 and a[j,k] != 0 ergo s[ii,jj] != 0 */
   287                if (ii < jj && !map[jj]) ind[++len] = jj, map[jj] = 1;
   288             }
   289          }
   290          /* now (ind) is pattern of ii-th row of S */
   291          S_ptr[ii+1] = S_ptr[ii] + len;
   292          /* at least (S_ptr[ii+1] - 1) locations should be available in
   293             the array S_ind */
   294          if (S_ptr[ii+1] - 1 > size)
   295          {  temp = S_ind;
   296             size += size;
   297             S_ind = xcalloc(1+size, sizeof(int));
   298             memcpy(&S_ind[1], &temp[1], (S_ptr[ii] - 1) * sizeof(int));
   299             xfree(temp);
   300          }
   301          xassert(S_ptr[ii+1] - 1 <= size);
   302          /* (ii-th row of S) := (ind) */
   303          memcpy(&S_ind[S_ptr[ii]], &ind[1], len * sizeof(int));
   304          /* clear the row pattern map */
   305          for (t = 1; t <= len; t++) map[ind[t]] = 0;
   306       }
   307       /* free working arrays */
   308       xfree(AT_ptr);
   309       xfree(AT_ind);
   310       xfree(ind);
   311       xfree(map);
   312       /* reallocate the array S_ind to free unused locations */
   313       temp = S_ind;
   314       size = S_ptr[m+1] - 1;
   315       S_ind = xcalloc(1+size, sizeof(int));
   316       memcpy(&S_ind[1], &temp[1], size * sizeof(int));
   317       xfree(temp);
   318       return S_ind;
   319 }
   320 
   321 /*----------------------------------------------------------------------
   322 -- adat_numeric - compute S = P*A*D*A'*P' (numeric phase).
   323 --
   324 -- *Synopsis*
   325 --
   326 -- #include "glpmat.h"
   327 -- void adat_numeric(int m, int n, int P_per[],
   328 --    int A_ptr[], int A_ind[], double A_val[], double D_diag[],
   329 --    int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
   330 --
   331 -- *Description*
   332 --
   333 -- The routine adat_numeric implements the numeric phase to compute
   334 -- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
   335 -- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
   336 -- transposed to A, P' is an inverse of P.
   337 --
   338 -- The parameter m is the number of rows in A and the order of P.
   339 --
   340 -- The parameter n is the number of columns in A and the order of D.
   341 --
   342 -- The matrix P is specified in the array P_per, which is not changed
   343 -- on exit.
   344 --
   345 -- The matrix A is specified in the arrays A_ptr, A_ind, and A_val in
   346 -- storage-by-rows format. These arrays are not changed on exit.
   347 --
   348 -- Diagonal elements of the matrix D are specified in the array D_diag,
   349 -- where D_diag[0] is not used, D_diag[i] = d[i,i] for i = 1, ..., n.
   350 -- The array D_diag is not changed on exit.
   351 --
   352 -- The pattern of the upper triangular part of the matrix S without
   353 -- diagonal elements (previously computed by the routine adat_symbolic)
   354 -- is specified in the arrays S_ptr and S_ind, which are not changed on
   355 -- exit. Numeric values of non-diagonal elements of S are stored in
   356 -- corresponding locations of the array S_val, and values of diagonal
   357 -- elements of S are stored in locations S_diag[1], ..., S_diag[n]. */
   358 
   359 void adat_numeric(int m, int n, int P_per[],
   360       int A_ptr[], int A_ind[], double A_val[], double D_diag[],
   361       int S_ptr[], int S_ind[], double S_val[], double S_diag[])
   362 {     int i, j, t, ii, jj, tt, beg, end, beg1, end1, k;
   363       double sum, *work;
   364       work = xcalloc(1+n, sizeof(double));
   365       for (j = 1; j <= n; j++) work[j] = 0.0;
   366       /* compute S = B*D*B', where B = P*A, B' is a matrix transposed
   367          to B */
   368       for (ii = 1; ii <= m; ii++)
   369       {  i = P_per[ii]; /* i-th row of A = ii-th row of B */
   370          /* (work) := (i-th row of A) */
   371          beg = A_ptr[i], end = A_ptr[i+1];
   372          for (t = beg; t < end; t++)
   373             work[A_ind[t]] = A_val[t];
   374          /* compute ii-th row of S */
   375          beg = S_ptr[ii], end = S_ptr[ii+1];
   376          for (t = beg; t < end; t++)
   377          {  jj = S_ind[t];
   378             j = P_per[jj]; /* j-th row of A = jj-th row of B */
   379             /* s[ii,jj] := sum a[i,k] * d[k,k] * a[j,k] */
   380             sum = 0.0;
   381             beg1 = A_ptr[j], end1 = A_ptr[j+1];
   382             for (tt = beg1; tt < end1; tt++)
   383             {  k = A_ind[tt];
   384                sum += work[k] * D_diag[k] * A_val[tt];
   385             }
   386             S_val[t] = sum;
   387          }
   388          /* s[ii,ii] := sum a[i,k] * d[k,k] * a[i,k] */
   389          sum = 0.0;
   390          beg = A_ptr[i], end = A_ptr[i+1];
   391          for (t = beg; t < end; t++)
   392          {  k = A_ind[t];
   393             sum += A_val[t] * D_diag[k] * A_val[t];
   394             work[k] = 0.0;
   395          }
   396          S_diag[ii] = sum;
   397       }
   398       xfree(work);
   399       return;
   400 }
   401 
   402 /*----------------------------------------------------------------------
   403 -- min_degree - minimum degree ordering.
   404 --
   405 -- *Synopsis*
   406 --
   407 -- #include "glpmat.h"
   408 -- void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
   409 --
   410 -- *Description*
   411 --
   412 -- The routine min_degree uses the minimum degree ordering algorithm
   413 -- to find a permutation matrix P for a given sparse symmetric positive
   414 -- matrix A which minimizes the number of non-zeros in upper triangular
   415 -- factor U for Cholesky factorization P*A*P' = U'*U.
   416 --
   417 -- The parameter n is the order of matrices A and P.
   418 --
   419 -- The pattern of the given matrix A is specified on entry in the arrays
   420 -- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
   421 -- part without diagonal elements (which all are assumed to be non-zero)
   422 -- should be specified as if A were upper triangular. The arrays A_ptr
   423 -- and A_ind are not changed on exit.
   424 --
   425 -- The permutation matrix P is stored by the routine in the array P_per
   426 -- on exit.
   427 --
   428 -- *Algorithm*
   429 --
   430 -- The routine min_degree is based on some subroutines from the package
   431 -- SPARSPAK (see comments in the module glpqmd). */
   432 
   433 void min_degree(int n, int A_ptr[], int A_ind[], int P_per[])
   434 {     int i, j, ne, t, pos, len;
   435       int *xadj, *adjncy, *deg, *marker, *rchset, *nbrhd, *qsize,
   436          *qlink, nofsub;
   437       /* determine number of non-zeros in complete pattern */
   438       ne = A_ptr[n+1] - 1;
   439       ne += ne;
   440       /* allocate working arrays */
   441       xadj = xcalloc(1+n+1, sizeof(int));
   442       adjncy = xcalloc(1+ne, sizeof(int));
   443       deg = xcalloc(1+n, sizeof(int));
   444       marker = xcalloc(1+n, sizeof(int));
   445       rchset = xcalloc(1+n, sizeof(int));
   446       nbrhd = xcalloc(1+n, sizeof(int));
   447       qsize = xcalloc(1+n, sizeof(int));
   448       qlink = xcalloc(1+n, sizeof(int));
   449       /* determine row lengths in complete pattern */
   450       for (i = 1; i <= n; i++) xadj[i] = 0;
   451       for (i = 1; i <= n; i++)
   452       {  for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
   453          {  j = A_ind[t];
   454             xassert(i < j && j <= n);
   455             xadj[i]++, xadj[j]++;
   456          }
   457       }
   458       /* set up row pointers for complete pattern */
   459       pos = 1;
   460       for (i = 1; i <= n; i++)
   461          len = xadj[i], pos += len, xadj[i] = pos;
   462       xadj[n+1] = pos;
   463       xassert(pos - 1 == ne);
   464       /* construct complete pattern */
   465       for (i = 1; i <= n; i++)
   466       {  for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
   467          {  j = A_ind[t];
   468             adjncy[--xadj[i]] = j, adjncy[--xadj[j]] = i;
   469          }
   470       }
   471       /* call the main minimimum degree ordering routine */
   472       genqmd(&n, xadj, adjncy, P_per, P_per + n, deg, marker, rchset,
   473          nbrhd, qsize, qlink, &nofsub);
   474       /* make sure that permutation matrix P is correct */
   475       for (i = 1; i <= n; i++)
   476       {  j = P_per[i];
   477          xassert(1 <= j && j <= n);
   478          xassert(P_per[n+j] == i);
   479       }
   480       /* free working arrays */
   481       xfree(xadj);
   482       xfree(adjncy);
   483       xfree(deg);
   484       xfree(marker);
   485       xfree(rchset);
   486       xfree(nbrhd);
   487       xfree(qsize);
   488       xfree(qlink);
   489       return;
   490 }
   491 
   492 /**********************************************************************/
   493 
   494 void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[])
   495 {     /* approximate minimum degree ordering (AMD) */
   496       int k, ret;
   497       double Control[AMD_CONTROL], Info[AMD_INFO];
   498       /* get the default parameters */
   499       amd_defaults(Control);
   500 #if 0
   501       /* and print them */
   502       amd_control(Control);
   503 #endif
   504       /* make all indices 0-based */
   505       for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
   506       for (k = 1; k <= n+1; k++) A_ptr[k]--;
   507       /* call the ordering routine */
   508       ret = amd_order(n, &A_ptr[1], &A_ind[1], &P_per[1], Control, Info)
   509          ;
   510 #if 0
   511       amd_info(Info);
   512 #endif
   513       xassert(ret == AMD_OK || ret == AMD_OK_BUT_JUMBLED);
   514       /* retsore 1-based indices */
   515       for (k = 1; k <= n+1; k++) A_ptr[k]++;
   516       for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
   517       /* patch up permutation matrix */
   518       memset(&P_per[n+1], 0, n * sizeof(int));
   519       for (k = 1; k <= n; k++)
   520       {  P_per[k]++;
   521          xassert(1 <= P_per[k] && P_per[k] <= n);
   522          xassert(P_per[n+P_per[k]] == 0);
   523          P_per[n+P_per[k]] = k;
   524       }
   525       return;
   526 }
   527 
   528 /**********************************************************************/
   529 
   530 static void *allocate(size_t n, size_t size)
   531 {     void *ptr;
   532       ptr = xcalloc(n, size);
   533       memset(ptr, 0, n * size);
   534       return ptr;
   535 }
   536 
   537 static void release(void *ptr)
   538 {     xfree(ptr);
   539       return;
   540 }
   541 
   542 void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[])
   543 {     /* approximate minimum degree ordering (SYMAMD) */
   544       int k, ok;
   545       int stats[COLAMD_STATS];
   546       /* make all indices 0-based */
   547       for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
   548       for (k = 1; k <= n+1; k++) A_ptr[k]--;
   549       /* call the ordering routine */
   550       ok = symamd(n, &A_ind[1], &A_ptr[1], &P_per[1], NULL, stats,
   551          allocate, release);
   552 #if 0
   553       symamd_report(stats);
   554 #endif
   555       xassert(ok);
   556       /* restore 1-based indices */
   557       for (k = 1; k <= n+1; k++) A_ptr[k]++;
   558       for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
   559       /* patch up permutation matrix */
   560       memset(&P_per[n+1], 0, n * sizeof(int));
   561       for (k = 1; k <= n; k++)
   562       {  P_per[k]++;
   563          xassert(1 <= P_per[k] && P_per[k] <= n);
   564          xassert(P_per[n+P_per[k]] == 0);
   565          P_per[n+P_per[k]] = k;
   566       }
   567       return;
   568 }
   569 
   570 /*----------------------------------------------------------------------
   571 -- chol_symbolic - compute Cholesky factorization (symbolic phase).
   572 --
   573 -- *Synopsis*
   574 --
   575 -- #include "glpmat.h"
   576 -- int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
   577 --
   578 -- *Description*
   579 --
   580 -- The routine chol_symbolic implements the symbolic phase of Cholesky
   581 -- factorization A = U'*U, where A is a given sparse symmetric positive
   582 -- definite matrix, U is a resultant upper triangular factor, U' is a
   583 -- matrix transposed to U.
   584 --
   585 -- The parameter n is the order of matrices A and U.
   586 --
   587 -- The pattern of the given matrix A is specified on entry in the arrays
   588 -- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
   589 -- part without diagonal elements (which all are assumed to be non-zero)
   590 -- should be specified as if A were upper triangular. The arrays A_ptr
   591 -- and A_ind are not changed on exit.
   592 --
   593 -- The pattern of the matrix U without diagonal elements (which all are
   594 -- assumed to be non-zero) is stored on exit from the routine in the
   595 -- arrays U_ptr and U_ind in storage-by-rows format. The array U_ptr
   596 -- should be allocated on entry, however, its content is ignored. The
   597 -- array U_ind is allocated by the routine which returns a pointer to it
   598 -- on exit.
   599 --
   600 -- *Returns*
   601 --
   602 -- The routine returns a pointer to the array U_ind.
   603 --
   604 -- *Method*
   605 --
   606 -- The routine chol_symbolic computes the pattern of the matrix U in a
   607 -- row-wise manner. No pivoting is used.
   608 --
   609 -- It is known that to compute the pattern of row k of the matrix U we
   610 -- need to merge the pattern of row k of the matrix A and the patterns
   611 -- of each row i of U, where u[i,k] is non-zero (these rows are already
   612 -- computed and placed above row k).
   613 --
   614 -- However, to reduce the number of rows to be merged the routine uses
   615 -- an advanced algorithm proposed in:
   616 --
   617 -- D.J.Rose, R.E.Tarjan, and G.S.Lueker. Algorithmic aspects of vertex
   618 -- elimination on graphs. SIAM J. Comput. 5, 1976, 266-83.
   619 --
   620 -- The authors of the cited paper show that we have the same result if
   621 -- we merge row k of the matrix A and such rows of the matrix U (among
   622 -- rows 1, ..., k-1) whose leftmost non-diagonal non-zero element is
   623 -- placed in k-th column. This feature signficantly reduces the number
   624 -- of rows to be merged, especially on the final steps, where rows of
   625 -- the matrix U become quite dense.
   626 --
   627 -- To determine rows, which should be merged on k-th step, for a fixed
   628 -- time the routine uses linked lists of row numbers of the matrix U.
   629 -- Location head[k] contains the number of a first row, whose leftmost
   630 -- non-diagonal non-zero element is placed in column k, and location
   631 -- next[i] contains the number of a next row with the same property as
   632 -- row i. */
   633 
   634 int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[])
   635 {     int i, j, k, t, len, size, beg, end, min_j, *U_ind, *head, *next,
   636          *ind, *map, *temp;
   637       /* initially we assume that on computing the pattern of U fill-in
   638          will double the number of non-zeros in A */
   639       size = A_ptr[n+1] - 1;
   640       if (size < n) size = n;
   641       size += size;
   642       U_ind = xcalloc(1+size, sizeof(int));
   643       /* allocate and initialize working arrays */
   644       head = xcalloc(1+n, sizeof(int));
   645       for (i = 1; i <= n; i++) head[i] = 0;
   646       next = xcalloc(1+n, sizeof(int));
   647       ind = xcalloc(1+n, sizeof(int));
   648       map = xcalloc(1+n, sizeof(int));
   649       for (j = 1; j <= n; j++) map[j] = 0;
   650       /* compute the pattern of matrix U */
   651       U_ptr[1] = 1;
   652       for (k = 1; k <= n; k++)
   653       {  /* compute the pattern of k-th row of U, which is the union of
   654             k-th row of A and those rows of U (among 1, ..., k-1) whose
   655             leftmost non-diagonal non-zero is placed in k-th column */
   656          /* (ind) := (k-th row of A) */
   657          len = A_ptr[k+1] - A_ptr[k];
   658          memcpy(&ind[1], &A_ind[A_ptr[k]], len * sizeof(int));
   659          for (t = 1; t <= len; t++)
   660          {  j = ind[t];
   661             xassert(k < j && j <= n);
   662             map[j] = 1;
   663          }
   664          /* walk through rows of U whose leftmost non-diagonal non-zero
   665             is placed in k-th column */
   666          for (i = head[k]; i != 0; i = next[i])
   667          {  /* (ind) := (ind) union (i-th row of U) */
   668             beg = U_ptr[i], end = U_ptr[i+1];
   669             for (t = beg; t < end; t++)
   670             {  j = U_ind[t];
   671                if (j > k && !map[j]) ind[++len] = j, map[j] = 1;
   672             }
   673          }
   674          /* now (ind) is the pattern of k-th row of U */
   675          U_ptr[k+1] = U_ptr[k] + len;
   676          /* at least (U_ptr[k+1] - 1) locations should be available in
   677             the array U_ind */
   678          if (U_ptr[k+1] - 1 > size)
   679          {  temp = U_ind;
   680             size += size;
   681             U_ind = xcalloc(1+size, sizeof(int));
   682             memcpy(&U_ind[1], &temp[1], (U_ptr[k] - 1) * sizeof(int));
   683             xfree(temp);
   684          }
   685          xassert(U_ptr[k+1] - 1 <= size);
   686          /* (k-th row of U) := (ind) */
   687          memcpy(&U_ind[U_ptr[k]], &ind[1], len * sizeof(int));
   688          /* determine column index of leftmost non-diagonal non-zero in
   689             k-th row of U and clear the row pattern map */
   690          min_j = n + 1;
   691          for (t = 1; t <= len; t++)
   692          {  j = ind[t], map[j] = 0;
   693             if (min_j > j) min_j = j;
   694          }
   695          /* include k-th row into corresponding linked list */
   696          if (min_j <= n) next[k] = head[min_j], head[min_j] = k;
   697       }
   698       /* free working arrays */
   699       xfree(head);
   700       xfree(next);
   701       xfree(ind);
   702       xfree(map);
   703       /* reallocate the array U_ind to free unused locations */
   704       temp = U_ind;
   705       size = U_ptr[n+1] - 1;
   706       U_ind = xcalloc(1+size, sizeof(int));
   707       memcpy(&U_ind[1], &temp[1], size * sizeof(int));
   708       xfree(temp);
   709       return U_ind;
   710 }
   711 
   712 /*----------------------------------------------------------------------
   713 -- chol_numeric - compute Cholesky factorization (numeric phase).
   714 --
   715 -- *Synopsis*
   716 --
   717 -- #include "glpmat.h"
   718 -- int chol_numeric(int n,
   719 --    int A_ptr[], int A_ind[], double A_val[], double A_diag[],
   720 --    int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
   721 --
   722 -- *Description*
   723 --
   724 -- The routine chol_symbolic implements the numeric phase of Cholesky
   725 -- factorization A = U'*U, where A is a given sparse symmetric positive
   726 -- definite matrix, U is a resultant upper triangular factor, U' is a
   727 -- matrix transposed to U.
   728 --
   729 -- The parameter n is the order of matrices A and U.
   730 --
   731 -- Upper triangular part of the matrix A without diagonal elements is
   732 -- specified in the arrays A_ptr, A_ind, and A_val in storage-by-rows
   733 -- format. Diagonal elements of A are specified in the array A_diag,
   734 -- where A_diag[0] is not used, A_diag[i] = a[i,i] for i = 1, ..., n.
   735 -- The arrays A_ptr, A_ind, A_val, and A_diag are not changed on exit.
   736 --
   737 -- The pattern of the matrix U without diagonal elements (previously
   738 -- computed with the routine chol_symbolic) is specified in the arrays
   739 -- U_ptr and U_ind, which are not changed on exit. Numeric values of
   740 -- non-diagonal elements of U are stored in corresponding locations of
   741 -- the array U_val, and values of diagonal elements of U are stored in
   742 -- locations U_diag[1], ..., U_diag[n].
   743 --
   744 -- *Returns*
   745 --
   746 -- The routine returns the number of non-positive diagonal elements of
   747 -- the matrix U which have been replaced by a huge positive number (see
   748 -- the method description below). Zero return code means the matrix A
   749 -- has been successfully factorized.
   750 --
   751 -- *Method*
   752 --
   753 -- The routine chol_numeric computes the matrix U in a row-wise manner
   754 -- using standard gaussian elimination technique. No pivoting is used.
   755 --
   756 -- Initially the routine sets U = A, and before k-th elimination step
   757 -- the matrix U is the following:
   758 --
   759 --       1       k         n
   760 --    1  x x x x x x x x x x
   761 --       . x x x x x x x x x
   762 --       . . x x x x x x x x
   763 --       . . . x x x x x x x
   764 --    k  . . . . * * * * * *
   765 --       . . . . * * * * * *
   766 --       . . . . * * * * * *
   767 --       . . . . * * * * * *
   768 --       . . . . * * * * * *
   769 --    n  . . . . * * * * * *
   770 --
   771 -- where 'x' are elements of already computed rows, '*' are elements of
   772 -- the active submatrix. (Note that the lower triangular part of the
   773 -- active submatrix being symmetric is not stored and diagonal elements
   774 -- are stored separately in the array U_diag.)
   775 --
   776 -- The matrix A is assumed to be positive definite. However, if it is
   777 -- close to semi-definite, on some elimination step a pivot u[k,k] may
   778 -- happen to be non-positive due to round-off errors. In this case the
   779 -- routine uses a technique proposed in:
   780 --
   781 -- S.J.Wright. The Cholesky factorization in interior-point and barrier
   782 -- methods. Preprint MCS-P600-0596, Mathematics and Computer Science
   783 -- Division, Argonne National Laboratory, Argonne, Ill., May 1996.
   784 --
   785 -- The routine just replaces non-positive u[k,k] by a huge positive
   786 -- number. This involves non-diagonal elements in k-th row of U to be
   787 -- close to zero that, in turn, involves k-th component of a solution
   788 -- vector to be close to zero. Note, however, that this technique works
   789 -- only if the system A*x = b is consistent. */
   790 
   791 int chol_numeric(int n,
   792       int A_ptr[], int A_ind[], double A_val[], double A_diag[],
   793       int U_ptr[], int U_ind[], double U_val[], double U_diag[])
   794 {     int i, j, k, t, t1, beg, end, beg1, end1, count = 0;
   795       double ukk, uki, *work;
   796       work = xcalloc(1+n, sizeof(double));
   797       for (j = 1; j <= n; j++) work[j] = 0.0;
   798       /* U := (upper triangle of A) */
   799       /* note that the upper traingle of A is a subset of U */
   800       for (i = 1; i <= n; i++)
   801       {  beg = A_ptr[i], end = A_ptr[i+1];
   802          for (t = beg; t < end; t++)
   803             j = A_ind[t], work[j] = A_val[t];
   804          beg = U_ptr[i], end = U_ptr[i+1];
   805          for (t = beg; t < end; t++)
   806             j = U_ind[t], U_val[t] = work[j], work[j] = 0.0;
   807          U_diag[i] = A_diag[i];
   808       }
   809       /* main elimination loop */
   810       for (k = 1; k <= n; k++)
   811       {  /* transform k-th row of U */
   812          ukk = U_diag[k];
   813          if (ukk > 0.0)
   814             U_diag[k] = ukk = sqrt(ukk);
   815          else
   816             U_diag[k] = ukk = DBL_MAX, count++;
   817          /* (work) := (transformed k-th row) */
   818          beg = U_ptr[k], end = U_ptr[k+1];
   819          for (t = beg; t < end; t++)
   820             work[U_ind[t]] = (U_val[t] /= ukk);
   821          /* transform other rows of U */
   822          for (t = beg; t < end; t++)
   823          {  i = U_ind[t];
   824             xassert(i > k);
   825             /* (i-th row) := (i-th row) - u[k,i] * (k-th row) */
   826             uki = work[i];
   827             beg1 = U_ptr[i], end1 = U_ptr[i+1];
   828             for (t1 = beg1; t1 < end1; t1++)
   829                U_val[t1] -= uki * work[U_ind[t1]];
   830             U_diag[i] -= uki * uki;
   831          }
   832          /* (work) := 0 */
   833          for (t = beg; t < end; t++)
   834             work[U_ind[t]] = 0.0;
   835       }
   836       xfree(work);
   837       return count;
   838 }
   839 
   840 /*----------------------------------------------------------------------
   841 -- u_solve - solve upper triangular system U*x = b.
   842 --
   843 -- *Synopsis*
   844 --
   845 -- #include "glpmat.h"
   846 -- void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   847 --    double U_diag[], double x[]);
   848 --
   849 -- *Description*
   850 --
   851 -- The routine u_solve solves an linear system U*x = b, where U is an
   852 -- upper triangular matrix.
   853 --
   854 -- The parameter n is the order of matrix U.
   855 --
   856 -- The matrix U without diagonal elements is specified in the arrays
   857 -- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
   858 -- of U are specified in the array U_diag, where U_diag[0] is not used,
   859 -- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
   860 -- changed on exit.
   861 --
   862 -- The right-hand side vector b is specified on entry in the array x,
   863 -- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
   864 -- the routine stores computed components of the vector of unknowns x
   865 -- in the array x in the same manner. */
   866 
   867 void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   868       double U_diag[], double x[])
   869 {     int i, t, beg, end;
   870       double temp;
   871       for (i = n; i >= 1; i--)
   872       {  temp = x[i];
   873          beg = U_ptr[i], end = U_ptr[i+1];
   874          for (t = beg; t < end; t++)
   875             temp -= U_val[t] * x[U_ind[t]];
   876          xassert(U_diag[i] != 0.0);
   877          x[i] = temp / U_diag[i];
   878       }
   879       return;
   880 }
   881 
   882 /*----------------------------------------------------------------------
   883 -- ut_solve - solve lower triangular system U'*x = b.
   884 --
   885 -- *Synopsis*
   886 --
   887 -- #include "glpmat.h"
   888 -- void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   889 --    double U_diag[], double x[]);
   890 --
   891 -- *Description*
   892 --
   893 -- The routine ut_solve solves an linear system U'*x = b, where U is a
   894 -- matrix transposed to an upper triangular matrix.
   895 --
   896 -- The parameter n is the order of matrix U.
   897 --
   898 -- The matrix U without diagonal elements is specified in the arrays
   899 -- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
   900 -- of U are specified in the array U_diag, where U_diag[0] is not used,
   901 -- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
   902 -- changed on exit.
   903 --
   904 -- The right-hand side vector b is specified on entry in the array x,
   905 -- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
   906 -- the routine stores computed components of the vector of unknowns x
   907 -- in the array x in the same manner. */
   908 
   909 void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
   910       double U_diag[], double x[])
   911 {     int i, t, beg, end;
   912       double temp;
   913       for (i = 1; i <= n; i++)
   914       {  xassert(U_diag[i] != 0.0);
   915          temp = (x[i] /= U_diag[i]);
   916          if (temp == 0.0) continue;
   917          beg = U_ptr[i], end = U_ptr[i+1];
   918          for (t = beg; t < end; t++)
   919             x[U_ind[t]] -= U_val[t] * temp;
   920       }
   921       return;
   922 }
   923 
   924 /* eof */