src/glpnet07.c
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 05 Dec 2010 17:35:23 +0100
changeset 2 4c8956a7bdf4
permissions -rw-r--r--
Set up CMAKE build environment
     1 /* glpnet07.c (Ford-Fulkerson algorithm) */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpenv.h"
    26 #include "glpnet.h"
    27 
    28 /***********************************************************************
    29 *  NAME
    30 *
    31 *  ffalg - Ford-Fulkerson algorithm
    32 *
    33 *  SYNOPSIS
    34 *
    35 *  #include "glpnet.h"
    36 *  void ffalg(int nv, int na, const int tail[], const int head[],
    37 *     int s, int t, const int cap[], int x[], char cut[]);
    38 *
    39 *  DESCRIPTION
    40 *
    41 *  The routine ffalg implements the Ford-Fulkerson algorithm to find a
    42 *  maximal flow in the specified flow network.
    43 *
    44 *  INPUT PARAMETERS
    45 *
    46 *  nv is the number of nodes, nv >= 2.
    47 *
    48 *  na is the number of arcs, na >= 0.
    49 *
    50 *  tail[a], a = 1,...,na, is the index of tail node of arc a.
    51 *
    52 *  head[a], a = 1,...,na, is the index of head node of arc a.
    53 *
    54 *  s is the source node index, 1 <= s <= nv.
    55 *
    56 *  t is the sink node index, 1 <= t <= nv, t != s.
    57 *
    58 *  cap[a], a = 1,...,na, is the capacity of arc a, cap[a] >= 0.
    59 *
    60 *  NOTE: Multiple arcs are allowed, but self-loops are not allowed.
    61 *
    62 *  OUTPUT PARAMETERS
    63 *
    64 *  x[a], a = 1,...,na, is optimal value of the flow through arc a.
    65 *
    66 *  cut[i], i = 1,...,nv, is 1 if node i is labelled, and 0 otherwise.
    67 *  The set of arcs, whose one endpoint is labelled and other is not,
    68 *  defines the minimal cut corresponding to the maximal flow found.
    69 *  If the parameter cut is NULL, the cut information are not stored.
    70 *
    71 *  REFERENCES
    72 *
    73 *  L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND
    74 *  Corp., Report R-375-PR (August 1962), Chap. I "Static Maximal Flow,"
    75 *  pp.30-33. */
    76 
    77 void ffalg(int nv, int na, const int tail[], const int head[],
    78       int s, int t, const int cap[], int x[], char cut[])
    79 {     int a, delta, i, j, k, pos1, pos2, temp,
    80          *ptr, *arc, *link, *list;
    81       /* sanity checks */
    82       xassert(nv >= 2);
    83       xassert(na >= 0);
    84       xassert(1 <= s && s <= nv);
    85       xassert(1 <= t && t <= nv);
    86       xassert(s != t);
    87       for (a = 1; a <= na; a++)
    88       {  i = tail[a], j = head[a];
    89          xassert(1 <= i && i <= nv);
    90          xassert(1 <= j && j <= nv);
    91          xassert(i != j);
    92          xassert(cap[a] >= 0);
    93       }
    94       /* allocate working arrays */
    95       ptr = xcalloc(1+nv+1, sizeof(int));
    96       arc = xcalloc(1+na+na, sizeof(int));
    97       link = xcalloc(1+nv, sizeof(int));
    98       list = xcalloc(1+nv, sizeof(int));
    99       /* ptr[i] := (degree of node i) */
   100       for (i = 1; i <= nv; i++)
   101          ptr[i] = 0;
   102       for (a = 1; a <= na; a++)
   103       {  ptr[tail[a]]++;
   104          ptr[head[a]]++;
   105       }
   106       /* initialize arc pointers */
   107       ptr[1]++;
   108       for (i = 1; i < nv; i++)
   109          ptr[i+1] += ptr[i];
   110       ptr[nv+1] = ptr[nv];
   111       /* build arc lists */
   112       for (a = 1; a <= na; a++)
   113       {  arc[--ptr[tail[a]]] = a;
   114          arc[--ptr[head[a]]] = a;
   115       }
   116       xassert(ptr[1] == 1);
   117       xassert(ptr[nv+1] == na+na+1);
   118       /* now the indices of arcs incident to node i are stored in
   119          locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */
   120       /* initialize arc flows */
   121       for (a = 1; a <= na; a++)
   122          x[a] = 0;
   123 loop: /* main loop starts here */
   124       /* build augmenting tree rooted at s */
   125       /* link[i] = 0 means that node i is not labelled yet;
   126          link[i] = a means that arc a immediately precedes node i */
   127       /* initially node s is labelled as the root */
   128       for (i = 1; i <= nv; i++)
   129          link[i] = 0;
   130       link[s] = -1, list[1] = s, pos1 = pos2 = 1;
   131       /* breadth first search */
   132       while (pos1 <= pos2)
   133       {  /* dequeue node i */
   134          i = list[pos1++];
   135          /* consider all arcs incident to node i */
   136          for (k = ptr[i]; k < ptr[i+1]; k++)
   137          {  a = arc[k];
   138             if (tail[a] == i)
   139             {  /* a = i->j is a forward arc from s to t */
   140                j = head[a];
   141                /* if node j has been labelled, skip the arc */
   142                if (link[j] != 0) continue;
   143                /* if the arc does not allow increasing the flow through
   144                   it, skip the arc */
   145                if (x[a] == cap[a]) continue;
   146             }
   147             else if (head[a] == i)
   148             {  /* a = i<-j is a backward arc from s to t */
   149                j = tail[a];
   150                /* if node j has been labelled, skip the arc */
   151                if (link[j] != 0) continue;
   152                /* if the arc does not allow decreasing the flow through
   153                   it, skip the arc */
   154                if (x[a] == 0) continue;
   155             }
   156             else
   157                xassert(a != a);
   158             /* label node j and enqueue it */
   159             link[j] = a, list[++pos2] = j;
   160             /* check for breakthrough */
   161             if (j == t) goto brkt;
   162          }
   163       }
   164       /* NONBREAKTHROUGH */
   165       /* no augmenting path exists; current flow is maximal */
   166       /* store minimal cut information, if necessary */
   167       if (cut != NULL)
   168       {  for (i = 1; i <= nv; i++)
   169             cut[i] = (char)(link[i] != 0);
   170       }
   171       goto done;
   172 brkt: /* BREAKTHROUGH */
   173       /* walk through arcs of the augmenting path (s, ..., t) found in
   174          the reverse order and determine maximal change of the flow */
   175       delta = 0;
   176       for (j = t; j != s; j = i)
   177       {  /* arc a immediately precedes node j in the path */
   178          a = link[j];
   179          if (head[a] == j)
   180          {  /* a = i->j is a forward arc of the cycle */
   181             i = tail[a];
   182             /* x[a] may be increased until its upper bound */
   183             temp = cap[a] - x[a];
   184          }
   185          else if (tail[a] == j)
   186          {  /* a = i<-j is a backward arc of the cycle */
   187             i = head[a];
   188             /* x[a] may be decreased until its lower bound */
   189             temp = x[a];
   190          }
   191          else
   192             xassert(a != a);
   193          if (delta == 0 || delta > temp) delta = temp;
   194       }
   195       xassert(delta > 0);
   196       /* increase the flow along the path */
   197       for (j = t; j != s; j = i)
   198       {  /* arc a immediately precedes node j in the path */
   199          a = link[j];
   200          if (head[a] == j)
   201          {  /* a = i->j is a forward arc of the cycle */
   202             i = tail[a];
   203             x[a] += delta;
   204          }
   205          else if (tail[a] == j)
   206          {  /* a = i<-j is a backward arc of the cycle */
   207             i = head[a];
   208             x[a] -= delta;
   209          }
   210          else
   211             xassert(a != a);
   212       }
   213       goto loop;
   214 done: /* free working arrays */
   215       xfree(ptr);
   216       xfree(arc);
   217       xfree(link);
   218       xfree(list);
   219       return;
   220 }
   221 
   222 /* eof */