| 
alpar@209
 | 
     1  | 
/* -*- mode: C++; indent-tabs-mode: nil; -*-
  | 
| 
alpar@100
 | 
     2  | 
 *
  | 
| 
alpar@209
 | 
     3  | 
 * This file is a part of LEMON, a generic C++ optimization library.
  | 
| 
alpar@100
 | 
     4  | 
 *
  | 
| 
alpar@100
 | 
     5  | 
 * Copyright (C) 2003-2008
  | 
| 
alpar@100
 | 
     6  | 
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
  | 
| 
alpar@100
 | 
     7  | 
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
  | 
| 
alpar@100
 | 
     8  | 
 *
  | 
| 
alpar@100
 | 
     9  | 
 * Permission to use, modify and distribute this software is granted
  | 
| 
alpar@100
 | 
    10  | 
 * provided that this copyright notice appears in all copies. For
  | 
| 
alpar@100
 | 
    11  | 
 * precise terms see the accompanying LICENSE file.
  | 
| 
alpar@100
 | 
    12  | 
 *
  | 
| 
alpar@100
 | 
    13  | 
 * This software is provided "AS IS" with no warranty of any kind,
  | 
| 
alpar@100
 | 
    14  | 
 * express or implied, and with no claim as to its suitability for any
  | 
| 
alpar@100
 | 
    15  | 
 * purpose.
  | 
| 
alpar@100
 | 
    16  | 
 *
  | 
| 
alpar@100
 | 
    17  | 
 */
  | 
| 
alpar@100
 | 
    18  | 
  | 
| 
alpar@100
 | 
    19  | 
#ifndef LEMON_BFS_H
  | 
| 
alpar@100
 | 
    20  | 
#define LEMON_BFS_H
  | 
| 
alpar@100
 | 
    21  | 
  | 
| 
alpar@100
 | 
    22  | 
///\ingroup search
  | 
| 
alpar@100
 | 
    23  | 
///\file
  | 
| 
kpeter@244
 | 
    24  | 
///\brief BFS algorithm.
  | 
| 
alpar@100
 | 
    25  | 
  | 
| 
alpar@100
 | 
    26  | 
#include <lemon/list_graph.h>
  | 
| 
alpar@100
 | 
    27  | 
#include <lemon/bits/path_dump.h>
  | 
| 
deba@220
 | 
    28  | 
#include <lemon/core.h>
  | 
| 
alpar@100
 | 
    29  | 
#include <lemon/error.h>
  | 
| 
alpar@100
 | 
    30  | 
#include <lemon/maps.h>
  | 
| 
kpeter@278
 | 
    31  | 
#include <lemon/path.h>
  | 
| 
alpar@100
 | 
    32  | 
  | 
| 
alpar@100
 | 
    33  | 
namespace lemon {
 | 
| 
alpar@100
 | 
    34  | 
  | 
| 
alpar@100
 | 
    35  | 
  ///Default traits class of Bfs class.
  | 
| 
alpar@100
 | 
    36  | 
  | 
| 
alpar@100
 | 
    37  | 
  ///Default traits class of Bfs class.
  | 
| 
kpeter@157
 | 
    38  | 
  ///\tparam GR Digraph type.
  | 
| 
alpar@100
 | 
    39  | 
  template<class GR>
  | 
| 
alpar@100
 | 
    40  | 
  struct BfsDefaultTraits
  | 
| 
alpar@100
 | 
    41  | 
  {
 | 
| 
kpeter@244
 | 
    42  | 
    ///The type of the digraph the algorithm runs on.
  | 
| 
alpar@100
 | 
    43  | 
    typedef GR Digraph;
  | 
| 
kpeter@244
 | 
    44  | 
  | 
| 
kpeter@244
 | 
    45  | 
    ///\brief The type of the map that stores the predecessor
  | 
| 
alpar@100
 | 
    46  | 
    ///arcs of the shortest paths.
  | 
| 
alpar@209
 | 
    47  | 
    ///
  | 
| 
kpeter@244
 | 
    48  | 
    ///The type of the map that stores the predecessor
  | 
| 
alpar@100
 | 
    49  | 
    ///arcs of the shortest paths.
  | 
| 
alpar@100
 | 
    50  | 
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  | 
| 
kpeter@244
 | 
    51  | 
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
  | 
| 
kpeter@301
 | 
    52  | 
    ///Instantiates a PredMap.
  | 
| 
alpar@209
 | 
    53  | 
  | 
| 
kpeter@405
 | 
    54  | 
    ///This function instantiates a PredMap.
  | 
| 
kpeter@244
 | 
    55  | 
    ///\param g is the digraph, to which we would like to define the
  | 
| 
kpeter@301
 | 
    56  | 
    ///PredMap.
  | 
| 
kpeter@244
 | 
    57  | 
    static PredMap *createPredMap(const Digraph &g)
  | 
| 
alpar@100
 | 
    58  | 
    {
 | 
| 
kpeter@244
 | 
    59  | 
      return new PredMap(g);
  | 
| 
alpar@100
 | 
    60  | 
    }
  | 
| 
kpeter@244
 | 
    61  | 
  | 
| 
alpar@100
 | 
    62  | 
    ///The type of the map that indicates which nodes are processed.
  | 
| 
alpar@209
 | 
    63  | 
  | 
| 
alpar@100
 | 
    64  | 
    ///The type of the map that indicates which nodes are processed.
  | 
| 
alpar@100
 | 
    65  | 
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  | 
| 
alpar@100
 | 
    66  | 
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
  | 
| 
kpeter@301
 | 
    67  | 
    ///Instantiates a ProcessedMap.
  | 
| 
alpar@209
 | 
    68  | 
  | 
| 
kpeter@301
 | 
    69  | 
    ///This function instantiates a ProcessedMap.
  | 
| 
alpar@100
 | 
    70  | 
    ///\param g is the digraph, to which
  | 
| 
kpeter@301
 | 
    71  | 
    ///we would like to define the ProcessedMap
  | 
| 
alpar@100
 | 
    72  | 
#ifdef DOXYGEN
  | 
| 
kpeter@244
 | 
    73  | 
    static ProcessedMap *createProcessedMap(const Digraph &g)
  | 
| 
alpar@100
 | 
    74  | 
#else
  | 
| 
kpeter@244
 | 
    75  | 
    static ProcessedMap *createProcessedMap(const Digraph &)
  | 
| 
alpar@100
 | 
    76  | 
#endif
  | 
| 
alpar@100
 | 
    77  | 
    {
 | 
| 
alpar@100
 | 
    78  | 
      return new ProcessedMap();
  | 
| 
alpar@100
 | 
    79  | 
    }
  | 
| 
kpeter@244
 | 
    80  | 
  | 
| 
alpar@100
 | 
    81  | 
    ///The type of the map that indicates which nodes are reached.
  | 
| 
alpar@209
 | 
    82  | 
  | 
| 
kpeter@405
 | 
    83  | 
    ///The type of the map that indicates which nodes are reached.
  | 
| 
kpeter@405
 | 
    84  | 
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
  | 
| 
alpar@100
 | 
    85  | 
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
  | 
| 
kpeter@301
 | 
    86  | 
    ///Instantiates a ReachedMap.
  | 
| 
alpar@209
 | 
    87  | 
  | 
| 
kpeter@301
 | 
    88  | 
    ///This function instantiates a ReachedMap.
  | 
| 
kpeter@244
 | 
    89  | 
    ///\param g is the digraph, to which
  | 
| 
kpeter@301
 | 
    90  | 
    ///we would like to define the ReachedMap.
  | 
| 
kpeter@244
 | 
    91  | 
    static ReachedMap *createReachedMap(const Digraph &g)
  | 
| 
alpar@100
 | 
    92  | 
    {
 | 
| 
kpeter@244
 | 
    93  | 
      return new ReachedMap(g);
  | 
| 
alpar@100
 | 
    94  | 
    }
  | 
| 
alpar@209
 | 
    95  | 
  | 
| 
kpeter@244
 | 
    96  | 
    ///The type of the map that stores the distances of the nodes.
  | 
| 
kpeter@244
 | 
    97  | 
  | 
| 
kpeter@244
 | 
    98  | 
    ///The type of the map that stores the distances of the nodes.
  | 
| 
alpar@100
 | 
    99  | 
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  | 
| 
alpar@100
 | 
   100  | 
    typedef typename Digraph::template NodeMap<int> DistMap;
  | 
| 
kpeter@301
 | 
   101  | 
    ///Instantiates a DistMap.
  | 
| 
alpar@209
 | 
   102  | 
  | 
| 
kpeter@301
 | 
   103  | 
    ///This function instantiates a DistMap.
  | 
| 
kpeter@244
 | 
   104  | 
    ///\param g is the digraph, to which we would like to define the
  | 
| 
kpeter@301
 | 
   105  | 
    ///DistMap.
  | 
| 
kpeter@244
 | 
   106  | 
    static DistMap *createDistMap(const Digraph &g)
  | 
| 
alpar@100
 | 
   107  | 
    {
 | 
| 
kpeter@244
 | 
   108  | 
      return new DistMap(g);
  | 
| 
alpar@100
 | 
   109  | 
    }
  | 
| 
alpar@100
 | 
   110  | 
  };
  | 
| 
alpar@209
 | 
   111  | 
  | 
| 
alpar@100
 | 
   112  | 
  ///%BFS algorithm class.
  | 
| 
alpar@209
 | 
   113  | 
  | 
| 
alpar@100
 | 
   114  | 
  ///\ingroup search
  | 
| 
alpar@100
 | 
   115  | 
  ///This class provides an efficient implementation of the %BFS algorithm.
  | 
| 
alpar@100
 | 
   116  | 
  ///
  | 
| 
kpeter@278
 | 
   117  | 
  ///There is also a \ref bfs() "function-type interface" for the BFS
  | 
| 
kpeter@244
 | 
   118  | 
  ///algorithm, which is convenient in the simplier cases and it can be
  | 
| 
kpeter@244
 | 
   119  | 
  ///used easier.
  | 
| 
kpeter@244
 | 
   120  | 
  ///
  | 
| 
kpeter@244
 | 
   121  | 
  ///\tparam GR The type of the digraph the algorithm runs on.
  | 
| 
kpeter@405
 | 
   122  | 
  ///The default type is \ref ListDigraph.
  | 
| 
alpar@100
 | 
   123  | 
#ifdef DOXYGEN
  | 
| 
alpar@100
 | 
   124  | 
  template <typename GR,
  | 
| 
alpar@209
 | 
   125  | 
            typename TR>
  | 
| 
alpar@100
 | 
   126  | 
#else
  | 
| 
alpar@100
 | 
   127  | 
  template <typename GR=ListDigraph,
  | 
| 
alpar@209
 | 
   128  | 
            typename TR=BfsDefaultTraits<GR> >
  | 
| 
alpar@100
 | 
   129  | 
#endif
  | 
| 
alpar@100
 | 
   130  | 
  class Bfs {
 | 
| 
alpar@100
 | 
   131  | 
  public:
  | 
| 
alpar@100
 | 
   132  | 
  | 
| 
kpeter@244
 | 
   133  | 
    ///The type of the digraph the algorithm runs on.
  | 
| 
alpar@100
 | 
   134  | 
    typedef typename TR::Digraph Digraph;
  | 
| 
alpar@209
 | 
   135  | 
  | 
| 
kpeter@244
 | 
   136  | 
    ///\brief The type of the map that stores the predecessor arcs of the
  | 
| 
kpeter@244
 | 
   137  | 
    ///shortest paths.
  | 
| 
alpar@100
 | 
   138  | 
    typedef typename TR::PredMap PredMap;
  | 
| 
kpeter@244
 | 
   139  | 
    ///The type of the map that stores the distances of the nodes.
  | 
| 
kpeter@244
 | 
   140  | 
    typedef typename TR::DistMap DistMap;
  | 
| 
kpeter@244
 | 
   141  | 
    ///The type of the map that indicates which nodes are reached.
  | 
| 
alpar@100
 | 
   142  | 
    typedef typename TR::ReachedMap ReachedMap;
  | 
| 
kpeter@244
 | 
   143  | 
    ///The type of the map that indicates which nodes are processed.
  | 
| 
alpar@100
 | 
   144  | 
    typedef typename TR::ProcessedMap ProcessedMap;
  | 
| 
kpeter@244
 | 
   145  | 
    ///The type of the paths.
  | 
| 
kpeter@244
 | 
   146  | 
    typedef PredMapPath<Digraph, PredMap> Path;
  | 
| 
kpeter@244
 | 
   147  | 
  | 
| 
kpeter@405
 | 
   148  | 
    ///The \ref BfsDefaultTraits "traits class" of the algorithm.
  | 
| 
kpeter@244
 | 
   149  | 
    typedef TR Traits;
  | 
| 
kpeter@244
 | 
   150  | 
  | 
| 
alpar@100
 | 
   151  | 
  private:
  | 
| 
alpar@100
 | 
   152  | 
  | 
| 
alpar@100
 | 
   153  | 
    typedef typename Digraph::Node Node;
  | 
| 
alpar@100
 | 
   154  | 
    typedef typename Digraph::NodeIt NodeIt;
  | 
| 
alpar@100
 | 
   155  | 
    typedef typename Digraph::Arc Arc;
  | 
| 
alpar@100
 | 
   156  | 
    typedef typename Digraph::OutArcIt OutArcIt;
  | 
| 
alpar@100
 | 
   157  | 
  | 
| 
kpeter@244
 | 
   158  | 
    //Pointer to the underlying digraph.
  | 
| 
alpar@100
 | 
   159  | 
    const Digraph *G;
  | 
| 
kpeter@244
 | 
   160  | 
    //Pointer to the map of predecessor arcs.
  | 
| 
alpar@100
 | 
   161  | 
    PredMap *_pred;
  | 
| 
kpeter@244
 | 
   162  | 
    //Indicates if _pred is locally allocated (true) or not.
  | 
| 
alpar@100
 | 
   163  | 
    bool local_pred;
  | 
| 
kpeter@244
 | 
   164  | 
    //Pointer to the map of distances.
  | 
| 
alpar@100
 | 
   165  | 
    DistMap *_dist;
  | 
| 
kpeter@244
 | 
   166  | 
    //Indicates if _dist is locally allocated (true) or not.
  | 
| 
alpar@100
 | 
   167  | 
    bool local_dist;
  | 
| 
kpeter@244
 | 
   168  | 
    //Pointer to the map of reached status of the nodes.
  | 
| 
alpar@100
 | 
   169  | 
    ReachedMap *_reached;
  | 
| 
kpeter@244
 | 
   170  | 
    //Indicates if _reached is locally allocated (true) or not.
  | 
| 
alpar@100
 | 
   171  | 
    bool local_reached;
  | 
| 
kpeter@244
 | 
   172  | 
    //Pointer to the map of processed status of the nodes.
  | 
| 
alpar@100
 | 
   173  | 
    ProcessedMap *_processed;
  | 
| 
kpeter@244
 | 
   174  | 
    //Indicates if _processed is locally allocated (true) or not.
  | 
| 
alpar@100
 | 
   175  | 
    bool local_processed;
  | 
| 
alpar@100
 | 
   176  | 
  | 
| 
alpar@100
 | 
   177  | 
    std::vector<typename Digraph::Node> _queue;
  | 
| 
alpar@100
 | 
   178  | 
    int _queue_head,_queue_tail,_queue_next_dist;
  | 
| 
alpar@100
 | 
   179  | 
    int _curr_dist;
  | 
| 
alpar@100
 | 
   180  | 
  | 
| 
alpar@280
 | 
   181  | 
    //Creates the maps if necessary.
  | 
| 
alpar@209
 | 
   182  | 
    void create_maps()
  | 
| 
alpar@100
 | 
   183  | 
    {
 | 
| 
alpar@100
 | 
   184  | 
      if(!_pred) {
 | 
| 
alpar@209
 | 
   185  | 
        local_pred = true;
  | 
| 
alpar@209
 | 
   186  | 
        _pred = Traits::createPredMap(*G);
  | 
| 
alpar@100
 | 
   187  | 
      }
  | 
| 
alpar@100
 | 
   188  | 
      if(!_dist) {
 | 
| 
alpar@209
 | 
   189  | 
        local_dist = true;
  | 
| 
alpar@209
 | 
   190  | 
        _dist = Traits::createDistMap(*G);
  | 
| 
alpar@100
 | 
   191  | 
      }
  | 
| 
alpar@100
 | 
   192  | 
      if(!_reached) {
 | 
| 
alpar@209
 | 
   193  | 
        local_reached = true;
  | 
| 
alpar@209
 | 
   194  | 
        _reached = Traits::createReachedMap(*G);
  | 
| 
alpar@100
 | 
   195  | 
      }
  | 
| 
alpar@100
 | 
   196  | 
      if(!_processed) {
 | 
| 
alpar@209
 | 
   197  | 
        local_processed = true;
  | 
| 
alpar@209
 | 
   198  | 
        _processed = Traits::createProcessedMap(*G);
  | 
| 
alpar@100
 | 
   199  | 
      }
  | 
| 
alpar@100
 | 
   200  | 
    }
  | 
| 
alpar@100
 | 
   201  | 
  | 
| 
alpar@100
 | 
   202  | 
  protected:
  | 
| 
alpar@209
 | 
   203  | 
  | 
| 
alpar@100
 | 
   204  | 
    Bfs() {}
 | 
| 
alpar@209
 | 
   205  | 
  | 
| 
alpar@100
 | 
   206  | 
  public:
  | 
| 
alpar@209
 | 
   207  | 
  | 
| 
alpar@100
 | 
   208  | 
    typedef Bfs Create;
  | 
| 
alpar@100
 | 
   209  | 
  | 
| 
kpeter@405
 | 
   210  | 
    ///\name Named Template Parameters
  | 
| 
alpar@100
 | 
   211  | 
  | 
| 
alpar@100
 | 
   212  | 
    ///@{
 | 
| 
alpar@100
 | 
   213  | 
  | 
| 
alpar@100
 | 
   214  | 
    template <class T>
  | 
| 
kpeter@257
 | 
   215  | 
    struct SetPredMapTraits : public Traits {
 | 
| 
alpar@100
 | 
   216  | 
      typedef T PredMap;
  | 
| 
alpar@209
 | 
   217  | 
      static PredMap *createPredMap(const Digraph &)
  | 
| 
alpar@100
 | 
   218  | 
      {
 | 
| 
deba@290
 | 
   219  | 
        LEMON_ASSERT(false, "PredMap is not initialized");
  | 
| 
deba@290
 | 
   220  | 
        return 0; // ignore warnings
  | 
| 
alpar@100
 | 
   221  | 
      }
  | 
| 
alpar@100
 | 
   222  | 
    };
  | 
| 
alpar@100
 | 
   223  | 
    ///\brief \ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   224  | 
    ///PredMap type.
  | 
| 
alpar@100
 | 
   225  | 
    ///
  | 
| 
kpeter@244
 | 
   226  | 
    ///\ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   227  | 
    ///PredMap type.
  | 
| 
kpeter@405
 | 
   228  | 
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  | 
| 
alpar@100
 | 
   229  | 
    template <class T>
  | 
| 
kpeter@257
 | 
   230  | 
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
 | 
| 
kpeter@257
 | 
   231  | 
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
  | 
| 
alpar@100
 | 
   232  | 
    };
  | 
| 
alpar@209
 | 
   233  | 
  | 
| 
alpar@100
 | 
   234  | 
    template <class T>
  | 
| 
kpeter@257
 | 
   235  | 
    struct SetDistMapTraits : public Traits {
 | 
| 
alpar@100
 | 
   236  | 
      typedef T DistMap;
  | 
| 
alpar@209
 | 
   237  | 
      static DistMap *createDistMap(const Digraph &)
  | 
| 
alpar@100
 | 
   238  | 
      {
 | 
| 
deba@290
 | 
   239  | 
        LEMON_ASSERT(false, "DistMap is not initialized");
  | 
| 
deba@290
 | 
   240  | 
        return 0; // ignore warnings
  | 
| 
alpar@100
 | 
   241  | 
      }
  | 
| 
alpar@100
 | 
   242  | 
    };
  | 
| 
alpar@100
 | 
   243  | 
    ///\brief \ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   244  | 
    ///DistMap type.
  | 
| 
alpar@100
 | 
   245  | 
    ///
  | 
| 
kpeter@244
 | 
   246  | 
    ///\ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   247  | 
    ///DistMap type.
  | 
| 
kpeter@405
 | 
   248  | 
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  | 
| 
alpar@100
 | 
   249  | 
    template <class T>
  | 
| 
kpeter@257
 | 
   250  | 
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
 | 
| 
kpeter@257
 | 
   251  | 
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
  | 
| 
alpar@100
 | 
   252  | 
    };
  | 
| 
alpar@209
 | 
   253  | 
  | 
| 
alpar@100
 | 
   254  | 
    template <class T>
  | 
| 
kpeter@257
 | 
   255  | 
    struct SetReachedMapTraits : public Traits {
 | 
| 
alpar@100
 | 
   256  | 
      typedef T ReachedMap;
  | 
| 
alpar@209
 | 
   257  | 
      static ReachedMap *createReachedMap(const Digraph &)
  | 
| 
alpar@100
 | 
   258  | 
      {
 | 
| 
deba@290
 | 
   259  | 
        LEMON_ASSERT(false, "ReachedMap is not initialized");
  | 
| 
deba@290
 | 
   260  | 
        return 0; // ignore warnings
  | 
| 
alpar@100
 | 
   261  | 
      }
  | 
| 
alpar@100
 | 
   262  | 
    };
  | 
| 
alpar@100
 | 
   263  | 
    ///\brief \ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   264  | 
    ///ReachedMap type.
  | 
| 
alpar@100
 | 
   265  | 
    ///
  | 
| 
kpeter@244
 | 
   266  | 
    ///\ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   267  | 
    ///ReachedMap type.
  | 
| 
kpeter@405
 | 
   268  | 
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
  | 
| 
alpar@100
 | 
   269  | 
    template <class T>
  | 
| 
kpeter@257
 | 
   270  | 
    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
 | 
| 
kpeter@257
 | 
   271  | 
      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
  | 
| 
alpar@100
 | 
   272  | 
    };
  | 
| 
alpar@209
 | 
   273  | 
  | 
| 
alpar@100
 | 
   274  | 
    template <class T>
  | 
| 
kpeter@257
 | 
   275  | 
    struct SetProcessedMapTraits : public Traits {
 | 
| 
alpar@100
 | 
   276  | 
      typedef T ProcessedMap;
  | 
| 
alpar@209
 | 
   277  | 
      static ProcessedMap *createProcessedMap(const Digraph &)
  | 
| 
alpar@100
 | 
   278  | 
      {
 | 
| 
deba@290
 | 
   279  | 
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
  | 
| 
deba@290
 | 
   280  | 
        return 0; // ignore warnings
  | 
| 
alpar@100
 | 
   281  | 
      }
  | 
| 
alpar@100
 | 
   282  | 
    };
  | 
| 
alpar@100
 | 
   283  | 
    ///\brief \ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   284  | 
    ///ProcessedMap type.
  | 
| 
alpar@100
 | 
   285  | 
    ///
  | 
| 
kpeter@244
 | 
   286  | 
    ///\ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   287  | 
    ///ProcessedMap type.
  | 
| 
kpeter@405
 | 
   288  | 
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  | 
| 
alpar@100
 | 
   289  | 
    template <class T>
  | 
| 
kpeter@257
 | 
   290  | 
    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
 | 
| 
kpeter@257
 | 
   291  | 
      typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
  | 
| 
alpar@100
 | 
   292  | 
    };
  | 
| 
alpar@209
 | 
   293  | 
  | 
| 
kpeter@257
 | 
   294  | 
    struct SetStandardProcessedMapTraits : public Traits {
 | 
| 
alpar@100
 | 
   295  | 
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
  | 
| 
kpeter@244
 | 
   296  | 
      static ProcessedMap *createProcessedMap(const Digraph &g)
  | 
| 
alpar@100
 | 
   297  | 
      {
 | 
| 
kpeter@244
 | 
   298  | 
        return new ProcessedMap(g);
  | 
| 
deba@290
 | 
   299  | 
        return 0; // ignore warnings
  | 
| 
alpar@100
 | 
   300  | 
      }
  | 
| 
alpar@100
 | 
   301  | 
    };
  | 
| 
kpeter@244
 | 
   302  | 
    ///\brief \ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   303  | 
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
  | 
| 
alpar@100
 | 
   304  | 
    ///
  | 
| 
kpeter@244
 | 
   305  | 
    ///\ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@301
 | 
   306  | 
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
  | 
| 
alpar@100
 | 
   307  | 
    ///If you don't set it explicitly, it will be automatically allocated.
  | 
| 
kpeter@257
 | 
   308  | 
    struct SetStandardProcessedMap :
  | 
| 
kpeter@257
 | 
   309  | 
      public Bfs< Digraph, SetStandardProcessedMapTraits > {
 | 
| 
kpeter@257
 | 
   310  | 
      typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create;
  | 
| 
alpar@100
 | 
   311  | 
    };
  | 
| 
alpar@209
 | 
   312  | 
  | 
| 
alpar@100
 | 
   313  | 
    ///@}
  | 
| 
alpar@100
 | 
   314  | 
  | 
| 
alpar@209
 | 
   315  | 
  public:
  | 
| 
alpar@209
 | 
   316  | 
  | 
| 
alpar@100
 | 
   317  | 
    ///Constructor.
  | 
| 
alpar@209
 | 
   318  | 
  | 
| 
kpeter@244
 | 
   319  | 
    ///Constructor.
  | 
| 
kpeter@244
 | 
   320  | 
    ///\param g The digraph the algorithm runs on.
  | 
| 
kpeter@244
 | 
   321  | 
    Bfs(const Digraph &g) :
  | 
| 
kpeter@244
 | 
   322  | 
      G(&g),
  | 
| 
alpar@100
 | 
   323  | 
      _pred(NULL), local_pred(false),
  | 
| 
alpar@100
 | 
   324  | 
      _dist(NULL), local_dist(false),
  | 
| 
alpar@100
 | 
   325  | 
      _reached(NULL), local_reached(false),
  | 
| 
alpar@100
 | 
   326  | 
      _processed(NULL), local_processed(false)
  | 
| 
alpar@100
 | 
   327  | 
    { }
 | 
| 
alpar@209
 | 
   328  | 
  | 
| 
alpar@100
 | 
   329  | 
    ///Destructor.
  | 
| 
alpar@209
 | 
   330  | 
    ~Bfs()
  | 
| 
alpar@100
 | 
   331  | 
    {
 | 
| 
alpar@100
 | 
   332  | 
      if(local_pred) delete _pred;
  | 
| 
alpar@100
 | 
   333  | 
      if(local_dist) delete _dist;
  | 
| 
alpar@100
 | 
   334  | 
      if(local_reached) delete _reached;
  | 
| 
alpar@100
 | 
   335  | 
      if(local_processed) delete _processed;
  | 
| 
alpar@100
 | 
   336  | 
    }
  | 
| 
alpar@100
 | 
   337  | 
  | 
| 
kpeter@244
 | 
   338  | 
    ///Sets the map that stores the predecessor arcs.
  | 
| 
alpar@100
 | 
   339  | 
  | 
| 
kpeter@244
 | 
   340  | 
    ///Sets the map that stores the predecessor arcs.
  | 
| 
kpeter@405
 | 
   341  | 
    ///If you don't use this function before calling \ref run(Node) "run()"
  | 
| 
kpeter@405
 | 
   342  | 
    ///or \ref init(), an instance will be allocated automatically.
  | 
| 
kpeter@405
 | 
   343  | 
    ///The destructor deallocates this automatically allocated map,
  | 
| 
kpeter@405
 | 
   344  | 
    ///of course.
  | 
| 
alpar@100
 | 
   345  | 
    ///\return <tt> (*this) </tt>
  | 
| 
alpar@209
 | 
   346  | 
    Bfs &predMap(PredMap &m)
  | 
| 
alpar@100
 | 
   347  | 
    {
 | 
| 
alpar@100
 | 
   348  | 
      if(local_pred) {
 | 
| 
alpar@209
 | 
   349  | 
        delete _pred;
  | 
| 
alpar@209
 | 
   350  | 
        local_pred=false;
  | 
| 
alpar@100
 | 
   351  | 
      }
  | 
| 
alpar@100
 | 
   352  | 
      _pred = &m;
  | 
| 
alpar@100
 | 
   353  | 
      return *this;
  | 
| 
alpar@100
 | 
   354  | 
    }
  | 
| 
alpar@100
 | 
   355  | 
  | 
| 
kpeter@244
 | 
   356  | 
    ///Sets the map that indicates which nodes are reached.
  | 
| 
alpar@100
 | 
   357  | 
  | 
| 
kpeter@244
 | 
   358  | 
    ///Sets the map that indicates which nodes are reached.
  | 
| 
kpeter@405
 | 
   359  | 
    ///If you don't use this function before calling \ref run(Node) "run()"
  | 
| 
kpeter@405
 | 
   360  | 
    ///or \ref init(), an instance will be allocated automatically.
  | 
| 
kpeter@405
 | 
   361  | 
    ///The destructor deallocates this automatically allocated map,
  | 
| 
kpeter@405
 | 
   362  | 
    ///of course.
  | 
| 
alpar@100
 | 
   363  | 
    ///\return <tt> (*this) </tt>
  | 
| 
alpar@209
 | 
   364  | 
    Bfs &reachedMap(ReachedMap &m)
  | 
| 
alpar@100
 | 
   365  | 
    {
 | 
| 
alpar@100
 | 
   366  | 
      if(local_reached) {
 | 
| 
alpar@209
 | 
   367  | 
        delete _reached;
  | 
| 
alpar@209
 | 
   368  | 
        local_reached=false;
  | 
| 
alpar@100
 | 
   369  | 
      }
  | 
| 
alpar@100
 | 
   370  | 
      _reached = &m;
  | 
| 
alpar@100
 | 
   371  | 
      return *this;
  | 
| 
alpar@100
 | 
   372  | 
    }
  | 
| 
alpar@100
 | 
   373  | 
  | 
| 
kpeter@244
 | 
   374  | 
    ///Sets the map that indicates which nodes are processed.
  | 
| 
alpar@100
 | 
   375  | 
  | 
| 
kpeter@244
 | 
   376  | 
    ///Sets the map that indicates which nodes are processed.
  | 
| 
kpeter@405
 | 
   377  | 
    ///If you don't use this function before calling \ref run(Node) "run()"
  | 
| 
kpeter@405
 | 
   378  | 
    ///or \ref init(), an instance will be allocated automatically.
  | 
| 
kpeter@405
 | 
   379  | 
    ///The destructor deallocates this automatically allocated map,
  | 
| 
kpeter@405
 | 
   380  | 
    ///of course.
  | 
| 
alpar@100
 | 
   381  | 
    ///\return <tt> (*this) </tt>
  | 
| 
alpar@209
 | 
   382  | 
    Bfs &processedMap(ProcessedMap &m)
  | 
| 
alpar@100
 | 
   383  | 
    {
 | 
| 
alpar@100
 | 
   384  | 
      if(local_processed) {
 | 
| 
alpar@209
 | 
   385  | 
        delete _processed;
  | 
| 
alpar@209
 | 
   386  | 
        local_processed=false;
  | 
| 
alpar@100
 | 
   387  | 
      }
  | 
| 
alpar@100
 | 
   388  | 
      _processed = &m;
  | 
| 
alpar@100
 | 
   389  | 
      return *this;
  | 
| 
alpar@100
 | 
   390  | 
    }
  | 
| 
alpar@100
 | 
   391  | 
  | 
| 
kpeter@244
 | 
   392  | 
    ///Sets the map that stores the distances of the nodes.
  | 
| 
alpar@100
 | 
   393  | 
  | 
| 
kpeter@244
 | 
   394  | 
    ///Sets the map that stores the distances of the nodes calculated by
  | 
| 
kpeter@244
 | 
   395  | 
    ///the algorithm.
  | 
| 
kpeter@405
 | 
   396  | 
    ///If you don't use this function before calling \ref run(Node) "run()"
  | 
| 
kpeter@405
 | 
   397  | 
    ///or \ref init(), an instance will be allocated automatically.
  | 
| 
kpeter@405
 | 
   398  | 
    ///The destructor deallocates this automatically allocated map,
  | 
| 
kpeter@405
 | 
   399  | 
    ///of course.
  | 
| 
alpar@100
 | 
   400  | 
    ///\return <tt> (*this) </tt>
  | 
| 
alpar@209
 | 
   401  | 
    Bfs &distMap(DistMap &m)
  | 
| 
alpar@100
 | 
   402  | 
    {
 | 
| 
alpar@100
 | 
   403  | 
      if(local_dist) {
 | 
| 
alpar@209
 | 
   404  | 
        delete _dist;
  | 
| 
alpar@209
 | 
   405  | 
        local_dist=false;
  | 
| 
alpar@100
 | 
   406  | 
      }
  | 
| 
alpar@100
 | 
   407  | 
      _dist = &m;
  | 
| 
alpar@100
 | 
   408  | 
      return *this;
  | 
| 
alpar@100
 | 
   409  | 
    }
  | 
| 
alpar@100
 | 
   410  | 
  | 
| 
alpar@100
 | 
   411  | 
  public:
  | 
| 
kpeter@244
 | 
   412  | 
  | 
| 
kpeter@405
 | 
   413  | 
    ///\name Execution Control
  | 
| 
kpeter@405
 | 
   414  | 
    ///The simplest way to execute the BFS algorithm is to use one of the
  | 
| 
kpeter@405
 | 
   415  | 
    ///member functions called \ref run(Node) "run()".\n
  | 
| 
kpeter@405
 | 
   416  | 
    ///If you need more control on the execution, first you have to call
  | 
| 
kpeter@405
 | 
   417  | 
    ///\ref init(), then you can add several source nodes with
  | 
| 
kpeter@405
 | 
   418  | 
    ///\ref addSource(). Finally the actual path computation can be
  | 
| 
kpeter@405
 | 
   419  | 
    ///performed with one of the \ref start() functions.
  | 
| 
alpar@100
 | 
   420  | 
  | 
| 
alpar@100
 | 
   421  | 
    ///@{
 | 
| 
alpar@100
 | 
   422  | 
  | 
| 
kpeter@405
 | 
   423  | 
    ///\brief Initializes the internal data structures.
  | 
| 
kpeter@405
 | 
   424  | 
    ///
  | 
| 
kpeter@244
 | 
   425  | 
    ///Initializes the internal data structures.
  | 
| 
alpar@100
 | 
   426  | 
    void init()
  | 
| 
alpar@100
 | 
   427  | 
    {
 | 
| 
alpar@100
 | 
   428  | 
      create_maps();
  | 
| 
alpar@100
 | 
   429  | 
      _queue.resize(countNodes(*G));
  | 
| 
alpar@100
 | 
   430  | 
      _queue_head=_queue_tail=0;
  | 
| 
alpar@100
 | 
   431  | 
      _curr_dist=1;
  | 
| 
alpar@100
 | 
   432  | 
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
 | 
| 
alpar@209
 | 
   433  | 
        _pred->set(u,INVALID);
  | 
| 
alpar@209
 | 
   434  | 
        _reached->set(u,false);
  | 
| 
alpar@209
 | 
   435  | 
        _processed->set(u,false);
  | 
| 
alpar@100
 | 
   436  | 
      }
  | 
| 
alpar@100
 | 
   437  | 
    }
  | 
| 
alpar@209
 | 
   438  | 
  | 
| 
alpar@100
 | 
   439  | 
    ///Adds a new source node.
  | 
| 
alpar@100
 | 
   440  | 
  | 
| 
alpar@100
 | 
   441  | 
    ///Adds a new source node to the set of nodes to be processed.
  | 
| 
alpar@100
 | 
   442  | 
    ///
  | 
| 
alpar@100
 | 
   443  | 
    void addSource(Node s)
  | 
| 
alpar@100
 | 
   444  | 
    {
 | 
| 
alpar@100
 | 
   445  | 
      if(!(*_reached)[s])
  | 
| 
alpar@209
 | 
   446  | 
        {
 | 
| 
alpar@209
 | 
   447  | 
          _reached->set(s,true);
  | 
| 
alpar@209
 | 
   448  | 
          _pred->set(s,INVALID);
  | 
| 
alpar@209
 | 
   449  | 
          _dist->set(s,0);
  | 
| 
alpar@209
 | 
   450  | 
          _queue[_queue_head++]=s;
  | 
| 
alpar@209
 | 
   451  | 
          _queue_next_dist=_queue_head;
  | 
| 
alpar@209
 | 
   452  | 
        }
  | 
| 
alpar@100
 | 
   453  | 
    }
  | 
| 
alpar@209
 | 
   454  | 
  | 
| 
alpar@100
 | 
   455  | 
    ///Processes the next node.
  | 
| 
alpar@100
 | 
   456  | 
  | 
| 
alpar@100
 | 
   457  | 
    ///Processes the next node.
  | 
| 
alpar@100
 | 
   458  | 
    ///
  | 
| 
alpar@100
 | 
   459  | 
    ///\return The processed node.
  | 
| 
alpar@100
 | 
   460  | 
    ///
  | 
| 
kpeter@244
 | 
   461  | 
    ///\pre The queue must not be empty.
  | 
| 
alpar@100
 | 
   462  | 
    Node processNextNode()
  | 
| 
alpar@100
 | 
   463  | 
    {
 | 
| 
alpar@100
 | 
   464  | 
      if(_queue_tail==_queue_next_dist) {
 | 
| 
alpar@209
 | 
   465  | 
        _curr_dist++;
  | 
| 
alpar@209
 | 
   466  | 
        _queue_next_dist=_queue_head;
  | 
| 
alpar@100
 | 
   467  | 
      }
  | 
| 
alpar@100
 | 
   468  | 
      Node n=_queue[_queue_tail++];
  | 
| 
alpar@100
 | 
   469  | 
      _processed->set(n,true);
  | 
| 
alpar@100
 | 
   470  | 
      Node m;
  | 
| 
alpar@100
 | 
   471  | 
      for(OutArcIt e(*G,n);e!=INVALID;++e)
  | 
| 
alpar@209
 | 
   472  | 
        if(!(*_reached)[m=G->target(e)]) {
 | 
| 
alpar@209
 | 
   473  | 
          _queue[_queue_head++]=m;
  | 
| 
alpar@209
 | 
   474  | 
          _reached->set(m,true);
  | 
| 
alpar@209
 | 
   475  | 
          _pred->set(m,e);
  | 
| 
alpar@209
 | 
   476  | 
          _dist->set(m,_curr_dist);
  | 
| 
alpar@209
 | 
   477  | 
        }
  | 
| 
alpar@100
 | 
   478  | 
      return n;
  | 
| 
alpar@100
 | 
   479  | 
    }
  | 
| 
alpar@100
 | 
   480  | 
  | 
| 
alpar@100
 | 
   481  | 
    ///Processes the next node.
  | 
| 
alpar@100
 | 
   482  | 
  | 
| 
kpeter@244
 | 
   483  | 
    ///Processes the next node and checks if the given target node
  | 
| 
alpar@100
 | 
   484  | 
    ///is reached. If the target node is reachable from the processed
  | 
| 
kpeter@244
 | 
   485  | 
    ///node, then the \c reach parameter will be set to \c true.
  | 
| 
alpar@100
 | 
   486  | 
    ///
  | 
| 
alpar@100
 | 
   487  | 
    ///\param target The target node.
  | 
| 
kpeter@244
 | 
   488  | 
    ///\retval reach Indicates if the target node is reached.
  | 
| 
kpeter@244
 | 
   489  | 
    ///It should be initially \c false.
  | 
| 
kpeter@244
 | 
   490  | 
    ///
  | 
| 
alpar@100
 | 
   491  | 
    ///\return The processed node.
  | 
| 
alpar@100
 | 
   492  | 
    ///
  | 
| 
kpeter@244
 | 
   493  | 
    ///\pre The queue must not be empty.
  | 
| 
alpar@100
 | 
   494  | 
    Node processNextNode(Node target, bool& reach)
  | 
| 
alpar@100
 | 
   495  | 
    {
 | 
| 
alpar@100
 | 
   496  | 
      if(_queue_tail==_queue_next_dist) {
 | 
| 
alpar@209
 | 
   497  | 
        _curr_dist++;
  | 
| 
alpar@209
 | 
   498  | 
        _queue_next_dist=_queue_head;
  | 
| 
alpar@100
 | 
   499  | 
      }
  | 
| 
alpar@100
 | 
   500  | 
      Node n=_queue[_queue_tail++];
  | 
| 
alpar@100
 | 
   501  | 
      _processed->set(n,true);
  | 
| 
alpar@100
 | 
   502  | 
      Node m;
  | 
| 
alpar@100
 | 
   503  | 
      for(OutArcIt e(*G,n);e!=INVALID;++e)
  | 
| 
alpar@209
 | 
   504  | 
        if(!(*_reached)[m=G->target(e)]) {
 | 
| 
alpar@209
 | 
   505  | 
          _queue[_queue_head++]=m;
  | 
| 
alpar@209
 | 
   506  | 
          _reached->set(m,true);
  | 
| 
alpar@209
 | 
   507  | 
          _pred->set(m,e);
  | 
| 
alpar@209
 | 
   508  | 
          _dist->set(m,_curr_dist);
  | 
| 
alpar@100
 | 
   509  | 
          reach = reach || (target == m);
  | 
| 
alpar@209
 | 
   510  | 
        }
  | 
| 
alpar@100
 | 
   511  | 
      return n;
  | 
| 
alpar@100
 | 
   512  | 
    }
  | 
| 
alpar@100
 | 
   513  | 
  | 
| 
alpar@100
 | 
   514  | 
    ///Processes the next node.
  | 
| 
alpar@100
 | 
   515  | 
  | 
| 
kpeter@244
 | 
   516  | 
    ///Processes the next node and checks if at least one of reached
  | 
| 
kpeter@244
 | 
   517  | 
    ///nodes has \c true value in the \c nm node map. If one node
  | 
| 
kpeter@244
 | 
   518  | 
    ///with \c true value is reachable from the processed node, then the
  | 
| 
kpeter@244
 | 
   519  | 
    ///\c rnode parameter will be set to the first of such nodes.
  | 
| 
alpar@100
 | 
   520  | 
    ///
  | 
| 
kpeter@244
 | 
   521  | 
    ///\param nm A \c bool (or convertible) node map that indicates the
  | 
| 
kpeter@244
 | 
   522  | 
    ///possible targets.
  | 
| 
alpar@100
 | 
   523  | 
    ///\retval rnode The reached target node.
  | 
| 
kpeter@244
 | 
   524  | 
    ///It should be initially \c INVALID.
  | 
| 
kpeter@244
 | 
   525  | 
    ///
  | 
| 
alpar@100
 | 
   526  | 
    ///\return The processed node.
  | 
| 
alpar@100
 | 
   527  | 
    ///
  | 
| 
kpeter@244
 | 
   528  | 
    ///\pre The queue must not be empty.
  | 
| 
alpar@100
 | 
   529  | 
    template<class NM>
  | 
| 
alpar@100
 | 
   530  | 
    Node processNextNode(const NM& nm, Node& rnode)
  | 
| 
alpar@100
 | 
   531  | 
    {
 | 
| 
alpar@100
 | 
   532  | 
      if(_queue_tail==_queue_next_dist) {
 | 
| 
alpar@209
 | 
   533  | 
        _curr_dist++;
  | 
| 
alpar@209
 | 
   534  | 
        _queue_next_dist=_queue_head;
  | 
| 
alpar@100
 | 
   535  | 
      }
  | 
| 
alpar@100
 | 
   536  | 
      Node n=_queue[_queue_tail++];
  | 
| 
alpar@100
 | 
   537  | 
      _processed->set(n,true);
  | 
| 
alpar@100
 | 
   538  | 
      Node m;
  | 
| 
alpar@100
 | 
   539  | 
      for(OutArcIt e(*G,n);e!=INVALID;++e)
  | 
| 
alpar@209
 | 
   540  | 
        if(!(*_reached)[m=G->target(e)]) {
 | 
| 
alpar@209
 | 
   541  | 
          _queue[_queue_head++]=m;
  | 
| 
alpar@209
 | 
   542  | 
          _reached->set(m,true);
  | 
| 
alpar@209
 | 
   543  | 
          _pred->set(m,e);
  | 
| 
alpar@209
 | 
   544  | 
          _dist->set(m,_curr_dist);
  | 
| 
alpar@209
 | 
   545  | 
          if (nm[m] && rnode == INVALID) rnode = m;
  | 
| 
alpar@209
 | 
   546  | 
        }
  | 
| 
alpar@100
 | 
   547  | 
      return n;
  | 
| 
alpar@100
 | 
   548  | 
    }
  | 
| 
alpar@209
 | 
   549  | 
  | 
| 
kpeter@244
 | 
   550  | 
    ///The next node to be processed.
  | 
| 
alpar@100
 | 
   551  | 
  | 
| 
kpeter@244
 | 
   552  | 
    ///Returns the next node to be processed or \c INVALID if the queue
  | 
| 
kpeter@244
 | 
   553  | 
    ///is empty.
  | 
| 
kpeter@244
 | 
   554  | 
    Node nextNode() const
  | 
| 
alpar@209
 | 
   555  | 
    {
 | 
| 
alpar@100
 | 
   556  | 
      return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
  | 
| 
alpar@100
 | 
   557  | 
    }
  | 
| 
alpar@209
 | 
   558  | 
  | 
| 
kpeter@405
 | 
   559  | 
    ///Returns \c false if there are nodes to be processed.
  | 
| 
kpeter@405
 | 
   560  | 
  | 
| 
kpeter@405
 | 
   561  | 
    ///Returns \c false if there are nodes to be processed
  | 
| 
kpeter@405
 | 
   562  | 
    ///in the queue.
  | 
| 
kpeter@244
 | 
   563  | 
    bool emptyQueue() const { return _queue_tail==_queue_head; }
 | 
| 
kpeter@244
 | 
   564  | 
  | 
| 
alpar@100
 | 
   565  | 
    ///Returns the number of the nodes to be processed.
  | 
| 
alpar@209
 | 
   566  | 
  | 
| 
kpeter@405
 | 
   567  | 
    ///Returns the number of the nodes to be processed
  | 
| 
kpeter@405
 | 
   568  | 
    ///in the queue.
  | 
| 
kpeter@244
 | 
   569  | 
    int queueSize() const { return _queue_head-_queue_tail; }
 | 
| 
alpar@209
 | 
   570  | 
  | 
| 
alpar@100
 | 
   571  | 
    ///Executes the algorithm.
  | 
| 
alpar@100
 | 
   572  | 
  | 
| 
alpar@100
 | 
   573  | 
    ///Executes the algorithm.
  | 
| 
alpar@100
 | 
   574  | 
    ///
  | 
| 
kpeter@244
 | 
   575  | 
    ///This method runs the %BFS algorithm from the root node(s)
  | 
| 
kpeter@244
 | 
   576  | 
    ///in order to compute the shortest path to each node.
  | 
| 
alpar@100
 | 
   577  | 
    ///
  | 
| 
kpeter@244
 | 
   578  | 
    ///The algorithm computes
  | 
| 
kpeter@244
 | 
   579  | 
    ///- the shortest path tree (forest),
  | 
| 
kpeter@244
 | 
   580  | 
    ///- the distance of each node from the root(s).
  | 
| 
kpeter@244
 | 
   581  | 
    ///
  | 
| 
kpeter@244
 | 
   582  | 
    ///\pre init() must be called and at least one root node should be
  | 
| 
kpeter@244
 | 
   583  | 
    ///added with addSource() before using this function.
  | 
| 
kpeter@244
 | 
   584  | 
    ///
  | 
| 
kpeter@244
 | 
   585  | 
    ///\note <tt>b.start()</tt> is just a shortcut of the following code.
  | 
| 
kpeter@244
 | 
   586  | 
    ///\code
  | 
| 
kpeter@244
 | 
   587  | 
    ///  while ( !b.emptyQueue() ) {
 | 
| 
kpeter@244
 | 
   588  | 
    ///    b.processNextNode();
  | 
| 
kpeter@244
 | 
   589  | 
    ///  }
  | 
| 
kpeter@244
 | 
   590  | 
    ///\endcode
  | 
| 
alpar@100
 | 
   591  | 
    void start()
  | 
| 
alpar@100
 | 
   592  | 
    {
 | 
| 
alpar@100
 | 
   593  | 
      while ( !emptyQueue() ) processNextNode();
  | 
| 
alpar@100
 | 
   594  | 
    }
  | 
| 
alpar@209
 | 
   595  | 
  | 
| 
kpeter@244
 | 
   596  | 
    ///Executes the algorithm until the given target node is reached.
  | 
| 
alpar@100
 | 
   597  | 
  | 
| 
kpeter@244
 | 
   598  | 
    ///Executes the algorithm until the given target node is reached.
  | 
| 
alpar@100
 | 
   599  | 
    ///
  | 
| 
alpar@100
 | 
   600  | 
    ///This method runs the %BFS algorithm from the root node(s)
  | 
| 
kpeter@286
 | 
   601  | 
    ///in order to compute the shortest path to \c t.
  | 
| 
kpeter@244
 | 
   602  | 
    ///
  | 
| 
alpar@100
 | 
   603  | 
    ///The algorithm computes
  | 
| 
kpeter@286
 | 
   604  | 
    ///- the shortest path to \c t,
  | 
| 
kpeter@286
 | 
   605  | 
    ///- the distance of \c t from the root(s).
  | 
| 
kpeter@244
 | 
   606  | 
    ///
  | 
| 
kpeter@244
 | 
   607  | 
    ///\pre init() must be called and at least one root node should be
  | 
| 
kpeter@244
 | 
   608  | 
    ///added with addSource() before using this function.
  | 
| 
kpeter@244
 | 
   609  | 
    ///
  | 
| 
kpeter@244
 | 
   610  | 
    ///\note <tt>b.start(t)</tt> is just a shortcut of the following code.
  | 
| 
kpeter@244
 | 
   611  | 
    ///\code
  | 
| 
kpeter@244
 | 
   612  | 
    ///  bool reach = false;
  | 
| 
kpeter@244
 | 
   613  | 
    ///  while ( !b.emptyQueue() && !reach ) {
 | 
| 
kpeter@244
 | 
   614  | 
    ///    b.processNextNode(t, reach);
  | 
| 
kpeter@244
 | 
   615  | 
    ///  }
  | 
| 
kpeter@244
 | 
   616  | 
    ///\endcode
  | 
| 
kpeter@286
 | 
   617  | 
    void start(Node t)
  | 
| 
alpar@100
 | 
   618  | 
    {
 | 
| 
alpar@100
 | 
   619  | 
      bool reach = false;
  | 
| 
kpeter@286
 | 
   620  | 
      while ( !emptyQueue() && !reach ) processNextNode(t, reach);
  | 
| 
alpar@100
 | 
   621  | 
    }
  | 
| 
alpar@209
 | 
   622  | 
  | 
| 
alpar@100
 | 
   623  | 
    ///Executes the algorithm until a condition is met.
  | 
| 
alpar@100
 | 
   624  | 
  | 
| 
alpar@100
 | 
   625  | 
    ///Executes the algorithm until a condition is met.
  | 
| 
alpar@100
 | 
   626  | 
    ///
  | 
| 
kpeter@244
 | 
   627  | 
    ///This method runs the %BFS algorithm from the root node(s) in
  | 
| 
kpeter@244
 | 
   628  | 
    ///order to compute the shortest path to a node \c v with
  | 
| 
kpeter@244
 | 
   629  | 
    /// <tt>nm[v]</tt> true, if such a node can be found.
  | 
| 
alpar@100
 | 
   630  | 
    ///
  | 
| 
kpeter@244
 | 
   631  | 
    ///\param nm A \c bool (or convertible) node map. The algorithm
  | 
| 
kpeter@244
 | 
   632  | 
    ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
  | 
| 
alpar@100
 | 
   633  | 
    ///
  | 
| 
alpar@100
 | 
   634  | 
    ///\return The reached node \c v with <tt>nm[v]</tt> true or
  | 
| 
alpar@100
 | 
   635  | 
    ///\c INVALID if no such node was found.
  | 
| 
kpeter@244
 | 
   636  | 
    ///
  | 
| 
kpeter@244
 | 
   637  | 
    ///\pre init() must be called and at least one root node should be
  | 
| 
kpeter@244
 | 
   638  | 
    ///added with addSource() before using this function.
  | 
| 
kpeter@244
 | 
   639  | 
    ///
  | 
| 
kpeter@244
 | 
   640  | 
    ///\note <tt>b.start(nm)</tt> is just a shortcut of the following code.
  | 
| 
kpeter@244
 | 
   641  | 
    ///\code
  | 
| 
kpeter@244
 | 
   642  | 
    ///  Node rnode = INVALID;
  | 
| 
kpeter@244
 | 
   643  | 
    ///  while ( !b.emptyQueue() && rnode == INVALID ) {
 | 
| 
kpeter@244
 | 
   644  | 
    ///    b.processNextNode(nm, rnode);
  | 
| 
kpeter@244
 | 
   645  | 
    ///  }
  | 
| 
kpeter@244
 | 
   646  | 
    ///  return rnode;
  | 
| 
kpeter@244
 | 
   647  | 
    ///\endcode
  | 
| 
kpeter@244
 | 
   648  | 
    template<class NodeBoolMap>
  | 
| 
kpeter@244
 | 
   649  | 
    Node start(const NodeBoolMap &nm)
  | 
| 
alpar@100
 | 
   650  | 
    {
 | 
| 
alpar@100
 | 
   651  | 
      Node rnode = INVALID;
  | 
| 
alpar@100
 | 
   652  | 
      while ( !emptyQueue() && rnode == INVALID ) {
 | 
| 
alpar@209
 | 
   653  | 
        processNextNode(nm, rnode);
  | 
| 
alpar@100
 | 
   654  | 
      }
  | 
| 
alpar@100
 | 
   655  | 
      return rnode;
  | 
| 
alpar@100
 | 
   656  | 
    }
  | 
| 
alpar@209
 | 
   657  | 
  | 
| 
kpeter@286
 | 
   658  | 
    ///Runs the algorithm from the given source node.
  | 
| 
alpar@209
 | 
   659  | 
  | 
| 
kpeter@244
 | 
   660  | 
    ///This method runs the %BFS algorithm from node \c s
  | 
| 
kpeter@244
 | 
   661  | 
    ///in order to compute the shortest path to each node.
  | 
| 
alpar@100
 | 
   662  | 
    ///
  | 
| 
kpeter@244
 | 
   663  | 
    ///The algorithm computes
  | 
| 
kpeter@244
 | 
   664  | 
    ///- the shortest path tree,
  | 
| 
kpeter@244
 | 
   665  | 
    ///- the distance of each node from the root.
  | 
| 
kpeter@244
 | 
   666  | 
    ///
  | 
| 
kpeter@244
 | 
   667  | 
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
  | 
| 
alpar@100
 | 
   668  | 
    ///\code
  | 
| 
alpar@100
 | 
   669  | 
    ///  b.init();
  | 
| 
alpar@100
 | 
   670  | 
    ///  b.addSource(s);
  | 
| 
alpar@100
 | 
   671  | 
    ///  b.start();
  | 
| 
alpar@100
 | 
   672  | 
    ///\endcode
  | 
| 
alpar@100
 | 
   673  | 
    void run(Node s) {
 | 
| 
alpar@100
 | 
   674  | 
      init();
  | 
| 
alpar@100
 | 
   675  | 
      addSource(s);
  | 
| 
alpar@100
 | 
   676  | 
      start();
  | 
| 
alpar@100
 | 
   677  | 
    }
  | 
| 
alpar@209
 | 
   678  | 
  | 
| 
alpar@100
 | 
   679  | 
    ///Finds the shortest path between \c s and \c t.
  | 
| 
alpar@209
 | 
   680  | 
  | 
| 
kpeter@244
 | 
   681  | 
    ///This method runs the %BFS algorithm from node \c s
  | 
| 
kpeter@286
 | 
   682  | 
    ///in order to compute the shortest path to node \c t
  | 
| 
kpeter@286
 | 
   683  | 
    ///(it stops searching when \c t is processed).
  | 
| 
alpar@100
 | 
   684  | 
    ///
  | 
| 
kpeter@286
 | 
   685  | 
    ///\return \c true if \c t is reachable form \c s.
  | 
| 
kpeter@244
 | 
   686  | 
    ///
  | 
| 
kpeter@244
 | 
   687  | 
    ///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a
  | 
| 
kpeter@244
 | 
   688  | 
    ///shortcut of the following code.
  | 
| 
alpar@100
 | 
   689  | 
    ///\code
  | 
| 
alpar@100
 | 
   690  | 
    ///  b.init();
  | 
| 
alpar@100
 | 
   691  | 
    ///  b.addSource(s);
  | 
| 
alpar@100
 | 
   692  | 
    ///  b.start(t);
  | 
| 
alpar@100
 | 
   693  | 
    ///\endcode
  | 
| 
kpeter@286
 | 
   694  | 
    bool run(Node s,Node t) {
 | 
| 
alpar@100
 | 
   695  | 
      init();
  | 
| 
alpar@100
 | 
   696  | 
      addSource(s);
  | 
| 
alpar@100
 | 
   697  | 
      start(t);
  | 
| 
kpeter@286
 | 
   698  | 
      return reached(t);
  | 
| 
alpar@100
 | 
   699  | 
    }
  | 
| 
alpar@209
 | 
   700  | 
  | 
| 
kpeter@244
 | 
   701  | 
    ///Runs the algorithm to visit all nodes in the digraph.
  | 
| 
kpeter@244
 | 
   702  | 
  | 
| 
kpeter@244
 | 
   703  | 
    ///This method runs the %BFS algorithm in order to
  | 
| 
kpeter@244
 | 
   704  | 
    ///compute the shortest path to each node.
  | 
| 
kpeter@244
 | 
   705  | 
    ///
  | 
| 
kpeter@244
 | 
   706  | 
    ///The algorithm computes
  | 
| 
kpeter@244
 | 
   707  | 
    ///- the shortest path tree (forest),
  | 
| 
kpeter@244
 | 
   708  | 
    ///- the distance of each node from the root(s).
  | 
| 
kpeter@244
 | 
   709  | 
    ///
  | 
| 
kpeter@244
 | 
   710  | 
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
  | 
| 
kpeter@244
 | 
   711  | 
    ///\code
  | 
| 
kpeter@244
 | 
   712  | 
    ///  b.init();
  | 
| 
kpeter@244
 | 
   713  | 
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
 | 
| 
kpeter@244
 | 
   714  | 
    ///    if (!b.reached(n)) {
 | 
| 
kpeter@244
 | 
   715  | 
    ///      b.addSource(n);
  | 
| 
kpeter@244
 | 
   716  | 
    ///      b.start();
  | 
| 
kpeter@244
 | 
   717  | 
    ///    }
  | 
| 
kpeter@244
 | 
   718  | 
    ///  }
  | 
| 
kpeter@244
 | 
   719  | 
    ///\endcode
  | 
| 
kpeter@244
 | 
   720  | 
    void run() {
 | 
| 
kpeter@244
 | 
   721  | 
      init();
  | 
| 
kpeter@244
 | 
   722  | 
      for (NodeIt n(*G); n != INVALID; ++n) {
 | 
| 
kpeter@244
 | 
   723  | 
        if (!reached(n)) {
 | 
| 
kpeter@244
 | 
   724  | 
          addSource(n);
  | 
| 
kpeter@244
 | 
   725  | 
          start();
  | 
| 
kpeter@244
 | 
   726  | 
        }
  | 
| 
kpeter@244
 | 
   727  | 
      }
  | 
| 
kpeter@244
 | 
   728  | 
    }
  | 
| 
kpeter@244
 | 
   729  | 
  | 
| 
alpar@100
 | 
   730  | 
    ///@}
  | 
| 
alpar@100
 | 
   731  | 
  | 
| 
alpar@100
 | 
   732  | 
    ///\name Query Functions
  | 
| 
kpeter@405
 | 
   733  | 
    ///The results of the BFS algorithm can be obtained using these
  | 
| 
alpar@100
 | 
   734  | 
    ///functions.\n
  | 
| 
kpeter@405
 | 
   735  | 
    ///Either \ref run(Node) "run()" or \ref start() should be called
  | 
| 
kpeter@405
 | 
   736  | 
    ///before using them.
  | 
| 
alpar@209
 | 
   737  | 
  | 
| 
alpar@100
 | 
   738  | 
    ///@{
 | 
| 
alpar@100
 | 
   739  | 
  | 
| 
kpeter@244
 | 
   740  | 
    ///The shortest path to a node.
  | 
| 
alpar@100
 | 
   741  | 
  | 
| 
kpeter@244
 | 
   742  | 
    ///Returns the shortest path to a node.
  | 
| 
kpeter@244
 | 
   743  | 
    ///
  | 
| 
kpeter@405
 | 
   744  | 
    ///\warning \c t should be reached from the root(s).
  | 
| 
kpeter@244
 | 
   745  | 
    ///
  | 
| 
kpeter@405
 | 
   746  | 
    ///\pre Either \ref run(Node) "run()" or \ref init()
  | 
| 
kpeter@405
 | 
   747  | 
    ///must be called before using this function.
  | 
| 
kpeter@244
 | 
   748  | 
    Path path(Node t) const { return Path(*G, *_pred, t); }
 | 
| 
alpar@100
 | 
   749  | 
  | 
| 
alpar@100
 | 
   750  | 
    ///The distance of a node from the root(s).
  | 
| 
alpar@100
 | 
   751  | 
  | 
| 
alpar@100
 | 
   752  | 
    ///Returns the distance of a node from the root(s).
  | 
| 
kpeter@244
 | 
   753  | 
    ///
  | 
| 
kpeter@405
 | 
   754  | 
    ///\warning If node \c v is not reached from the root(s), then
  | 
| 
kpeter@244
 | 
   755  | 
    ///the return value of this function is undefined.
  | 
| 
kpeter@244
 | 
   756  | 
    ///
  | 
| 
kpeter@405
 | 
   757  | 
    ///\pre Either \ref run(Node) "run()" or \ref init()
  | 
| 
kpeter@405
 | 
   758  | 
    ///must be called before using this function.
  | 
| 
alpar@100
 | 
   759  | 
    int dist(Node v) const { return (*_dist)[v]; }
 | 
| 
alpar@100
 | 
   760  | 
  | 
| 
kpeter@244
 | 
   761  | 
    ///Returns the 'previous arc' of the shortest path tree for a node.
  | 
| 
alpar@100
 | 
   762  | 
  | 
| 
kpeter@244
 | 
   763  | 
    ///This function returns the 'previous arc' of the shortest path
  | 
| 
kpeter@244
 | 
   764  | 
    ///tree for the node \c v, i.e. it returns the last arc of a
  | 
| 
kpeter@405
 | 
   765  | 
    ///shortest path from a root to \c v. It is \c INVALID if \c v
  | 
| 
kpeter@405
 | 
   766  | 
    ///is not reached from the root(s) or if \c v is a root.
  | 
| 
kpeter@244
 | 
   767  | 
    ///
  | 
| 
kpeter@244
 | 
   768  | 
    ///The shortest path tree used here is equal to the shortest path
  | 
| 
kpeter@244
 | 
   769  | 
    ///tree used in \ref predNode().
  | 
| 
kpeter@244
 | 
   770  | 
    ///
  | 
| 
kpeter@405
 | 
   771  | 
    ///\pre Either \ref run(Node) "run()" or \ref init()
  | 
| 
kpeter@405
 | 
   772  | 
    ///must be called before using this function.
  | 
| 
alpar@100
 | 
   773  | 
    Arc predArc(Node v) const { return (*_pred)[v];}
 | 
| 
alpar@100
 | 
   774  | 
  | 
| 
kpeter@244
 | 
   775  | 
    ///Returns the 'previous node' of the shortest path tree for a node.
  | 
| 
alpar@100
 | 
   776  | 
  | 
| 
kpeter@244
 | 
   777  | 
    ///This function returns the 'previous node' of the shortest path
  | 
| 
kpeter@244
 | 
   778  | 
    ///tree for the node \c v, i.e. it returns the last but one node
  | 
| 
kpeter@405
 | 
   779  | 
    ///from a shortest path from a root to \c v. It is \c INVALID
  | 
| 
kpeter@405
 | 
   780  | 
    ///if \c v is not reached from the root(s) or if \c v is a root.
  | 
| 
kpeter@244
 | 
   781  | 
    ///
  | 
| 
alpar@100
 | 
   782  | 
    ///The shortest path tree used here is equal to the shortest path
  | 
| 
alpar@100
 | 
   783  | 
    ///tree used in \ref predArc().
  | 
| 
kpeter@244
 | 
   784  | 
    ///
  | 
| 
kpeter@405
 | 
   785  | 
    ///\pre Either \ref run(Node) "run()" or \ref init()
  | 
| 
kpeter@405
 | 
   786  | 
    ///must be called before using this function.
  | 
| 
alpar@100
 | 
   787  | 
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
 | 
| 
alpar@209
 | 
   788  | 
                                  G->source((*_pred)[v]); }
  | 
| 
alpar@209
 | 
   789  | 
  | 
| 
kpeter@244
 | 
   790  | 
    ///\brief Returns a const reference to the node map that stores the
  | 
| 
kpeter@244
 | 
   791  | 
    /// distances of the nodes.
  | 
| 
kpeter@244
 | 
   792  | 
    ///
  | 
| 
kpeter@244
 | 
   793  | 
    ///Returns a const reference to the node map that stores the distances
  | 
| 
kpeter@244
 | 
   794  | 
    ///of the nodes calculated by the algorithm.
  | 
| 
kpeter@244
 | 
   795  | 
    ///
  | 
| 
kpeter@405
 | 
   796  | 
    ///\pre Either \ref run(Node) "run()" or \ref init()
  | 
| 
kpeter@244
 | 
   797  | 
    ///must be called before using this function.
  | 
| 
alpar@100
 | 
   798  | 
    const DistMap &distMap() const { return *_dist;}
 | 
| 
alpar@209
 | 
   799  | 
  | 
| 
kpeter@244
 | 
   800  | 
    ///\brief Returns a const reference to the node map that stores the
  | 
| 
kpeter@244
 | 
   801  | 
    ///predecessor arcs.
  | 
| 
kpeter@244
 | 
   802  | 
    ///
  | 
| 
kpeter@244
 | 
   803  | 
    ///Returns a const reference to the node map that stores the predecessor
  | 
| 
kpeter@244
 | 
   804  | 
    ///arcs, which form the shortest path tree.
  | 
| 
kpeter@244
 | 
   805  | 
    ///
  | 
| 
kpeter@405
 | 
   806  | 
    ///\pre Either \ref run(Node) "run()" or \ref init()
  | 
| 
alpar@100
 | 
   807  | 
    ///must be called before using this function.
  | 
| 
alpar@100
 | 
   808  | 
    const PredMap &predMap() const { return *_pred;}
 | 
| 
alpar@209
 | 
   809  | 
  | 
| 
kpeter@405
 | 
   810  | 
    ///Checks if a node is reached from the root(s).
  | 
| 
alpar@100
 | 
   811  | 
  | 
| 
kpeter@405
 | 
   812  | 
    ///Returns \c true if \c v is reached from the root(s).
  | 
| 
kpeter@405
 | 
   813  | 
    ///
  | 
| 
kpeter@405
 | 
   814  | 
    ///\pre Either \ref run(Node) "run()" or \ref init()
  | 
| 
alpar@100
 | 
   815  | 
    ///must be called before using this function.
  | 
| 
kpeter@244
 | 
   816  | 
    bool reached(Node v) const { return (*_reached)[v]; }
 | 
| 
alpar@209
 | 
   817  | 
  | 
| 
alpar@100
 | 
   818  | 
    ///@}
  | 
| 
alpar@100
 | 
   819  | 
  };
  | 
| 
alpar@100
 | 
   820  | 
  | 
| 
kpeter@244
 | 
   821  | 
  ///Default traits class of bfs() function.
  | 
| 
alpar@100
 | 
   822  | 
  | 
| 
kpeter@244
 | 
   823  | 
  ///Default traits class of bfs() function.
  | 
| 
kpeter@157
 | 
   824  | 
  ///\tparam GR Digraph type.
  | 
| 
alpar@100
 | 
   825  | 
  template<class GR>
  | 
| 
alpar@100
 | 
   826  | 
  struct BfsWizardDefaultTraits
  | 
| 
alpar@100
 | 
   827  | 
  {
 | 
| 
kpeter@244
 | 
   828  | 
    ///The type of the digraph the algorithm runs on.
  | 
| 
alpar@100
 | 
   829  | 
    typedef GR Digraph;
  | 
| 
kpeter@244
 | 
   830  | 
  | 
| 
kpeter@244
 | 
   831  | 
    ///\brief The type of the map that stores the predecessor
  | 
| 
alpar@100
 | 
   832  | 
    ///arcs of the shortest paths.
  | 
| 
alpar@209
 | 
   833  | 
    ///
  | 
| 
kpeter@244
 | 
   834  | 
    ///The type of the map that stores the predecessor
  | 
| 
alpar@100
 | 
   835  | 
    ///arcs of the shortest paths.
  | 
| 
alpar@100
 | 
   836  | 
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  | 
| 
kpeter@278
 | 
   837  | 
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
  | 
| 
kpeter@301
 | 
   838  | 
    ///Instantiates a PredMap.
  | 
| 
alpar@209
 | 
   839  | 
  | 
| 
kpeter@301
 | 
   840  | 
    ///This function instantiates a PredMap.
  | 
| 
kpeter@244
 | 
   841  | 
    ///\param g is the digraph, to which we would like to define the
  | 
| 
kpeter@301
 | 
   842  | 
    ///PredMap.
  | 
| 
kpeter@244
 | 
   843  | 
    static PredMap *createPredMap(const Digraph &g)
  | 
| 
alpar@100
 | 
   844  | 
    {
 | 
| 
kpeter@278
 | 
   845  | 
      return new PredMap(g);
  | 
| 
alpar@100
 | 
   846  | 
    }
  | 
| 
alpar@100
 | 
   847  | 
  | 
| 
alpar@100
 | 
   848  | 
    ///The type of the map that indicates which nodes are processed.
  | 
| 
alpar@209
 | 
   849  | 
  | 
| 
alpar@100
 | 
   850  | 
    ///The type of the map that indicates which nodes are processed.
  | 
| 
alpar@100
 | 
   851  | 
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  | 
| 
kpeter@278
 | 
   852  | 
    ///By default it is a NullMap.
  | 
| 
alpar@100
 | 
   853  | 
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
  | 
| 
kpeter@301
 | 
   854  | 
    ///Instantiates a ProcessedMap.
  | 
| 
alpar@209
 | 
   855  | 
  | 
| 
kpeter@301
 | 
   856  | 
    ///This function instantiates a ProcessedMap.
  | 
| 
alpar@100
 | 
   857  | 
    ///\param g is the digraph, to which
  | 
| 
kpeter@301
 | 
   858  | 
    ///we would like to define the ProcessedMap.
  | 
| 
alpar@100
 | 
   859  | 
#ifdef DOXYGEN
  | 
| 
kpeter@244
 | 
   860  | 
    static ProcessedMap *createProcessedMap(const Digraph &g)
  | 
| 
alpar@100
 | 
   861  | 
#else
  | 
| 
kpeter@244
 | 
   862  | 
    static ProcessedMap *createProcessedMap(const Digraph &)
  | 
| 
alpar@100
 | 
   863  | 
#endif
  | 
| 
alpar@100
 | 
   864  | 
    {
 | 
| 
alpar@100
 | 
   865  | 
      return new ProcessedMap();
  | 
| 
alpar@100
 | 
   866  | 
    }
  | 
| 
kpeter@244
 | 
   867  | 
  | 
| 
alpar@100
 | 
   868  | 
    ///The type of the map that indicates which nodes are reached.
  | 
| 
alpar@209
 | 
   869  | 
  | 
| 
alpar@100
 | 
   870  | 
    ///The type of the map that indicates which nodes are reached.
  | 
| 
kpeter@244
 | 
   871  | 
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
  | 
| 
alpar@100
 | 
   872  | 
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
  | 
| 
kpeter@301
 | 
   873  | 
    ///Instantiates a ReachedMap.
  | 
| 
alpar@209
 | 
   874  | 
  | 
| 
kpeter@301
 | 
   875  | 
    ///This function instantiates a ReachedMap.
  | 
| 
kpeter@244
 | 
   876  | 
    ///\param g is the digraph, to which
  | 
| 
kpeter@301
 | 
   877  | 
    ///we would like to define the ReachedMap.
  | 
| 
kpeter@244
 | 
   878  | 
    static ReachedMap *createReachedMap(const Digraph &g)
  | 
| 
alpar@100
 | 
   879  | 
    {
 | 
| 
kpeter@244
 | 
   880  | 
      return new ReachedMap(g);
  | 
| 
alpar@100
 | 
   881  | 
    }
  | 
| 
alpar@209
 | 
   882  | 
  | 
| 
kpeter@244
 | 
   883  | 
    ///The type of the map that stores the distances of the nodes.
  | 
| 
kpeter@244
 | 
   884  | 
  | 
| 
kpeter@244
 | 
   885  | 
    ///The type of the map that stores the distances of the nodes.
  | 
| 
alpar@100
 | 
   886  | 
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
  | 
| 
kpeter@278
 | 
   887  | 
    typedef typename Digraph::template NodeMap<int> DistMap;
  | 
| 
kpeter@301
 | 
   888  | 
    ///Instantiates a DistMap.
  | 
| 
alpar@209
 | 
   889  | 
  | 
| 
kpeter@301
 | 
   890  | 
    ///This function instantiates a DistMap.
  | 
| 
alpar@210
 | 
   891  | 
    ///\param g is the digraph, to which we would like to define
  | 
| 
kpeter@301
 | 
   892  | 
    ///the DistMap
  | 
| 
kpeter@244
 | 
   893  | 
    static DistMap *createDistMap(const Digraph &g)
  | 
| 
alpar@100
 | 
   894  | 
    {
 | 
| 
kpeter@278
 | 
   895  | 
      return new DistMap(g);
  | 
| 
alpar@100
 | 
   896  | 
    }
  | 
| 
kpeter@278
 | 
   897  | 
  | 
| 
kpeter@278
 | 
   898  | 
    ///The type of the shortest paths.
  | 
| 
kpeter@278
 | 
   899  | 
  | 
| 
kpeter@278
 | 
   900  | 
    ///The type of the shortest paths.
  | 
| 
kpeter@278
 | 
   901  | 
    ///It must meet the \ref concepts::Path "Path" concept.
  | 
| 
kpeter@278
 | 
   902  | 
    typedef lemon::Path<Digraph> Path;
  | 
| 
alpar@100
 | 
   903  | 
  };
  | 
| 
alpar@209
 | 
   904  | 
  | 
| 
kpeter@301
 | 
   905  | 
  /// Default traits class used by BfsWizard
  | 
| 
alpar@100
 | 
   906  | 
  | 
| 
alpar@100
 | 
   907  | 
  /// To make it easier to use Bfs algorithm
  | 
| 
kpeter@244
 | 
   908  | 
  /// we have created a wizard class.
  | 
| 
alpar@100
 | 
   909  | 
  /// This \ref BfsWizard class needs default traits,
  | 
| 
kpeter@244
 | 
   910  | 
  /// as well as the \ref Bfs class.
  | 
| 
alpar@100
 | 
   911  | 
  /// The \ref BfsWizardBase is a class to be the default traits of the
  | 
| 
alpar@100
 | 
   912  | 
  /// \ref BfsWizard class.
  | 
| 
alpar@100
 | 
   913  | 
  template<class GR>
  | 
| 
alpar@100
 | 
   914  | 
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
  | 
| 
alpar@100
 | 
   915  | 
  {
 | 
| 
alpar@100
 | 
   916  | 
  | 
| 
alpar@100
 | 
   917  | 
    typedef BfsWizardDefaultTraits<GR> Base;
  | 
| 
alpar@100
 | 
   918  | 
  protected:
  | 
| 
kpeter@244
 | 
   919  | 
    //The type of the nodes in the digraph.
  | 
| 
alpar@100
 | 
   920  | 
    typedef typename Base::Digraph::Node Node;
  | 
| 
alpar@100
 | 
   921  | 
  | 
| 
kpeter@244
 | 
   922  | 
    //Pointer to the digraph the algorithm runs on.
  | 
| 
alpar@100
 | 
   923  | 
    void *_g;
  | 
| 
kpeter@244
 | 
   924  | 
    //Pointer to the map of reached nodes.
  | 
| 
alpar@100
 | 
   925  | 
    void *_reached;
  | 
| 
kpeter@244
 | 
   926  | 
    //Pointer to the map of processed nodes.
  | 
| 
alpar@100
 | 
   927  | 
    void *_processed;
  | 
| 
kpeter@244
 | 
   928  | 
    //Pointer to the map of predecessors arcs.
  | 
| 
alpar@100
 | 
   929  | 
    void *_pred;
  | 
| 
kpeter@244
 | 
   930  | 
    //Pointer to the map of distances.
  | 
| 
alpar@100
 | 
   931  | 
    void *_dist;
  | 
| 
kpeter@278
 | 
   932  | 
    //Pointer to the shortest path to the target node.
  | 
| 
kpeter@278
 | 
   933  | 
    void *_path;
  | 
| 
kpeter@278
 | 
   934  | 
    //Pointer to the distance of the target node.
  | 
| 
kpeter@278
 | 
   935  | 
    int *_di;
  | 
| 
alpar@209
 | 
   936  | 
  | 
| 
alpar@100
 | 
   937  | 
    public:
  | 
| 
alpar@100
 | 
   938  | 
    /// Constructor.
  | 
| 
alpar@209
 | 
   939  | 
  | 
| 
alpar@100
 | 
   940  | 
    /// This constructor does not require parameters, therefore it initiates
  | 
| 
kpeter@278
 | 
   941  | 
    /// all of the attributes to \c 0.
  | 
| 
alpar@100
 | 
   942  | 
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
  | 
| 
kpeter@278
 | 
   943  | 
                      _dist(0), _path(0), _di(0) {}
 | 
| 
alpar@100
 | 
   944  | 
  | 
| 
alpar@100
 | 
   945  | 
    /// Constructor.
  | 
| 
alpar@209
 | 
   946  | 
  | 
| 
kpeter@278
 | 
   947  | 
    /// This constructor requires one parameter,
  | 
| 
kpeter@278
 | 
   948  | 
    /// others are initiated to \c 0.
  | 
| 
kpeter@244
 | 
   949  | 
    /// \param g The digraph the algorithm runs on.
  | 
| 
kpeter@278
 | 
   950  | 
    BfsWizardBase(const GR &g) :
  | 
| 
alpar@209
 | 
   951  | 
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
  | 
| 
kpeter@278
 | 
   952  | 
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
 | 
| 
alpar@100
 | 
   953  | 
  | 
| 
alpar@100
 | 
   954  | 
  };
  | 
| 
alpar@209
 | 
   955  | 
  | 
| 
kpeter@278
 | 
   956  | 
  /// Auxiliary class for the function-type interface of BFS algorithm.
  | 
| 
alpar@100
 | 
   957  | 
  | 
| 
kpeter@278
 | 
   958  | 
  /// This auxiliary class is created to implement the
  | 
| 
kpeter@278
 | 
   959  | 
  /// \ref bfs() "function-type interface" of \ref Bfs algorithm.
  | 
| 
kpeter@405
 | 
   960  | 
  /// It does not have own \ref run(Node) "run()" method, it uses the
  | 
| 
kpeter@405
 | 
   961  | 
  /// functions and features of the plain \ref Bfs.
  | 
| 
alpar@100
 | 
   962  | 
  ///
  | 
| 
kpeter@278
 | 
   963  | 
  /// This class should only be used through the \ref bfs() function,
  | 
| 
kpeter@278
 | 
   964  | 
  /// which makes it easier to use the algorithm.
  | 
| 
alpar@100
 | 
   965  | 
  template<class TR>
  | 
| 
alpar@100
 | 
   966  | 
  class BfsWizard : public TR
  | 
| 
alpar@100
 | 
   967  | 
  {
 | 
| 
alpar@100
 | 
   968  | 
    typedef TR Base;
  | 
| 
alpar@100
 | 
   969  | 
  | 
| 
kpeter@244
 | 
   970  | 
    ///The type of the digraph the algorithm runs on.
  | 
| 
alpar@100
 | 
   971  | 
    typedef typename TR::Digraph Digraph;
  | 
| 
kpeter@244
 | 
   972  | 
  | 
| 
alpar@100
 | 
   973  | 
    typedef typename Digraph::Node Node;
  | 
| 
alpar@100
 | 
   974  | 
    typedef typename Digraph::NodeIt NodeIt;
  | 
| 
alpar@100
 | 
   975  | 
    typedef typename Digraph::Arc Arc;
  | 
| 
alpar@100
 | 
   976  | 
    typedef typename Digraph::OutArcIt OutArcIt;
  | 
| 
alpar@209
 | 
   977  | 
  | 
| 
kpeter@244
 | 
   978  | 
    ///\brief The type of the map that stores the predecessor
  | 
| 
alpar@100
 | 
   979  | 
    ///arcs of the shortest paths.
  | 
| 
alpar@100
 | 
   980  | 
    typedef typename TR::PredMap PredMap;
  | 
| 
kpeter@244
 | 
   981  | 
    ///\brief The type of the map that stores the distances of the nodes.
  | 
| 
alpar@100
 | 
   982  | 
    typedef typename TR::DistMap DistMap;
  | 
| 
kpeter@244
 | 
   983  | 
    ///\brief The type of the map that indicates which nodes are reached.
  | 
| 
kpeter@244
 | 
   984  | 
    typedef typename TR::ReachedMap ReachedMap;
  | 
| 
kpeter@244
 | 
   985  | 
    ///\brief The type of the map that indicates which nodes are processed.
  | 
| 
kpeter@244
 | 
   986  | 
    typedef typename TR::ProcessedMap ProcessedMap;
  | 
| 
kpeter@278
 | 
   987  | 
    ///The type of the shortest paths
  | 
| 
kpeter@278
 | 
   988  | 
    typedef typename TR::Path Path;
  | 
| 
alpar@100
 | 
   989  | 
  | 
| 
alpar@100
 | 
   990  | 
  public:
  | 
| 
kpeter@244
 | 
   991  | 
  | 
| 
alpar@100
 | 
   992  | 
    /// Constructor.
  | 
| 
alpar@100
 | 
   993  | 
    BfsWizard() : TR() {}
 | 
| 
alpar@100
 | 
   994  | 
  | 
| 
alpar@100
 | 
   995  | 
    /// Constructor that requires parameters.
  | 
| 
alpar@100
 | 
   996  | 
  | 
| 
alpar@100
 | 
   997  | 
    /// Constructor that requires parameters.
  | 
| 
alpar@100
 | 
   998  | 
    /// These parameters will be the default values for the traits class.
  | 
| 
kpeter@278
 | 
   999  | 
    /// \param g The digraph the algorithm runs on.
  | 
| 
kpeter@278
 | 
  1000  | 
    BfsWizard(const Digraph &g) :
  | 
| 
kpeter@278
 | 
  1001  | 
      TR(g) {}
 | 
| 
alpar@100
 | 
  1002  | 
  | 
| 
alpar@100
 | 
  1003  | 
    ///Copy constructor
  | 
| 
alpar@100
 | 
  1004  | 
    BfsWizard(const TR &b) : TR(b) {}
 | 
| 
alpar@100
 | 
  1005  | 
  | 
| 
alpar@100
 | 
  1006  | 
    ~BfsWizard() {}
 | 
| 
alpar@100
 | 
  1007  | 
  | 
| 
kpeter@278
 | 
  1008  | 
    ///Runs BFS algorithm from the given source node.
  | 
| 
alpar@209
 | 
  1009  | 
  | 
| 
kpeter@278
 | 
  1010  | 
    ///This method runs BFS algorithm from node \c s
  | 
| 
kpeter@278
 | 
  1011  | 
    ///in order to compute the shortest path to each node.
  | 
| 
kpeter@278
 | 
  1012  | 
    void run(Node s)
  | 
| 
kpeter@278
 | 
  1013  | 
    {
 | 
| 
kpeter@278
 | 
  1014  | 
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
  | 
| 
kpeter@278
 | 
  1015  | 
      if (Base::_pred)
  | 
| 
kpeter@278
 | 
  1016  | 
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  | 
| 
kpeter@278
 | 
  1017  | 
      if (Base::_dist)
  | 
| 
kpeter@278
 | 
  1018  | 
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  | 
| 
kpeter@278
 | 
  1019  | 
      if (Base::_reached)
  | 
| 
kpeter@278
 | 
  1020  | 
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
  | 
| 
kpeter@278
 | 
  1021  | 
      if (Base::_processed)
  | 
| 
kpeter@278
 | 
  1022  | 
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
  | 
| 
kpeter@278
 | 
  1023  | 
      if (s!=INVALID)
  | 
| 
kpeter@278
 | 
  1024  | 
        alg.run(s);
  | 
| 
kpeter@278
 | 
  1025  | 
      else
  | 
| 
kpeter@278
 | 
  1026  | 
        alg.run();
  | 
| 
kpeter@278
 | 
  1027  | 
    }
  | 
| 
kpeter@278
 | 
  1028  | 
  | 
| 
kpeter@278
 | 
  1029  | 
    ///Finds the shortest path between \c s and \c t.
  | 
| 
kpeter@278
 | 
  1030  | 
  | 
| 
kpeter@278
 | 
  1031  | 
    ///This method runs BFS algorithm from node \c s
  | 
| 
kpeter@278
 | 
  1032  | 
    ///in order to compute the shortest path to node \c t
  | 
| 
kpeter@278
 | 
  1033  | 
    ///(it stops searching when \c t is processed).
  | 
| 
kpeter@278
 | 
  1034  | 
    ///
  | 
| 
kpeter@278
 | 
  1035  | 
    ///\return \c true if \c t is reachable form \c s.
  | 
| 
kpeter@278
 | 
  1036  | 
    bool run(Node s, Node t)
  | 
| 
kpeter@278
 | 
  1037  | 
    {
 | 
| 
kpeter@278
 | 
  1038  | 
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
  | 
| 
kpeter@278
 | 
  1039  | 
      if (Base::_pred)
  | 
| 
kpeter@278
 | 
  1040  | 
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
  | 
| 
kpeter@278
 | 
  1041  | 
      if (Base::_dist)
  | 
| 
kpeter@278
 | 
  1042  | 
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
  | 
| 
kpeter@278
 | 
  1043  | 
      if (Base::_reached)
  | 
| 
kpeter@278
 | 
  1044  | 
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
  | 
| 
kpeter@278
 | 
  1045  | 
      if (Base::_processed)
  | 
| 
kpeter@278
 | 
  1046  | 
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
  | 
| 
kpeter@278
 | 
  1047  | 
      alg.run(s,t);
  | 
| 
kpeter@278
 | 
  1048  | 
      if (Base::_path)
  | 
| 
kpeter@278
 | 
  1049  | 
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
  | 
| 
kpeter@278
 | 
  1050  | 
      if (Base::_di)
  | 
| 
kpeter@278
 | 
  1051  | 
        *Base::_di = alg.dist(t);
  | 
| 
kpeter@278
 | 
  1052  | 
      return alg.reached(t);
  | 
| 
kpeter@278
 | 
  1053  | 
    }
  | 
| 
kpeter@278
 | 
  1054  | 
  | 
| 
kpeter@278
 | 
  1055  | 
    ///Runs BFS algorithm to visit all nodes in the digraph.
  | 
| 
kpeter@278
 | 
  1056  | 
  | 
| 
kpeter@278
 | 
  1057  | 
    ///This method runs BFS algorithm in order to compute
  | 
| 
kpeter@278
 | 
  1058  | 
    ///the shortest path to each node.
  | 
| 
alpar@100
 | 
  1059  | 
    void run()
  | 
| 
alpar@100
 | 
  1060  | 
    {
 | 
| 
kpeter@278
 | 
  1061  | 
      run(INVALID);
  | 
| 
alpar@100
 | 
  1062  | 
    }
  | 
| 
alpar@209
 | 
  1063  | 
  | 
| 
kpeter@244
 | 
  1064  | 
    template<class T>
  | 
| 
kpeter@257
 | 
  1065  | 
    struct SetPredMapBase : public Base {
 | 
| 
kpeter@244
 | 
  1066  | 
      typedef T PredMap;
  | 
| 
kpeter@244
 | 
  1067  | 
      static PredMap *createPredMap(const Digraph &) { return 0; };
 | 
| 
kpeter@257
 | 
  1068  | 
      SetPredMapBase(const TR &b) : TR(b) {}
 | 
| 
kpeter@244
 | 
  1069  | 
    };
  | 
| 
kpeter@278
 | 
  1070  | 
    ///\brief \ref named-func-param "Named parameter"
  | 
| 
kpeter@301
 | 
  1071  | 
    ///for setting PredMap object.
  | 
| 
kpeter@244
 | 
  1072  | 
    ///
  | 
| 
kpeter@278
 | 
  1073  | 
    ///\ref named-func-param "Named parameter"
  | 
| 
kpeter@301
 | 
  1074  | 
    ///for setting PredMap object.
  | 
| 
kpeter@244
 | 
  1075  | 
    template<class T>
  | 
| 
kpeter@257
 | 
  1076  | 
    BfsWizard<SetPredMapBase<T> > predMap(const T &t)
  | 
| 
kpeter@244
 | 
  1077  | 
    {
 | 
| 
kpeter@244
 | 
  1078  | 
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
  | 
| 
kpeter@257
 | 
  1079  | 
      return BfsWizard<SetPredMapBase<T> >(*this);
  | 
| 
kpeter@244
 | 
  1080  | 
    }
  | 
| 
kpeter@244
 | 
  1081  | 
  | 
| 
kpeter@244
 | 
  1082  | 
    template<class T>
  | 
| 
kpeter@257
 | 
  1083  | 
    struct SetReachedMapBase : public Base {
 | 
| 
kpeter@244
 | 
  1084  | 
      typedef T ReachedMap;
  | 
| 
kpeter@244
 | 
  1085  | 
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
 | 
| 
kpeter@257
 | 
  1086  | 
      SetReachedMapBase(const TR &b) : TR(b) {}
 | 
| 
kpeter@244
 | 
  1087  | 
    };
  | 
| 
kpeter@278
 | 
  1088  | 
    ///\brief \ref named-func-param "Named parameter"
  | 
| 
kpeter@301
 | 
  1089  | 
    ///for setting ReachedMap object.
  | 
| 
kpeter@244
 | 
  1090  | 
    ///
  | 
| 
kpeter@278
 | 
  1091  | 
    /// \ref named-func-param "Named parameter"
  | 
| 
kpeter@301
 | 
  1092  | 
    ///for setting ReachedMap object.
  | 
| 
kpeter@244
 | 
  1093  | 
    template<class T>
  | 
| 
kpeter@257
 | 
  1094  | 
    BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
  | 
| 
kpeter@244
 | 
  1095  | 
    {
 | 
| 
kpeter@244
 | 
  1096  | 
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
  | 
| 
kpeter@257
 | 
  1097  | 
      return BfsWizard<SetReachedMapBase<T> >(*this);
  | 
| 
kpeter@244
 | 
  1098  | 
    }
  | 
| 
kpeter@244
 | 
  1099  | 
  | 
| 
kpeter@244
 | 
  1100  | 
    template<class T>
  | 
| 
kpeter@278
 | 
  1101  | 
    struct SetDistMapBase : public Base {
 | 
| 
kpeter@278
 | 
  1102  | 
      typedef T DistMap;
  | 
| 
kpeter@278
 | 
  1103  | 
      static DistMap *createDistMap(const Digraph &) { return 0; };
 | 
| 
kpeter@278
 | 
  1104  | 
      SetDistMapBase(const TR &b) : TR(b) {}
 | 
| 
kpeter@278
 | 
  1105  | 
    };
  | 
| 
kpeter@278
 | 
  1106  | 
    ///\brief \ref named-func-param "Named parameter"
  | 
| 
kpeter@301
 | 
  1107  | 
    ///for setting DistMap object.
  | 
| 
kpeter@278
 | 
  1108  | 
    ///
  | 
| 
kpeter@278
 | 
  1109  | 
    /// \ref named-func-param "Named parameter"
  | 
| 
kpeter@301
 | 
  1110  | 
    ///for setting DistMap object.
  | 
| 
kpeter@278
 | 
  1111  | 
    template<class T>
  | 
| 
kpeter@278
 | 
  1112  | 
    BfsWizard<SetDistMapBase<T> > distMap(const T &t)
  | 
| 
kpeter@278
 | 
  1113  | 
    {
 | 
| 
kpeter@278
 | 
  1114  | 
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
  | 
| 
kpeter@278
 | 
  1115  | 
      return BfsWizard<SetDistMapBase<T> >(*this);
  | 
| 
kpeter@278
 | 
  1116  | 
    }
  | 
| 
kpeter@278
 | 
  1117  | 
  | 
| 
kpeter@278
 | 
  1118  | 
    template<class T>
  | 
| 
kpeter@257
 | 
  1119  | 
    struct SetProcessedMapBase : public Base {
 | 
| 
kpeter@244
 | 
  1120  | 
      typedef T ProcessedMap;
  | 
| 
kpeter@244
 | 
  1121  | 
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
 | 
| 
kpeter@257
 | 
  1122  | 
      SetProcessedMapBase(const TR &b) : TR(b) {}
 | 
| 
kpeter@244
 | 
  1123  | 
    };
  | 
| 
kpeter@278
 | 
  1124  | 
    ///\brief \ref named-func-param "Named parameter"
  | 
| 
kpeter@301
 | 
  1125  | 
    ///for setting ProcessedMap object.
  | 
| 
kpeter@244
 | 
  1126  | 
    ///
  | 
| 
kpeter@278
 | 
  1127  | 
    /// \ref named-func-param "Named parameter"
  | 
| 
kpeter@301
 | 
  1128  | 
    ///for setting ProcessedMap object.
  | 
| 
kpeter@244
 | 
  1129  | 
    template<class T>
  | 
| 
kpeter@257
 | 
  1130  | 
    BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
  | 
| 
kpeter@244
 | 
  1131  | 
    {
 | 
| 
kpeter@244
 | 
  1132  | 
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
  | 
| 
kpeter@257
 | 
  1133  | 
      return BfsWizard<SetProcessedMapBase<T> >(*this);
  | 
| 
kpeter@244
 | 
  1134  | 
    }
  | 
| 
kpeter@244
 | 
  1135  | 
  | 
| 
kpeter@244
 | 
  1136  | 
    template<class T>
  | 
| 
kpeter@278
 | 
  1137  | 
    struct SetPathBase : public Base {
 | 
| 
kpeter@278
 | 
  1138  | 
      typedef T Path;
  | 
| 
kpeter@278
 | 
  1139  | 
      SetPathBase(const TR &b) : TR(b) {}
 | 
| 
kpeter@244
 | 
  1140  | 
    };
  | 
| 
kpeter@278
 | 
  1141  | 
    ///\brief \ref named-func-param "Named parameter"
  | 
| 
kpeter@278
 | 
  1142  | 
    ///for getting the shortest path to the target node.
  | 
| 
kpeter@244
 | 
  1143  | 
    ///
  | 
| 
kpeter@278
 | 
  1144  | 
    ///\ref named-func-param "Named parameter"
  | 
| 
kpeter@278
 | 
  1145  | 
    ///for getting the shortest path to the target node.
  | 
| 
kpeter@244
 | 
  1146  | 
    template<class T>
  | 
| 
kpeter@278
 | 
  1147  | 
    BfsWizard<SetPathBase<T> > path(const T &t)
  | 
| 
kpeter@244
 | 
  1148  | 
    {
 | 
| 
kpeter@278
 | 
  1149  | 
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
  | 
| 
kpeter@278
 | 
  1150  | 
      return BfsWizard<SetPathBase<T> >(*this);
  | 
| 
kpeter@278
 | 
  1151  | 
    }
  | 
| 
kpeter@278
 | 
  1152  | 
  | 
| 
kpeter@278
 | 
  1153  | 
    ///\brief \ref named-func-param "Named parameter"
  | 
| 
kpeter@278
 | 
  1154  | 
    ///for getting the distance of the target node.
  | 
| 
kpeter@278
 | 
  1155  | 
    ///
  | 
| 
kpeter@278
 | 
  1156  | 
    ///\ref named-func-param "Named parameter"
  | 
| 
kpeter@278
 | 
  1157  | 
    ///for getting the distance of the target node.
  | 
| 
kpeter@278
 | 
  1158  | 
    BfsWizard dist(const int &d)
  | 
| 
kpeter@278
 | 
  1159  | 
    {
 | 
| 
kpeter@278
 | 
  1160  | 
      Base::_di=const_cast<int*>(&d);
  | 
| 
kpeter@278
 | 
  1161  | 
      return *this;
  | 
| 
kpeter@244
 | 
  1162  | 
    }
  | 
| 
kpeter@244
 | 
  1163  | 
  | 
| 
alpar@100
 | 
  1164  | 
  };
  | 
| 
alpar@209
 | 
  1165  | 
  | 
| 
kpeter@278
 | 
  1166  | 
  ///Function-type interface for BFS algorithm.
  | 
| 
alpar@100
 | 
  1167  | 
  | 
| 
alpar@100
 | 
  1168  | 
  /// \ingroup search
  | 
| 
kpeter@278
 | 
  1169  | 
  ///Function-type interface for BFS algorithm.
  | 
| 
alpar@100
 | 
  1170  | 
  ///
  | 
| 
kpeter@278
 | 
  1171  | 
  ///This function also has several \ref named-func-param "named parameters",
  | 
| 
alpar@100
 | 
  1172  | 
  ///they are declared as the members of class \ref BfsWizard.
  | 
| 
kpeter@278
 | 
  1173  | 
  ///The following examples show how to use these parameters.
  | 
| 
alpar@100
 | 
  1174  | 
  ///\code
  | 
| 
kpeter@278
 | 
  1175  | 
  ///  // Compute shortest path from node s to each node
  | 
| 
kpeter@278
 | 
  1176  | 
  ///  bfs(g).predMap(preds).distMap(dists).run(s);
  | 
| 
kpeter@278
 | 
  1177  | 
  ///
  | 
| 
kpeter@278
 | 
  1178  | 
  ///  // Compute shortest path from s to t
  | 
| 
kpeter@278
 | 
  1179  | 
  ///  bool reached = bfs(g).path(p).dist(d).run(s,t);
  | 
| 
alpar@100
 | 
  1180  | 
  ///\endcode
  | 
| 
kpeter@405
 | 
  1181  | 
  ///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()"
  | 
| 
alpar@100
 | 
  1182  | 
  ///to the end of the parameter list.
  | 
| 
alpar@100
 | 
  1183  | 
  ///\sa BfsWizard
  | 
| 
alpar@100
 | 
  1184  | 
  ///\sa Bfs
  | 
| 
alpar@100
 | 
  1185  | 
  template<class GR>
  | 
| 
alpar@100
 | 
  1186  | 
  BfsWizard<BfsWizardBase<GR> >
  | 
| 
kpeter@278
 | 
  1187  | 
  bfs(const GR &digraph)
  | 
| 
alpar@100
 | 
  1188  | 
  {
 | 
| 
kpeter@278
 | 
  1189  | 
    return BfsWizard<BfsWizardBase<GR> >(digraph);
  | 
| 
alpar@100
 | 
  1190  | 
  }
  | 
| 
alpar@100
 | 
  1191  | 
  | 
| 
alpar@100
 | 
  1192  | 
#ifdef DOXYGEN
  | 
| 
kpeter@244
 | 
  1193  | 
  /// \brief Visitor class for BFS.
  | 
| 
alpar@209
 | 
  1194  | 
  ///
  | 
| 
alpar@100
 | 
  1195  | 
  /// This class defines the interface of the BfsVisit events, and
  | 
| 
kpeter@244
 | 
  1196  | 
  /// it could be the base of a real visitor class.
  | 
| 
alpar@100
 | 
  1197  | 
  template <typename _Digraph>
  | 
| 
alpar@100
 | 
  1198  | 
  struct BfsVisitor {
 | 
| 
alpar@100
 | 
  1199  | 
    typedef _Digraph Digraph;
  | 
| 
alpar@100
 | 
  1200  | 
    typedef typename Digraph::Arc Arc;
  | 
| 
alpar@100
 | 
  1201  | 
    typedef typename Digraph::Node Node;
  | 
| 
kpeter@244
 | 
  1202  | 
    /// \brief Called for the source node(s) of the BFS.
  | 
| 
alpar@209
 | 
  1203  | 
    ///
  | 
| 
kpeter@244
 | 
  1204  | 
    /// This function is called for the source node(s) of the BFS.
  | 
| 
kpeter@244
 | 
  1205  | 
    void start(const Node& node) {}
 | 
| 
kpeter@244
 | 
  1206  | 
    /// \brief Called when a node is reached first time.
  | 
| 
kpeter@244
 | 
  1207  | 
    ///
  | 
| 
kpeter@244
 | 
  1208  | 
    /// This function is called when a node is reached first time.
  | 
| 
kpeter@244
 | 
  1209  | 
    void reach(const Node& node) {}
 | 
| 
kpeter@244
 | 
  1210  | 
    /// \brief Called when a node is processed.
  | 
| 
kpeter@244
 | 
  1211  | 
    ///
  | 
| 
kpeter@244
 | 
  1212  | 
    /// This function is called when a node is processed.
  | 
| 
kpeter@244
 | 
  1213  | 
    void process(const Node& node) {}
 | 
| 
kpeter@244
 | 
  1214  | 
    /// \brief Called when an arc reaches a new node.
  | 
| 
kpeter@244
 | 
  1215  | 
    ///
  | 
| 
kpeter@244
 | 
  1216  | 
    /// This function is called when the BFS finds an arc whose target node
  | 
| 
kpeter@244
 | 
  1217  | 
    /// is not reached yet.
  | 
| 
alpar@100
 | 
  1218  | 
    void discover(const Arc& arc) {}
 | 
| 
kpeter@244
 | 
  1219  | 
    /// \brief Called when an arc is examined but its target node is
  | 
| 
alpar@100
 | 
  1220  | 
    /// already discovered.
  | 
| 
alpar@209
 | 
  1221  | 
    ///
  | 
| 
kpeter@244
 | 
  1222  | 
    /// This function is called when an arc is examined but its target node is
  | 
| 
alpar@100
 | 
  1223  | 
    /// already discovered.
  | 
| 
alpar@100
 | 
  1224  | 
    void examine(const Arc& arc) {}
 | 
| 
alpar@100
 | 
  1225  | 
  };
  | 
| 
alpar@100
 | 
  1226  | 
#else
  | 
| 
alpar@100
 | 
  1227  | 
  template <typename _Digraph>
  | 
| 
alpar@100
 | 
  1228  | 
  struct BfsVisitor {
 | 
| 
alpar@100
 | 
  1229  | 
    typedef _Digraph Digraph;
  | 
| 
alpar@100
 | 
  1230  | 
    typedef typename Digraph::Arc Arc;
  | 
| 
alpar@100
 | 
  1231  | 
    typedef typename Digraph::Node Node;
  | 
| 
kpeter@244
 | 
  1232  | 
    void start(const Node&) {}
 | 
| 
kpeter@244
 | 
  1233  | 
    void reach(const Node&) {}
 | 
| 
kpeter@244
 | 
  1234  | 
    void process(const Node&) {}
 | 
| 
alpar@100
 | 
  1235  | 
    void discover(const Arc&) {}
 | 
| 
alpar@100
 | 
  1236  | 
    void examine(const Arc&) {}
 | 
| 
alpar@100
 | 
  1237  | 
  | 
| 
alpar@100
 | 
  1238  | 
    template <typename _Visitor>
  | 
| 
alpar@100
 | 
  1239  | 
    struct Constraints {
 | 
| 
alpar@100
 | 
  1240  | 
      void constraints() {
 | 
| 
alpar@209
 | 
  1241  | 
        Arc arc;
  | 
| 
alpar@209
 | 
  1242  | 
        Node node;
  | 
| 
kpeter@244
 | 
  1243  | 
        visitor.start(node);
  | 
| 
kpeter@244
 | 
  1244  | 
        visitor.reach(node);
  | 
| 
kpeter@244
 | 
  1245  | 
        visitor.process(node);
  | 
| 
alpar@209
 | 
  1246  | 
        visitor.discover(arc);
  | 
| 
alpar@209
 | 
  1247  | 
        visitor.examine(arc);
  | 
| 
alpar@100
 | 
  1248  | 
      }
  | 
| 
alpar@100
 | 
  1249  | 
      _Visitor& visitor;
  | 
| 
alpar@100
 | 
  1250  | 
    };
  | 
| 
alpar@100
 | 
  1251  | 
  };
  | 
| 
alpar@100
 | 
  1252  | 
#endif
  | 
| 
alpar@100
 | 
  1253  | 
  | 
| 
alpar@100
 | 
  1254  | 
  /// \brief Default traits class of BfsVisit class.
  | 
| 
alpar@100
 | 
  1255  | 
  ///
  | 
| 
alpar@100
 | 
  1256  | 
  /// Default traits class of BfsVisit class.
  | 
| 
kpeter@244
 | 
  1257  | 
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
  | 
| 
alpar@100
 | 
  1258  | 
  template<class _Digraph>
  | 
| 
alpar@100
 | 
  1259  | 
  struct BfsVisitDefaultTraits {
 | 
| 
alpar@100
 | 
  1260  | 
  | 
| 
kpeter@244
 | 
  1261  | 
    /// \brief The type of the digraph the algorithm runs on.
  | 
| 
alpar@100
 | 
  1262  | 
    typedef _Digraph Digraph;
  | 
| 
alpar@100
 | 
  1263  | 
  | 
| 
alpar@100
 | 
  1264  | 
    /// \brief The type of the map that indicates which nodes are reached.
  | 
| 
alpar@209
 | 
  1265  | 
    ///
  | 
| 
alpar@100
 | 
  1266  | 
    /// The type of the map that indicates which nodes are reached.
  | 
| 
kpeter@244
 | 
  1267  | 
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
  | 
| 
alpar@100
 | 
  1268  | 
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
  | 
| 
alpar@100
 | 
  1269  | 
  | 
| 
kpeter@301
 | 
  1270  | 
    /// \brief Instantiates a ReachedMap.
  | 
| 
alpar@100
 | 
  1271  | 
    ///
  | 
| 
kpeter@301
 | 
  1272  | 
    /// This function instantiates a ReachedMap.
  | 
| 
alpar@100
 | 
  1273  | 
    /// \param digraph is the digraph, to which
  | 
| 
kpeter@301
 | 
  1274  | 
    /// we would like to define the ReachedMap.
  | 
| 
alpar@100
 | 
  1275  | 
    static ReachedMap *createReachedMap(const Digraph &digraph) {
 | 
| 
alpar@100
 | 
  1276  | 
      return new ReachedMap(digraph);
  | 
| 
alpar@100
 | 
  1277  | 
    }
  | 
| 
alpar@100
 | 
  1278  | 
  | 
| 
alpar@100
 | 
  1279  | 
  };
  | 
| 
alpar@100
 | 
  1280  | 
  | 
| 
alpar@100
 | 
  1281  | 
  /// \ingroup search
  | 
| 
alpar@209
 | 
  1282  | 
  ///
  | 
| 
kpeter@244
 | 
  1283  | 
  /// \brief %BFS algorithm class with visitor interface.
  | 
| 
alpar@209
 | 
  1284  | 
  ///
  | 
| 
alpar@100
 | 
  1285  | 
  /// This class provides an efficient implementation of the %BFS algorithm
  | 
| 
alpar@100
 | 
  1286  | 
  /// with visitor interface.
  | 
| 
alpar@100
 | 
  1287  | 
  ///
  | 
| 
alpar@100
 | 
  1288  | 
  /// The %BfsVisit class provides an alternative interface to the Bfs
  | 
| 
alpar@100
 | 
  1289  | 
  /// class. It works with callback mechanism, the BfsVisit object calls
  | 
| 
kpeter@244
 | 
  1290  | 
  /// the member functions of the \c Visitor class on every BFS event.
  | 
| 
alpar@100
 | 
  1291  | 
  ///
  | 
| 
kpeter@252
 | 
  1292  | 
  /// This interface of the BFS algorithm should be used in special cases
  | 
| 
kpeter@252
 | 
  1293  | 
  /// when extra actions have to be performed in connection with certain
  | 
| 
kpeter@252
 | 
  1294  | 
  /// events of the BFS algorithm. Otherwise consider to use Bfs or bfs()
  | 
| 
kpeter@252
 | 
  1295  | 
  /// instead.
  | 
| 
kpeter@252
 | 
  1296  | 
  ///
  | 
| 
kpeter@244
 | 
  1297  | 
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
  | 
| 
alpar@210
 | 
  1298  | 
  /// The default value is
  | 
| 
kpeter@244
 | 
  1299  | 
  /// \ref ListDigraph. The value of _Digraph is not used directly by
  | 
| 
kpeter@244
 | 
  1300  | 
  /// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits.
  | 
| 
kpeter@244
 | 
  1301  | 
  /// \tparam _Visitor The Visitor type that is used by the algorithm.
  | 
| 
kpeter@244
 | 
  1302  | 
  /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which
  | 
| 
kpeter@244
 | 
  1303  | 
  /// does not observe the BFS events. If you want to observe the BFS
  | 
| 
kpeter@244
 | 
  1304  | 
  /// events, you should implement your own visitor class.
  | 
| 
alpar@209
 | 
  1305  | 
  /// \tparam _Traits Traits class to set various data types used by the
  | 
| 
alpar@100
 | 
  1306  | 
  /// algorithm. The default traits class is
  | 
| 
alpar@100
 | 
  1307  | 
  /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>".
  | 
| 
alpar@100
 | 
  1308  | 
  /// See \ref BfsVisitDefaultTraits for the documentation of
  | 
| 
kpeter@244
 | 
  1309  | 
  /// a BFS visit traits class.
  | 
| 
alpar@100
 | 
  1310  | 
#ifdef DOXYGEN
  | 
| 
alpar@100
 | 
  1311  | 
  template <typename _Digraph, typename _Visitor, typename _Traits>
  | 
| 
alpar@100
 | 
  1312  | 
#else
  | 
| 
alpar@100
 | 
  1313  | 
  template <typename _Digraph = ListDigraph,
  | 
| 
alpar@209
 | 
  1314  | 
            typename _Visitor = BfsVisitor<_Digraph>,
  | 
| 
deba@288
 | 
  1315  | 
            typename _Traits = BfsVisitDefaultTraits<_Digraph> >
  | 
| 
alpar@100
 | 
  1316  | 
#endif
  | 
| 
alpar@100
 | 
  1317  | 
  class BfsVisit {
 | 
| 
alpar@100
 | 
  1318  | 
  public:
  | 
| 
alpar@209
 | 
  1319  | 
  | 
| 
kpeter@244
 | 
  1320  | 
    ///The traits class.
  | 
| 
alpar@100
 | 
  1321  | 
    typedef _Traits Traits;
  | 
| 
alpar@100
 | 
  1322  | 
  | 
| 
kpeter@244
 | 
  1323  | 
    ///The type of the digraph the algorithm runs on.
  | 
| 
alpar@100
 | 
  1324  | 
    typedef typename Traits::Digraph Digraph;
  | 
| 
alpar@100
 | 
  1325  | 
  | 
| 
kpeter@244
 | 
  1326  | 
    ///The visitor type used by the algorithm.
  | 
| 
alpar@100
 | 
  1327  | 
    typedef _Visitor Visitor;
  | 
| 
alpar@100
 | 
  1328  | 
  | 
| 
kpeter@244
 | 
  1329  | 
    ///The type of the map that indicates which nodes are reached.
  | 
| 
alpar@100
 | 
  1330  | 
    typedef typename Traits::ReachedMap ReachedMap;
  | 
| 
alpar@100
 | 
  1331  | 
  | 
| 
alpar@100
 | 
  1332  | 
  private:
  | 
| 
alpar@100
 | 
  1333  | 
  | 
| 
alpar@100
 | 
  1334  | 
    typedef typename Digraph::Node Node;
  | 
| 
alpar@100
 | 
  1335  | 
    typedef typename Digraph::NodeIt NodeIt;
  | 
| 
alpar@100
 | 
  1336  | 
    typedef typename Digraph::Arc Arc;
  | 
| 
alpar@100
 | 
  1337  | 
    typedef typename Digraph::OutArcIt OutArcIt;
  | 
| 
alpar@100
 | 
  1338  | 
  | 
| 
kpeter@244
 | 
  1339  | 
    //Pointer to the underlying digraph.
  | 
| 
alpar@100
 | 
  1340  | 
    const Digraph *_digraph;
  | 
| 
kpeter@244
 | 
  1341  | 
    //Pointer to the visitor object.
  | 
| 
alpar@100
 | 
  1342  | 
    Visitor *_visitor;
  | 
| 
kpeter@244
 | 
  1343  | 
    //Pointer to the map of reached status of the nodes.
  | 
| 
alpar@100
 | 
  1344  | 
    ReachedMap *_reached;
  | 
| 
kpeter@244
 | 
  1345  | 
    //Indicates if _reached is locally allocated (true) or not.
  | 
| 
alpar@100
 | 
  1346  | 
    bool local_reached;
  | 
| 
alpar@100
 | 
  1347  | 
  | 
| 
alpar@100
 | 
  1348  | 
    std::vector<typename Digraph::Node> _list;
  | 
| 
alpar@100
 | 
  1349  | 
    int _list_front, _list_back;
  | 
| 
alpar@100
 | 
  1350  | 
  | 
| 
alpar@280
 | 
  1351  | 
    //Creates the maps if necessary.
  | 
| 
alpar@100
 | 
  1352  | 
    void create_maps() {
 | 
| 
alpar@100
 | 
  1353  | 
      if(!_reached) {
 | 
| 
alpar@209
 | 
  1354  | 
        local_reached = true;
  | 
| 
alpar@209
 | 
  1355  | 
        _reached = Traits::createReachedMap(*_digraph);
  | 
| 
alpar@100
 | 
  1356  | 
      }
  | 
| 
alpar@100
 | 
  1357  | 
    }
  | 
| 
alpar@100
 | 
  1358  | 
  | 
| 
alpar@100
 | 
  1359  | 
  protected:
  | 
| 
alpar@100
 | 
  1360  | 
  | 
| 
alpar@100
 | 
  1361  | 
    BfsVisit() {}
 | 
| 
alpar@209
 | 
  1362  | 
  | 
| 
alpar@100
 | 
  1363  | 
  public:
  | 
| 
alpar@100
 | 
  1364  | 
  | 
| 
alpar@100
 | 
  1365  | 
    typedef BfsVisit Create;
  | 
| 
alpar@100
 | 
  1366  | 
  | 
| 
kpeter@405
 | 
  1367  | 
    /// \name Named Template Parameters
  | 
| 
alpar@100
 | 
  1368  | 
  | 
| 
alpar@100
 | 
  1369  | 
    ///@{
 | 
| 
alpar@100
 | 
  1370  | 
    template <class T>
  | 
| 
kpeter@257
 | 
  1371  | 
    struct SetReachedMapTraits : public Traits {
 | 
| 
alpar@100
 | 
  1372  | 
      typedef T ReachedMap;
  | 
| 
alpar@100
 | 
  1373  | 
      static ReachedMap *createReachedMap(const Digraph &digraph) {
 | 
| 
deba@290
 | 
  1374  | 
        LEMON_ASSERT(false, "ReachedMap is not initialized");
  | 
| 
deba@290
 | 
  1375  | 
        return 0; // ignore warnings
  | 
| 
alpar@100
 | 
  1376  | 
      }
  | 
| 
alpar@100
 | 
  1377  | 
    };
  | 
| 
alpar@209
 | 
  1378  | 
    /// \brief \ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@244
 | 
  1379  | 
    /// ReachedMap type.
  | 
| 
alpar@100
 | 
  1380  | 
    ///
  | 
| 
kpeter@244
 | 
  1381  | 
    /// \ref named-templ-param "Named parameter" for setting ReachedMap type.
  | 
| 
alpar@100
 | 
  1382  | 
    template <class T>
  | 
| 
kpeter@257
 | 
  1383  | 
    struct SetReachedMap : public BfsVisit< Digraph, Visitor,
  | 
| 
kpeter@257
 | 
  1384  | 
                                            SetReachedMapTraits<T> > {
 | 
| 
kpeter@257
 | 
  1385  | 
      typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
  | 
| 
alpar@100
 | 
  1386  | 
    };
  | 
| 
alpar@100
 | 
  1387  | 
    ///@}
  | 
| 
alpar@100
 | 
  1388  | 
  | 
| 
alpar@209
 | 
  1389  | 
  public:
  | 
| 
alpar@209
 | 
  1390  | 
  | 
| 
alpar@100
 | 
  1391  | 
    /// \brief Constructor.
  | 
| 
alpar@100
 | 
  1392  | 
    ///
  | 
| 
alpar@100
 | 
  1393  | 
    /// Constructor.
  | 
| 
alpar@100
 | 
  1394  | 
    ///
  | 
| 
kpeter@244
 | 
  1395  | 
    /// \param digraph The digraph the algorithm runs on.
  | 
| 
kpeter@244
 | 
  1396  | 
    /// \param visitor The visitor object of the algorithm.
  | 
| 
alpar@209
 | 
  1397  | 
    BfsVisit(const Digraph& digraph, Visitor& visitor)
  | 
| 
alpar@100
 | 
  1398  | 
      : _digraph(&digraph), _visitor(&visitor),
  | 
| 
alpar@209
 | 
  1399  | 
        _reached(0), local_reached(false) {}
 | 
| 
alpar@209
 | 
  1400  | 
  | 
| 
alpar@100
 | 
  1401  | 
    /// \brief Destructor.
  | 
| 
alpar@100
 | 
  1402  | 
    ~BfsVisit() {
 | 
| 
alpar@100
 | 
  1403  | 
      if(local_reached) delete _reached;
  | 
| 
alpar@100
 | 
  1404  | 
    }
  | 
| 
alpar@100
 | 
  1405  | 
  | 
| 
kpeter@244
 | 
  1406  | 
    /// \brief Sets the map that indicates which nodes are reached.
  | 
| 
alpar@100
 | 
  1407  | 
    ///
  | 
| 
kpeter@244
 | 
  1408  | 
    /// Sets the map that indicates which nodes are reached.
  | 
| 
kpeter@405
 | 
  1409  | 
    /// If you don't use this function before calling \ref run(Node) "run()"
  | 
| 
kpeter@405
 | 
  1410  | 
    /// or \ref init(), an instance will be allocated automatically.
  | 
| 
kpeter@405
 | 
  1411  | 
    /// The destructor deallocates this automatically allocated map,
  | 
| 
kpeter@405
 | 
  1412  | 
    /// of course.
  | 
| 
alpar@100
 | 
  1413  | 
    /// \return <tt> (*this) </tt>
  | 
| 
alpar@100
 | 
  1414  | 
    BfsVisit &reachedMap(ReachedMap &m) {
 | 
| 
alpar@100
 | 
  1415  | 
      if(local_reached) {
 | 
| 
alpar@209
 | 
  1416  | 
        delete _reached;
  | 
| 
alpar@209
 | 
  1417  | 
        local_reached = false;
  | 
| 
alpar@100
 | 
  1418  | 
      }
  | 
| 
alpar@100
 | 
  1419  | 
      _reached = &m;
  | 
| 
alpar@100
 | 
  1420  | 
      return *this;
  | 
| 
alpar@100
 | 
  1421  | 
    }
  | 
| 
alpar@100
 | 
  1422  | 
  | 
| 
alpar@100
 | 
  1423  | 
  public:
  | 
| 
kpeter@244
 | 
  1424  | 
  | 
| 
kpeter@405
 | 
  1425  | 
    /// \name Execution Control
  | 
| 
kpeter@405
 | 
  1426  | 
    /// The simplest way to execute the BFS algorithm is to use one of the
  | 
| 
kpeter@405
 | 
  1427  | 
    /// member functions called \ref run(Node) "run()".\n
  | 
| 
kpeter@405
 | 
  1428  | 
    /// If you need more control on the execution, first you have to call
  | 
| 
kpeter@405
 | 
  1429  | 
    /// \ref init(), then you can add several source nodes with
  | 
| 
kpeter@405
 | 
  1430  | 
    /// \ref addSource(). Finally the actual path computation can be
  | 
| 
kpeter@405
 | 
  1431  | 
    /// performed with one of the \ref start() functions.
  | 
| 
alpar@100
 | 
  1432  | 
  | 
| 
alpar@100
 | 
  1433  | 
    /// @{
 | 
| 
kpeter@244
 | 
  1434  | 
  | 
| 
alpar@100
 | 
  1435  | 
    /// \brief Initializes the internal data structures.
  | 
| 
alpar@100
 | 
  1436  | 
    ///
  | 
| 
alpar@100
 | 
  1437  | 
    /// Initializes the internal data structures.
  | 
| 
alpar@100
 | 
  1438  | 
    void init() {
 | 
| 
alpar@100
 | 
  1439  | 
      create_maps();
  | 
| 
alpar@100
 | 
  1440  | 
      _list.resize(countNodes(*_digraph));
  | 
| 
alpar@100
 | 
  1441  | 
      _list_front = _list_back = -1;
  | 
| 
alpar@100
 | 
  1442  | 
      for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
 | 
| 
alpar@209
 | 
  1443  | 
        _reached->set(u, false);
  | 
| 
alpar@100
 | 
  1444  | 
      }
  | 
| 
alpar@100
 | 
  1445  | 
    }
  | 
| 
alpar@209
 | 
  1446  | 
  | 
| 
alpar@100
 | 
  1447  | 
    /// \brief Adds a new source node.
  | 
| 
alpar@100
 | 
  1448  | 
    ///
  | 
| 
alpar@100
 | 
  1449  | 
    /// Adds a new source node to the set of nodes to be processed.
  | 
| 
alpar@100
 | 
  1450  | 
    void addSource(Node s) {
 | 
| 
alpar@100
 | 
  1451  | 
      if(!(*_reached)[s]) {
 | 
| 
alpar@209
 | 
  1452  | 
          _reached->set(s,true);
  | 
| 
alpar@209
 | 
  1453  | 
          _visitor->start(s);
  | 
| 
alpar@209
 | 
  1454  | 
          _visitor->reach(s);
  | 
| 
alpar@100
 | 
  1455  | 
          _list[++_list_back] = s;
  | 
| 
alpar@209
 | 
  1456  | 
        }
  | 
| 
alpar@100
 | 
  1457  | 
    }
  | 
| 
alpar@209
 | 
  1458  | 
  | 
| 
alpar@100
 | 
  1459  | 
    /// \brief Processes the next node.
  | 
| 
alpar@100
 | 
  1460  | 
    ///
  | 
| 
alpar@100
 | 
  1461  | 
    /// Processes the next node.
  | 
| 
alpar@100
 | 
  1462  | 
    ///
  | 
| 
alpar@100
 | 
  1463  | 
    /// \return The processed node.
  | 
| 
alpar@100
 | 
  1464  | 
    ///
  | 
| 
kpeter@244
 | 
  1465  | 
    /// \pre The queue must not be empty.
  | 
| 
alpar@209
 | 
  1466  | 
    Node processNextNode() {
 | 
| 
alpar@100
 | 
  1467  | 
      Node n = _list[++_list_front];
  | 
| 
alpar@100
 | 
  1468  | 
      _visitor->process(n);
  | 
| 
alpar@100
 | 
  1469  | 
      Arc e;
  | 
| 
alpar@100
 | 
  1470  | 
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
 | 
| 
alpar@100
 | 
  1471  | 
        Node m = _digraph->target(e);
  | 
| 
alpar@100
 | 
  1472  | 
        if (!(*_reached)[m]) {
 | 
| 
alpar@100
 | 
  1473  | 
          _visitor->discover(e);
  | 
| 
alpar@100
 | 
  1474  | 
          _visitor->reach(m);
  | 
| 
alpar@100
 | 
  1475  | 
          _reached->set(m, true);
  | 
| 
alpar@100
 | 
  1476  | 
          _list[++_list_back] = m;
  | 
| 
alpar@100
 | 
  1477  | 
        } else {
 | 
| 
alpar@100
 | 
  1478  | 
          _visitor->examine(e);
  | 
| 
alpar@100
 | 
  1479  | 
        }
  | 
| 
alpar@100
 | 
  1480  | 
      }
  | 
| 
alpar@100
 | 
  1481  | 
      return n;
  | 
| 
alpar@100
 | 
  1482  | 
    }
  | 
| 
alpar@100
 | 
  1483  | 
  | 
| 
alpar@100
 | 
  1484  | 
    /// \brief Processes the next node.
  | 
| 
alpar@100
 | 
  1485  | 
    ///
  | 
| 
kpeter@244
 | 
  1486  | 
    /// Processes the next node and checks if the given target node
  | 
| 
alpar@100
 | 
  1487  | 
    /// is reached. If the target node is reachable from the processed
  | 
| 
kpeter@244
 | 
  1488  | 
    /// node, then the \c reach parameter will be set to \c true.
  | 
| 
alpar@100
 | 
  1489  | 
    ///
  | 
| 
alpar@100
 | 
  1490  | 
    /// \param target The target node.
  | 
| 
kpeter@244
 | 
  1491  | 
    /// \retval reach Indicates if the target node is reached.
  | 
| 
kpeter@244
 | 
  1492  | 
    /// It should be initially \c false.
  | 
| 
kpeter@244
 | 
  1493  | 
    ///
  | 
| 
alpar@100
 | 
  1494  | 
    /// \return The processed node.
  | 
| 
alpar@100
 | 
  1495  | 
    ///
  | 
| 
kpeter@244
 | 
  1496  | 
    /// \pre The queue must not be empty.
  | 
| 
alpar@100
 | 
  1497  | 
    Node processNextNode(Node target, bool& reach) {
 | 
| 
alpar@100
 | 
  1498  | 
      Node n = _list[++_list_front];
  | 
| 
alpar@100
 | 
  1499  | 
      _visitor->process(n);
  | 
| 
alpar@100
 | 
  1500  | 
      Arc e;
  | 
| 
alpar@100
 | 
  1501  | 
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
 | 
| 
alpar@100
 | 
  1502  | 
        Node m = _digraph->target(e);
  | 
| 
alpar@100
 | 
  1503  | 
        if (!(*_reached)[m]) {
 | 
| 
alpar@100
 | 
  1504  | 
          _visitor->discover(e);
  | 
| 
alpar@100
 | 
  1505  | 
          _visitor->reach(m);
  | 
| 
alpar@100
 | 
  1506  | 
          _reached->set(m, true);
  | 
| 
alpar@100
 | 
  1507  | 
          _list[++_list_back] = m;
  | 
| 
alpar@100
 | 
  1508  | 
          reach = reach || (target == m);
  | 
| 
alpar@100
 | 
  1509  | 
        } else {
 | 
| 
alpar@100
 | 
  1510  | 
          _visitor->examine(e);
  | 
| 
alpar@100
 | 
  1511  | 
        }
  | 
| 
alpar@100
 | 
  1512  | 
      }
  | 
| 
alpar@100
 | 
  1513  | 
      return n;
  | 
| 
alpar@100
 | 
  1514  | 
    }
  | 
| 
alpar@100
 | 
  1515  | 
  | 
| 
alpar@100
 | 
  1516  | 
    /// \brief Processes the next node.
  | 
| 
alpar@100
 | 
  1517  | 
    ///
  | 
| 
kpeter@244
 | 
  1518  | 
    /// Processes the next node and checks if at least one of reached
  | 
| 
kpeter@244
 | 
  1519  | 
    /// nodes has \c true value in the \c nm node map. If one node
  | 
| 
kpeter@244
 | 
  1520  | 
    /// with \c true value is reachable from the processed node, then the
  | 
| 
kpeter@244
 | 
  1521  | 
    /// \c rnode parameter will be set to the first of such nodes.
  | 
| 
alpar@100
 | 
  1522  | 
    ///
  | 
| 
kpeter@244
 | 
  1523  | 
    /// \param nm A \c bool (or convertible) node map that indicates the
  | 
| 
kpeter@244
 | 
  1524  | 
    /// possible targets.
  | 
| 
alpar@100
 | 
  1525  | 
    /// \retval rnode The reached target node.
  | 
| 
kpeter@244
 | 
  1526  | 
    /// It should be initially \c INVALID.
  | 
| 
kpeter@244
 | 
  1527  | 
    ///
  | 
| 
alpar@100
 | 
  1528  | 
    /// \return The processed node.
  | 
| 
alpar@100
 | 
  1529  | 
    ///
  | 
| 
kpeter@244
 | 
  1530  | 
    /// \pre The queue must not be empty.
  | 
| 
alpar@100
 | 
  1531  | 
    template <typename NM>
  | 
| 
alpar@100
 | 
  1532  | 
    Node processNextNode(const NM& nm, Node& rnode) {
 | 
| 
alpar@100
 | 
  1533  | 
      Node n = _list[++_list_front];
  | 
| 
alpar@100
 | 
  1534  | 
      _visitor->process(n);
  | 
| 
alpar@100
 | 
  1535  | 
      Arc e;
  | 
| 
alpar@100
 | 
  1536  | 
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
 | 
| 
alpar@100
 | 
  1537  | 
        Node m = _digraph->target(e);
  | 
| 
alpar@100
 | 
  1538  | 
        if (!(*_reached)[m]) {
 | 
| 
alpar@100
 | 
  1539  | 
          _visitor->discover(e);
  | 
| 
alpar@100
 | 
  1540  | 
          _visitor->reach(m);
  | 
| 
alpar@100
 | 
  1541  | 
          _reached->set(m, true);
  | 
| 
alpar@100
 | 
  1542  | 
          _list[++_list_back] = m;
  | 
| 
alpar@100
 | 
  1543  | 
          if (nm[m] && rnode == INVALID) rnode = m;
  | 
| 
alpar@100
 | 
  1544  | 
        } else {
 | 
| 
alpar@100
 | 
  1545  | 
          _visitor->examine(e);
  | 
| 
alpar@100
 | 
  1546  | 
        }
  | 
| 
alpar@100
 | 
  1547  | 
      }
  | 
| 
alpar@100
 | 
  1548  | 
      return n;
  | 
| 
alpar@100
 | 
  1549  | 
    }
  | 
| 
alpar@100
 | 
  1550  | 
  | 
| 
kpeter@244
 | 
  1551  | 
    /// \brief The next node to be processed.
  | 
| 
alpar@100
 | 
  1552  | 
    ///
  | 
| 
kpeter@244
 | 
  1553  | 
    /// Returns the next node to be processed or \c INVALID if the queue
  | 
| 
kpeter@244
 | 
  1554  | 
    /// is empty.
  | 
| 
kpeter@244
 | 
  1555  | 
    Node nextNode() const {
 | 
| 
alpar@100
 | 
  1556  | 
      return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
  | 
| 
alpar@100
 | 
  1557  | 
    }
  | 
| 
alpar@100
 | 
  1558  | 
  | 
| 
alpar@100
 | 
  1559  | 
    /// \brief Returns \c false if there are nodes
  | 
| 
kpeter@244
 | 
  1560  | 
    /// to be processed.
  | 
| 
alpar@100
 | 
  1561  | 
    ///
  | 
| 
alpar@100
 | 
  1562  | 
    /// Returns \c false if there are nodes
  | 
| 
kpeter@244
 | 
  1563  | 
    /// to be processed in the queue.
  | 
| 
kpeter@244
 | 
  1564  | 
    bool emptyQueue() const { return _list_front == _list_back; }
 | 
| 
alpar@100
 | 
  1565  | 
  | 
| 
alpar@100
 | 
  1566  | 
    /// \brief Returns the number of the nodes to be processed.
  | 
| 
alpar@100
 | 
  1567  | 
    ///
  | 
| 
alpar@100
 | 
  1568  | 
    /// Returns the number of the nodes to be processed in the queue.
  | 
| 
kpeter@244
 | 
  1569  | 
    int queueSize() const { return _list_back - _list_front; }
 | 
| 
alpar@209
 | 
  1570  | 
  | 
| 
alpar@100
 | 
  1571  | 
    /// \brief Executes the algorithm.
  | 
| 
alpar@100
 | 
  1572  | 
    ///
  | 
| 
alpar@100
 | 
  1573  | 
    /// Executes the algorithm.
  | 
| 
alpar@100
 | 
  1574  | 
    ///
  | 
| 
kpeter@244
 | 
  1575  | 
    /// This method runs the %BFS algorithm from the root node(s)
  | 
| 
kpeter@244
 | 
  1576  | 
    /// in order to compute the shortest path to each node.
  | 
| 
kpeter@244
 | 
  1577  | 
    ///
  | 
| 
kpeter@244
 | 
  1578  | 
    /// The algorithm computes
  | 
| 
kpeter@244
 | 
  1579  | 
    /// - the shortest path tree (forest),
  | 
| 
kpeter@244
 | 
  1580  | 
    /// - the distance of each node from the root(s).
  | 
| 
kpeter@244
 | 
  1581  | 
    ///
  | 
| 
kpeter@244
 | 
  1582  | 
    /// \pre init() must be called and at least one root node should be added
  | 
| 
alpar@100
 | 
  1583  | 
    /// with addSource() before using this function.
  | 
| 
kpeter@244
 | 
  1584  | 
    ///
  | 
| 
kpeter@244
 | 
  1585  | 
    /// \note <tt>b.start()</tt> is just a shortcut of the following code.
  | 
| 
kpeter@244
 | 
  1586  | 
    /// \code
  | 
| 
kpeter@244
 | 
  1587  | 
    ///   while ( !b.emptyQueue() ) {
 | 
| 
kpeter@244
 | 
  1588  | 
    ///     b.processNextNode();
  | 
| 
kpeter@244
 | 
  1589  | 
    ///   }
  | 
| 
kpeter@244
 | 
  1590  | 
    /// \endcode
  | 
| 
alpar@100
 | 
  1591  | 
    void start() {
 | 
| 
alpar@100
 | 
  1592  | 
      while ( !emptyQueue() ) processNextNode();
  | 
| 
alpar@100
 | 
  1593  | 
    }
  | 
| 
alpar@209
 | 
  1594  | 
  | 
| 
kpeter@244
 | 
  1595  | 
    /// \brief Executes the algorithm until the given target node is reached.
  | 
| 
alpar@100
 | 
  1596  | 
    ///
  | 
| 
kpeter@244
 | 
  1597  | 
    /// Executes the algorithm until the given target node is reached.
  | 
| 
alpar@100
 | 
  1598  | 
    ///
  | 
| 
kpeter@244
 | 
  1599  | 
    /// This method runs the %BFS algorithm from the root node(s)
  | 
| 
kpeter@286
 | 
  1600  | 
    /// in order to compute the shortest path to \c t.
  | 
| 
kpeter@244
 | 
  1601  | 
    ///
  | 
| 
kpeter@244
 | 
  1602  | 
    /// The algorithm computes
  | 
| 
kpeter@286
 | 
  1603  | 
    /// - the shortest path to \c t,
  | 
| 
kpeter@286
 | 
  1604  | 
    /// - the distance of \c t from the root(s).
  | 
| 
kpeter@244
 | 
  1605  | 
    ///
  | 
| 
kpeter@244
 | 
  1606  | 
    /// \pre init() must be called and at least one root node should be
  | 
| 
kpeter@244
 | 
  1607  | 
    /// added with addSource() before using this function.
  | 
| 
kpeter@244
 | 
  1608  | 
    ///
  | 
| 
kpeter@244
 | 
  1609  | 
    /// \note <tt>b.start(t)</tt> is just a shortcut of the following code.
  | 
| 
kpeter@244
 | 
  1610  | 
    /// \code
  | 
| 
kpeter@244
 | 
  1611  | 
    ///   bool reach = false;
  | 
| 
kpeter@244
 | 
  1612  | 
    ///   while ( !b.emptyQueue() && !reach ) {
 | 
| 
kpeter@244
 | 
  1613  | 
    ///     b.processNextNode(t, reach);
  | 
| 
kpeter@244
 | 
  1614  | 
    ///   }
  | 
| 
kpeter@244
 | 
  1615  | 
    /// \endcode
  | 
| 
kpeter@286
 | 
  1616  | 
    void start(Node t) {
 | 
| 
alpar@100
 | 
  1617  | 
      bool reach = false;
  | 
| 
kpeter@286
 | 
  1618  | 
      while ( !emptyQueue() && !reach ) processNextNode(t, reach);
  | 
| 
alpar@100
 | 
  1619  | 
    }
  | 
| 
alpar@209
 | 
  1620  | 
  | 
| 
alpar@100
 | 
  1621  | 
    /// \brief Executes the algorithm until a condition is met.
  | 
| 
alpar@100
 | 
  1622  | 
    ///
  | 
| 
alpar@100
 | 
  1623  | 
    /// Executes the algorithm until a condition is met.
  | 
| 
alpar@100
 | 
  1624  | 
    ///
  | 
| 
kpeter@244
 | 
  1625  | 
    /// This method runs the %BFS algorithm from the root node(s) in
  | 
| 
kpeter@244
 | 
  1626  | 
    /// order to compute the shortest path to a node \c v with
  | 
| 
kpeter@244
 | 
  1627  | 
    /// <tt>nm[v]</tt> true, if such a node can be found.
  | 
| 
alpar@100
 | 
  1628  | 
    ///
  | 
| 
kpeter@244
 | 
  1629  | 
    /// \param nm must be a bool (or convertible) node map. The
  | 
| 
kpeter@244
 | 
  1630  | 
    /// algorithm will stop when it reaches a node \c v with
  | 
| 
alpar@100
 | 
  1631  | 
    /// <tt>nm[v]</tt> true.
  | 
| 
alpar@100
 | 
  1632  | 
    ///
  | 
| 
kpeter@244
 | 
  1633  | 
    /// \return The reached node \c v with <tt>nm[v]</tt> true or
  | 
| 
kpeter@244
 | 
  1634  | 
    /// \c INVALID if no such node was found.
  | 
| 
kpeter@244
 | 
  1635  | 
    ///
  | 
| 
kpeter@244
 | 
  1636  | 
    /// \pre init() must be called and at least one root node should be
  | 
| 
kpeter@244
 | 
  1637  | 
    /// added with addSource() before using this function.
  | 
| 
kpeter@244
 | 
  1638  | 
    ///
  | 
| 
kpeter@244
 | 
  1639  | 
    /// \note <tt>b.start(nm)</tt> is just a shortcut of the following code.
  | 
| 
kpeter@244
 | 
  1640  | 
    /// \code
  | 
| 
kpeter@244
 | 
  1641  | 
    ///   Node rnode = INVALID;
  | 
| 
kpeter@244
 | 
  1642  | 
    ///   while ( !b.emptyQueue() && rnode == INVALID ) {
 | 
| 
kpeter@244
 | 
  1643  | 
    ///     b.processNextNode(nm, rnode);
  | 
| 
kpeter@244
 | 
  1644  | 
    ///   }
  | 
| 
kpeter@244
 | 
  1645  | 
    ///   return rnode;
  | 
| 
kpeter@244
 | 
  1646  | 
    /// \endcode
  | 
| 
alpar@100
 | 
  1647  | 
    template <typename NM>
  | 
| 
alpar@100
 | 
  1648  | 
    Node start(const NM &nm) {
 | 
| 
alpar@100
 | 
  1649  | 
      Node rnode = INVALID;
  | 
| 
alpar@100
 | 
  1650  | 
      while ( !emptyQueue() && rnode == INVALID ) {
 | 
| 
alpar@209
 | 
  1651  | 
        processNextNode(nm, rnode);
  | 
| 
alpar@100
 | 
  1652  | 
      }
  | 
| 
alpar@100
 | 
  1653  | 
      return rnode;
  | 
| 
alpar@100
 | 
  1654  | 
    }
  | 
| 
alpar@100
 | 
  1655  | 
  | 
| 
kpeter@286
 | 
  1656  | 
    /// \brief Runs the algorithm from the given source node.
  | 
| 
alpar@100
 | 
  1657  | 
    ///
  | 
| 
kpeter@244
 | 
  1658  | 
    /// This method runs the %BFS algorithm from node \c s
  | 
| 
kpeter@244
 | 
  1659  | 
    /// in order to compute the shortest path to each node.
  | 
| 
kpeter@244
 | 
  1660  | 
    ///
  | 
| 
kpeter@244
 | 
  1661  | 
    /// The algorithm computes
  | 
| 
kpeter@244
 | 
  1662  | 
    /// - the shortest path tree,
  | 
| 
kpeter@244
 | 
  1663  | 
    /// - the distance of each node from the root.
  | 
| 
kpeter@244
 | 
  1664  | 
    ///
  | 
| 
kpeter@244
 | 
  1665  | 
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
  | 
| 
alpar@100
 | 
  1666  | 
    ///\code
  | 
| 
alpar@100
 | 
  1667  | 
    ///   b.init();
  | 
| 
alpar@100
 | 
  1668  | 
    ///   b.addSource(s);
  | 
| 
alpar@100
 | 
  1669  | 
    ///   b.start();
  | 
| 
alpar@100
 | 
  1670  | 
    ///\endcode
  | 
| 
alpar@100
 | 
  1671  | 
    void run(Node s) {
 | 
| 
alpar@100
 | 
  1672  | 
      init();
  | 
| 
alpar@100
 | 
  1673  | 
      addSource(s);
  | 
| 
alpar@100
 | 
  1674  | 
      start();
  | 
| 
alpar@100
 | 
  1675  | 
    }
  | 
| 
alpar@100
 | 
  1676  | 
  | 
| 
kpeter@286
 | 
  1677  | 
    /// \brief Finds the shortest path between \c s and \c t.
  | 
| 
kpeter@286
 | 
  1678  | 
    ///
  | 
| 
kpeter@286
 | 
  1679  | 
    /// This method runs the %BFS algorithm from node \c s
  | 
| 
kpeter@286
 | 
  1680  | 
    /// in order to compute the shortest path to node \c t
  | 
| 
kpeter@286
 | 
  1681  | 
    /// (it stops searching when \c t is processed).
  | 
| 
kpeter@286
 | 
  1682  | 
    ///
  | 
| 
kpeter@286
 | 
  1683  | 
    /// \return \c true if \c t is reachable form \c s.
  | 
| 
kpeter@286
 | 
  1684  | 
    ///
  | 
| 
kpeter@286
 | 
  1685  | 
    /// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a
  | 
| 
kpeter@286
 | 
  1686  | 
    /// shortcut of the following code.
  | 
| 
kpeter@286
 | 
  1687  | 
    ///\code
  | 
| 
kpeter@286
 | 
  1688  | 
    ///   b.init();
  | 
| 
kpeter@286
 | 
  1689  | 
    ///   b.addSource(s);
  | 
| 
kpeter@286
 | 
  1690  | 
    ///   b.start(t);
  | 
| 
kpeter@286
 | 
  1691  | 
    ///\endcode
  | 
| 
kpeter@286
 | 
  1692  | 
    bool run(Node s,Node t) {
 | 
| 
kpeter@286
 | 
  1693  | 
      init();
  | 
| 
kpeter@286
 | 
  1694  | 
      addSource(s);
  | 
| 
kpeter@286
 | 
  1695  | 
      start(t);
  | 
| 
kpeter@286
 | 
  1696  | 
      return reached(t);
  | 
| 
kpeter@286
 | 
  1697  | 
    }
  | 
| 
kpeter@286
 | 
  1698  | 
  | 
| 
kpeter@244
 | 
  1699  | 
    /// \brief Runs the algorithm to visit all nodes in the digraph.
  | 
| 
alpar@209
 | 
  1700  | 
    ///
  | 
| 
alpar@100
 | 
  1701  | 
    /// This method runs the %BFS algorithm in order to
  | 
| 
kpeter@244
 | 
  1702  | 
    /// compute the shortest path to each node.
  | 
| 
alpar@100
 | 
  1703  | 
    ///
  | 
| 
kpeter@244
 | 
  1704  | 
    /// The algorithm computes
  | 
| 
kpeter@244
 | 
  1705  | 
    /// - the shortest path tree (forest),
  | 
| 
kpeter@244
 | 
  1706  | 
    /// - the distance of each node from the root(s).
  | 
| 
kpeter@244
 | 
  1707  | 
    ///
  | 
| 
kpeter@244
 | 
  1708  | 
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
  | 
| 
alpar@100
 | 
  1709  | 
    ///\code
  | 
| 
alpar@100
 | 
  1710  | 
    ///  b.init();
  | 
| 
kpeter@244
 | 
  1711  | 
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
 | 
| 
kpeter@244
 | 
  1712  | 
    ///    if (!b.reached(n)) {
 | 
| 
kpeter@244
 | 
  1713  | 
    ///      b.addSource(n);
  | 
| 
alpar@100
 | 
  1714  | 
    ///      b.start();
  | 
| 
alpar@100
 | 
  1715  | 
    ///    }
  | 
| 
alpar@100
 | 
  1716  | 
    ///  }
  | 
| 
alpar@100
 | 
  1717  | 
    ///\endcode
  | 
| 
alpar@100
 | 
  1718  | 
    void run() {
 | 
| 
alpar@100
 | 
  1719  | 
      init();
  | 
| 
alpar@100
 | 
  1720  | 
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
 | 
| 
alpar@100
 | 
  1721  | 
        if (!reached(it)) {
 | 
| 
alpar@100
 | 
  1722  | 
          addSource(it);
  | 
| 
alpar@100
 | 
  1723  | 
          start();
  | 
| 
alpar@100
 | 
  1724  | 
        }
  | 
| 
alpar@100
 | 
  1725  | 
      }
  | 
| 
alpar@100
 | 
  1726  | 
    }
  | 
| 
kpeter@244
 | 
  1727  | 
  | 
| 
alpar@100
 | 
  1728  | 
    ///@}
  | 
| 
alpar@100
 | 
  1729  | 
  | 
| 
alpar@100
 | 
  1730  | 
    /// \name Query Functions
  | 
| 
kpeter@405
 | 
  1731  | 
    /// The results of the BFS algorithm can be obtained using these
  | 
| 
alpar@100
 | 
  1732  | 
    /// functions.\n
  | 
| 
kpeter@405
 | 
  1733  | 
    /// Either \ref run(Node) "run()" or \ref start() should be called
  | 
| 
kpeter@405
 | 
  1734  | 
    /// before using them.
  | 
| 
kpeter@405
 | 
  1735  | 
  | 
| 
alpar@100
 | 
  1736  | 
    ///@{
 | 
| 
alpar@100
 | 
  1737  | 
  | 
| 
kpeter@405
 | 
  1738  | 
    /// \brief Checks if a node is reached from the root(s).
  | 
| 
alpar@100
 | 
  1739  | 
    ///
  | 
| 
kpeter@405
 | 
  1740  | 
    /// Returns \c true if \c v is reached from the root(s).
  | 
| 
kpeter@405
 | 
  1741  | 
    ///
  | 
| 
kpeter@405
 | 
  1742  | 
    /// \pre Either \ref run(Node) "run()" or \ref init()
  | 
| 
alpar@100
 | 
  1743  | 
    /// must be called before using this function.
  | 
| 
alpar@100
 | 
  1744  | 
    bool reached(Node v) { return (*_reached)[v]; }
 | 
| 
kpeter@244
 | 
  1745  | 
  | 
| 
alpar@100
 | 
  1746  | 
    ///@}
  | 
| 
kpeter@244
 | 
  1747  | 
  | 
| 
alpar@100
 | 
  1748  | 
  };
  | 
| 
alpar@100
 | 
  1749  | 
  | 
| 
alpar@100
 | 
  1750  | 
} //END OF NAMESPACE LEMON
  | 
| 
alpar@100
 | 
  1751  | 
  | 
| 
alpar@100
 | 
  1752  | 
#endif
  |