1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
 
     3  * This file is a part of LEMON, a generic C++ optimization library.
 
     5  * Copyright (C) 2003-2008
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    24 ///\brief BFS algorithm.
 
    26 #include <lemon/list_graph.h>
 
    27 #include <lemon/bits/path_dump.h>
 
    28 #include <lemon/core.h>
 
    29 #include <lemon/error.h>
 
    30 #include <lemon/maps.h>
 
    31 #include <lemon/path.h>
 
    35   ///Default traits class of Bfs class.
 
    37   ///Default traits class of Bfs class.
 
    38   ///\tparam GR Digraph type.
 
    40   struct BfsDefaultTraits
 
    42     ///The type of the digraph the algorithm runs on.
 
    45     ///\brief The type of the map that stores the predecessor
 
    46     ///arcs of the shortest paths.
 
    48     ///The type of the map that stores the predecessor
 
    49     ///arcs of the shortest paths.
 
    50     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
    51     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
 
    52     ///Instantiates a PredMap.
 
    54     ///This function instantiates a PredMap.
 
    55     ///\param g is the digraph, to which we would like to define the
 
    57     static PredMap *createPredMap(const Digraph &g)
 
    59       return new PredMap(g);
 
    62     ///The type of the map that indicates which nodes are processed.
 
    64     ///The type of the map that indicates which nodes are processed.
 
    65     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
    66     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
 
    67     ///Instantiates a ProcessedMap.
 
    69     ///This function instantiates a ProcessedMap.
 
    70     ///\param g is the digraph, to which
 
    71     ///we would like to define the ProcessedMap
 
    73     static ProcessedMap *createProcessedMap(const Digraph &g)
 
    75     static ProcessedMap *createProcessedMap(const Digraph &)
 
    78       return new ProcessedMap();
 
    81     ///The type of the map that indicates which nodes are reached.
 
    83     ///The type of the map that indicates which nodes are reached.
 
    84     ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
    85     typedef typename Digraph::template NodeMap<bool> ReachedMap;
 
    86     ///Instantiates a ReachedMap.
 
    88     ///This function instantiates a ReachedMap.
 
    89     ///\param g is the digraph, to which
 
    90     ///we would like to define the ReachedMap.
 
    91     static ReachedMap *createReachedMap(const Digraph &g)
 
    93       return new ReachedMap(g);
 
    96     ///The type of the map that stores the distances of the nodes.
 
    98     ///The type of the map that stores the distances of the nodes.
 
    99     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   100     typedef typename Digraph::template NodeMap<int> DistMap;
 
   101     ///Instantiates a DistMap.
 
   103     ///This function instantiates a DistMap.
 
   104     ///\param g is the digraph, to which we would like to define the
 
   106     static DistMap *createDistMap(const Digraph &g)
 
   108       return new DistMap(g);
 
   112   ///%BFS algorithm class.
 
   115   ///This class provides an efficient implementation of the %BFS algorithm.
 
   117   ///There is also a \ref bfs() "function-type interface" for the BFS
 
   118   ///algorithm, which is convenient in the simplier cases and it can be
 
   121   ///\tparam GR The type of the digraph the algorithm runs on.
 
   122   ///The default type is \ref ListDigraph.
 
   124   template <typename GR,
 
   127   template <typename GR=ListDigraph,
 
   128             typename TR=BfsDefaultTraits<GR> >
 
   133     ///The type of the digraph the algorithm runs on.
 
   134     typedef typename TR::Digraph Digraph;
 
   136     ///\brief The type of the map that stores the predecessor arcs of the
 
   138     typedef typename TR::PredMap PredMap;
 
   139     ///The type of the map that stores the distances of the nodes.
 
   140     typedef typename TR::DistMap DistMap;
 
   141     ///The type of the map that indicates which nodes are reached.
 
   142     typedef typename TR::ReachedMap ReachedMap;
 
   143     ///The type of the map that indicates which nodes are processed.
 
   144     typedef typename TR::ProcessedMap ProcessedMap;
 
   145     ///The type of the paths.
 
   146     typedef PredMapPath<Digraph, PredMap> Path;
 
   148     ///The \ref BfsDefaultTraits "traits class" of the algorithm.
 
   153     typedef typename Digraph::Node Node;
 
   154     typedef typename Digraph::NodeIt NodeIt;
 
   155     typedef typename Digraph::Arc Arc;
 
   156     typedef typename Digraph::OutArcIt OutArcIt;
 
   158     //Pointer to the underlying digraph.
 
   160     //Pointer to the map of predecessor arcs.
 
   162     //Indicates if _pred is locally allocated (true) or not.
 
   164     //Pointer to the map of distances.
 
   166     //Indicates if _dist is locally allocated (true) or not.
 
   168     //Pointer to the map of reached status of the nodes.
 
   169     ReachedMap *_reached;
 
   170     //Indicates if _reached is locally allocated (true) or not.
 
   172     //Pointer to the map of processed status of the nodes.
 
   173     ProcessedMap *_processed;
 
   174     //Indicates if _processed is locally allocated (true) or not.
 
   175     bool local_processed;
 
   177     std::vector<typename Digraph::Node> _queue;
 
   178     int _queue_head,_queue_tail,_queue_next_dist;
 
   181     //Creates the maps if necessary.
 
   186         _pred = Traits::createPredMap(*G);
 
   190         _dist = Traits::createDistMap(*G);
 
   193         local_reached = true;
 
   194         _reached = Traits::createReachedMap(*G);
 
   197         local_processed = true;
 
   198         _processed = Traits::createProcessedMap(*G);
 
   210     ///\name Named Template Parameters
 
   215     struct SetPredMapTraits : public Traits {
 
   217       static PredMap *createPredMap(const Digraph &)
 
   219         LEMON_ASSERT(false, "PredMap is not initialized");
 
   220         return 0; // ignore warnings
 
   223     ///\brief \ref named-templ-param "Named parameter" for setting
 
   226     ///\ref named-templ-param "Named parameter" for setting
 
   228     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   230     struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
 
   231       typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
 
   235     struct SetDistMapTraits : public Traits {
 
   237       static DistMap *createDistMap(const Digraph &)
 
   239         LEMON_ASSERT(false, "DistMap is not initialized");
 
   240         return 0; // ignore warnings
 
   243     ///\brief \ref named-templ-param "Named parameter" for setting
 
   246     ///\ref named-templ-param "Named parameter" for setting
 
   248     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   250     struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
 
   251       typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
 
   255     struct SetReachedMapTraits : public Traits {
 
   256       typedef T ReachedMap;
 
   257       static ReachedMap *createReachedMap(const Digraph &)
 
   259         LEMON_ASSERT(false, "ReachedMap is not initialized");
 
   260         return 0; // ignore warnings
 
   263     ///\brief \ref named-templ-param "Named parameter" for setting
 
   266     ///\ref named-templ-param "Named parameter" for setting
 
   268     ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
   270     struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
 
   271       typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
 
   275     struct SetProcessedMapTraits : public Traits {
 
   276       typedef T ProcessedMap;
 
   277       static ProcessedMap *createProcessedMap(const Digraph &)
 
   279         LEMON_ASSERT(false, "ProcessedMap is not initialized");
 
   280         return 0; // ignore warnings
 
   283     ///\brief \ref named-templ-param "Named parameter" for setting
 
   284     ///ProcessedMap type.
 
   286     ///\ref named-templ-param "Named parameter" for setting
 
   287     ///ProcessedMap type.
 
   288     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   290     struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
 
   291       typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
 
   294     struct SetStandardProcessedMapTraits : public Traits {
 
   295       typedef typename Digraph::template NodeMap<bool> ProcessedMap;
 
   296       static ProcessedMap *createProcessedMap(const Digraph &g)
 
   298         return new ProcessedMap(g);
 
   299         return 0; // ignore warnings
 
   302     ///\brief \ref named-templ-param "Named parameter" for setting
 
   303     ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
 
   305     ///\ref named-templ-param "Named parameter" for setting
 
   306     ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
 
   307     ///If you don't set it explicitly, it will be automatically allocated.
 
   308     struct SetStandardProcessedMap :
 
   309       public Bfs< Digraph, SetStandardProcessedMapTraits > {
 
   310       typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create;
 
   320     ///\param g The digraph the algorithm runs on.
 
   321     Bfs(const Digraph &g) :
 
   323       _pred(NULL), local_pred(false),
 
   324       _dist(NULL), local_dist(false),
 
   325       _reached(NULL), local_reached(false),
 
   326       _processed(NULL), local_processed(false)
 
   332       if(local_pred) delete _pred;
 
   333       if(local_dist) delete _dist;
 
   334       if(local_reached) delete _reached;
 
   335       if(local_processed) delete _processed;
 
   338     ///Sets the map that stores the predecessor arcs.
 
   340     ///Sets the map that stores the predecessor arcs.
 
   341     ///If you don't use this function before calling \ref run(Node) "run()"
 
   342     ///or \ref init(), an instance will be allocated automatically.
 
   343     ///The destructor deallocates this automatically allocated map,
 
   345     ///\return <tt> (*this) </tt>
 
   346     Bfs &predMap(PredMap &m)
 
   356     ///Sets the map that indicates which nodes are reached.
 
   358     ///Sets the map that indicates which nodes are reached.
 
   359     ///If you don't use this function before calling \ref run(Node) "run()"
 
   360     ///or \ref init(), an instance will be allocated automatically.
 
   361     ///The destructor deallocates this automatically allocated map,
 
   363     ///\return <tt> (*this) </tt>
 
   364     Bfs &reachedMap(ReachedMap &m)
 
   374     ///Sets the map that indicates which nodes are processed.
 
   376     ///Sets the map that indicates which nodes are processed.
 
   377     ///If you don't use this function before calling \ref run(Node) "run()"
 
   378     ///or \ref init(), an instance will be allocated automatically.
 
   379     ///The destructor deallocates this automatically allocated map,
 
   381     ///\return <tt> (*this) </tt>
 
   382     Bfs &processedMap(ProcessedMap &m)
 
   384       if(local_processed) {
 
   386         local_processed=false;
 
   392     ///Sets the map that stores the distances of the nodes.
 
   394     ///Sets the map that stores the distances of the nodes calculated by
 
   396     ///If you don't use this function before calling \ref run(Node) "run()"
 
   397     ///or \ref init(), an instance will be allocated automatically.
 
   398     ///The destructor deallocates this automatically allocated map,
 
   400     ///\return <tt> (*this) </tt>
 
   401     Bfs &distMap(DistMap &m)
 
   413     ///\name Execution Control
 
   414     ///The simplest way to execute the BFS algorithm is to use one of the
 
   415     ///member functions called \ref run(Node) "run()".\n
 
   416     ///If you need more control on the execution, first you have to call
 
   417     ///\ref init(), then you can add several source nodes with
 
   418     ///\ref addSource(). Finally the actual path computation can be
 
   419     ///performed with one of the \ref start() functions.
 
   423     ///\brief Initializes the internal data structures.
 
   425     ///Initializes the internal data structures.
 
   429       _queue.resize(countNodes(*G));
 
   430       _queue_head=_queue_tail=0;
 
   432       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
 
   433         _pred->set(u,INVALID);
 
   434         _reached->set(u,false);
 
   435         _processed->set(u,false);
 
   439     ///Adds a new source node.
 
   441     ///Adds a new source node to the set of nodes to be processed.
 
   443     void addSource(Node s)
 
   447           _reached->set(s,true);
 
   448           _pred->set(s,INVALID);
 
   450           _queue[_queue_head++]=s;
 
   451           _queue_next_dist=_queue_head;
 
   455     ///Processes the next node.
 
   457     ///Processes the next node.
 
   459     ///\return The processed node.
 
   461     ///\pre The queue must not be empty.
 
   462     Node processNextNode()
 
   464       if(_queue_tail==_queue_next_dist) {
 
   466         _queue_next_dist=_queue_head;
 
   468       Node n=_queue[_queue_tail++];
 
   469       _processed->set(n,true);
 
   471       for(OutArcIt e(*G,n);e!=INVALID;++e)
 
   472         if(!(*_reached)[m=G->target(e)]) {
 
   473           _queue[_queue_head++]=m;
 
   474           _reached->set(m,true);
 
   476           _dist->set(m,_curr_dist);
 
   481     ///Processes the next node.
 
   483     ///Processes the next node and checks if the given target node
 
   484     ///is reached. If the target node is reachable from the processed
 
   485     ///node, then the \c reach parameter will be set to \c true.
 
   487     ///\param target The target node.
 
   488     ///\retval reach Indicates if the target node is reached.
 
   489     ///It should be initially \c false.
 
   491     ///\return The processed node.
 
   493     ///\pre The queue must not be empty.
 
   494     Node processNextNode(Node target, bool& reach)
 
   496       if(_queue_tail==_queue_next_dist) {
 
   498         _queue_next_dist=_queue_head;
 
   500       Node n=_queue[_queue_tail++];
 
   501       _processed->set(n,true);
 
   503       for(OutArcIt e(*G,n);e!=INVALID;++e)
 
   504         if(!(*_reached)[m=G->target(e)]) {
 
   505           _queue[_queue_head++]=m;
 
   506           _reached->set(m,true);
 
   508           _dist->set(m,_curr_dist);
 
   509           reach = reach || (target == m);
 
   514     ///Processes the next node.
 
   516     ///Processes the next node and checks if at least one of reached
 
   517     ///nodes has \c true value in the \c nm node map. If one node
 
   518     ///with \c true value is reachable from the processed node, then the
 
   519     ///\c rnode parameter will be set to the first of such nodes.
 
   521     ///\param nm A \c bool (or convertible) node map that indicates the
 
   523     ///\retval rnode The reached target node.
 
   524     ///It should be initially \c INVALID.
 
   526     ///\return The processed node.
 
   528     ///\pre The queue must not be empty.
 
   530     Node processNextNode(const NM& nm, Node& rnode)
 
   532       if(_queue_tail==_queue_next_dist) {
 
   534         _queue_next_dist=_queue_head;
 
   536       Node n=_queue[_queue_tail++];
 
   537       _processed->set(n,true);
 
   539       for(OutArcIt e(*G,n);e!=INVALID;++e)
 
   540         if(!(*_reached)[m=G->target(e)]) {
 
   541           _queue[_queue_head++]=m;
 
   542           _reached->set(m,true);
 
   544           _dist->set(m,_curr_dist);
 
   545           if (nm[m] && rnode == INVALID) rnode = m;
 
   550     ///The next node to be processed.
 
   552     ///Returns the next node to be processed or \c INVALID if the queue
 
   554     Node nextNode() const
 
   556       return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
 
   559     ///Returns \c false if there are nodes to be processed.
 
   561     ///Returns \c false if there are nodes to be processed
 
   563     bool emptyQueue() const { return _queue_tail==_queue_head; }
 
   565     ///Returns the number of the nodes to be processed.
 
   567     ///Returns the number of the nodes to be processed
 
   569     int queueSize() const { return _queue_head-_queue_tail; }
 
   571     ///Executes the algorithm.
 
   573     ///Executes the algorithm.
 
   575     ///This method runs the %BFS algorithm from the root node(s)
 
   576     ///in order to compute the shortest path to each node.
 
   578     ///The algorithm computes
 
   579     ///- the shortest path tree (forest),
 
   580     ///- the distance of each node from the root(s).
 
   582     ///\pre init() must be called and at least one root node should be
 
   583     ///added with addSource() before using this function.
 
   585     ///\note <tt>b.start()</tt> is just a shortcut of the following code.
 
   587     ///  while ( !b.emptyQueue() ) {
 
   588     ///    b.processNextNode();
 
   593       while ( !emptyQueue() ) processNextNode();
 
   596     ///Executes the algorithm until the given target node is reached.
 
   598     ///Executes the algorithm until the given target node is reached.
 
   600     ///This method runs the %BFS algorithm from the root node(s)
 
   601     ///in order to compute the shortest path to \c t.
 
   603     ///The algorithm computes
 
   604     ///- the shortest path to \c t,
 
   605     ///- the distance of \c t from the root(s).
 
   607     ///\pre init() must be called and at least one root node should be
 
   608     ///added with addSource() before using this function.
 
   610     ///\note <tt>b.start(t)</tt> is just a shortcut of the following code.
 
   612     ///  bool reach = false;
 
   613     ///  while ( !b.emptyQueue() && !reach ) {
 
   614     ///    b.processNextNode(t, reach);
 
   620       while ( !emptyQueue() && !reach ) processNextNode(t, reach);
 
   623     ///Executes the algorithm until a condition is met.
 
   625     ///Executes the algorithm until a condition is met.
 
   627     ///This method runs the %BFS algorithm from the root node(s) in
 
   628     ///order to compute the shortest path to a node \c v with
 
   629     /// <tt>nm[v]</tt> true, if such a node can be found.
 
   631     ///\param nm A \c bool (or convertible) node map. The algorithm
 
   632     ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
 
   634     ///\return The reached node \c v with <tt>nm[v]</tt> true or
 
   635     ///\c INVALID if no such node was found.
 
   637     ///\pre init() must be called and at least one root node should be
 
   638     ///added with addSource() before using this function.
 
   640     ///\note <tt>b.start(nm)</tt> is just a shortcut of the following code.
 
   642     ///  Node rnode = INVALID;
 
   643     ///  while ( !b.emptyQueue() && rnode == INVALID ) {
 
   644     ///    b.processNextNode(nm, rnode);
 
   648     template<class NodeBoolMap>
 
   649     Node start(const NodeBoolMap &nm)
 
   651       Node rnode = INVALID;
 
   652       while ( !emptyQueue() && rnode == INVALID ) {
 
   653         processNextNode(nm, rnode);
 
   658     ///Runs the algorithm from the given source node.
 
   660     ///This method runs the %BFS algorithm from node \c s
 
   661     ///in order to compute the shortest path to each node.
 
   663     ///The algorithm computes
 
   664     ///- the shortest path tree,
 
   665     ///- the distance of each node from the root.
 
   667     ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
 
   679     ///Finds the shortest path between \c s and \c t.
 
   681     ///This method runs the %BFS algorithm from node \c s
 
   682     ///in order to compute the shortest path to node \c t
 
   683     ///(it stops searching when \c t is processed).
 
   685     ///\return \c true if \c t is reachable form \c s.
 
   687     ///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a
 
   688     ///shortcut of the following code.
 
   694     bool run(Node s,Node t) {
 
   701     ///Runs the algorithm to visit all nodes in the digraph.
 
   703     ///This method runs the %BFS algorithm in order to
 
   704     ///compute the shortest path to each node.
 
   706     ///The algorithm computes
 
   707     ///- the shortest path tree (forest),
 
   708     ///- the distance of each node from the root(s).
 
   710     ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
 
   713     ///  for (NodeIt n(gr); n != INVALID; ++n) {
 
   714     ///    if (!b.reached(n)) {
 
   722       for (NodeIt n(*G); n != INVALID; ++n) {
 
   732     ///\name Query Functions
 
   733     ///The results of the BFS algorithm can be obtained using these
 
   735     ///Either \ref run(Node) "run()" or \ref start() should be called
 
   736     ///before using them.
 
   740     ///The shortest path to a node.
 
   742     ///Returns the shortest path to a node.
 
   744     ///\warning \c t should be reached from the root(s).
 
   746     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   747     ///must be called before using this function.
 
   748     Path path(Node t) const { return Path(*G, *_pred, t); }
 
   750     ///The distance of a node from the root(s).
 
   752     ///Returns the distance of a node from the root(s).
 
   754     ///\warning If node \c v is not reached from the root(s), then
 
   755     ///the return value of this function is undefined.
 
   757     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   758     ///must be called before using this function.
 
   759     int dist(Node v) const { return (*_dist)[v]; }
 
   761     ///Returns the 'previous arc' of the shortest path tree for a node.
 
   763     ///This function returns the 'previous arc' of the shortest path
 
   764     ///tree for the node \c v, i.e. it returns the last arc of a
 
   765     ///shortest path from a root to \c v. It is \c INVALID if \c v
 
   766     ///is not reached from the root(s) or if \c v is a root.
 
   768     ///The shortest path tree used here is equal to the shortest path
 
   769     ///tree used in \ref predNode().
 
   771     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   772     ///must be called before using this function.
 
   773     Arc predArc(Node v) const { return (*_pred)[v];}
 
   775     ///Returns the 'previous node' of the shortest path tree for a node.
 
   777     ///This function returns the 'previous node' of the shortest path
 
   778     ///tree for the node \c v, i.e. it returns the last but one node
 
   779     ///from a shortest path from a root to \c v. It is \c INVALID
 
   780     ///if \c v is not reached from the root(s) or if \c v is a root.
 
   782     ///The shortest path tree used here is equal to the shortest path
 
   783     ///tree used in \ref predArc().
 
   785     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   786     ///must be called before using this function.
 
   787     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
 
   788                                   G->source((*_pred)[v]); }
 
   790     ///\brief Returns a const reference to the node map that stores the
 
   791     /// distances of the nodes.
 
   793     ///Returns a const reference to the node map that stores the distances
 
   794     ///of the nodes calculated by the algorithm.
 
   796     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   797     ///must be called before using this function.
 
   798     const DistMap &distMap() const { return *_dist;}
 
   800     ///\brief Returns a const reference to the node map that stores the
 
   803     ///Returns a const reference to the node map that stores the predecessor
 
   804     ///arcs, which form the shortest path tree.
 
   806     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   807     ///must be called before using this function.
 
   808     const PredMap &predMap() const { return *_pred;}
 
   810     ///Checks if a node is reached from the root(s).
 
   812     ///Returns \c true if \c v is reached from the root(s).
 
   814     ///\pre Either \ref run(Node) "run()" or \ref init()
 
   815     ///must be called before using this function.
 
   816     bool reached(Node v) const { return (*_reached)[v]; }
 
   821   ///Default traits class of bfs() function.
 
   823   ///Default traits class of bfs() function.
 
   824   ///\tparam GR Digraph type.
 
   826   struct BfsWizardDefaultTraits
 
   828     ///The type of the digraph the algorithm runs on.
 
   831     ///\brief The type of the map that stores the predecessor
 
   832     ///arcs of the shortest paths.
 
   834     ///The type of the map that stores the predecessor
 
   835     ///arcs of the shortest paths.
 
   836     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   837     typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
 
   838     ///Instantiates a PredMap.
 
   840     ///This function instantiates a PredMap.
 
   841     ///\param g is the digraph, to which we would like to define the
 
   843     static PredMap *createPredMap(const Digraph &g)
 
   845       return new PredMap(g);
 
   848     ///The type of the map that indicates which nodes are processed.
 
   850     ///The type of the map that indicates which nodes are processed.
 
   851     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   852     ///By default it is a NullMap.
 
   853     typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
 
   854     ///Instantiates a ProcessedMap.
 
   856     ///This function instantiates a ProcessedMap.
 
   857     ///\param g is the digraph, to which
 
   858     ///we would like to define the ProcessedMap.
 
   860     static ProcessedMap *createProcessedMap(const Digraph &g)
 
   862     static ProcessedMap *createProcessedMap(const Digraph &)
 
   865       return new ProcessedMap();
 
   868     ///The type of the map that indicates which nodes are reached.
 
   870     ///The type of the map that indicates which nodes are reached.
 
   871     ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
   872     typedef typename Digraph::template NodeMap<bool> ReachedMap;
 
   873     ///Instantiates a ReachedMap.
 
   875     ///This function instantiates a ReachedMap.
 
   876     ///\param g is the digraph, to which
 
   877     ///we would like to define the ReachedMap.
 
   878     static ReachedMap *createReachedMap(const Digraph &g)
 
   880       return new ReachedMap(g);
 
   883     ///The type of the map that stores the distances of the nodes.
 
   885     ///The type of the map that stores the distances of the nodes.
 
   886     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
 
   887     typedef typename Digraph::template NodeMap<int> DistMap;
 
   888     ///Instantiates a DistMap.
 
   890     ///This function instantiates a DistMap.
 
   891     ///\param g is the digraph, to which we would like to define
 
   893     static DistMap *createDistMap(const Digraph &g)
 
   895       return new DistMap(g);
 
   898     ///The type of the shortest paths.
 
   900     ///The type of the shortest paths.
 
   901     ///It must meet the \ref concepts::Path "Path" concept.
 
   902     typedef lemon::Path<Digraph> Path;
 
   905   /// Default traits class used by BfsWizard
 
   907   /// To make it easier to use Bfs algorithm
 
   908   /// we have created a wizard class.
 
   909   /// This \ref BfsWizard class needs default traits,
 
   910   /// as well as the \ref Bfs class.
 
   911   /// The \ref BfsWizardBase is a class to be the default traits of the
 
   912   /// \ref BfsWizard class.
 
   914   class BfsWizardBase : public BfsWizardDefaultTraits<GR>
 
   917     typedef BfsWizardDefaultTraits<GR> Base;
 
   919     //The type of the nodes in the digraph.
 
   920     typedef typename Base::Digraph::Node Node;
 
   922     //Pointer to the digraph the algorithm runs on.
 
   924     //Pointer to the map of reached nodes.
 
   926     //Pointer to the map of processed nodes.
 
   928     //Pointer to the map of predecessors arcs.
 
   930     //Pointer to the map of distances.
 
   932     //Pointer to the shortest path to the target node.
 
   934     //Pointer to the distance of the target node.
 
   940     /// This constructor does not require parameters, therefore it initiates
 
   941     /// all of the attributes to \c 0.
 
   942     BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
 
   943                       _dist(0), _path(0), _di(0) {}
 
   947     /// This constructor requires one parameter,
 
   948     /// others are initiated to \c 0.
 
   949     /// \param g The digraph the algorithm runs on.
 
   950     BfsWizardBase(const GR &g) :
 
   951       _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
 
   952       _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
 
   956   /// Auxiliary class for the function-type interface of BFS algorithm.
 
   958   /// This auxiliary class is created to implement the
 
   959   /// \ref bfs() "function-type interface" of \ref Bfs algorithm.
 
   960   /// It does not have own \ref run(Node) "run()" method, it uses the
 
   961   /// functions and features of the plain \ref Bfs.
 
   963   /// This class should only be used through the \ref bfs() function,
 
   964   /// which makes it easier to use the algorithm.
 
   966   class BfsWizard : public TR
 
   970     ///The type of the digraph the algorithm runs on.
 
   971     typedef typename TR::Digraph Digraph;
 
   973     typedef typename Digraph::Node Node;
 
   974     typedef typename Digraph::NodeIt NodeIt;
 
   975     typedef typename Digraph::Arc Arc;
 
   976     typedef typename Digraph::OutArcIt OutArcIt;
 
   978     ///\brief The type of the map that stores the predecessor
 
   979     ///arcs of the shortest paths.
 
   980     typedef typename TR::PredMap PredMap;
 
   981     ///\brief The type of the map that stores the distances of the nodes.
 
   982     typedef typename TR::DistMap DistMap;
 
   983     ///\brief The type of the map that indicates which nodes are reached.
 
   984     typedef typename TR::ReachedMap ReachedMap;
 
   985     ///\brief The type of the map that indicates which nodes are processed.
 
   986     typedef typename TR::ProcessedMap ProcessedMap;
 
   987     ///The type of the shortest paths
 
   988     typedef typename TR::Path Path;
 
   993     BfsWizard() : TR() {}
 
   995     /// Constructor that requires parameters.
 
   997     /// Constructor that requires parameters.
 
   998     /// These parameters will be the default values for the traits class.
 
   999     /// \param g The digraph the algorithm runs on.
 
  1000     BfsWizard(const Digraph &g) :
 
  1004     BfsWizard(const TR &b) : TR(b) {}
 
  1008     ///Runs BFS algorithm from the given source node.
 
  1010     ///This method runs BFS algorithm from node \c s
 
  1011     ///in order to compute the shortest path to each node.
 
  1014       Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
 
  1016         alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
 
  1018         alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
 
  1020         alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
 
  1021       if (Base::_processed)
 
  1022         alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
 
  1029     ///Finds the shortest path between \c s and \c t.
 
  1031     ///This method runs BFS algorithm from node \c s
 
  1032     ///in order to compute the shortest path to node \c t
 
  1033     ///(it stops searching when \c t is processed).
 
  1035     ///\return \c true if \c t is reachable form \c s.
 
  1036     bool run(Node s, Node t)
 
  1038       Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
 
  1040         alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
 
  1042         alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
 
  1044         alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
 
  1045       if (Base::_processed)
 
  1046         alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
 
  1049         *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
 
  1051         *Base::_di = alg.dist(t);
 
  1052       return alg.reached(t);
 
  1055     ///Runs BFS algorithm to visit all nodes in the digraph.
 
  1057     ///This method runs BFS algorithm in order to compute
 
  1058     ///the shortest path to each node.
 
  1065     struct SetPredMapBase : public Base {
 
  1067       static PredMap *createPredMap(const Digraph &) { return 0; };
 
  1068       SetPredMapBase(const TR &b) : TR(b) {}
 
  1070     ///\brief \ref named-func-param "Named parameter"
 
  1071     ///for setting PredMap object.
 
  1073     ///\ref named-func-param "Named parameter"
 
  1074     ///for setting PredMap object.
 
  1076     BfsWizard<SetPredMapBase<T> > predMap(const T &t)
 
  1078       Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1079       return BfsWizard<SetPredMapBase<T> >(*this);
 
  1083     struct SetReachedMapBase : public Base {
 
  1084       typedef T ReachedMap;
 
  1085       static ReachedMap *createReachedMap(const Digraph &) { return 0; };
 
  1086       SetReachedMapBase(const TR &b) : TR(b) {}
 
  1088     ///\brief \ref named-func-param "Named parameter"
 
  1089     ///for setting ReachedMap object.
 
  1091     /// \ref named-func-param "Named parameter"
 
  1092     ///for setting ReachedMap object.
 
  1094     BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
 
  1096       Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1097       return BfsWizard<SetReachedMapBase<T> >(*this);
 
  1101     struct SetDistMapBase : public Base {
 
  1103       static DistMap *createDistMap(const Digraph &) { return 0; };
 
  1104       SetDistMapBase(const TR &b) : TR(b) {}
 
  1106     ///\brief \ref named-func-param "Named parameter"
 
  1107     ///for setting DistMap object.
 
  1109     /// \ref named-func-param "Named parameter"
 
  1110     ///for setting DistMap object.
 
  1112     BfsWizard<SetDistMapBase<T> > distMap(const T &t)
 
  1114       Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1115       return BfsWizard<SetDistMapBase<T> >(*this);
 
  1119     struct SetProcessedMapBase : public Base {
 
  1120       typedef T ProcessedMap;
 
  1121       static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
 
  1122       SetProcessedMapBase(const TR &b) : TR(b) {}
 
  1124     ///\brief \ref named-func-param "Named parameter"
 
  1125     ///for setting ProcessedMap object.
 
  1127     /// \ref named-func-param "Named parameter"
 
  1128     ///for setting ProcessedMap object.
 
  1130     BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
 
  1132       Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1133       return BfsWizard<SetProcessedMapBase<T> >(*this);
 
  1137     struct SetPathBase : public Base {
 
  1139       SetPathBase(const TR &b) : TR(b) {}
 
  1141     ///\brief \ref named-func-param "Named parameter"
 
  1142     ///for getting the shortest path to the target node.
 
  1144     ///\ref named-func-param "Named parameter"
 
  1145     ///for getting the shortest path to the target node.
 
  1147     BfsWizard<SetPathBase<T> > path(const T &t)
 
  1149       Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
 
  1150       return BfsWizard<SetPathBase<T> >(*this);
 
  1153     ///\brief \ref named-func-param "Named parameter"
 
  1154     ///for getting the distance of the target node.
 
  1156     ///\ref named-func-param "Named parameter"
 
  1157     ///for getting the distance of the target node.
 
  1158     BfsWizard dist(const int &d)
 
  1160       Base::_di=const_cast<int*>(&d);
 
  1166   ///Function-type interface for BFS algorithm.
 
  1169   ///Function-type interface for BFS algorithm.
 
  1171   ///This function also has several \ref named-func-param "named parameters",
 
  1172   ///they are declared as the members of class \ref BfsWizard.
 
  1173   ///The following examples show how to use these parameters.
 
  1175   ///  // Compute shortest path from node s to each node
 
  1176   ///  bfs(g).predMap(preds).distMap(dists).run(s);
 
  1178   ///  // Compute shortest path from s to t
 
  1179   ///  bool reached = bfs(g).path(p).dist(d).run(s,t);
 
  1181   ///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()"
 
  1182   ///to the end of the parameter list.
 
  1186   BfsWizard<BfsWizardBase<GR> >
 
  1187   bfs(const GR &digraph)
 
  1189     return BfsWizard<BfsWizardBase<GR> >(digraph);
 
  1193   /// \brief Visitor class for BFS.
 
  1195   /// This class defines the interface of the BfsVisit events, and
 
  1196   /// it could be the base of a real visitor class.
 
  1197   template <typename _Digraph>
 
  1199     typedef _Digraph Digraph;
 
  1200     typedef typename Digraph::Arc Arc;
 
  1201     typedef typename Digraph::Node Node;
 
  1202     /// \brief Called for the source node(s) of the BFS.
 
  1204     /// This function is called for the source node(s) of the BFS.
 
  1205     void start(const Node& node) {}
 
  1206     /// \brief Called when a node is reached first time.
 
  1208     /// This function is called when a node is reached first time.
 
  1209     void reach(const Node& node) {}
 
  1210     /// \brief Called when a node is processed.
 
  1212     /// This function is called when a node is processed.
 
  1213     void process(const Node& node) {}
 
  1214     /// \brief Called when an arc reaches a new node.
 
  1216     /// This function is called when the BFS finds an arc whose target node
 
  1217     /// is not reached yet.
 
  1218     void discover(const Arc& arc) {}
 
  1219     /// \brief Called when an arc is examined but its target node is
 
  1220     /// already discovered.
 
  1222     /// This function is called when an arc is examined but its target node is
 
  1223     /// already discovered.
 
  1224     void examine(const Arc& arc) {}
 
  1227   template <typename _Digraph>
 
  1229     typedef _Digraph Digraph;
 
  1230     typedef typename Digraph::Arc Arc;
 
  1231     typedef typename Digraph::Node Node;
 
  1232     void start(const Node&) {}
 
  1233     void reach(const Node&) {}
 
  1234     void process(const Node&) {}
 
  1235     void discover(const Arc&) {}
 
  1236     void examine(const Arc&) {}
 
  1238     template <typename _Visitor>
 
  1239     struct Constraints {
 
  1240       void constraints() {
 
  1243         visitor.start(node);
 
  1244         visitor.reach(node);
 
  1245         visitor.process(node);
 
  1246         visitor.discover(arc);
 
  1247         visitor.examine(arc);
 
  1254   /// \brief Default traits class of BfsVisit class.
 
  1256   /// Default traits class of BfsVisit class.
 
  1257   /// \tparam _Digraph The type of the digraph the algorithm runs on.
 
  1258   template<class _Digraph>
 
  1259   struct BfsVisitDefaultTraits {
 
  1261     /// \brief The type of the digraph the algorithm runs on.
 
  1262     typedef _Digraph Digraph;
 
  1264     /// \brief The type of the map that indicates which nodes are reached.
 
  1266     /// The type of the map that indicates which nodes are reached.
 
  1267     /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
  1268     typedef typename Digraph::template NodeMap<bool> ReachedMap;
 
  1270     /// \brief Instantiates a ReachedMap.
 
  1272     /// This function instantiates a ReachedMap.
 
  1273     /// \param digraph is the digraph, to which
 
  1274     /// we would like to define the ReachedMap.
 
  1275     static ReachedMap *createReachedMap(const Digraph &digraph) {
 
  1276       return new ReachedMap(digraph);
 
  1283   /// \brief %BFS algorithm class with visitor interface.
 
  1285   /// This class provides an efficient implementation of the %BFS algorithm
 
  1286   /// with visitor interface.
 
  1288   /// The %BfsVisit class provides an alternative interface to the Bfs
 
  1289   /// class. It works with callback mechanism, the BfsVisit object calls
 
  1290   /// the member functions of the \c Visitor class on every BFS event.
 
  1292   /// This interface of the BFS algorithm should be used in special cases
 
  1293   /// when extra actions have to be performed in connection with certain
 
  1294   /// events of the BFS algorithm. Otherwise consider to use Bfs or bfs()
 
  1297   /// \tparam _Digraph The type of the digraph the algorithm runs on.
 
  1298   /// The default value is
 
  1299   /// \ref ListDigraph. The value of _Digraph is not used directly by
 
  1300   /// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits.
 
  1301   /// \tparam _Visitor The Visitor type that is used by the algorithm.
 
  1302   /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which
 
  1303   /// does not observe the BFS events. If you want to observe the BFS
 
  1304   /// events, you should implement your own visitor class.
 
  1305   /// \tparam _Traits Traits class to set various data types used by the
 
  1306   /// algorithm. The default traits class is
 
  1307   /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>".
 
  1308   /// See \ref BfsVisitDefaultTraits for the documentation of
 
  1309   /// a BFS visit traits class.
 
  1311   template <typename _Digraph, typename _Visitor, typename _Traits>
 
  1313   template <typename _Digraph = ListDigraph,
 
  1314             typename _Visitor = BfsVisitor<_Digraph>,
 
  1315             typename _Traits = BfsVisitDefaultTraits<_Digraph> >
 
  1320     ///The traits class.
 
  1321     typedef _Traits Traits;
 
  1323     ///The type of the digraph the algorithm runs on.
 
  1324     typedef typename Traits::Digraph Digraph;
 
  1326     ///The visitor type used by the algorithm.
 
  1327     typedef _Visitor Visitor;
 
  1329     ///The type of the map that indicates which nodes are reached.
 
  1330     typedef typename Traits::ReachedMap ReachedMap;
 
  1334     typedef typename Digraph::Node Node;
 
  1335     typedef typename Digraph::NodeIt NodeIt;
 
  1336     typedef typename Digraph::Arc Arc;
 
  1337     typedef typename Digraph::OutArcIt OutArcIt;
 
  1339     //Pointer to the underlying digraph.
 
  1340     const Digraph *_digraph;
 
  1341     //Pointer to the visitor object.
 
  1343     //Pointer to the map of reached status of the nodes.
 
  1344     ReachedMap *_reached;
 
  1345     //Indicates if _reached is locally allocated (true) or not.
 
  1348     std::vector<typename Digraph::Node> _list;
 
  1349     int _list_front, _list_back;
 
  1351     //Creates the maps if necessary.
 
  1352     void create_maps() {
 
  1354         local_reached = true;
 
  1355         _reached = Traits::createReachedMap(*_digraph);
 
  1365     typedef BfsVisit Create;
 
  1367     /// \name Named Template Parameters
 
  1371     struct SetReachedMapTraits : public Traits {
 
  1372       typedef T ReachedMap;
 
  1373       static ReachedMap *createReachedMap(const Digraph &digraph) {
 
  1374         LEMON_ASSERT(false, "ReachedMap is not initialized");
 
  1375         return 0; // ignore warnings
 
  1378     /// \brief \ref named-templ-param "Named parameter" for setting
 
  1379     /// ReachedMap type.
 
  1381     /// \ref named-templ-param "Named parameter" for setting ReachedMap type.
 
  1383     struct SetReachedMap : public BfsVisit< Digraph, Visitor,
 
  1384                                             SetReachedMapTraits<T> > {
 
  1385       typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
 
  1391     /// \brief Constructor.
 
  1395     /// \param digraph The digraph the algorithm runs on.
 
  1396     /// \param visitor The visitor object of the algorithm.
 
  1397     BfsVisit(const Digraph& digraph, Visitor& visitor)
 
  1398       : _digraph(&digraph), _visitor(&visitor),
 
  1399         _reached(0), local_reached(false) {}
 
  1401     /// \brief Destructor.
 
  1403       if(local_reached) delete _reached;
 
  1406     /// \brief Sets the map that indicates which nodes are reached.
 
  1408     /// Sets the map that indicates which nodes are reached.
 
  1409     /// If you don't use this function before calling \ref run(Node) "run()"
 
  1410     /// or \ref init(), an instance will be allocated automatically.
 
  1411     /// The destructor deallocates this automatically allocated map,
 
  1413     /// \return <tt> (*this) </tt>
 
  1414     BfsVisit &reachedMap(ReachedMap &m) {
 
  1417         local_reached = false;
 
  1425     /// \name Execution Control
 
  1426     /// The simplest way to execute the BFS algorithm is to use one of the
 
  1427     /// member functions called \ref run(Node) "run()".\n
 
  1428     /// If you need more control on the execution, first you have to call
 
  1429     /// \ref init(), then you can add several source nodes with
 
  1430     /// \ref addSource(). Finally the actual path computation can be
 
  1431     /// performed with one of the \ref start() functions.
 
  1435     /// \brief Initializes the internal data structures.
 
  1437     /// Initializes the internal data structures.
 
  1440       _list.resize(countNodes(*_digraph));
 
  1441       _list_front = _list_back = -1;
 
  1442       for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
 
  1443         _reached->set(u, false);
 
  1447     /// \brief Adds a new source node.
 
  1449     /// Adds a new source node to the set of nodes to be processed.
 
  1450     void addSource(Node s) {
 
  1451       if(!(*_reached)[s]) {
 
  1452           _reached->set(s,true);
 
  1455           _list[++_list_back] = s;
 
  1459     /// \brief Processes the next node.
 
  1461     /// Processes the next node.
 
  1463     /// \return The processed node.
 
  1465     /// \pre The queue must not be empty.
 
  1466     Node processNextNode() {
 
  1467       Node n = _list[++_list_front];
 
  1468       _visitor->process(n);
 
  1470       for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
 
  1471         Node m = _digraph->target(e);
 
  1472         if (!(*_reached)[m]) {
 
  1473           _visitor->discover(e);
 
  1475           _reached->set(m, true);
 
  1476           _list[++_list_back] = m;
 
  1478           _visitor->examine(e);
 
  1484     /// \brief Processes the next node.
 
  1486     /// Processes the next node and checks if the given target node
 
  1487     /// is reached. If the target node is reachable from the processed
 
  1488     /// node, then the \c reach parameter will be set to \c true.
 
  1490     /// \param target The target node.
 
  1491     /// \retval reach Indicates if the target node is reached.
 
  1492     /// It should be initially \c false.
 
  1494     /// \return The processed node.
 
  1496     /// \pre The queue must not be empty.
 
  1497     Node processNextNode(Node target, bool& reach) {
 
  1498       Node n = _list[++_list_front];
 
  1499       _visitor->process(n);
 
  1501       for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
 
  1502         Node m = _digraph->target(e);
 
  1503         if (!(*_reached)[m]) {
 
  1504           _visitor->discover(e);
 
  1506           _reached->set(m, true);
 
  1507           _list[++_list_back] = m;
 
  1508           reach = reach || (target == m);
 
  1510           _visitor->examine(e);
 
  1516     /// \brief Processes the next node.
 
  1518     /// Processes the next node and checks if at least one of reached
 
  1519     /// nodes has \c true value in the \c nm node map. If one node
 
  1520     /// with \c true value is reachable from the processed node, then the
 
  1521     /// \c rnode parameter will be set to the first of such nodes.
 
  1523     /// \param nm A \c bool (or convertible) node map that indicates the
 
  1524     /// possible targets.
 
  1525     /// \retval rnode The reached target node.
 
  1526     /// It should be initially \c INVALID.
 
  1528     /// \return The processed node.
 
  1530     /// \pre The queue must not be empty.
 
  1531     template <typename NM>
 
  1532     Node processNextNode(const NM& nm, Node& rnode) {
 
  1533       Node n = _list[++_list_front];
 
  1534       _visitor->process(n);
 
  1536       for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
 
  1537         Node m = _digraph->target(e);
 
  1538         if (!(*_reached)[m]) {
 
  1539           _visitor->discover(e);
 
  1541           _reached->set(m, true);
 
  1542           _list[++_list_back] = m;
 
  1543           if (nm[m] && rnode == INVALID) rnode = m;
 
  1545           _visitor->examine(e);
 
  1551     /// \brief The next node to be processed.
 
  1553     /// Returns the next node to be processed or \c INVALID if the queue
 
  1555     Node nextNode() const {
 
  1556       return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
 
  1559     /// \brief Returns \c false if there are nodes
 
  1560     /// to be processed.
 
  1562     /// Returns \c false if there are nodes
 
  1563     /// to be processed in the queue.
 
  1564     bool emptyQueue() const { return _list_front == _list_back; }
 
  1566     /// \brief Returns the number of the nodes to be processed.
 
  1568     /// Returns the number of the nodes to be processed in the queue.
 
  1569     int queueSize() const { return _list_back - _list_front; }
 
  1571     /// \brief Executes the algorithm.
 
  1573     /// Executes the algorithm.
 
  1575     /// This method runs the %BFS algorithm from the root node(s)
 
  1576     /// in order to compute the shortest path to each node.
 
  1578     /// The algorithm computes
 
  1579     /// - the shortest path tree (forest),
 
  1580     /// - the distance of each node from the root(s).
 
  1582     /// \pre init() must be called and at least one root node should be added
 
  1583     /// with addSource() before using this function.
 
  1585     /// \note <tt>b.start()</tt> is just a shortcut of the following code.
 
  1587     ///   while ( !b.emptyQueue() ) {
 
  1588     ///     b.processNextNode();
 
  1592       while ( !emptyQueue() ) processNextNode();
 
  1595     /// \brief Executes the algorithm until the given target node is reached.
 
  1597     /// Executes the algorithm until the given target node is reached.
 
  1599     /// This method runs the %BFS algorithm from the root node(s)
 
  1600     /// in order to compute the shortest path to \c t.
 
  1602     /// The algorithm computes
 
  1603     /// - the shortest path to \c t,
 
  1604     /// - the distance of \c t from the root(s).
 
  1606     /// \pre init() must be called and at least one root node should be
 
  1607     /// added with addSource() before using this function.
 
  1609     /// \note <tt>b.start(t)</tt> is just a shortcut of the following code.
 
  1611     ///   bool reach = false;
 
  1612     ///   while ( !b.emptyQueue() && !reach ) {
 
  1613     ///     b.processNextNode(t, reach);
 
  1616     void start(Node t) {
 
  1618       while ( !emptyQueue() && !reach ) processNextNode(t, reach);
 
  1621     /// \brief Executes the algorithm until a condition is met.
 
  1623     /// Executes the algorithm until a condition is met.
 
  1625     /// This method runs the %BFS algorithm from the root node(s) in
 
  1626     /// order to compute the shortest path to a node \c v with
 
  1627     /// <tt>nm[v]</tt> true, if such a node can be found.
 
  1629     /// \param nm must be a bool (or convertible) node map. The
 
  1630     /// algorithm will stop when it reaches a node \c v with
 
  1631     /// <tt>nm[v]</tt> true.
 
  1633     /// \return The reached node \c v with <tt>nm[v]</tt> true or
 
  1634     /// \c INVALID if no such node was found.
 
  1636     /// \pre init() must be called and at least one root node should be
 
  1637     /// added with addSource() before using this function.
 
  1639     /// \note <tt>b.start(nm)</tt> is just a shortcut of the following code.
 
  1641     ///   Node rnode = INVALID;
 
  1642     ///   while ( !b.emptyQueue() && rnode == INVALID ) {
 
  1643     ///     b.processNextNode(nm, rnode);
 
  1647     template <typename NM>
 
  1648     Node start(const NM &nm) {
 
  1649       Node rnode = INVALID;
 
  1650       while ( !emptyQueue() && rnode == INVALID ) {
 
  1651         processNextNode(nm, rnode);
 
  1656     /// \brief Runs the algorithm from the given source node.
 
  1658     /// This method runs the %BFS algorithm from node \c s
 
  1659     /// in order to compute the shortest path to each node.
 
  1661     /// The algorithm computes
 
  1662     /// - the shortest path tree,
 
  1663     /// - the distance of each node from the root.
 
  1665     /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
 
  1677     /// \brief Finds the shortest path between \c s and \c t.
 
  1679     /// This method runs the %BFS algorithm from node \c s
 
  1680     /// in order to compute the shortest path to node \c t
 
  1681     /// (it stops searching when \c t is processed).
 
  1683     /// \return \c true if \c t is reachable form \c s.
 
  1685     /// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a
 
  1686     /// shortcut of the following code.
 
  1692     bool run(Node s,Node t) {
 
  1699     /// \brief Runs the algorithm to visit all nodes in the digraph.
 
  1701     /// This method runs the %BFS algorithm in order to
 
  1702     /// compute the shortest path to each node.
 
  1704     /// The algorithm computes
 
  1705     /// - the shortest path tree (forest),
 
  1706     /// - the distance of each node from the root(s).
 
  1708     /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
 
  1711     ///  for (NodeIt n(gr); n != INVALID; ++n) {
 
  1712     ///    if (!b.reached(n)) {
 
  1720       for (NodeIt it(*_digraph); it != INVALID; ++it) {
 
  1730     /// \name Query Functions
 
  1731     /// The results of the BFS algorithm can be obtained using these
 
  1733     /// Either \ref run(Node) "run()" or \ref start() should be called
 
  1734     /// before using them.
 
  1738     /// \brief Checks if a node is reached from the root(s).
 
  1740     /// Returns \c true if \c v is reached from the root(s).
 
  1742     /// \pre Either \ref run(Node) "run()" or \ref init()
 
  1743     /// must be called before using this function.
 
  1744     bool reached(Node v) { return (*_reached)[v]; }
 
  1750 } //END OF NAMESPACE LEMON