lemon/kruskal.h
changeset 106 9ba2d265e191
child 136 b82dc494bafc
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/kruskal.h	Thu Mar 20 23:06:35 2008 +0000
     1.3 @@ -0,0 +1,319 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_KRUSKAL_H
    1.23 +#define LEMON_KRUSKAL_H
    1.24 +
    1.25 +#include <algorithm>
    1.26 +#include <vector>
    1.27 +#include <lemon/unionfind.h>
    1.28 +// #include <lemon/graph_utils.h>
    1.29 +#include <lemon/maps.h>
    1.30 +
    1.31 +// #include <lemon/radix_sort.h>
    1.32 +
    1.33 +#include <lemon/bits/utility.h>
    1.34 +#include <lemon/bits/traits.h>
    1.35 +
    1.36 +///\ingroup spantree
    1.37 +///\file
    1.38 +///\brief Kruskal's algorithm to compute a minimum cost tree
    1.39 +///
    1.40 +///Kruskal's algorithm to compute a minimum cost tree.
    1.41 +///
    1.42 +
    1.43 +namespace lemon {
    1.44 +
    1.45 +  namespace _kruskal_bits {
    1.46 +
    1.47 +    // Kruskal for directed graphs.
    1.48 +
    1.49 +    template <typename Digraph, typename In, typename Out>
    1.50 +    typename disable_if<lemon::UndirectedTagIndicator<Digraph>,
    1.51 +		       typename In::value_type::second_type >::type
    1.52 +    kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) {
    1.53 +      typedef typename In::value_type::second_type Value;
    1.54 +      typedef typename Digraph::template NodeMap<int> IndexMap;
    1.55 +      typedef typename Digraph::Node Node;
    1.56 +      
    1.57 +      IndexMap index(digraph);
    1.58 +      UnionFind<IndexMap> uf(index);
    1.59 +      for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) {
    1.60 +        uf.insert(it);
    1.61 +      }
    1.62 +      
    1.63 +      Value tree_value = 0;
    1.64 +      for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
    1.65 +        if (uf.join(digraph.target(it->first),digraph.source(it->first))) {
    1.66 +          out.set(it->first, true);
    1.67 +          tree_value += it->second;
    1.68 +        }
    1.69 +        else {
    1.70 +          out.set(it->first, false);
    1.71 +        }
    1.72 +      }
    1.73 +      return tree_value;
    1.74 +    }
    1.75 +
    1.76 +    // Kruskal for undirected graphs.
    1.77 +
    1.78 +    template <typename Graph, typename In, typename Out>
    1.79 +    typename enable_if<lemon::UndirectedTagIndicator<Graph>,
    1.80 +		       typename In::value_type::second_type >::type
    1.81 +    kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) {
    1.82 +      typedef typename In::value_type::second_type Value;
    1.83 +      typedef typename Graph::template NodeMap<int> IndexMap;
    1.84 +      typedef typename Graph::Node Node;
    1.85 +      
    1.86 +      IndexMap index(graph);
    1.87 +      UnionFind<IndexMap> uf(index);
    1.88 +      for (typename Graph::NodeIt it(graph); it != INVALID; ++it) {
    1.89 +        uf.insert(it);
    1.90 +      }
    1.91 +      
    1.92 +      Value tree_value = 0;
    1.93 +      for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
    1.94 +        if (uf.join(graph.u(it->first),graph.v(it->first))) {
    1.95 +          out.set(it->first, true);
    1.96 +          tree_value += it->second;
    1.97 +        }
    1.98 +        else {
    1.99 +          out.set(it->first, false);
   1.100 +        }
   1.101 +      }
   1.102 +      return tree_value;
   1.103 +    }
   1.104 +
   1.105 +
   1.106 +    template <typename Sequence>
   1.107 +    struct PairComp {
   1.108 +      typedef typename Sequence::value_type Value;
   1.109 +      bool operator()(const Value& left, const Value& right) {
   1.110 +	return left.second < right.second;
   1.111 +      }
   1.112 +    };
   1.113 +
   1.114 +    template <typename In, typename Enable = void>
   1.115 +    struct SequenceInputIndicator {
   1.116 +      static const bool value = false;
   1.117 +    };
   1.118 +
   1.119 +    template <typename In>
   1.120 +    struct SequenceInputIndicator<In, 
   1.121 +      typename exists<typename In::value_type::first_type>::type> {
   1.122 +      static const bool value = true;
   1.123 +    };
   1.124 +
   1.125 +    template <typename In, typename Enable = void>
   1.126 +    struct MapInputIndicator {
   1.127 +      static const bool value = false;
   1.128 +    };
   1.129 +
   1.130 +    template <typename In>
   1.131 +    struct MapInputIndicator<In, 
   1.132 +      typename exists<typename In::Value>::type> {
   1.133 +      static const bool value = true;
   1.134 +    };
   1.135 +
   1.136 +    template <typename In, typename Enable = void>
   1.137 +    struct SequenceOutputIndicator {
   1.138 +      static const bool value = false;
   1.139 +    };
   1.140 + 
   1.141 +    template <typename Out>
   1.142 +    struct SequenceOutputIndicator<Out, 
   1.143 +      typename exists<typename Out::value_type>::type> {
   1.144 +      static const bool value = true;
   1.145 +    };
   1.146 +
   1.147 +    template <typename Out, typename Enable = void>
   1.148 +    struct MapOutputIndicator {
   1.149 +      static const bool value = false;
   1.150 +    };
   1.151 +
   1.152 +    template <typename Out>
   1.153 +    struct MapOutputIndicator<Out, 
   1.154 +      typename exists<typename Out::Value>::type> {
   1.155 +      static const bool value = true;
   1.156 +    };
   1.157 +
   1.158 +    template <typename In, typename InEnable = void>
   1.159 +    struct KruskalValueSelector {};
   1.160 +
   1.161 +    template <typename In>
   1.162 +    struct KruskalValueSelector<In,
   1.163 +      typename enable_if<SequenceInputIndicator<In>, void>::type> 
   1.164 +    {
   1.165 +      typedef typename In::value_type::second_type Value;
   1.166 +    };    
   1.167 +
   1.168 +    template <typename In>
   1.169 +    struct KruskalValueSelector<In,
   1.170 +      typename enable_if<MapInputIndicator<In>, void>::type> 
   1.171 +    {
   1.172 +      typedef typename In::Value Value;
   1.173 +    };    
   1.174 +    
   1.175 +    template <typename Graph, typename In, typename Out,
   1.176 +              typename InEnable = void>
   1.177 +    struct KruskalInputSelector {};
   1.178 +
   1.179 +    template <typename Graph, typename In, typename Out,
   1.180 +              typename InEnable = void>
   1.181 +    struct KruskalOutputSelector {};
   1.182 +    
   1.183 +    template <typename Graph, typename In, typename Out>
   1.184 +    struct KruskalInputSelector<Graph, In, Out,
   1.185 +      typename enable_if<SequenceInputIndicator<In>, void>::type > 
   1.186 +    {
   1.187 +      typedef typename In::value_type::second_type Value;
   1.188 +
   1.189 +      static Value kruskal(const Graph& graph, const In& in, Out& out) {
   1.190 +        return KruskalOutputSelector<Graph, In, Out>::
   1.191 +          kruskal(graph, in, out);
   1.192 +      }
   1.193 +
   1.194 +    };
   1.195 +
   1.196 +    template <typename Graph, typename In, typename Out>
   1.197 +    struct KruskalInputSelector<Graph, In, Out,
   1.198 +      typename enable_if<MapInputIndicator<In>, void>::type > 
   1.199 +    {
   1.200 +      typedef typename In::Value Value;
   1.201 +      static Value kruskal(const Graph& graph, const In& in, Out& out) {
   1.202 +        typedef typename In::Key MapArc;
   1.203 +        typedef typename In::Value Value;
   1.204 +        typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt;
   1.205 +        typedef std::vector<std::pair<MapArc, Value> > Sequence;
   1.206 +        Sequence seq;
   1.207 +        
   1.208 +        for (MapArcIt it(graph); it != INVALID; ++it) {
   1.209 +          seq.push_back(std::make_pair(it, in[it]));
   1.210 +        }
   1.211 +
   1.212 +        std::sort(seq.begin(), seq.end(), PairComp<Sequence>());
   1.213 +        return KruskalOutputSelector<Graph, Sequence, Out>::
   1.214 +          kruskal(graph, seq, out);
   1.215 +      }
   1.216 +    };
   1.217 +
   1.218 +    template <typename Graph, typename In, typename Out>
   1.219 +    struct KruskalOutputSelector<Graph, In, Out,
   1.220 +      typename enable_if<SequenceOutputIndicator<Out>, void>::type > 
   1.221 +    {
   1.222 +      typedef typename In::value_type::second_type Value;
   1.223 +
   1.224 +      static Value kruskal(const Graph& graph, const In& in, Out& out) {
   1.225 +        typedef StoreBoolMap<Out> Map;
   1.226 +        Map map(out);
   1.227 +        return _kruskal_bits::kruskal(graph, in, map);
   1.228 +      }
   1.229 +
   1.230 +    };
   1.231 +
   1.232 +    template <typename Graph, typename In, typename Out>
   1.233 +    struct KruskalOutputSelector<Graph, In, Out,
   1.234 +      typename enable_if<MapOutputIndicator<Out>, void>::type > 
   1.235 +    {
   1.236 +      typedef typename In::value_type::second_type Value;
   1.237 +
   1.238 +      static Value kruskal(const Graph& graph, const In& in, Out& out) {
   1.239 +        return _kruskal_bits::kruskal(graph, in, out);
   1.240 +      }
   1.241 +    };
   1.242 +
   1.243 +  }
   1.244 +
   1.245 +  /// \ingroup spantree
   1.246 +  ///
   1.247 +  /// \brief Kruskal's algorithm to find a minimum cost tree of a graph.
   1.248 +  ///
   1.249 +  /// This function runs Kruskal's algorithm to find a minimum cost tree.
   1.250 +  /// Due to some C++ hacking, it accepts various input and output types.
   1.251 +  ///
   1.252 +  /// \param g The graph the algorithm runs on.
   1.253 +  /// It can be either \ref concepts::Digraph "directed" or 
   1.254 +  /// \ref concepts::Graph "undirected".
   1.255 +  /// If the graph is directed, the algorithm consider it to be 
   1.256 +  /// undirected by disregarding the direction of the arcs.
   1.257 +  ///
   1.258 +  /// \param in This object is used to describe the arc costs. It can be one
   1.259 +  /// of the following choices.
   1.260 +  /// - An STL compatible 'Forward Container' with
   1.261 +  /// <tt>std::pair<GR::Edge,X></tt> or
   1.262 +  /// <tt>std::pair<GR::Arc,X></tt> as its <tt>value_type</tt>, where
   1.263 +  /// \c X is the type of the costs. The pairs indicates the arcs
   1.264 +  /// along with the assigned cost. <em>They must be in a
   1.265 +  /// cost-ascending order.</em>
   1.266 +  /// - Any readable Arc map. The values of the map indicate the arc costs.
   1.267 +  ///
   1.268 +  /// \retval out Here we also have a choise.
   1.269 +  /// - It can be a writable \c bool arc map.  After running the
   1.270 +  /// algorithm this will contain the found minimum cost spanning
   1.271 +  /// tree: the value of an arc will be set to \c true if it belongs
   1.272 +  /// to the tree, otherwise it will be set to \c false. The value of
   1.273 +  /// each arc will be set exactly once.
   1.274 +  /// - It can also be an iteraror of an STL Container with
   1.275 +  /// <tt>GR::Edge</tt> or <tt>GR::Arc</tt> as its
   1.276 +  /// <tt>value_type</tt>.  The algorithm copies the elements of the
   1.277 +  /// found tree into this sequence.  For example, if we know that the
   1.278 +  /// spanning tree of the graph \c g has say 53 arcs, then we can
   1.279 +  /// put its arcs into an STL vector \c tree with a code like this.
   1.280 +  ///\code
   1.281 +  /// std::vector<Arc> tree(53);
   1.282 +  /// kruskal(g,cost,tree.begin());
   1.283 +  ///\endcode
   1.284 +  /// Or if we don't know in advance the size of the tree, we can
   1.285 +  /// write this.  
   1.286 +  ///\code std::vector<Arc> tree;
   1.287 +  /// kruskal(g,cost,std::back_inserter(tree)); 
   1.288 +  ///\endcode
   1.289 +  ///
   1.290 +  /// \return The total cost of the found tree.
   1.291 +  ///
   1.292 +  /// \warning If kruskal runs on an be consistent of using the same
   1.293 +  /// Arc type for input and output.
   1.294 +  ///
   1.295 +
   1.296 +#ifdef DOXYGEN
   1.297 +  template <class Graph, class In, class Out>
   1.298 +  Value kruskal(GR const& g, const In& in, Out& out)
   1.299 +#else 
   1.300 +  template <class Graph, class In, class Out>
   1.301 +  inline typename _kruskal_bits::KruskalValueSelector<In>::Value 
   1.302 +  kruskal(const Graph& graph, const In& in, Out& out) 
   1.303 +#endif
   1.304 +  {
   1.305 +    return _kruskal_bits::KruskalInputSelector<Graph, In, Out>::
   1.306 +      kruskal(graph, in, out);
   1.307 +  }
   1.308 +
   1.309 + 
   1.310 +  
   1.311 +
   1.312 +  template <class Graph, class In, class Out>
   1.313 +  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
   1.314 +  kruskal(const Graph& graph, const In& in, const Out& out)
   1.315 +  {
   1.316 +    return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>::
   1.317 +      kruskal(graph, in, out);
   1.318 +  }  
   1.319 +
   1.320 +} //namespace lemon
   1.321 +
   1.322 +#endif //LEMON_KRUSKAL_H