deba@326
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
deba@326
|
2 |
*
|
deba@326
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
deba@326
|
4 |
*
|
alpar@440
|
5 |
* Copyright (C) 2003-2009
|
deba@326
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
deba@326
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
deba@326
|
8 |
*
|
deba@326
|
9 |
* Permission to use, modify and distribute this software is granted
|
deba@326
|
10 |
* provided that this copyright notice appears in all copies. For
|
deba@326
|
11 |
* precise terms see the accompanying LICENSE file.
|
deba@326
|
12 |
*
|
deba@326
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
deba@326
|
14 |
* express or implied, and with no claim as to its suitability for any
|
deba@326
|
15 |
* purpose.
|
deba@326
|
16 |
*
|
deba@326
|
17 |
*/
|
deba@326
|
18 |
|
deba@868
|
19 |
#ifndef LEMON_MATCHING_H
|
deba@868
|
20 |
#define LEMON_MATCHING_H
|
deba@326
|
21 |
|
deba@326
|
22 |
#include <vector>
|
deba@326
|
23 |
#include <queue>
|
deba@326
|
24 |
#include <set>
|
deba@326
|
25 |
#include <limits>
|
deba@326
|
26 |
|
deba@326
|
27 |
#include <lemon/core.h>
|
deba@326
|
28 |
#include <lemon/unionfind.h>
|
deba@326
|
29 |
#include <lemon/bin_heap.h>
|
deba@326
|
30 |
#include <lemon/maps.h>
|
deba@870
|
31 |
#include <lemon/fractional_matching.h>
|
deba@326
|
32 |
|
deba@326
|
33 |
///\ingroup matching
|
deba@326
|
34 |
///\file
|
deba@327
|
35 |
///\brief Maximum matching algorithms in general graphs.
|
deba@326
|
36 |
|
deba@326
|
37 |
namespace lemon {
|
deba@326
|
38 |
|
deba@327
|
39 |
/// \ingroup matching
|
deba@326
|
40 |
///
|
kpeter@590
|
41 |
/// \brief Maximum cardinality matching in general graphs
|
deba@326
|
42 |
///
|
kpeter@590
|
43 |
/// This class implements Edmonds' alternating forest matching algorithm
|
kpeter@593
|
44 |
/// for finding a maximum cardinality matching in a general undirected graph.
|
deba@868
|
45 |
/// It can be started from an arbitrary initial matching
|
kpeter@590
|
46 |
/// (the default is the empty one).
|
deba@326
|
47 |
///
|
alpar@330
|
48 |
/// The dual solution of the problem is a map of the nodes to
|
kpeter@590
|
49 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
|
kpeter@590
|
50 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
|
kpeter@590
|
51 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
|
kpeter@590
|
52 |
/// with factor-critical components, the nodes in \c ODD/A form the
|
kpeter@590
|
53 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having
|
kpeter@590
|
54 |
/// a perfect matching. The number of the factor-critical components
|
deba@327
|
55 |
/// minus the number of barrier nodes is a lower bound on the
|
alpar@330
|
56 |
/// unmatched nodes, and the matching is optimal if and only if this bound is
|
kpeter@593
|
57 |
/// tight. This decomposition can be obtained using \ref status() or
|
kpeter@593
|
58 |
/// \ref statusMap() after running the algorithm.
|
deba@326
|
59 |
///
|
kpeter@593
|
60 |
/// \tparam GR The undirected graph type the algorithm runs on.
|
kpeter@559
|
61 |
template <typename GR>
|
deba@326
|
62 |
class MaxMatching {
|
deba@327
|
63 |
public:
|
deba@327
|
64 |
|
kpeter@590
|
65 |
/// The graph type of the algorithm
|
kpeter@559
|
66 |
typedef GR Graph;
|
kpeter@593
|
67 |
/// The type of the matching map
|
deba@327
|
68 |
typedef typename Graph::template NodeMap<typename Graph::Arc>
|
deba@327
|
69 |
MatchingMap;
|
deba@327
|
70 |
|
kpeter@590
|
71 |
///\brief Status constants for Gallai-Edmonds decomposition.
|
deba@327
|
72 |
///
|
deba@868
|
73 |
///These constants are used for indicating the Gallai-Edmonds
|
kpeter@590
|
74 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D)
|
kpeter@590
|
75 |
///induce a subgraph with factor-critical components, the nodes with
|
kpeter@590
|
76 |
///status \c ODD (or \c A) form the canonical barrier, and the nodes
|
deba@868
|
77 |
///with status \c MATCHED (or \c C) induce a subgraph having a
|
kpeter@590
|
78 |
///perfect matching.
|
deba@327
|
79 |
enum Status {
|
kpeter@590
|
80 |
EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.)
|
kpeter@590
|
81 |
D = 1,
|
kpeter@590
|
82 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.)
|
kpeter@590
|
83 |
C = 0,
|
kpeter@590
|
84 |
ODD = -1, ///< = -1. (\c A is an alias for \c ODD.)
|
kpeter@590
|
85 |
A = -1,
|
kpeter@590
|
86 |
UNMATCHED = -2 ///< = -2.
|
deba@327
|
87 |
};
|
deba@327
|
88 |
|
kpeter@593
|
89 |
/// The type of the status map
|
deba@327
|
90 |
typedef typename Graph::template NodeMap<Status> StatusMap;
|
deba@327
|
91 |
|
deba@327
|
92 |
private:
|
deba@326
|
93 |
|
deba@326
|
94 |
TEMPLATE_GRAPH_TYPEDEFS(Graph);
|
deba@326
|
95 |
|
deba@327
|
96 |
typedef UnionFindEnum<IntNodeMap> BlossomSet;
|
deba@327
|
97 |
typedef ExtendFindEnum<IntNodeMap> TreeSet;
|
deba@327
|
98 |
typedef RangeMap<Node> NodeIntMap;
|
deba@327
|
99 |
typedef MatchingMap EarMap;
|
deba@327
|
100 |
typedef std::vector<Node> NodeQueue;
|
deba@327
|
101 |
|
deba@327
|
102 |
const Graph& _graph;
|
deba@327
|
103 |
MatchingMap* _matching;
|
deba@327
|
104 |
StatusMap* _status;
|
deba@327
|
105 |
|
deba@327
|
106 |
EarMap* _ear;
|
deba@327
|
107 |
|
deba@327
|
108 |
IntNodeMap* _blossom_set_index;
|
deba@327
|
109 |
BlossomSet* _blossom_set;
|
deba@327
|
110 |
NodeIntMap* _blossom_rep;
|
deba@327
|
111 |
|
deba@327
|
112 |
IntNodeMap* _tree_set_index;
|
deba@327
|
113 |
TreeSet* _tree_set;
|
deba@327
|
114 |
|
deba@327
|
115 |
NodeQueue _node_queue;
|
deba@327
|
116 |
int _process, _postpone, _last;
|
deba@327
|
117 |
|
deba@327
|
118 |
int _node_num;
|
deba@327
|
119 |
|
deba@327
|
120 |
private:
|
deba@327
|
121 |
|
deba@327
|
122 |
void createStructures() {
|
deba@327
|
123 |
_node_num = countNodes(_graph);
|
deba@327
|
124 |
if (!_matching) {
|
deba@327
|
125 |
_matching = new MatchingMap(_graph);
|
deba@327
|
126 |
}
|
deba@327
|
127 |
if (!_status) {
|
deba@327
|
128 |
_status = new StatusMap(_graph);
|
deba@327
|
129 |
}
|
deba@327
|
130 |
if (!_ear) {
|
deba@327
|
131 |
_ear = new EarMap(_graph);
|
deba@327
|
132 |
}
|
deba@327
|
133 |
if (!_blossom_set) {
|
deba@327
|
134 |
_blossom_set_index = new IntNodeMap(_graph);
|
deba@327
|
135 |
_blossom_set = new BlossomSet(*_blossom_set_index);
|
deba@327
|
136 |
}
|
deba@327
|
137 |
if (!_blossom_rep) {
|
deba@327
|
138 |
_blossom_rep = new NodeIntMap(_node_num);
|
deba@327
|
139 |
}
|
deba@327
|
140 |
if (!_tree_set) {
|
deba@327
|
141 |
_tree_set_index = new IntNodeMap(_graph);
|
deba@327
|
142 |
_tree_set = new TreeSet(*_tree_set_index);
|
deba@327
|
143 |
}
|
deba@327
|
144 |
_node_queue.resize(_node_num);
|
deba@327
|
145 |
}
|
deba@327
|
146 |
|
deba@327
|
147 |
void destroyStructures() {
|
deba@327
|
148 |
if (_matching) {
|
deba@327
|
149 |
delete _matching;
|
deba@327
|
150 |
}
|
deba@327
|
151 |
if (_status) {
|
deba@327
|
152 |
delete _status;
|
deba@327
|
153 |
}
|
deba@327
|
154 |
if (_ear) {
|
deba@327
|
155 |
delete _ear;
|
deba@327
|
156 |
}
|
deba@327
|
157 |
if (_blossom_set) {
|
deba@327
|
158 |
delete _blossom_set;
|
deba@327
|
159 |
delete _blossom_set_index;
|
deba@327
|
160 |
}
|
deba@327
|
161 |
if (_blossom_rep) {
|
deba@327
|
162 |
delete _blossom_rep;
|
deba@327
|
163 |
}
|
deba@327
|
164 |
if (_tree_set) {
|
deba@327
|
165 |
delete _tree_set_index;
|
deba@327
|
166 |
delete _tree_set;
|
deba@327
|
167 |
}
|
deba@327
|
168 |
}
|
deba@327
|
169 |
|
deba@327
|
170 |
void processDense(const Node& n) {
|
deba@327
|
171 |
_process = _postpone = _last = 0;
|
deba@327
|
172 |
_node_queue[_last++] = n;
|
deba@327
|
173 |
|
deba@327
|
174 |
while (_process != _last) {
|
deba@327
|
175 |
Node u = _node_queue[_process++];
|
deba@327
|
176 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
|
deba@327
|
177 |
Node v = _graph.target(a);
|
deba@327
|
178 |
if ((*_status)[v] == MATCHED) {
|
deba@327
|
179 |
extendOnArc(a);
|
deba@327
|
180 |
} else if ((*_status)[v] == UNMATCHED) {
|
deba@327
|
181 |
augmentOnArc(a);
|
deba@327
|
182 |
return;
|
deba@327
|
183 |
}
|
deba@327
|
184 |
}
|
deba@327
|
185 |
}
|
deba@327
|
186 |
|
deba@327
|
187 |
while (_postpone != _last) {
|
deba@327
|
188 |
Node u = _node_queue[_postpone++];
|
deba@327
|
189 |
|
deba@327
|
190 |
for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
|
deba@327
|
191 |
Node v = _graph.target(a);
|
deba@327
|
192 |
|
deba@327
|
193 |
if ((*_status)[v] == EVEN) {
|
deba@327
|
194 |
if (_blossom_set->find(u) != _blossom_set->find(v)) {
|
deba@327
|
195 |
shrinkOnEdge(a);
|
deba@327
|
196 |
}
|
deba@327
|
197 |
}
|
deba@327
|
198 |
|
deba@327
|
199 |
while (_process != _last) {
|
deba@327
|
200 |
Node w = _node_queue[_process++];
|
deba@327
|
201 |
for (OutArcIt b(_graph, w); b != INVALID; ++b) {
|
deba@327
|
202 |
Node x = _graph.target(b);
|
deba@327
|
203 |
if ((*_status)[x] == MATCHED) {
|
deba@327
|
204 |
extendOnArc(b);
|
deba@327
|
205 |
} else if ((*_status)[x] == UNMATCHED) {
|
deba@327
|
206 |
augmentOnArc(b);
|
deba@327
|
207 |
return;
|
deba@327
|
208 |
}
|
deba@327
|
209 |
}
|
deba@327
|
210 |
}
|
deba@327
|
211 |
}
|
deba@327
|
212 |
}
|
deba@327
|
213 |
}
|
deba@327
|
214 |
|
deba@327
|
215 |
void processSparse(const Node& n) {
|
deba@327
|
216 |
_process = _last = 0;
|
deba@327
|
217 |
_node_queue[_last++] = n;
|
deba@327
|
218 |
while (_process != _last) {
|
deba@327
|
219 |
Node u = _node_queue[_process++];
|
deba@327
|
220 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
|
deba@327
|
221 |
Node v = _graph.target(a);
|
deba@327
|
222 |
|
deba@327
|
223 |
if ((*_status)[v] == EVEN) {
|
deba@327
|
224 |
if (_blossom_set->find(u) != _blossom_set->find(v)) {
|
deba@327
|
225 |
shrinkOnEdge(a);
|
deba@327
|
226 |
}
|
deba@327
|
227 |
} else if ((*_status)[v] == MATCHED) {
|
deba@327
|
228 |
extendOnArc(a);
|
deba@327
|
229 |
} else if ((*_status)[v] == UNMATCHED) {
|
deba@327
|
230 |
augmentOnArc(a);
|
deba@327
|
231 |
return;
|
deba@327
|
232 |
}
|
deba@327
|
233 |
}
|
deba@327
|
234 |
}
|
deba@327
|
235 |
}
|
deba@327
|
236 |
|
deba@327
|
237 |
void shrinkOnEdge(const Edge& e) {
|
deba@327
|
238 |
Node nca = INVALID;
|
deba@327
|
239 |
|
deba@327
|
240 |
{
|
deba@327
|
241 |
std::set<Node> left_set, right_set;
|
deba@327
|
242 |
|
deba@327
|
243 |
Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
|
deba@327
|
244 |
left_set.insert(left);
|
deba@327
|
245 |
|
deba@327
|
246 |
Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
|
deba@327
|
247 |
right_set.insert(right);
|
deba@327
|
248 |
|
deba@327
|
249 |
while (true) {
|
deba@327
|
250 |
if ((*_matching)[left] == INVALID) break;
|
deba@327
|
251 |
left = _graph.target((*_matching)[left]);
|
deba@327
|
252 |
left = (*_blossom_rep)[_blossom_set->
|
deba@327
|
253 |
find(_graph.target((*_ear)[left]))];
|
deba@327
|
254 |
if (right_set.find(left) != right_set.end()) {
|
deba@327
|
255 |
nca = left;
|
deba@327
|
256 |
break;
|
deba@327
|
257 |
}
|
deba@327
|
258 |
left_set.insert(left);
|
deba@327
|
259 |
|
deba@327
|
260 |
if ((*_matching)[right] == INVALID) break;
|
deba@327
|
261 |
right = _graph.target((*_matching)[right]);
|
deba@327
|
262 |
right = (*_blossom_rep)[_blossom_set->
|
deba@327
|
263 |
find(_graph.target((*_ear)[right]))];
|
deba@327
|
264 |
if (left_set.find(right) != left_set.end()) {
|
deba@327
|
265 |
nca = right;
|
deba@327
|
266 |
break;
|
deba@327
|
267 |
}
|
deba@327
|
268 |
right_set.insert(right);
|
deba@327
|
269 |
}
|
deba@327
|
270 |
|
deba@327
|
271 |
if (nca == INVALID) {
|
deba@327
|
272 |
if ((*_matching)[left] == INVALID) {
|
deba@327
|
273 |
nca = right;
|
deba@327
|
274 |
while (left_set.find(nca) == left_set.end()) {
|
deba@327
|
275 |
nca = _graph.target((*_matching)[nca]);
|
deba@327
|
276 |
nca =(*_blossom_rep)[_blossom_set->
|
deba@327
|
277 |
find(_graph.target((*_ear)[nca]))];
|
deba@327
|
278 |
}
|
deba@327
|
279 |
} else {
|
deba@327
|
280 |
nca = left;
|
deba@327
|
281 |
while (right_set.find(nca) == right_set.end()) {
|
deba@327
|
282 |
nca = _graph.target((*_matching)[nca]);
|
deba@327
|
283 |
nca = (*_blossom_rep)[_blossom_set->
|
deba@327
|
284 |
find(_graph.target((*_ear)[nca]))];
|
deba@327
|
285 |
}
|
deba@327
|
286 |
}
|
deba@327
|
287 |
}
|
deba@327
|
288 |
}
|
deba@327
|
289 |
|
deba@327
|
290 |
{
|
deba@327
|
291 |
|
deba@327
|
292 |
Node node = _graph.u(e);
|
deba@327
|
293 |
Arc arc = _graph.direct(e, true);
|
deba@327
|
294 |
Node base = (*_blossom_rep)[_blossom_set->find(node)];
|
deba@327
|
295 |
|
deba@327
|
296 |
while (base != nca) {
|
kpeter@581
|
297 |
(*_ear)[node] = arc;
|
deba@327
|
298 |
|
deba@327
|
299 |
Node n = node;
|
deba@327
|
300 |
while (n != base) {
|
deba@327
|
301 |
n = _graph.target((*_matching)[n]);
|
deba@327
|
302 |
Arc a = (*_ear)[n];
|
deba@327
|
303 |
n = _graph.target(a);
|
kpeter@581
|
304 |
(*_ear)[n] = _graph.oppositeArc(a);
|
deba@327
|
305 |
}
|
deba@327
|
306 |
node = _graph.target((*_matching)[base]);
|
deba@327
|
307 |
_tree_set->erase(base);
|
deba@327
|
308 |
_tree_set->erase(node);
|
deba@327
|
309 |
_blossom_set->insert(node, _blossom_set->find(base));
|
kpeter@581
|
310 |
(*_status)[node] = EVEN;
|
deba@327
|
311 |
_node_queue[_last++] = node;
|
deba@327
|
312 |
arc = _graph.oppositeArc((*_ear)[node]);
|
deba@327
|
313 |
node = _graph.target((*_ear)[node]);
|
deba@327
|
314 |
base = (*_blossom_rep)[_blossom_set->find(node)];
|
deba@327
|
315 |
_blossom_set->join(_graph.target(arc), base);
|
deba@327
|
316 |
}
|
deba@327
|
317 |
}
|
deba@327
|
318 |
|
kpeter@581
|
319 |
(*_blossom_rep)[_blossom_set->find(nca)] = nca;
|
deba@327
|
320 |
|
deba@327
|
321 |
{
|
deba@327
|
322 |
|
deba@327
|
323 |
Node node = _graph.v(e);
|
deba@327
|
324 |
Arc arc = _graph.direct(e, false);
|
deba@327
|
325 |
Node base = (*_blossom_rep)[_blossom_set->find(node)];
|
deba@327
|
326 |
|
deba@327
|
327 |
while (base != nca) {
|
kpeter@581
|
328 |
(*_ear)[node] = arc;
|
deba@327
|
329 |
|
deba@327
|
330 |
Node n = node;
|
deba@327
|
331 |
while (n != base) {
|
deba@327
|
332 |
n = _graph.target((*_matching)[n]);
|
deba@327
|
333 |
Arc a = (*_ear)[n];
|
deba@327
|
334 |
n = _graph.target(a);
|
kpeter@581
|
335 |
(*_ear)[n] = _graph.oppositeArc(a);
|
deba@327
|
336 |
}
|
deba@327
|
337 |
node = _graph.target((*_matching)[base]);
|
deba@327
|
338 |
_tree_set->erase(base);
|
deba@327
|
339 |
_tree_set->erase(node);
|
deba@327
|
340 |
_blossom_set->insert(node, _blossom_set->find(base));
|
kpeter@581
|
341 |
(*_status)[node] = EVEN;
|
deba@327
|
342 |
_node_queue[_last++] = node;
|
deba@327
|
343 |
arc = _graph.oppositeArc((*_ear)[node]);
|
deba@327
|
344 |
node = _graph.target((*_ear)[node]);
|
deba@327
|
345 |
base = (*_blossom_rep)[_blossom_set->find(node)];
|
deba@327
|
346 |
_blossom_set->join(_graph.target(arc), base);
|
deba@327
|
347 |
}
|
deba@327
|
348 |
}
|
deba@327
|
349 |
|
kpeter@581
|
350 |
(*_blossom_rep)[_blossom_set->find(nca)] = nca;
|
deba@327
|
351 |
}
|
deba@327
|
352 |
|
deba@327
|
353 |
void extendOnArc(const Arc& a) {
|
deba@327
|
354 |
Node base = _graph.source(a);
|
deba@327
|
355 |
Node odd = _graph.target(a);
|
deba@327
|
356 |
|
kpeter@581
|
357 |
(*_ear)[odd] = _graph.oppositeArc(a);
|
deba@327
|
358 |
Node even = _graph.target((*_matching)[odd]);
|
kpeter@581
|
359 |
(*_blossom_rep)[_blossom_set->insert(even)] = even;
|
kpeter@581
|
360 |
(*_status)[odd] = ODD;
|
kpeter@581
|
361 |
(*_status)[even] = EVEN;
|
deba@327
|
362 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
|
deba@327
|
363 |
_tree_set->insert(odd, tree);
|
deba@327
|
364 |
_tree_set->insert(even, tree);
|
deba@327
|
365 |
_node_queue[_last++] = even;
|
deba@327
|
366 |
|
deba@327
|
367 |
}
|
deba@327
|
368 |
|
deba@327
|
369 |
void augmentOnArc(const Arc& a) {
|
deba@327
|
370 |
Node even = _graph.source(a);
|
deba@327
|
371 |
Node odd = _graph.target(a);
|
deba@327
|
372 |
|
deba@327
|
373 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
|
deba@327
|
374 |
|
kpeter@581
|
375 |
(*_matching)[odd] = _graph.oppositeArc(a);
|
kpeter@581
|
376 |
(*_status)[odd] = MATCHED;
|
deba@327
|
377 |
|
deba@327
|
378 |
Arc arc = (*_matching)[even];
|
kpeter@581
|
379 |
(*_matching)[even] = a;
|
deba@327
|
380 |
|
deba@327
|
381 |
while (arc != INVALID) {
|
deba@327
|
382 |
odd = _graph.target(arc);
|
deba@327
|
383 |
arc = (*_ear)[odd];
|
deba@327
|
384 |
even = _graph.target(arc);
|
kpeter@581
|
385 |
(*_matching)[odd] = arc;
|
deba@327
|
386 |
arc = (*_matching)[even];
|
kpeter@581
|
387 |
(*_matching)[even] = _graph.oppositeArc((*_matching)[odd]);
|
deba@327
|
388 |
}
|
deba@327
|
389 |
|
deba@327
|
390 |
for (typename TreeSet::ItemIt it(*_tree_set, tree);
|
deba@327
|
391 |
it != INVALID; ++it) {
|
deba@327
|
392 |
if ((*_status)[it] == ODD) {
|
kpeter@581
|
393 |
(*_status)[it] = MATCHED;
|
deba@327
|
394 |
} else {
|
deba@327
|
395 |
int blossom = _blossom_set->find(it);
|
deba@327
|
396 |
for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
|
deba@327
|
397 |
jt != INVALID; ++jt) {
|
kpeter@581
|
398 |
(*_status)[jt] = MATCHED;
|
deba@327
|
399 |
}
|
deba@327
|
400 |
_blossom_set->eraseClass(blossom);
|
deba@327
|
401 |
}
|
deba@327
|
402 |
}
|
deba@327
|
403 |
_tree_set->eraseClass(tree);
|
deba@327
|
404 |
|
deba@327
|
405 |
}
|
deba@326
|
406 |
|
deba@326
|
407 |
public:
|
deba@326
|
408 |
|
deba@327
|
409 |
/// \brief Constructor
|
deba@326
|
410 |
///
|
deba@327
|
411 |
/// Constructor.
|
deba@327
|
412 |
MaxMatching(const Graph& graph)
|
deba@327
|
413 |
: _graph(graph), _matching(0), _status(0), _ear(0),
|
deba@327
|
414 |
_blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
|
deba@327
|
415 |
_tree_set_index(0), _tree_set(0) {}
|
deba@327
|
416 |
|
deba@327
|
417 |
~MaxMatching() {
|
deba@327
|
418 |
destroyStructures();
|
deba@327
|
419 |
}
|
deba@327
|
420 |
|
kpeter@590
|
421 |
/// \name Execution Control
|
alpar@330
|
422 |
/// The simplest way to execute the algorithm is to use the
|
kpeter@590
|
423 |
/// \c run() member function.\n
|
kpeter@590
|
424 |
/// If you need better control on the execution, you have to call
|
kpeter@590
|
425 |
/// one of the functions \ref init(), \ref greedyInit() or
|
kpeter@590
|
426 |
/// \ref matchingInit() first, then you can start the algorithm with
|
kpeter@590
|
427 |
/// \ref startSparse() or \ref startDense().
|
deba@327
|
428 |
|
deba@327
|
429 |
///@{
|
deba@327
|
430 |
|
kpeter@590
|
431 |
/// \brief Set the initial matching to the empty matching.
|
deba@326
|
432 |
///
|
kpeter@590
|
433 |
/// This function sets the initial matching to the empty matching.
|
deba@326
|
434 |
void init() {
|
deba@327
|
435 |
createStructures();
|
deba@327
|
436 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@581
|
437 |
(*_matching)[n] = INVALID;
|
kpeter@581
|
438 |
(*_status)[n] = UNMATCHED;
|
deba@326
|
439 |
}
|
deba@326
|
440 |
}
|
deba@326
|
441 |
|
kpeter@590
|
442 |
/// \brief Find an initial matching in a greedy way.
|
deba@326
|
443 |
///
|
kpeter@590
|
444 |
/// This function finds an initial matching in a greedy way.
|
deba@326
|
445 |
void greedyInit() {
|
deba@327
|
446 |
createStructures();
|
deba@327
|
447 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@581
|
448 |
(*_matching)[n] = INVALID;
|
kpeter@581
|
449 |
(*_status)[n] = UNMATCHED;
|
deba@326
|
450 |
}
|
deba@327
|
451 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@327
|
452 |
if ((*_matching)[n] == INVALID) {
|
deba@327
|
453 |
for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
|
deba@327
|
454 |
Node v = _graph.target(a);
|
deba@327
|
455 |
if ((*_matching)[v] == INVALID && v != n) {
|
kpeter@581
|
456 |
(*_matching)[n] = a;
|
kpeter@581
|
457 |
(*_status)[n] = MATCHED;
|
kpeter@581
|
458 |
(*_matching)[v] = _graph.oppositeArc(a);
|
kpeter@581
|
459 |
(*_status)[v] = MATCHED;
|
deba@326
|
460 |
break;
|
deba@326
|
461 |
}
|
deba@326
|
462 |
}
|
deba@326
|
463 |
}
|
deba@326
|
464 |
}
|
deba@326
|
465 |
}
|
deba@326
|
466 |
|
deba@327
|
467 |
|
kpeter@590
|
468 |
/// \brief Initialize the matching from a map.
|
deba@326
|
469 |
///
|
kpeter@590
|
470 |
/// This function initializes the matching from a \c bool valued edge
|
kpeter@590
|
471 |
/// map. This map should have the property that there are no two incident
|
kpeter@590
|
472 |
/// edges with \c true value, i.e. it really contains a matching.
|
kpeter@559
|
473 |
/// \return \c true if the map contains a matching.
|
deba@327
|
474 |
template <typename MatchingMap>
|
deba@327
|
475 |
bool matchingInit(const MatchingMap& matching) {
|
deba@327
|
476 |
createStructures();
|
deba@327
|
477 |
|
deba@327
|
478 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@581
|
479 |
(*_matching)[n] = INVALID;
|
kpeter@581
|
480 |
(*_status)[n] = UNMATCHED;
|
deba@326
|
481 |
}
|
deba@327
|
482 |
for(EdgeIt e(_graph); e!=INVALID; ++e) {
|
deba@327
|
483 |
if (matching[e]) {
|
deba@327
|
484 |
|
deba@327
|
485 |
Node u = _graph.u(e);
|
deba@327
|
486 |
if ((*_matching)[u] != INVALID) return false;
|
kpeter@581
|
487 |
(*_matching)[u] = _graph.direct(e, true);
|
kpeter@581
|
488 |
(*_status)[u] = MATCHED;
|
deba@327
|
489 |
|
deba@327
|
490 |
Node v = _graph.v(e);
|
deba@327
|
491 |
if ((*_matching)[v] != INVALID) return false;
|
kpeter@581
|
492 |
(*_matching)[v] = _graph.direct(e, false);
|
kpeter@581
|
493 |
(*_status)[v] = MATCHED;
|
deba@327
|
494 |
}
|
deba@327
|
495 |
}
|
deba@327
|
496 |
return true;
|
deba@326
|
497 |
}
|
deba@326
|
498 |
|
kpeter@590
|
499 |
/// \brief Start Edmonds' algorithm
|
deba@326
|
500 |
///
|
kpeter@590
|
501 |
/// This function runs the original Edmonds' algorithm.
|
kpeter@590
|
502 |
///
|
kpeter@651
|
503 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
|
kpeter@590
|
504 |
/// called before using this function.
|
deba@327
|
505 |
void startSparse() {
|
deba@327
|
506 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
deba@327
|
507 |
if ((*_status)[n] == UNMATCHED) {
|
deba@327
|
508 |
(*_blossom_rep)[_blossom_set->insert(n)] = n;
|
deba@327
|
509 |
_tree_set->insert(n);
|
kpeter@581
|
510 |
(*_status)[n] = EVEN;
|
deba@327
|
511 |
processSparse(n);
|
deba@326
|
512 |
}
|
deba@326
|
513 |
}
|
deba@326
|
514 |
}
|
deba@326
|
515 |
|
deba@868
|
516 |
/// \brief Start Edmonds' algorithm with a heuristic improvement
|
kpeter@590
|
517 |
/// for dense graphs
|
deba@326
|
518 |
///
|
kpeter@590
|
519 |
/// This function runs Edmonds' algorithm with a heuristic of postponing
|
alpar@330
|
520 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs.
|
kpeter@590
|
521 |
///
|
kpeter@651
|
522 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
|
kpeter@590
|
523 |
/// called before using this function.
|
deba@327
|
524 |
void startDense() {
|
deba@327
|
525 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
deba@327
|
526 |
if ((*_status)[n] == UNMATCHED) {
|
deba@327
|
527 |
(*_blossom_rep)[_blossom_set->insert(n)] = n;
|
deba@327
|
528 |
_tree_set->insert(n);
|
kpeter@581
|
529 |
(*_status)[n] = EVEN;
|
deba@327
|
530 |
processDense(n);
|
deba@327
|
531 |
}
|
deba@327
|
532 |
}
|
deba@327
|
533 |
}
|
deba@327
|
534 |
|
deba@327
|
535 |
|
kpeter@590
|
536 |
/// \brief Run Edmonds' algorithm
|
deba@327
|
537 |
///
|
deba@868
|
538 |
/// This function runs Edmonds' algorithm. An additional heuristic of
|
deba@868
|
539 |
/// postponing shrinks is used for relatively dense graphs
|
kpeter@590
|
540 |
/// (for which <tt>m>=2*n</tt> holds).
|
deba@326
|
541 |
void run() {
|
deba@327
|
542 |
if (countEdges(_graph) < 2 * countNodes(_graph)) {
|
deba@326
|
543 |
greedyInit();
|
deba@326
|
544 |
startSparse();
|
deba@326
|
545 |
} else {
|
deba@326
|
546 |
init();
|
deba@326
|
547 |
startDense();
|
deba@326
|
548 |
}
|
deba@326
|
549 |
}
|
deba@326
|
550 |
|
deba@327
|
551 |
/// @}
|
deba@327
|
552 |
|
kpeter@590
|
553 |
/// \name Primal Solution
|
kpeter@590
|
554 |
/// Functions to get the primal solution, i.e. the maximum matching.
|
deba@327
|
555 |
|
deba@327
|
556 |
/// @{
|
deba@326
|
557 |
|
kpeter@590
|
558 |
/// \brief Return the size (cardinality) of the matching.
|
deba@326
|
559 |
///
|
deba@868
|
560 |
/// This function returns the size (cardinality) of the current matching.
|
kpeter@590
|
561 |
/// After run() it returns the size of the maximum matching in the graph.
|
deba@327
|
562 |
int matchingSize() const {
|
deba@327
|
563 |
int size = 0;
|
deba@327
|
564 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@327
|
565 |
if ((*_matching)[n] != INVALID) {
|
deba@327
|
566 |
++size;
|
deba@326
|
567 |
}
|
deba@326
|
568 |
}
|
deba@327
|
569 |
return size / 2;
|
deba@326
|
570 |
}
|
deba@326
|
571 |
|
kpeter@590
|
572 |
/// \brief Return \c true if the given edge is in the matching.
|
deba@327
|
573 |
///
|
deba@868
|
574 |
/// This function returns \c true if the given edge is in the current
|
kpeter@590
|
575 |
/// matching.
|
deba@327
|
576 |
bool matching(const Edge& edge) const {
|
deba@327
|
577 |
return edge == (*_matching)[_graph.u(edge)];
|
deba@327
|
578 |
}
|
deba@327
|
579 |
|
kpeter@590
|
580 |
/// \brief Return the matching arc (or edge) incident to the given node.
|
deba@327
|
581 |
///
|
kpeter@590
|
582 |
/// This function returns the matching arc (or edge) incident to the
|
deba@868
|
583 |
/// given node in the current matching or \c INVALID if the node is
|
kpeter@590
|
584 |
/// not covered by the matching.
|
deba@327
|
585 |
Arc matching(const Node& n) const {
|
deba@327
|
586 |
return (*_matching)[n];
|
deba@327
|
587 |
}
|
deba@326
|
588 |
|
kpeter@593
|
589 |
/// \brief Return a const reference to the matching map.
|
kpeter@593
|
590 |
///
|
kpeter@593
|
591 |
/// This function returns a const reference to a node map that stores
|
kpeter@593
|
592 |
/// the matching arc (or edge) incident to each node.
|
kpeter@593
|
593 |
const MatchingMap& matchingMap() const {
|
kpeter@593
|
594 |
return *_matching;
|
kpeter@593
|
595 |
}
|
kpeter@593
|
596 |
|
kpeter@590
|
597 |
/// \brief Return the mate of the given node.
|
deba@326
|
598 |
///
|
deba@868
|
599 |
/// This function returns the mate of the given node in the current
|
kpeter@590
|
600 |
/// matching or \c INVALID if the node is not covered by the matching.
|
deba@327
|
601 |
Node mate(const Node& n) const {
|
deba@327
|
602 |
return (*_matching)[n] != INVALID ?
|
deba@327
|
603 |
_graph.target((*_matching)[n]) : INVALID;
|
deba@326
|
604 |
}
|
deba@326
|
605 |
|
deba@327
|
606 |
/// @}
|
deba@327
|
607 |
|
kpeter@590
|
608 |
/// \name Dual Solution
|
deba@868
|
609 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds
|
kpeter@590
|
610 |
/// decomposition.
|
deba@327
|
611 |
|
deba@327
|
612 |
/// @{
|
deba@326
|
613 |
|
kpeter@590
|
614 |
/// \brief Return the status of the given node in the Edmonds-Gallai
|
deba@326
|
615 |
/// decomposition.
|
deba@326
|
616 |
///
|
kpeter@590
|
617 |
/// This function returns the \ref Status "status" of the given node
|
kpeter@590
|
618 |
/// in the Edmonds-Gallai decomposition.
|
kpeter@593
|
619 |
Status status(const Node& n) const {
|
deba@327
|
620 |
return (*_status)[n];
|
deba@326
|
621 |
}
|
deba@326
|
622 |
|
kpeter@593
|
623 |
/// \brief Return a const reference to the status map, which stores
|
kpeter@593
|
624 |
/// the Edmonds-Gallai decomposition.
|
kpeter@593
|
625 |
///
|
kpeter@593
|
626 |
/// This function returns a const reference to a node map that stores the
|
kpeter@593
|
627 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition.
|
kpeter@593
|
628 |
const StatusMap& statusMap() const {
|
kpeter@593
|
629 |
return *_status;
|
kpeter@593
|
630 |
}
|
kpeter@593
|
631 |
|
kpeter@590
|
632 |
/// \brief Return \c true if the given node is in the barrier.
|
deba@326
|
633 |
///
|
kpeter@590
|
634 |
/// This function returns \c true if the given node is in the barrier.
|
deba@327
|
635 |
bool barrier(const Node& n) const {
|
deba@327
|
636 |
return (*_status)[n] == ODD;
|
deba@326
|
637 |
}
|
deba@326
|
638 |
|
deba@327
|
639 |
/// @}
|
deba@326
|
640 |
|
deba@326
|
641 |
};
|
deba@326
|
642 |
|
deba@326
|
643 |
/// \ingroup matching
|
deba@326
|
644 |
///
|
deba@326
|
645 |
/// \brief Weighted matching in general graphs
|
deba@326
|
646 |
///
|
deba@326
|
647 |
/// This class provides an efficient implementation of Edmond's
|
deba@326
|
648 |
/// maximum weighted matching algorithm. The implementation is based
|
deba@326
|
649 |
/// on extensive use of priority queues and provides
|
kpeter@559
|
650 |
/// \f$O(nm\log n)\f$ time complexity.
|
deba@326
|
651 |
///
|
deba@868
|
652 |
/// The maximum weighted matching problem is to find a subset of the
|
deba@868
|
653 |
/// edges in an undirected graph with maximum overall weight for which
|
kpeter@590
|
654 |
/// each node has at most one incident edge.
|
kpeter@590
|
655 |
/// It can be formulated with the following linear program.
|
deba@326
|
656 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
|
deba@327
|
657 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
deba@327
|
658 |
\quad \forall B\in\mathcal{O}\f] */
|
deba@326
|
659 |
/// \f[x_e \ge 0\quad \forall e\in E\f]
|
deba@326
|
660 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
deba@327
|
661 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in
|
deba@327
|
662 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
|
deba@327
|
663 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
deba@327
|
664 |
/// subsets of the nodes.
|
deba@326
|
665 |
///
|
deba@326
|
666 |
/// The algorithm calculates an optimal matching and a proof of the
|
deba@326
|
667 |
/// optimality. The solution of the dual problem can be used to check
|
deba@327
|
668 |
/// the result of the algorithm. The dual linear problem is the
|
kpeter@590
|
669 |
/// following.
|
deba@327
|
670 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
|
deba@327
|
671 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */
|
deba@326
|
672 |
/// \f[y_u \ge 0 \quad \forall u \in V\f]
|
deba@326
|
673 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
deba@327
|
674 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
deba@327
|
675 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
deba@326
|
676 |
///
|
deba@868
|
677 |
/// The algorithm can be executed with the run() function.
|
kpeter@590
|
678 |
/// After it the matching (the primal solution) and the dual solution
|
deba@868
|
679 |
/// can be obtained using the query functions and the
|
deba@868
|
680 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class,
|
deba@868
|
681 |
/// which is able to iterate on the nodes of a blossom.
|
kpeter@590
|
682 |
/// If the value type is integer, then the dual solution is multiplied
|
kpeter@590
|
683 |
/// by \ref MaxWeightedMatching::dualScale "4".
|
kpeter@590
|
684 |
///
|
kpeter@593
|
685 |
/// \tparam GR The undirected graph type the algorithm runs on.
|
deba@868
|
686 |
/// \tparam WM The type edge weight map. The default type is
|
kpeter@590
|
687 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
|
kpeter@590
|
688 |
#ifdef DOXYGEN
|
kpeter@590
|
689 |
template <typename GR, typename WM>
|
kpeter@590
|
690 |
#else
|
kpeter@559
|
691 |
template <typename GR,
|
kpeter@559
|
692 |
typename WM = typename GR::template EdgeMap<int> >
|
kpeter@590
|
693 |
#endif
|
deba@326
|
694 |
class MaxWeightedMatching {
|
deba@326
|
695 |
public:
|
deba@326
|
696 |
|
kpeter@590
|
697 |
/// The graph type of the algorithm
|
kpeter@559
|
698 |
typedef GR Graph;
|
kpeter@590
|
699 |
/// The type of the edge weight map
|
kpeter@559
|
700 |
typedef WM WeightMap;
|
kpeter@590
|
701 |
/// The value type of the edge weights
|
deba@326
|
702 |
typedef typename WeightMap::Value Value;
|
deba@326
|
703 |
|
kpeter@593
|
704 |
/// The type of the matching map
|
kpeter@590
|
705 |
typedef typename Graph::template NodeMap<typename Graph::Arc>
|
kpeter@590
|
706 |
MatchingMap;
|
kpeter@590
|
707 |
|
deba@326
|
708 |
/// \brief Scaling factor for dual solution
|
deba@326
|
709 |
///
|
kpeter@590
|
710 |
/// Scaling factor for dual solution. It is equal to 4 or 1
|
deba@326
|
711 |
/// according to the value type.
|
deba@326
|
712 |
static const int dualScale =
|
deba@326
|
713 |
std::numeric_limits<Value>::is_integer ? 4 : 1;
|
deba@326
|
714 |
|
deba@326
|
715 |
private:
|
deba@326
|
716 |
|
deba@326
|
717 |
TEMPLATE_GRAPH_TYPEDEFS(Graph);
|
deba@326
|
718 |
|
deba@326
|
719 |
typedef typename Graph::template NodeMap<Value> NodePotential;
|
deba@326
|
720 |
typedef std::vector<Node> BlossomNodeList;
|
deba@326
|
721 |
|
deba@326
|
722 |
struct BlossomVariable {
|
deba@326
|
723 |
int begin, end;
|
deba@326
|
724 |
Value value;
|
deba@326
|
725 |
|
deba@326
|
726 |
BlossomVariable(int _begin, int _end, Value _value)
|
deba@326
|
727 |
: begin(_begin), end(_end), value(_value) {}
|
deba@326
|
728 |
|
deba@326
|
729 |
};
|
deba@326
|
730 |
|
deba@326
|
731 |
typedef std::vector<BlossomVariable> BlossomPotential;
|
deba@326
|
732 |
|
deba@326
|
733 |
const Graph& _graph;
|
deba@326
|
734 |
const WeightMap& _weight;
|
deba@326
|
735 |
|
deba@326
|
736 |
MatchingMap* _matching;
|
deba@326
|
737 |
|
deba@326
|
738 |
NodePotential* _node_potential;
|
deba@326
|
739 |
|
deba@326
|
740 |
BlossomPotential _blossom_potential;
|
deba@326
|
741 |
BlossomNodeList _blossom_node_list;
|
deba@326
|
742 |
|
deba@326
|
743 |
int _node_num;
|
deba@326
|
744 |
int _blossom_num;
|
deba@326
|
745 |
|
deba@326
|
746 |
typedef RangeMap<int> IntIntMap;
|
deba@326
|
747 |
|
deba@326
|
748 |
enum Status {
|
deba@868
|
749 |
EVEN = -1, MATCHED = 0, ODD = 1
|
deba@326
|
750 |
};
|
deba@326
|
751 |
|
deba@327
|
752 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
|
deba@326
|
753 |
struct BlossomData {
|
deba@326
|
754 |
int tree;
|
deba@326
|
755 |
Status status;
|
deba@326
|
756 |
Arc pred, next;
|
deba@326
|
757 |
Value pot, offset;
|
deba@326
|
758 |
Node base;
|
deba@326
|
759 |
};
|
deba@326
|
760 |
|
deba@327
|
761 |
IntNodeMap *_blossom_index;
|
deba@326
|
762 |
BlossomSet *_blossom_set;
|
deba@326
|
763 |
RangeMap<BlossomData>* _blossom_data;
|
deba@326
|
764 |
|
deba@327
|
765 |
IntNodeMap *_node_index;
|
deba@327
|
766 |
IntArcMap *_node_heap_index;
|
deba@326
|
767 |
|
deba@326
|
768 |
struct NodeData {
|
deba@326
|
769 |
|
deba@327
|
770 |
NodeData(IntArcMap& node_heap_index)
|
deba@326
|
771 |
: heap(node_heap_index) {}
|
deba@326
|
772 |
|
deba@326
|
773 |
int blossom;
|
deba@326
|
774 |
Value pot;
|
deba@327
|
775 |
BinHeap<Value, IntArcMap> heap;
|
deba@326
|
776 |
std::map<int, Arc> heap_index;
|
deba@326
|
777 |
|
deba@326
|
778 |
int tree;
|
deba@326
|
779 |
};
|
deba@326
|
780 |
|
deba@326
|
781 |
RangeMap<NodeData>* _node_data;
|
deba@326
|
782 |
|
deba@326
|
783 |
typedef ExtendFindEnum<IntIntMap> TreeSet;
|
deba@326
|
784 |
|
deba@326
|
785 |
IntIntMap *_tree_set_index;
|
deba@326
|
786 |
TreeSet *_tree_set;
|
deba@326
|
787 |
|
deba@327
|
788 |
IntNodeMap *_delta1_index;
|
deba@327
|
789 |
BinHeap<Value, IntNodeMap> *_delta1;
|
deba@326
|
790 |
|
deba@326
|
791 |
IntIntMap *_delta2_index;
|
deba@326
|
792 |
BinHeap<Value, IntIntMap> *_delta2;
|
deba@326
|
793 |
|
deba@327
|
794 |
IntEdgeMap *_delta3_index;
|
deba@327
|
795 |
BinHeap<Value, IntEdgeMap> *_delta3;
|
deba@326
|
796 |
|
deba@326
|
797 |
IntIntMap *_delta4_index;
|
deba@326
|
798 |
BinHeap<Value, IntIntMap> *_delta4;
|
deba@326
|
799 |
|
deba@326
|
800 |
Value _delta_sum;
|
deba@870
|
801 |
int _unmatched;
|
deba@870
|
802 |
|
deba@870
|
803 |
typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching;
|
deba@870
|
804 |
FractionalMatching *_fractional;
|
deba@326
|
805 |
|
deba@326
|
806 |
void createStructures() {
|
deba@326
|
807 |
_node_num = countNodes(_graph);
|
deba@326
|
808 |
_blossom_num = _node_num * 3 / 2;
|
deba@326
|
809 |
|
deba@326
|
810 |
if (!_matching) {
|
deba@326
|
811 |
_matching = new MatchingMap(_graph);
|
deba@326
|
812 |
}
|
deba@867
|
813 |
|
deba@326
|
814 |
if (!_node_potential) {
|
deba@326
|
815 |
_node_potential = new NodePotential(_graph);
|
deba@326
|
816 |
}
|
deba@867
|
817 |
|
deba@326
|
818 |
if (!_blossom_set) {
|
deba@327
|
819 |
_blossom_index = new IntNodeMap(_graph);
|
deba@326
|
820 |
_blossom_set = new BlossomSet(*_blossom_index);
|
deba@326
|
821 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num);
|
deba@867
|
822 |
} else if (_blossom_data->size() != _blossom_num) {
|
deba@867
|
823 |
delete _blossom_data;
|
deba@867
|
824 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num);
|
deba@326
|
825 |
}
|
deba@326
|
826 |
|
deba@326
|
827 |
if (!_node_index) {
|
deba@327
|
828 |
_node_index = new IntNodeMap(_graph);
|
deba@327
|
829 |
_node_heap_index = new IntArcMap(_graph);
|
deba@326
|
830 |
_node_data = new RangeMap<NodeData>(_node_num,
|
deba@867
|
831 |
NodeData(*_node_heap_index));
|
deba@867
|
832 |
} else {
|
deba@867
|
833 |
delete _node_data;
|
deba@867
|
834 |
_node_data = new RangeMap<NodeData>(_node_num,
|
deba@867
|
835 |
NodeData(*_node_heap_index));
|
deba@326
|
836 |
}
|
deba@326
|
837 |
|
deba@326
|
838 |
if (!_tree_set) {
|
deba@326
|
839 |
_tree_set_index = new IntIntMap(_blossom_num);
|
deba@326
|
840 |
_tree_set = new TreeSet(*_tree_set_index);
|
deba@867
|
841 |
} else {
|
deba@867
|
842 |
_tree_set_index->resize(_blossom_num);
|
deba@326
|
843 |
}
|
deba@867
|
844 |
|
deba@326
|
845 |
if (!_delta1) {
|
deba@327
|
846 |
_delta1_index = new IntNodeMap(_graph);
|
deba@327
|
847 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
|
deba@326
|
848 |
}
|
deba@867
|
849 |
|
deba@326
|
850 |
if (!_delta2) {
|
deba@326
|
851 |
_delta2_index = new IntIntMap(_blossom_num);
|
deba@326
|
852 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
|
deba@867
|
853 |
} else {
|
deba@867
|
854 |
_delta2_index->resize(_blossom_num);
|
deba@326
|
855 |
}
|
deba@867
|
856 |
|
deba@326
|
857 |
if (!_delta3) {
|
deba@327
|
858 |
_delta3_index = new IntEdgeMap(_graph);
|
deba@327
|
859 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
|
deba@326
|
860 |
}
|
deba@867
|
861 |
|
deba@326
|
862 |
if (!_delta4) {
|
deba@326
|
863 |
_delta4_index = new IntIntMap(_blossom_num);
|
deba@326
|
864 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
|
deba@867
|
865 |
} else {
|
deba@867
|
866 |
_delta4_index->resize(_blossom_num);
|
deba@326
|
867 |
}
|
deba@326
|
868 |
}
|
deba@326
|
869 |
|
deba@326
|
870 |
void destroyStructures() {
|
deba@326
|
871 |
if (_matching) {
|
deba@326
|
872 |
delete _matching;
|
deba@326
|
873 |
}
|
deba@326
|
874 |
if (_node_potential) {
|
deba@326
|
875 |
delete _node_potential;
|
deba@326
|
876 |
}
|
deba@326
|
877 |
if (_blossom_set) {
|
deba@326
|
878 |
delete _blossom_index;
|
deba@326
|
879 |
delete _blossom_set;
|
deba@326
|
880 |
delete _blossom_data;
|
deba@326
|
881 |
}
|
deba@326
|
882 |
|
deba@326
|
883 |
if (_node_index) {
|
deba@326
|
884 |
delete _node_index;
|
deba@326
|
885 |
delete _node_heap_index;
|
deba@326
|
886 |
delete _node_data;
|
deba@326
|
887 |
}
|
deba@326
|
888 |
|
deba@326
|
889 |
if (_tree_set) {
|
deba@326
|
890 |
delete _tree_set_index;
|
deba@326
|
891 |
delete _tree_set;
|
deba@326
|
892 |
}
|
deba@326
|
893 |
if (_delta1) {
|
deba@326
|
894 |
delete _delta1_index;
|
deba@326
|
895 |
delete _delta1;
|
deba@326
|
896 |
}
|
deba@326
|
897 |
if (_delta2) {
|
deba@326
|
898 |
delete _delta2_index;
|
deba@326
|
899 |
delete _delta2;
|
deba@326
|
900 |
}
|
deba@326
|
901 |
if (_delta3) {
|
deba@326
|
902 |
delete _delta3_index;
|
deba@326
|
903 |
delete _delta3;
|
deba@326
|
904 |
}
|
deba@326
|
905 |
if (_delta4) {
|
deba@326
|
906 |
delete _delta4_index;
|
deba@326
|
907 |
delete _delta4;
|
deba@326
|
908 |
}
|
deba@326
|
909 |
}
|
deba@326
|
910 |
|
deba@326
|
911 |
void matchedToEven(int blossom, int tree) {
|
deba@326
|
912 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
deba@326
|
913 |
_delta2->erase(blossom);
|
deba@326
|
914 |
}
|
deba@326
|
915 |
|
deba@326
|
916 |
if (!_blossom_set->trivial(blossom)) {
|
deba@326
|
917 |
(*_blossom_data)[blossom].pot -=
|
deba@326
|
918 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset);
|
deba@326
|
919 |
}
|
deba@326
|
920 |
|
deba@326
|
921 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
|
deba@326
|
922 |
n != INVALID; ++n) {
|
deba@326
|
923 |
|
deba@326
|
924 |
_blossom_set->increase(n, std::numeric_limits<Value>::max());
|
deba@326
|
925 |
int ni = (*_node_index)[n];
|
deba@326
|
926 |
|
deba@326
|
927 |
(*_node_data)[ni].heap.clear();
|
deba@326
|
928 |
(*_node_data)[ni].heap_index.clear();
|
deba@326
|
929 |
|
deba@326
|
930 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
|
deba@326
|
931 |
|
deba@326
|
932 |
_delta1->push(n, (*_node_data)[ni].pot);
|
deba@326
|
933 |
|
deba@326
|
934 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@326
|
935 |
Node v = _graph.source(e);
|
deba@326
|
936 |
int vb = _blossom_set->find(v);
|
deba@326
|
937 |
int vi = (*_node_index)[v];
|
deba@326
|
938 |
|
deba@326
|
939 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
|
deba@326
|
940 |
dualScale * _weight[e];
|
deba@326
|
941 |
|
deba@326
|
942 |
if ((*_blossom_data)[vb].status == EVEN) {
|
deba@326
|
943 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
deba@326
|
944 |
_delta3->push(e, rw / 2);
|
deba@326
|
945 |
}
|
deba@326
|
946 |
} else {
|
deba@326
|
947 |
typename std::map<int, Arc>::iterator it =
|
deba@326
|
948 |
(*_node_data)[vi].heap_index.find(tree);
|
deba@326
|
949 |
|
deba@326
|
950 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
deba@326
|
951 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
deba@326
|
952 |
(*_node_data)[vi].heap.replace(it->second, e);
|
deba@326
|
953 |
(*_node_data)[vi].heap.decrease(e, rw);
|
deba@326
|
954 |
it->second = e;
|
deba@326
|
955 |
}
|
deba@326
|
956 |
} else {
|
deba@326
|
957 |
(*_node_data)[vi].heap.push(e, rw);
|
deba@326
|
958 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
|
deba@326
|
959 |
}
|
deba@326
|
960 |
|
deba@326
|
961 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
deba@326
|
962 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
|
deba@326
|
963 |
|
deba@326
|
964 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
deba@326
|
965 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
deba@326
|
966 |
_delta2->push(vb, _blossom_set->classPrio(vb) -
|
deba@326
|
967 |
(*_blossom_data)[vb].offset);
|
deba@326
|
968 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
|
deba@326
|
969 |
(*_blossom_data)[vb].offset) {
|
deba@326
|
970 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) -
|
deba@326
|
971 |
(*_blossom_data)[vb].offset);
|
deba@326
|
972 |
}
|
deba@326
|
973 |
}
|
deba@326
|
974 |
}
|
deba@326
|
975 |
}
|
deba@326
|
976 |
}
|
deba@326
|
977 |
}
|
deba@326
|
978 |
(*_blossom_data)[blossom].offset = 0;
|
deba@326
|
979 |
}
|
deba@326
|
980 |
|
deba@868
|
981 |
void matchedToOdd(int blossom) {
|
deba@326
|
982 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
deba@326
|
983 |
_delta2->erase(blossom);
|
deba@326
|
984 |
}
|
deba@868
|
985 |
(*_blossom_data)[blossom].offset += _delta_sum;
|
deba@868
|
986 |
if (!_blossom_set->trivial(blossom)) {
|
deba@868
|
987 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
|
deba@868
|
988 |
(*_blossom_data)[blossom].offset);
|
deba@868
|
989 |
}
|
deba@868
|
990 |
}
|
deba@868
|
991 |
|
deba@868
|
992 |
void evenToMatched(int blossom, int tree) {
|
deba@868
|
993 |
if (!_blossom_set->trivial(blossom)) {
|
deba@868
|
994 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum;
|
deba@868
|
995 |
}
|
deba@326
|
996 |
|
deba@326
|
997 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
|
deba@326
|
998 |
n != INVALID; ++n) {
|
deba@326
|
999 |
int ni = (*_node_index)[n];
|
deba@868
|
1000 |
(*_node_data)[ni].pot -= _delta_sum;
|
deba@868
|
1001 |
|
deba@868
|
1002 |
_delta1->erase(n);
|
deba@868
|
1003 |
|
deba@868
|
1004 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@868
|
1005 |
Node v = _graph.source(e);
|
deba@326
|
1006 |
int vb = _blossom_set->find(v);
|
deba@326
|
1007 |
int vi = (*_node_index)[v];
|
deba@326
|
1008 |
|
deba@326
|
1009 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
|
deba@326
|
1010 |
dualScale * _weight[e];
|
deba@326
|
1011 |
|
deba@868
|
1012 |
if (vb == blossom) {
|
deba@868
|
1013 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
deba@868
|
1014 |
_delta3->erase(e);
|
deba@868
|
1015 |
}
|
deba@868
|
1016 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
deba@868
|
1017 |
|
deba@868
|
1018 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
deba@868
|
1019 |
_delta3->erase(e);
|
deba@868
|
1020 |
}
|
deba@868
|
1021 |
|
deba@868
|
1022 |
int vt = _tree_set->find(vb);
|
deba@868
|
1023 |
|
deba@868
|
1024 |
if (vt != tree) {
|
deba@868
|
1025 |
|
deba@868
|
1026 |
Arc r = _graph.oppositeArc(e);
|
deba@868
|
1027 |
|
deba@868
|
1028 |
typename std::map<int, Arc>::iterator it =
|
deba@868
|
1029 |
(*_node_data)[ni].heap_index.find(vt);
|
deba@868
|
1030 |
|
deba@868
|
1031 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
deba@868
|
1032 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
deba@868
|
1033 |
(*_node_data)[ni].heap.replace(it->second, r);
|
deba@868
|
1034 |
(*_node_data)[ni].heap.decrease(r, rw);
|
deba@868
|
1035 |
it->second = r;
|
deba@868
|
1036 |
}
|
deba@868
|
1037 |
} else {
|
deba@868
|
1038 |
(*_node_data)[ni].heap.push(r, rw);
|
deba@868
|
1039 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
|
deba@868
|
1040 |
}
|
deba@868
|
1041 |
|
deba@868
|
1042 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
deba@868
|
1043 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
|
deba@868
|
1044 |
|
deba@868
|
1045 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
deba@868
|
1046 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) -
|
deba@868
|
1047 |
(*_blossom_data)[blossom].offset);
|
deba@868
|
1048 |
} else if ((*_delta2)[blossom] >
|
deba@868
|
1049 |
_blossom_set->classPrio(blossom) -
|
deba@868
|
1050 |
(*_blossom_data)[blossom].offset){
|
deba@868
|
1051 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
|
deba@868
|
1052 |
(*_blossom_data)[blossom].offset);
|
deba@868
|
1053 |
}
|
deba@868
|
1054 |
}
|
deba@868
|
1055 |
}
|
deba@868
|
1056 |
} else {
|
deba@868
|
1057 |
|
deba@868
|
1058 |
typename std::map<int, Arc>::iterator it =
|
deba@868
|
1059 |
(*_node_data)[vi].heap_index.find(tree);
|
deba@868
|
1060 |
|
deba@868
|
1061 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
deba@868
|
1062 |
(*_node_data)[vi].heap.erase(it->second);
|
deba@868
|
1063 |
(*_node_data)[vi].heap_index.erase(it);
|
deba@868
|
1064 |
if ((*_node_data)[vi].heap.empty()) {
|
deba@868
|
1065 |
_blossom_set->increase(v, std::numeric_limits<Value>::max());
|
deba@868
|
1066 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
|
deba@868
|
1067 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio());
|
deba@868
|
1068 |
}
|
deba@868
|
1069 |
|
deba@868
|
1070 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
deba@868
|
1071 |
if (_blossom_set->classPrio(vb) ==
|
deba@868
|
1072 |
std::numeric_limits<Value>::max()) {
|
deba@868
|
1073 |
_delta2->erase(vb);
|
deba@868
|
1074 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
|
deba@868
|
1075 |
(*_blossom_data)[vb].offset) {
|
deba@868
|
1076 |
_delta2->increase(vb, _blossom_set->classPrio(vb) -
|
deba@868
|
1077 |
(*_blossom_data)[vb].offset);
|
deba@868
|
1078 |
}
|
deba@868
|
1079 |
}
|
deba@326
|
1080 |
}
|
deba@326
|
1081 |
}
|
deba@326
|
1082 |
}
|
deba@326
|
1083 |
}
|
deba@326
|
1084 |
}
|
deba@326
|
1085 |
|
deba@868
|
1086 |
void oddToMatched(int blossom) {
|
deba@868
|
1087 |
(*_blossom_data)[blossom].offset -= _delta_sum;
|
deba@868
|
1088 |
|
deba@868
|
1089 |
if (_blossom_set->classPrio(blossom) !=
|
deba@868
|
1090 |
std::numeric_limits<Value>::max()) {
|
deba@868
|
1091 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) -
|
deba@868
|
1092 |
(*_blossom_data)[blossom].offset);
|
deba@868
|
1093 |
}
|
deba@868
|
1094 |
|
deba@868
|
1095 |
if (!_blossom_set->trivial(blossom)) {
|
deba@868
|
1096 |
_delta4->erase(blossom);
|
deba@868
|
1097 |
}
|
deba@868
|
1098 |
}
|
deba@868
|
1099 |
|
deba@868
|
1100 |
void oddToEven(int blossom, int tree) {
|
deba@868
|
1101 |
if (!_blossom_set->trivial(blossom)) {
|
deba@868
|
1102 |
_delta4->erase(blossom);
|
deba@868
|
1103 |
(*_blossom_data)[blossom].pot -=
|
deba@868
|
1104 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
|
deba@868
|
1105 |
}
|
deba@868
|
1106 |
|
deba@326
|
1107 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
|
deba@326
|
1108 |
n != INVALID; ++n) {
|
deba@326
|
1109 |
int ni = (*_node_index)[n];
|
deba@326
|
1110 |
|
deba@868
|
1111 |
_blossom_set->increase(n, std::numeric_limits<Value>::max());
|
deba@868
|
1112 |
|
deba@868
|
1113 |
(*_node_data)[ni].heap.clear();
|
deba@868
|
1114 |
(*_node_data)[ni].heap_index.clear();
|
deba@868
|
1115 |
(*_node_data)[ni].pot +=
|
deba@868
|
1116 |
2 * _delta_sum - (*_blossom_data)[blossom].offset;
|
deba@868
|
1117 |
|
deba@868
|
1118 |
_delta1->push(n, (*_node_data)[ni].pot);
|
deba@868
|
1119 |
|
deba@326
|
1120 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@326
|
1121 |
Node v = _graph.source(e);
|
deba@326
|
1122 |
int vb = _blossom_set->find(v);
|
deba@326
|
1123 |
int vi = (*_node_index)[v];
|
deba@326
|
1124 |
|
deba@326
|
1125 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
|
deba@326
|
1126 |
dualScale * _weight[e];
|
deba@326
|
1127 |
|
deba@868
|
1128 |
if ((*_blossom_data)[vb].status == EVEN) {
|
deba@868
|
1129 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
deba@868
|
1130 |
_delta3->push(e, rw / 2);
|
deba@326
|
1131 |
}
|
deba@868
|
1132 |
} else {
|
deba@326
|
1133 |
|
deba@326
|
1134 |
typename std::map<int, Arc>::iterator it =
|
deba@868
|
1135 |
(*_node_data)[vi].heap_index.find(tree);
|
deba@868
|
1136 |
|
deba@868
|
1137 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
deba@868
|
1138 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
deba@868
|
1139 |
(*_node_data)[vi].heap.replace(it->second, e);
|
deba@868
|
1140 |
(*_node_data)[vi].heap.decrease(e, rw);
|
deba@868
|
1141 |
it->second = e;
|
deba@326
|
1142 |
}
|
deba@326
|
1143 |
} else {
|
deba@868
|
1144 |
(*_node_data)[vi].heap.push(e, rw);
|
deba@868
|
1145 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
|
deba@326
|
1146 |
}
|
deba@326
|
1147 |
|
deba@868
|
1148 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
deba@868
|
1149 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
|
deba@868
|
1150 |
|
deba@868
|
1151 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
deba@868
|
1152 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
deba@868
|
1153 |
_delta2->push(vb, _blossom_set->classPrio(vb) -
|
deba@868
|
1154 |
(*_blossom_data)[vb].offset);
|
deba@868
|
1155 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
|
deba@868
|
1156 |
(*_blossom_data)[vb].offset) {
|
deba@868
|
1157 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) -
|
deba@868
|
1158 |
(*_blossom_data)[vb].offset);
|
deba@868
|
1159 |
}
|
deba@326
|
1160 |
}
|
deba@326
|
1161 |
}
|
deba@326
|
1162 |
}
|
deba@326
|
1163 |
}
|
deba@326
|
1164 |
}
|
deba@868
|
1165 |
(*_blossom_data)[blossom].offset = 0;
|
deba@326
|
1166 |
}
|
deba@326
|
1167 |
|
deba@326
|
1168 |
void alternatePath(int even, int tree) {
|
deba@326
|
1169 |
int odd;
|
deba@326
|
1170 |
|
deba@326
|
1171 |
evenToMatched(even, tree);
|
deba@326
|
1172 |
(*_blossom_data)[even].status = MATCHED;
|
deba@326
|
1173 |
|
deba@326
|
1174 |
while ((*_blossom_data)[even].pred != INVALID) {
|
deba@326
|
1175 |
odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
|
deba@326
|
1176 |
(*_blossom_data)[odd].status = MATCHED;
|
deba@326
|
1177 |
oddToMatched(odd);
|
deba@326
|
1178 |
(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
|
deba@326
|
1179 |
|
deba@326
|
1180 |
even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
|
deba@326
|
1181 |
(*_blossom_data)[even].status = MATCHED;
|
deba@326
|
1182 |
evenToMatched(even, tree);
|
deba@326
|
1183 |
(*_blossom_data)[even].next =
|
deba@326
|
1184 |
_graph.oppositeArc((*_blossom_data)[odd].pred);
|
deba@326
|
1185 |
}
|
deba@326
|
1186 |
|
deba@326
|
1187 |
}
|
deba@326
|
1188 |
|
deba@326
|
1189 |
void destroyTree(int tree) {
|
deba@326
|
1190 |
for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
|
deba@326
|
1191 |
if ((*_blossom_data)[b].status == EVEN) {
|
deba@326
|
1192 |
(*_blossom_data)[b].status = MATCHED;
|
deba@326
|
1193 |
evenToMatched(b, tree);
|
deba@326
|
1194 |
} else if ((*_blossom_data)[b].status == ODD) {
|
deba@326
|
1195 |
(*_blossom_data)[b].status = MATCHED;
|
deba@326
|
1196 |
oddToMatched(b);
|
deba@326
|
1197 |
}
|
deba@326
|
1198 |
}
|
deba@326
|
1199 |
_tree_set->eraseClass(tree);
|
deba@326
|
1200 |
}
|
deba@326
|
1201 |
|
deba@326
|
1202 |
|
deba@326
|
1203 |
void unmatchNode(const Node& node) {
|
deba@326
|
1204 |
int blossom = _blossom_set->find(node);
|
deba@326
|
1205 |
int tree = _tree_set->find(blossom);
|
deba@326
|
1206 |
|
deba@326
|
1207 |
alternatePath(blossom, tree);
|
deba@326
|
1208 |
destroyTree(tree);
|
deba@326
|
1209 |
|
deba@326
|
1210 |
(*_blossom_data)[blossom].base = node;
|
deba@868
|
1211 |
(*_blossom_data)[blossom].next = INVALID;
|
deba@326
|
1212 |
}
|
deba@326
|
1213 |
|
deba@327
|
1214 |
void augmentOnEdge(const Edge& edge) {
|
deba@327
|
1215 |
|
deba@327
|
1216 |
int left = _blossom_set->find(_graph.u(edge));
|
deba@327
|
1217 |
int right = _blossom_set->find(_graph.v(edge));
|
deba@326
|
1218 |
|
deba@868
|
1219 |
int left_tree = _tree_set->find(left);
|
deba@868
|
1220 |
alternatePath(left, left_tree);
|
deba@868
|
1221 |
destroyTree(left_tree);
|
deba@868
|
1222 |
|
deba@868
|
1223 |
int right_tree = _tree_set->find(right);
|
deba@868
|
1224 |
alternatePath(right, right_tree);
|
deba@868
|
1225 |
destroyTree(right_tree);
|
deba@326
|
1226 |
|
deba@327
|
1227 |
(*_blossom_data)[left].next = _graph.direct(edge, true);
|
deba@327
|
1228 |
(*_blossom_data)[right].next = _graph.direct(edge, false);
|
deba@326
|
1229 |
}
|
deba@326
|
1230 |
|
deba@868
|
1231 |
void augmentOnArc(const Arc& arc) {
|
deba@868
|
1232 |
|
deba@868
|
1233 |
int left = _blossom_set->find(_graph.source(arc));
|
deba@868
|
1234 |
int right = _blossom_set->find(_graph.target(arc));
|
deba@868
|
1235 |
|
deba@868
|
1236 |
(*_blossom_data)[left].status = MATCHED;
|
deba@868
|
1237 |
|
deba@868
|
1238 |
int right_tree = _tree_set->find(right);
|
deba@868
|
1239 |
alternatePath(right, right_tree);
|
deba@868
|
1240 |
destroyTree(right_tree);
|
deba@868
|
1241 |
|
deba@868
|
1242 |
(*_blossom_data)[left].next = arc;
|
deba@868
|
1243 |
(*_blossom_data)[right].next = _graph.oppositeArc(arc);
|
deba@868
|
1244 |
}
|
deba@868
|
1245 |
|
deba@326
|
1246 |
void extendOnArc(const Arc& arc) {
|
deba@326
|
1247 |
int base = _blossom_set->find(_graph.target(arc));
|
deba@326
|
1248 |
int tree = _tree_set->find(base);
|
deba@326
|
1249 |
|
deba@326
|
1250 |
int odd = _blossom_set->find(_graph.source(arc));
|
deba@326
|
1251 |
_tree_set->insert(odd, tree);
|
deba@326
|
1252 |
(*_blossom_data)[odd].status = ODD;
|
deba@326
|
1253 |
matchedToOdd(odd);
|
deba@326
|
1254 |
(*_blossom_data)[odd].pred = arc;
|
deba@326
|
1255 |
|
deba@326
|
1256 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
|
deba@326
|
1257 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next;
|
deba@326
|
1258 |
_tree_set->insert(even, tree);
|
deba@326
|
1259 |
(*_blossom_data)[even].status = EVEN;
|
deba@326
|
1260 |
matchedToEven(even, tree);
|
deba@326
|
1261 |
}
|
deba@326
|
1262 |
|
deba@327
|
1263 |
void shrinkOnEdge(const Edge& edge, int tree) {
|
deba@326
|
1264 |
int nca = -1;
|
deba@326
|
1265 |
std::vector<int> left_path, right_path;
|
deba@326
|
1266 |
|
deba@326
|
1267 |
{
|
deba@326
|
1268 |
std::set<int> left_set, right_set;
|
deba@326
|
1269 |
int left = _blossom_set->find(_graph.u(edge));
|
deba@326
|
1270 |
left_path.push_back(left);
|
deba@326
|
1271 |
left_set.insert(left);
|
deba@326
|
1272 |
|
deba@326
|
1273 |
int right = _blossom_set->find(_graph.v(edge));
|
deba@326
|
1274 |
right_path.push_back(right);
|
deba@326
|
1275 |
right_set.insert(right);
|
deba@326
|
1276 |
|
deba@326
|
1277 |
while (true) {
|
deba@326
|
1278 |
|
deba@326
|
1279 |
if ((*_blossom_data)[left].pred == INVALID) break;
|
deba@326
|
1280 |
|
deba@326
|
1281 |
left =
|
deba@326
|
1282 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred));
|
deba@326
|
1283 |
left_path.push_back(left);
|
deba@326
|
1284 |
left =
|
deba@326
|
1285 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred));
|
deba@326
|
1286 |
left_path.push_back(left);
|
deba@326
|
1287 |
|
deba@326
|
1288 |
left_set.insert(left);
|
deba@326
|
1289 |
|
deba@326
|
1290 |
if (right_set.find(left) != right_set.end()) {
|
deba@326
|
1291 |
nca = left;
|
deba@326
|
1292 |
break;
|
deba@326
|
1293 |
}
|
deba@326
|
1294 |
|
deba@326
|
1295 |
if ((*_blossom_data)[right].pred == INVALID) break;
|
deba@326
|
1296 |
|
deba@326
|
1297 |
right =
|
deba@326
|
1298 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred));
|
deba@326
|
1299 |
right_path.push_back(right);
|
deba@326
|
1300 |
right =
|
deba@326
|
1301 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred));
|
deba@326
|
1302 |
right_path.push_back(right);
|
deba@326
|
1303 |
|
deba@326
|
1304 |
right_set.insert(right);
|
deba@326
|
1305 |
|
deba@326
|
1306 |
if (left_set.find(right) != left_set.end()) {
|
deba@326
|
1307 |
nca = right;
|
deba@326
|
1308 |
break;
|
deba@326
|
1309 |
}
|
deba@326
|
1310 |
|
deba@326
|
1311 |
}
|
deba@326
|
1312 |
|
deba@326
|
1313 |
if (nca == -1) {
|
deba@326
|
1314 |
if ((*_blossom_data)[left].pred == INVALID) {
|
deba@326
|
1315 |
nca = right;
|
deba@326
|
1316 |
while (left_set.find(nca) == left_set.end()) {
|
deba@326
|
1317 |
nca =
|
deba@326
|
1318 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
|
deba@326
|
1319 |
right_path.push_back(nca);
|
deba@326
|
1320 |
nca =
|
deba@326
|
1321 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
|
deba@326
|
1322 |
right_path.push_back(nca);
|
deba@326
|
1323 |
}
|
deba@326
|
1324 |
} else {
|
deba@326
|
1325 |
nca = left;
|
deba@326
|
1326 |
while (right_set.find(nca) == right_set.end()) {
|
deba@326
|
1327 |
nca =
|
deba@326
|
1328 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
|
deba@326
|
1329 |
left_path.push_back(nca);
|
deba@326
|
1330 |
nca =
|
deba@326
|
1331 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
|
deba@326
|
1332 |
left_path.push_back(nca);
|
deba@326
|
1333 |
}
|
deba@326
|
1334 |
}
|
deba@326
|
1335 |
}
|
deba@326
|
1336 |
}
|
deba@326
|
1337 |
|
deba@326
|
1338 |
std::vector<int> subblossoms;
|
deba@326
|
1339 |
Arc prev;
|
deba@326
|
1340 |
|
deba@326
|
1341 |
prev = _graph.direct(edge, true);
|
deba@326
|
1342 |
for (int i = 0; left_path[i] != nca; i += 2) {
|
deba@326
|
1343 |
subblossoms.push_back(left_path[i]);
|
deba@326
|
1344 |
(*_blossom_data)[left_path[i]].next = prev;
|
deba@326
|
1345 |
_tree_set->erase(left_path[i]);
|
deba@326
|
1346 |
|
deba@326
|
1347 |
subblossoms.push_back(left_path[i + 1]);
|
deba@326
|
1348 |
(*_blossom_data)[left_path[i + 1]].status = EVEN;
|
deba@326
|
1349 |
oddToEven(left_path[i + 1], tree);
|
deba@326
|
1350 |
_tree_set->erase(left_path[i + 1]);
|
deba@326
|
1351 |
prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
|
deba@326
|
1352 |
}
|
deba@326
|
1353 |
|
deba@326
|
1354 |
int k = 0;
|
deba@326
|
1355 |
while (right_path[k] != nca) ++k;
|
deba@326
|
1356 |
|
deba@326
|
1357 |
subblossoms.push_back(nca);
|
deba@326
|
1358 |
(*_blossom_data)[nca].next = prev;
|
deba@326
|
1359 |
|
deba@326
|
1360 |
for (int i = k - 2; i >= 0; i -= 2) {
|
deba@326
|
1361 |
subblossoms.push_back(right_path[i + 1]);
|
deba@326
|
1362 |
(*_blossom_data)[right_path[i + 1]].status = EVEN;
|
deba@326
|
1363 |
oddToEven(right_path[i + 1], tree);
|
deba@326
|
1364 |
_tree_set->erase(right_path[i + 1]);
|
deba@326
|
1365 |
|
deba@326
|
1366 |
(*_blossom_data)[right_path[i + 1]].next =
|
deba@326
|
1367 |
(*_blossom_data)[right_path[i + 1]].pred;
|
deba@326
|
1368 |
|
deba@326
|
1369 |
subblossoms.push_back(right_path[i]);
|
deba@326
|
1370 |
_tree_set->erase(right_path[i]);
|
deba@326
|
1371 |
}
|
deba@326
|
1372 |
|
deba@326
|
1373 |
int surface =
|
deba@326
|
1374 |
_blossom_set->join(subblossoms.begin(), subblossoms.end());
|
deba@326
|
1375 |
|
deba@326
|
1376 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
deba@326
|
1377 |
if (!_blossom_set->trivial(subblossoms[i])) {
|
deba@326
|
1378 |
(*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
|
deba@326
|
1379 |
}
|
deba@326
|
1380 |
(*_blossom_data)[subblossoms[i]].status = MATCHED;
|
deba@326
|
1381 |
}
|
deba@326
|
1382 |
|
deba@326
|
1383 |
(*_blossom_data)[surface].pot = -2 * _delta_sum;
|
deba@326
|
1384 |
(*_blossom_data)[surface].offset = 0;
|
deba@326
|
1385 |
(*_blossom_data)[surface].status = EVEN;
|
deba@326
|
1386 |
(*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
|
deba@326
|
1387 |
(*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
|
deba@326
|
1388 |
|
deba@326
|
1389 |
_tree_set->insert(surface, tree);
|
deba@326
|
1390 |
_tree_set->erase(nca);
|
deba@326
|
1391 |
}
|
deba@326
|
1392 |
|
deba@326
|
1393 |
void splitBlossom(int blossom) {
|
deba@326
|
1394 |
Arc next = (*_blossom_data)[blossom].next;
|
deba@326
|
1395 |
Arc pred = (*_blossom_data)[blossom].pred;
|
deba@326
|
1396 |
|
deba@326
|
1397 |
int tree = _tree_set->find(blossom);
|
deba@326
|
1398 |
|
deba@326
|
1399 |
(*_blossom_data)[blossom].status = MATCHED;
|
deba@326
|
1400 |
oddToMatched(blossom);
|
deba@326
|
1401 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
deba@326
|
1402 |
_delta2->erase(blossom);
|
deba@326
|
1403 |
}
|
deba@326
|
1404 |
|
deba@326
|
1405 |
std::vector<int> subblossoms;
|
deba@326
|
1406 |
_blossom_set->split(blossom, std::back_inserter(subblossoms));
|
deba@326
|
1407 |
|
deba@326
|
1408 |
Value offset = (*_blossom_data)[blossom].offset;
|
deba@326
|
1409 |
int b = _blossom_set->find(_graph.source(pred));
|
deba@326
|
1410 |
int d = _blossom_set->find(_graph.source(next));
|
deba@326
|
1411 |
|
deba@326
|
1412 |
int ib = -1, id = -1;
|
deba@326
|
1413 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
deba@326
|
1414 |
if (subblossoms[i] == b) ib = i;
|
deba@326
|
1415 |
if (subblossoms[i] == d) id = i;
|
deba@326
|
1416 |
|
deba@326
|
1417 |
(*_blossom_data)[subblossoms[i]].offset = offset;
|
deba@326
|
1418 |
if (!_blossom_set->trivial(subblossoms[i])) {
|
deba@326
|
1419 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
|
deba@326
|
1420 |
}
|
deba@326
|
1421 |
if (_blossom_set->classPrio(subblossoms[i]) !=
|
deba@326
|
1422 |
std::numeric_limits<Value>::max()) {
|
deba@326
|
1423 |
_delta2->push(subblossoms[i],
|
deba@326
|
1424 |
_blossom_set->classPrio(subblossoms[i]) -
|
deba@326
|
1425 |
(*_blossom_data)[subblossoms[i]].offset);
|
deba@326
|
1426 |
}
|
deba@326
|
1427 |
}
|
deba@326
|
1428 |
|
deba@326
|
1429 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
|
deba@326
|
1430 |
for (int i = (id + 1) % subblossoms.size();
|
deba@326
|
1431 |
i != ib; i = (i + 2) % subblossoms.size()) {
|
deba@326
|
1432 |
int sb = subblossoms[i];
|
deba@326
|
1433 |
int tb = subblossoms[(i + 1) % subblossoms.size()];
|
deba@326
|
1434 |
(*_blossom_data)[sb].next =
|
deba@326
|
1435 |
_graph.oppositeArc((*_blossom_data)[tb].next);
|
deba@326
|
1436 |
}
|
deba@326
|
1437 |
|
deba@326
|
1438 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
|
deba@326
|
1439 |
int sb = subblossoms[i];
|
deba@326
|
1440 |
int tb = subblossoms[(i + 1) % subblossoms.size()];
|
deba@326
|
1441 |
int ub = subblossoms[(i + 2) % subblossoms.size()];
|
deba@326
|
1442 |
|
deba@326
|
1443 |
(*_blossom_data)[sb].status = ODD;
|
deba@326
|
1444 |
matchedToOdd(sb);
|
deba@326
|
1445 |
_tree_set->insert(sb, tree);
|
deba@326
|
1446 |
(*_blossom_data)[sb].pred = pred;
|
deba@326
|
1447 |
(*_blossom_data)[sb].next =
|
deba@868
|
1448 |
_graph.oppositeArc((*_blossom_data)[tb].next);
|
deba@326
|
1449 |
|
deba@326
|
1450 |
pred = (*_blossom_data)[ub].next;
|
deba@326
|
1451 |
|
deba@326
|
1452 |
(*_blossom_data)[tb].status = EVEN;
|
deba@326
|
1453 |
matchedToEven(tb, tree);
|
deba@326
|
1454 |
_tree_set->insert(tb, tree);
|
deba@326
|
1455 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
|
deba@326
|
1456 |
}
|
deba@326
|
1457 |
|
deba@326
|
1458 |
(*_blossom_data)[subblossoms[id]].status = ODD;
|
deba@326
|
1459 |
matchedToOdd(subblossoms[id]);
|
deba@326
|
1460 |
_tree_set->insert(subblossoms[id], tree);
|
deba@326
|
1461 |
(*_blossom_data)[subblossoms[id]].next = next;
|
deba@326
|
1462 |
(*_blossom_data)[subblossoms[id]].pred = pred;
|
deba@326
|
1463 |
|
deba@326
|
1464 |
} else {
|
deba@326
|
1465 |
|
deba@326
|
1466 |
for (int i = (ib + 1) % subblossoms.size();
|
deba@326
|
1467 |
i != id; i = (i + 2) % subblossoms.size()) {
|
deba@326
|
1468 |
int sb = subblossoms[i];
|
deba@326
|
1469 |
int tb = subblossoms[(i + 1) % subblossoms.size()];
|
deba@326
|
1470 |
(*_blossom_data)[sb].next =
|
deba@326
|
1471 |
_graph.oppositeArc((*_blossom_data)[tb].next);
|
deba@326
|
1472 |
}
|
deba@326
|
1473 |
|
deba@326
|
1474 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
|
deba@326
|
1475 |
int sb = subblossoms[i];
|
deba@326
|
1476 |
int tb = subblossoms[(i + 1) % subblossoms.size()];
|
deba@326
|
1477 |
int ub = subblossoms[(i + 2) % subblossoms.size()];
|
deba@326
|
1478 |
|
deba@326
|
1479 |
(*_blossom_data)[sb].status = ODD;
|
deba@326
|
1480 |
matchedToOdd(sb);
|
deba@326
|
1481 |
_tree_set->insert(sb, tree);
|
deba@326
|
1482 |
(*_blossom_data)[sb].next = next;
|
deba@326
|
1483 |
(*_blossom_data)[sb].pred =
|
deba@326
|
1484 |
_graph.oppositeArc((*_blossom_data)[tb].next);
|
deba@326
|
1485 |
|
deba@326
|
1486 |
(*_blossom_data)[tb].status = EVEN;
|
deba@326
|
1487 |
matchedToEven(tb, tree);
|
deba@326
|
1488 |
_tree_set->insert(tb, tree);
|
deba@326
|
1489 |
(*_blossom_data)[tb].pred =
|
deba@326
|
1490 |
(*_blossom_data)[tb].next =
|
deba@326
|
1491 |
_graph.oppositeArc((*_blossom_data)[ub].next);
|
deba@326
|
1492 |
next = (*_blossom_data)[ub].next;
|
deba@326
|
1493 |
}
|
deba@326
|
1494 |
|
deba@326
|
1495 |
(*_blossom_data)[subblossoms[ib]].status = ODD;
|
deba@326
|
1496 |
matchedToOdd(subblossoms[ib]);
|
deba@326
|
1497 |
_tree_set->insert(subblossoms[ib], tree);
|
deba@326
|
1498 |
(*_blossom_data)[subblossoms[ib]].next = next;
|
deba@326
|
1499 |
(*_blossom_data)[subblossoms[ib]].pred = pred;
|
deba@326
|
1500 |
}
|
deba@326
|
1501 |
_tree_set->erase(blossom);
|
deba@326
|
1502 |
}
|
deba@326
|
1503 |
|
deba@326
|
1504 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) {
|
deba@326
|
1505 |
if (_blossom_set->trivial(blossom)) {
|
deba@326
|
1506 |
int bi = (*_node_index)[base];
|
deba@326
|
1507 |
Value pot = (*_node_data)[bi].pot;
|
deba@326
|
1508 |
|
kpeter@581
|
1509 |
(*_matching)[base] = matching;
|
deba@326
|
1510 |
_blossom_node_list.push_back(base);
|
kpeter@581
|
1511 |
(*_node_potential)[base] = pot;
|
deba@326
|
1512 |
} else {
|
deba@326
|
1513 |
|
deba@326
|
1514 |
Value pot = (*_blossom_data)[blossom].pot;
|
deba@326
|
1515 |
int bn = _blossom_node_list.size();
|
deba@326
|
1516 |
|
deba@326
|
1517 |
std::vector<int> subblossoms;
|
deba@326
|
1518 |
_blossom_set->split(blossom, std::back_inserter(subblossoms));
|
deba@326
|
1519 |
int b = _blossom_set->find(base);
|
deba@326
|
1520 |
int ib = -1;
|
deba@326
|
1521 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
deba@326
|
1522 |
if (subblossoms[i] == b) { ib = i; break; }
|
deba@326
|
1523 |
}
|
deba@326
|
1524 |
|
deba@326
|
1525 |
for (int i = 1; i < int(subblossoms.size()); i += 2) {
|
deba@326
|
1526 |
int sb = subblossoms[(ib + i) % subblossoms.size()];
|
deba@326
|
1527 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
|
deba@326
|
1528 |
|
deba@326
|
1529 |
Arc m = (*_blossom_data)[tb].next;
|
deba@326
|
1530 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
|
deba@326
|
1531 |
extractBlossom(tb, _graph.source(m), m);
|
deba@326
|
1532 |
}
|
deba@326
|
1533 |
extractBlossom(subblossoms[ib], base, matching);
|
deba@326
|
1534 |
|
deba@326
|
1535 |
int en = _blossom_node_list.size();
|
deba@326
|
1536 |
|
deba@326
|
1537 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot));
|
deba@326
|
1538 |
}
|
deba@326
|
1539 |
}
|
deba@326
|
1540 |
|
deba@326
|
1541 |
void extractMatching() {
|
deba@326
|
1542 |
std::vector<int> blossoms;
|
deba@326
|
1543 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
|
deba@326
|
1544 |
blossoms.push_back(c);
|
deba@326
|
1545 |
}
|
deba@326
|
1546 |
|
deba@326
|
1547 |
for (int i = 0; i < int(blossoms.size()); ++i) {
|
deba@868
|
1548 |
if ((*_blossom_data)[blossoms[i]].next != INVALID) {
|
deba@326
|
1549 |
|
deba@326
|
1550 |
Value offset = (*_blossom_data)[blossoms[i]].offset;
|
deba@326
|
1551 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset;
|
deba@326
|
1552 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
|
deba@326
|
1553 |
n != INVALID; ++n) {
|
deba@326
|
1554 |
(*_node_data)[(*_node_index)[n]].pot -= offset;
|
deba@326
|
1555 |
}
|
deba@326
|
1556 |
|
deba@326
|
1557 |
Arc matching = (*_blossom_data)[blossoms[i]].next;
|
deba@326
|
1558 |
Node base = _graph.source(matching);
|
deba@326
|
1559 |
extractBlossom(blossoms[i], base, matching);
|
deba@326
|
1560 |
} else {
|
deba@326
|
1561 |
Node base = (*_blossom_data)[blossoms[i]].base;
|
deba@326
|
1562 |
extractBlossom(blossoms[i], base, INVALID);
|
deba@326
|
1563 |
}
|
deba@326
|
1564 |
}
|
deba@326
|
1565 |
}
|
deba@326
|
1566 |
|
deba@326
|
1567 |
public:
|
deba@326
|
1568 |
|
deba@326
|
1569 |
/// \brief Constructor
|
deba@326
|
1570 |
///
|
deba@326
|
1571 |
/// Constructor.
|
deba@326
|
1572 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
|
deba@326
|
1573 |
: _graph(graph), _weight(weight), _matching(0),
|
deba@326
|
1574 |
_node_potential(0), _blossom_potential(), _blossom_node_list(),
|
deba@326
|
1575 |
_node_num(0), _blossom_num(0),
|
deba@326
|
1576 |
|
deba@326
|
1577 |
_blossom_index(0), _blossom_set(0), _blossom_data(0),
|
deba@326
|
1578 |
_node_index(0), _node_heap_index(0), _node_data(0),
|
deba@326
|
1579 |
_tree_set_index(0), _tree_set(0),
|
deba@326
|
1580 |
|
deba@326
|
1581 |
_delta1_index(0), _delta1(0),
|
deba@326
|
1582 |
_delta2_index(0), _delta2(0),
|
deba@326
|
1583 |
_delta3_index(0), _delta3(0),
|
deba@326
|
1584 |
_delta4_index(0), _delta4(0),
|
deba@326
|
1585 |
|
deba@870
|
1586 |
_delta_sum(), _unmatched(0),
|
deba@870
|
1587 |
|
deba@870
|
1588 |
_fractional(0)
|
deba@870
|
1589 |
{}
|
deba@326
|
1590 |
|
deba@326
|
1591 |
~MaxWeightedMatching() {
|
deba@326
|
1592 |
destroyStructures();
|
deba@870
|
1593 |
if (_fractional) {
|
deba@870
|
1594 |
delete _fractional;
|
deba@870
|
1595 |
}
|
deba@326
|
1596 |
}
|
deba@326
|
1597 |
|
kpeter@590
|
1598 |
/// \name Execution Control
|
alpar@330
|
1599 |
/// The simplest way to execute the algorithm is to use the
|
kpeter@590
|
1600 |
/// \ref run() member function.
|
deba@326
|
1601 |
|
deba@326
|
1602 |
///@{
|
deba@326
|
1603 |
|
deba@326
|
1604 |
/// \brief Initialize the algorithm
|
deba@326
|
1605 |
///
|
kpeter@590
|
1606 |
/// This function initializes the algorithm.
|
deba@326
|
1607 |
void init() {
|
deba@326
|
1608 |
createStructures();
|
deba@326
|
1609 |
|
deba@867
|
1610 |
_blossom_node_list.clear();
|
deba@867
|
1611 |
_blossom_potential.clear();
|
deba@867
|
1612 |
|
deba@326
|
1613 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
kpeter@581
|
1614 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
|
deba@326
|
1615 |
}
|
deba@326
|
1616 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@581
|
1617 |
(*_delta1_index)[n] = _delta1->PRE_HEAP;
|
deba@326
|
1618 |
}
|
deba@326
|
1619 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
kpeter@581
|
1620 |
(*_delta3_index)[e] = _delta3->PRE_HEAP;
|
deba@326
|
1621 |
}
|
deba@326
|
1622 |
for (int i = 0; i < _blossom_num; ++i) {
|
kpeter@581
|
1623 |
(*_delta2_index)[i] = _delta2->PRE_HEAP;
|
kpeter@581
|
1624 |
(*_delta4_index)[i] = _delta4->PRE_HEAP;
|
deba@326
|
1625 |
}
|
deba@867
|
1626 |
|
deba@870
|
1627 |
_unmatched = _node_num;
|
deba@870
|
1628 |
|
deba@867
|
1629 |
_delta1->clear();
|
deba@867
|
1630 |
_delta2->clear();
|
deba@867
|
1631 |
_delta3->clear();
|
deba@867
|
1632 |
_delta4->clear();
|
deba@867
|
1633 |
_blossom_set->clear();
|
deba@867
|
1634 |
_tree_set->clear();
|
deba@326
|
1635 |
|
deba@326
|
1636 |
int index = 0;
|
deba@326
|
1637 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@326
|
1638 |
Value max = 0;
|
deba@326
|
1639 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@326
|
1640 |
if (_graph.target(e) == n) continue;
|
deba@326
|
1641 |
if ((dualScale * _weight[e]) / 2 > max) {
|
deba@326
|
1642 |
max = (dualScale * _weight[e]) / 2;
|
deba@326
|
1643 |
}
|
deba@326
|
1644 |
}
|
kpeter@581
|
1645 |
(*_node_index)[n] = index;
|
deba@867
|
1646 |
(*_node_data)[index].heap_index.clear();
|
deba@867
|
1647 |
(*_node_data)[index].heap.clear();
|
deba@326
|
1648 |
(*_node_data)[index].pot = max;
|
deba@326
|
1649 |
_delta1->push(n, max);
|
deba@326
|
1650 |
int blossom =
|
deba@326
|
1651 |
_blossom_set->insert(n, std::numeric_limits<Value>::max());
|
deba@326
|
1652 |
|
deba@326
|
1653 |
_tree_set->insert(blossom);
|
deba@326
|
1654 |
|
deba@326
|
1655 |
(*_blossom_data)[blossom].status = EVEN;
|
deba@326
|
1656 |
(*_blossom_data)[blossom].pred = INVALID;
|
deba@326
|
1657 |
(*_blossom_data)[blossom].next = INVALID;
|
deba@326
|
1658 |
(*_blossom_data)[blossom].pot = 0;
|
deba@326
|
1659 |
(*_blossom_data)[blossom].offset = 0;
|
deba@326
|
1660 |
++index;
|
deba@326
|
1661 |
}
|
deba@326
|
1662 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
deba@326
|
1663 |
int si = (*_node_index)[_graph.u(e)];
|
deba@326
|
1664 |
int ti = (*_node_index)[_graph.v(e)];
|
deba@326
|
1665 |
if (_graph.u(e) != _graph.v(e)) {
|
deba@326
|
1666 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
|
deba@326
|
1667 |
dualScale * _weight[e]) / 2);
|
deba@326
|
1668 |
}
|
deba@326
|
1669 |
}
|
deba@326
|
1670 |
}
|
deba@326
|
1671 |
|
deba@870
|
1672 |
/// \brief Initialize the algorithm with fractional matching
|
deba@870
|
1673 |
///
|
deba@870
|
1674 |
/// This function initializes the algorithm with a fractional
|
deba@870
|
1675 |
/// matching. This initialization is also called jumpstart heuristic.
|
deba@870
|
1676 |
void fractionalInit() {
|
deba@870
|
1677 |
createStructures();
|
deba@876
|
1678 |
|
deba@876
|
1679 |
_blossom_node_list.clear();
|
deba@876
|
1680 |
_blossom_potential.clear();
|
deba@870
|
1681 |
|
deba@870
|
1682 |
if (_fractional == 0) {
|
deba@870
|
1683 |
_fractional = new FractionalMatching(_graph, _weight, false);
|
deba@870
|
1684 |
}
|
deba@870
|
1685 |
_fractional->run();
|
deba@870
|
1686 |
|
deba@870
|
1687 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
deba@870
|
1688 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
|
deba@870
|
1689 |
}
|
deba@870
|
1690 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@870
|
1691 |
(*_delta1_index)[n] = _delta1->PRE_HEAP;
|
deba@870
|
1692 |
}
|
deba@870
|
1693 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
deba@870
|
1694 |
(*_delta3_index)[e] = _delta3->PRE_HEAP;
|
deba@870
|
1695 |
}
|
deba@870
|
1696 |
for (int i = 0; i < _blossom_num; ++i) {
|
deba@870
|
1697 |
(*_delta2_index)[i] = _delta2->PRE_HEAP;
|
deba@870
|
1698 |
(*_delta4_index)[i] = _delta4->PRE_HEAP;
|
deba@870
|
1699 |
}
|
deba@870
|
1700 |
|
deba@870
|
1701 |
_unmatched = 0;
|
deba@870
|
1702 |
|
deba@876
|
1703 |
_delta1->clear();
|
deba@876
|
1704 |
_delta2->clear();
|
deba@876
|
1705 |
_delta3->clear();
|
deba@876
|
1706 |
_delta4->clear();
|
deba@876
|
1707 |
_blossom_set->clear();
|
deba@876
|
1708 |
_tree_set->clear();
|
deba@876
|
1709 |
|
deba@870
|
1710 |
int index = 0;
|
deba@870
|
1711 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@870
|
1712 |
Value pot = _fractional->nodeValue(n);
|
deba@870
|
1713 |
(*_node_index)[n] = index;
|
deba@870
|
1714 |
(*_node_data)[index].pot = pot;
|
deba@876
|
1715 |
(*_node_data)[index].heap_index.clear();
|
deba@876
|
1716 |
(*_node_data)[index].heap.clear();
|
deba@870
|
1717 |
int blossom =
|
deba@870
|
1718 |
_blossom_set->insert(n, std::numeric_limits<Value>::max());
|
deba@870
|
1719 |
|
deba@870
|
1720 |
(*_blossom_data)[blossom].status = MATCHED;
|
deba@870
|
1721 |
(*_blossom_data)[blossom].pred = INVALID;
|
deba@870
|
1722 |
(*_blossom_data)[blossom].next = _fractional->matching(n);
|
deba@870
|
1723 |
if (_fractional->matching(n) == INVALID) {
|
deba@870
|
1724 |
(*_blossom_data)[blossom].base = n;
|
deba@870
|
1725 |
}
|
deba@870
|
1726 |
(*_blossom_data)[blossom].pot = 0;
|
deba@870
|
1727 |
(*_blossom_data)[blossom].offset = 0;
|
deba@870
|
1728 |
++index;
|
deba@870
|
1729 |
}
|
deba@870
|
1730 |
|
deba@870
|
1731 |
typename Graph::template NodeMap<bool> processed(_graph, false);
|
deba@870
|
1732 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@870
|
1733 |
if (processed[n]) continue;
|
deba@870
|
1734 |
processed[n] = true;
|
deba@870
|
1735 |
if (_fractional->matching(n) == INVALID) continue;
|
deba@870
|
1736 |
int num = 1;
|
deba@870
|
1737 |
Node v = _graph.target(_fractional->matching(n));
|
deba@870
|
1738 |
while (n != v) {
|
deba@870
|
1739 |
processed[v] = true;
|
deba@870
|
1740 |
v = _graph.target(_fractional->matching(v));
|
deba@870
|
1741 |
++num;
|
deba@870
|
1742 |
}
|
deba@870
|
1743 |
|
deba@870
|
1744 |
if (num % 2 == 1) {
|
deba@870
|
1745 |
std::vector<int> subblossoms(num);
|
deba@870
|
1746 |
|
deba@870
|
1747 |
subblossoms[--num] = _blossom_set->find(n);
|
deba@870
|
1748 |
_delta1->push(n, _fractional->nodeValue(n));
|
deba@870
|
1749 |
v = _graph.target(_fractional->matching(n));
|
deba@870
|
1750 |
while (n != v) {
|
deba@870
|
1751 |
subblossoms[--num] = _blossom_set->find(v);
|
deba@870
|
1752 |
_delta1->push(v, _fractional->nodeValue(v));
|
deba@870
|
1753 |
v = _graph.target(_fractional->matching(v));
|
deba@870
|
1754 |
}
|
deba@870
|
1755 |
|
deba@870
|
1756 |
int surface =
|
deba@870
|
1757 |
_blossom_set->join(subblossoms.begin(), subblossoms.end());
|
deba@870
|
1758 |
(*_blossom_data)[surface].status = EVEN;
|
deba@870
|
1759 |
(*_blossom_data)[surface].pred = INVALID;
|
deba@870
|
1760 |
(*_blossom_data)[surface].next = INVALID;
|
deba@870
|
1761 |
(*_blossom_data)[surface].pot = 0;
|
deba@870
|
1762 |
(*_blossom_data)[surface].offset = 0;
|
deba@870
|
1763 |
|
deba@870
|
1764 |
_tree_set->insert(surface);
|
deba@870
|
1765 |
++_unmatched;
|
deba@870
|
1766 |
}
|
deba@870
|
1767 |
}
|
deba@870
|
1768 |
|
deba@870
|
1769 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
deba@870
|
1770 |
int si = (*_node_index)[_graph.u(e)];
|
deba@870
|
1771 |
int sb = _blossom_set->find(_graph.u(e));
|
deba@870
|
1772 |
int ti = (*_node_index)[_graph.v(e)];
|
deba@870
|
1773 |
int tb = _blossom_set->find(_graph.v(e));
|
deba@870
|
1774 |
if ((*_blossom_data)[sb].status == EVEN &&
|
deba@870
|
1775 |
(*_blossom_data)[tb].status == EVEN && sb != tb) {
|
deba@870
|
1776 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
|
deba@870
|
1777 |
dualScale * _weight[e]) / 2);
|
deba@870
|
1778 |
}
|
deba@870
|
1779 |
}
|
deba@870
|
1780 |
|
deba@870
|
1781 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@870
|
1782 |
int nb = _blossom_set->find(n);
|
deba@870
|
1783 |
if ((*_blossom_data)[nb].status != MATCHED) continue;
|
deba@870
|
1784 |
int ni = (*_node_index)[n];
|
deba@870
|
1785 |
|
deba@870
|
1786 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@870
|
1787 |
Node v = _graph.target(e);
|
deba@870
|
1788 |
int vb = _blossom_set->find(v);
|
deba@870
|
1789 |
int vi = (*_node_index)[v];
|
deba@870
|
1790 |
|
deba@870
|
1791 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
|
deba@870
|
1792 |
dualScale * _weight[e];
|
deba@870
|
1793 |
|
deba@870
|
1794 |
if ((*_blossom_data)[vb].status == EVEN) {
|
deba@870
|
1795 |
|
deba@870
|
1796 |
int vt = _tree_set->find(vb);
|
deba@870
|
1797 |
|
deba@870
|
1798 |
typename std::map<int, Arc>::iterator it =
|
deba@870
|
1799 |
(*_node_data)[ni].heap_index.find(vt);
|
deba@870
|
1800 |
|
deba@870
|
1801 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
deba@870
|
1802 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
deba@870
|
1803 |
(*_node_data)[ni].heap.replace(it->second, e);
|
deba@870
|
1804 |
(*_node_data)[ni].heap.decrease(e, rw);
|
deba@870
|
1805 |
it->second = e;
|
deba@870
|
1806 |
}
|
deba@870
|
1807 |
} else {
|
deba@870
|
1808 |
(*_node_data)[ni].heap.push(e, rw);
|
deba@870
|
1809 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
|
deba@870
|
1810 |
}
|
deba@870
|
1811 |
}
|
deba@870
|
1812 |
}
|
deba@870
|
1813 |
|
deba@870
|
1814 |
if (!(*_node_data)[ni].heap.empty()) {
|
deba@870
|
1815 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
|
deba@870
|
1816 |
_delta2->push(nb, _blossom_set->classPrio(nb));
|
deba@870
|
1817 |
}
|
deba@870
|
1818 |
}
|
deba@870
|
1819 |
}
|
deba@870
|
1820 |
|
kpeter@590
|
1821 |
/// \brief Start the algorithm
|
deba@326
|
1822 |
///
|
kpeter@590
|
1823 |
/// This function starts the algorithm.
|
kpeter@590
|
1824 |
///
|
deba@870
|
1825 |
/// \pre \ref init() or \ref fractionalInit() must be called
|
deba@870
|
1826 |
/// before using this function.
|
deba@326
|
1827 |
void start() {
|
deba@326
|
1828 |
enum OpType {
|
deba@326
|
1829 |
D1, D2, D3, D4
|
deba@326
|
1830 |
};
|
deba@326
|
1831 |
|
deba@870
|
1832 |
while (_unmatched > 0) {
|
deba@326
|
1833 |
Value d1 = !_delta1->empty() ?
|
deba@326
|
1834 |
_delta1->prio() : std::numeric_limits<Value>::max();
|
deba@326
|
1835 |
|
deba@326
|
1836 |
Value d2 = !_delta2->empty() ?
|
deba@326
|
1837 |
_delta2->prio() : std::numeric_limits<Value>::max();
|
deba@326
|
1838 |
|
deba@326
|
1839 |
Value d3 = !_delta3->empty() ?
|
deba@326
|
1840 |
_delta3->prio() : std::numeric_limits<Value>::max();
|
deba@326
|
1841 |
|
deba@326
|
1842 |
Value d4 = !_delta4->empty() ?
|
deba@326
|
1843 |
_delta4->prio() : std::numeric_limits<Value>::max();
|
deba@326
|
1844 |
|
deba@868
|
1845 |
_delta_sum = d3; OpType ot = D3;
|
deba@868
|
1846 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
|
deba@326
|
1847 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
deba@326
|
1848 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
deba@326
|
1849 |
|
deba@326
|
1850 |
switch (ot) {
|
deba@326
|
1851 |
case D1:
|
deba@326
|
1852 |
{
|
deba@326
|
1853 |
Node n = _delta1->top();
|
deba@326
|
1854 |
unmatchNode(n);
|
deba@870
|
1855 |
--_unmatched;
|
deba@326
|
1856 |
}
|
deba@326
|
1857 |
break;
|
deba@326
|
1858 |
case D2:
|
deba@326
|
1859 |
{
|
deba@326
|
1860 |
int blossom = _delta2->top();
|
deba@326
|
1861 |
Node n = _blossom_set->classTop(blossom);
|
deba@868
|
1862 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top();
|
deba@868
|
1863 |
if ((*_blossom_data)[blossom].next == INVALID) {
|
deba@868
|
1864 |
augmentOnArc(a);
|
deba@870
|
1865 |
--_unmatched;
|
deba@868
|
1866 |
} else {
|
deba@868
|
1867 |
extendOnArc(a);
|
deba@868
|
1868 |
}
|
deba@326
|
1869 |
}
|
deba@326
|
1870 |
break;
|
deba@326
|
1871 |
case D3:
|
deba@326
|
1872 |
{
|
deba@326
|
1873 |
Edge e = _delta3->top();
|
deba@326
|
1874 |
|
deba@326
|
1875 |
int left_blossom = _blossom_set->find(_graph.u(e));
|
deba@326
|
1876 |
int right_blossom = _blossom_set->find(_graph.v(e));
|
deba@326
|
1877 |
|
deba@326
|
1878 |
if (left_blossom == right_blossom) {
|
deba@326
|
1879 |
_delta3->pop();
|
deba@326
|
1880 |
} else {
|
deba@868
|
1881 |
int left_tree = _tree_set->find(left_blossom);
|
deba@868
|
1882 |
int right_tree = _tree_set->find(right_blossom);
|
deba@326
|
1883 |
|
deba@326
|
1884 |
if (left_tree == right_tree) {
|
deba@327
|
1885 |
shrinkOnEdge(e, left_tree);
|
deba@326
|
1886 |
} else {
|
deba@327
|
1887 |
augmentOnEdge(e);
|
deba@870
|
1888 |
_unmatched -= 2;
|
deba@326
|
1889 |
}
|
deba@326
|
1890 |
}
|
deba@326
|
1891 |
} break;
|
deba@326
|
1892 |
case D4:
|
deba@326
|
1893 |
splitBlossom(_delta4->top());
|
deba@326
|
1894 |
break;
|
deba@326
|
1895 |
}
|
deba@326
|
1896 |
}
|
deba@326
|
1897 |
extractMatching();
|
deba@326
|
1898 |
}
|
deba@326
|
1899 |
|
kpeter@590
|
1900 |
/// \brief Run the algorithm.
|
deba@326
|
1901 |
///
|
kpeter@590
|
1902 |
/// This method runs the \c %MaxWeightedMatching algorithm.
|
deba@326
|
1903 |
///
|
deba@326
|
1904 |
/// \note mwm.run() is just a shortcut of the following code.
|
deba@326
|
1905 |
/// \code
|
deba@870
|
1906 |
/// mwm.fractionalInit();
|
deba@326
|
1907 |
/// mwm.start();
|
deba@326
|
1908 |
/// \endcode
|
deba@326
|
1909 |
void run() {
|
deba@870
|
1910 |
fractionalInit();
|
deba@326
|
1911 |
start();
|
deba@326
|
1912 |
}
|
deba@326
|
1913 |
|
deba@326
|
1914 |
/// @}
|
deba@326
|
1915 |
|
kpeter@590
|
1916 |
/// \name Primal Solution
|
deba@868
|
1917 |
/// Functions to get the primal solution, i.e. the maximum weighted
|
kpeter@590
|
1918 |
/// matching.\n
|
kpeter@590
|
1919 |
/// Either \ref run() or \ref start() function should be called before
|
kpeter@590
|
1920 |
/// using them.
|
deba@326
|
1921 |
|
deba@326
|
1922 |
/// @{
|
deba@326
|
1923 |
|
kpeter@590
|
1924 |
/// \brief Return the weight of the matching.
|
deba@326
|
1925 |
///
|
kpeter@590
|
1926 |
/// This function returns the weight of the found matching.
|
kpeter@590
|
1927 |
///
|
kpeter@590
|
1928 |
/// \pre Either run() or start() must be called before using this function.
|
kpeter@593
|
1929 |
Value matchingWeight() const {
|
deba@326
|
1930 |
Value sum = 0;
|
deba@326
|
1931 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@326
|
1932 |
if ((*_matching)[n] != INVALID) {
|
deba@326
|
1933 |
sum += _weight[(*_matching)[n]];
|
deba@326
|
1934 |
}
|
deba@326
|
1935 |
}
|
deba@868
|
1936 |
return sum / 2;
|
deba@326
|
1937 |
}
|
deba@326
|
1938 |
|
kpeter@590
|
1939 |
/// \brief Return the size (cardinality) of the matching.
|
deba@326
|
1940 |
///
|
kpeter@590
|
1941 |
/// This function returns the size (cardinality) of the found matching.
|
kpeter@590
|
1942 |
///
|
kpeter@590
|
1943 |
/// \pre Either run() or start() must be called before using this function.
|
deba@327
|
1944 |
int matchingSize() const {
|
deba@327
|
1945 |
int num = 0;
|
deba@327
|
1946 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@327
|
1947 |
if ((*_matching)[n] != INVALID) {
|
deba@327
|
1948 |
++num;
|
deba@327
|
1949 |
}
|
deba@327
|
1950 |
}
|
deba@327
|
1951 |
return num /= 2;
|
deba@327
|
1952 |
}
|
deba@327
|
1953 |
|
kpeter@590
|
1954 |
/// \brief Return \c true if the given edge is in the matching.
|
deba@327
|
1955 |
///
|
deba@868
|
1956 |
/// This function returns \c true if the given edge is in the found
|
kpeter@590
|
1957 |
/// matching.
|
kpeter@590
|
1958 |
///
|
kpeter@590
|
1959 |
/// \pre Either run() or start() must be called before using this function.
|
deba@327
|
1960 |
bool matching(const Edge& edge) const {
|
deba@327
|
1961 |
return edge == (*_matching)[_graph.u(edge)];
|
deba@326
|
1962 |
}
|
deba@326
|
1963 |
|
kpeter@590
|
1964 |
/// \brief Return the matching arc (or edge) incident to the given node.
|
deba@326
|
1965 |
///
|
kpeter@590
|
1966 |
/// This function returns the matching arc (or edge) incident to the
|
deba@868
|
1967 |
/// given node in the found matching or \c INVALID if the node is
|
kpeter@590
|
1968 |
/// not covered by the matching.
|
kpeter@590
|
1969 |
///
|
kpeter@590
|
1970 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
1971 |
Arc matching(const Node& node) const {
|
deba@326
|
1972 |
return (*_matching)[node];
|
deba@326
|
1973 |
}
|
deba@326
|
1974 |
|
kpeter@593
|
1975 |
/// \brief Return a const reference to the matching map.
|
kpeter@593
|
1976 |
///
|
kpeter@593
|
1977 |
/// This function returns a const reference to a node map that stores
|
kpeter@593
|
1978 |
/// the matching arc (or edge) incident to each node.
|
kpeter@593
|
1979 |
const MatchingMap& matchingMap() const {
|
kpeter@593
|
1980 |
return *_matching;
|
kpeter@593
|
1981 |
}
|
kpeter@593
|
1982 |
|
kpeter@590
|
1983 |
/// \brief Return the mate of the given node.
|
deba@326
|
1984 |
///
|
deba@868
|
1985 |
/// This function returns the mate of the given node in the found
|
kpeter@590
|
1986 |
/// matching or \c INVALID if the node is not covered by the matching.
|
kpeter@590
|
1987 |
///
|
kpeter@590
|
1988 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
1989 |
Node mate(const Node& node) const {
|
deba@326
|
1990 |
return (*_matching)[node] != INVALID ?
|
deba@326
|
1991 |
_graph.target((*_matching)[node]) : INVALID;
|
deba@326
|
1992 |
}
|
deba@326
|
1993 |
|
deba@326
|
1994 |
/// @}
|
deba@326
|
1995 |
|
kpeter@590
|
1996 |
/// \name Dual Solution
|
kpeter@590
|
1997 |
/// Functions to get the dual solution.\n
|
kpeter@590
|
1998 |
/// Either \ref run() or \ref start() function should be called before
|
kpeter@590
|
1999 |
/// using them.
|
deba@326
|
2000 |
|
deba@326
|
2001 |
/// @{
|
deba@326
|
2002 |
|
kpeter@590
|
2003 |
/// \brief Return the value of the dual solution.
|
deba@326
|
2004 |
///
|
deba@868
|
2005 |
/// This function returns the value of the dual solution.
|
deba@868
|
2006 |
/// It should be equal to the primal value scaled by \ref dualScale
|
kpeter@590
|
2007 |
/// "dual scale".
|
kpeter@590
|
2008 |
///
|
kpeter@590
|
2009 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
2010 |
Value dualValue() const {
|
deba@326
|
2011 |
Value sum = 0;
|
deba@326
|
2012 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@326
|
2013 |
sum += nodeValue(n);
|
deba@326
|
2014 |
}
|
deba@326
|
2015 |
for (int i = 0; i < blossomNum(); ++i) {
|
deba@326
|
2016 |
sum += blossomValue(i) * (blossomSize(i) / 2);
|
deba@326
|
2017 |
}
|
deba@326
|
2018 |
return sum;
|
deba@326
|
2019 |
}
|
deba@326
|
2020 |
|
kpeter@590
|
2021 |
/// \brief Return the dual value (potential) of the given node.
|
deba@326
|
2022 |
///
|
kpeter@590
|
2023 |
/// This function returns the dual value (potential) of the given node.
|
kpeter@590
|
2024 |
///
|
kpeter@590
|
2025 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
2026 |
Value nodeValue(const Node& n) const {
|
deba@326
|
2027 |
return (*_node_potential)[n];
|
deba@326
|
2028 |
}
|
deba@326
|
2029 |
|
kpeter@590
|
2030 |
/// \brief Return the number of the blossoms in the basis.
|
deba@326
|
2031 |
///
|
kpeter@590
|
2032 |
/// This function returns the number of the blossoms in the basis.
|
kpeter@590
|
2033 |
///
|
kpeter@590
|
2034 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
2035 |
/// \see BlossomIt
|
deba@326
|
2036 |
int blossomNum() const {
|
deba@326
|
2037 |
return _blossom_potential.size();
|
deba@326
|
2038 |
}
|
deba@326
|
2039 |
|
kpeter@590
|
2040 |
/// \brief Return the number of the nodes in the given blossom.
|
deba@326
|
2041 |
///
|
kpeter@590
|
2042 |
/// This function returns the number of the nodes in the given blossom.
|
kpeter@590
|
2043 |
///
|
kpeter@590
|
2044 |
/// \pre Either run() or start() must be called before using this function.
|
kpeter@590
|
2045 |
/// \see BlossomIt
|
deba@326
|
2046 |
int blossomSize(int k) const {
|
deba@326
|
2047 |
return _blossom_potential[k].end - _blossom_potential[k].begin;
|
deba@326
|
2048 |
}
|
deba@326
|
2049 |
|
kpeter@590
|
2050 |
/// \brief Return the dual value (ptential) of the given blossom.
|
deba@326
|
2051 |
///
|
kpeter@590
|
2052 |
/// This function returns the dual value (ptential) of the given blossom.
|
kpeter@590
|
2053 |
///
|
kpeter@590
|
2054 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
2055 |
Value blossomValue(int k) const {
|
deba@326
|
2056 |
return _blossom_potential[k].value;
|
deba@326
|
2057 |
}
|
deba@326
|
2058 |
|
kpeter@590
|
2059 |
/// \brief Iterator for obtaining the nodes of a blossom.
|
deba@326
|
2060 |
///
|
deba@868
|
2061 |
/// This class provides an iterator for obtaining the nodes of the
|
kpeter@590
|
2062 |
/// given blossom. It lists a subset of the nodes.
|
deba@868
|
2063 |
/// Before using this iterator, you must allocate a
|
kpeter@590
|
2064 |
/// MaxWeightedMatching class and execute it.
|
deba@326
|
2065 |
class BlossomIt {
|
deba@326
|
2066 |
public:
|
deba@326
|
2067 |
|
deba@326
|
2068 |
/// \brief Constructor.
|
deba@326
|
2069 |
///
|
kpeter@590
|
2070 |
/// Constructor to get the nodes of the given variable.
|
kpeter@590
|
2071 |
///
|
deba@868
|
2072 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or
|
deba@868
|
2073 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be
|
kpeter@590
|
2074 |
/// called before initializing this iterator.
|
deba@326
|
2075 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable)
|
deba@326
|
2076 |
: _algorithm(&algorithm)
|
deba@326
|
2077 |
{
|
deba@326
|
2078 |
_index = _algorithm->_blossom_potential[variable].begin;
|
deba@326
|
2079 |
_last = _algorithm->_blossom_potential[variable].end;
|
deba@326
|
2080 |
}
|
deba@326
|
2081 |
|
kpeter@590
|
2082 |
/// \brief Conversion to \c Node.
|
deba@326
|
2083 |
///
|
kpeter@590
|
2084 |
/// Conversion to \c Node.
|
deba@326
|
2085 |
operator Node() const {
|
deba@327
|
2086 |
return _algorithm->_blossom_node_list[_index];
|
deba@326
|
2087 |
}
|
deba@326
|
2088 |
|
deba@326
|
2089 |
/// \brief Increment operator.
|
deba@326
|
2090 |
///
|
deba@326
|
2091 |
/// Increment operator.
|
deba@326
|
2092 |
BlossomIt& operator++() {
|
deba@326
|
2093 |
++_index;
|
deba@326
|
2094 |
return *this;
|
deba@326
|
2095 |
}
|
deba@326
|
2096 |
|
deba@327
|
2097 |
/// \brief Validity checking
|
deba@327
|
2098 |
///
|
deba@327
|
2099 |
/// Checks whether the iterator is invalid.
|
deba@327
|
2100 |
bool operator==(Invalid) const { return _index == _last; }
|
deba@327
|
2101 |
|
deba@327
|
2102 |
/// \brief Validity checking
|
deba@327
|
2103 |
///
|
deba@327
|
2104 |
/// Checks whether the iterator is valid.
|
deba@327
|
2105 |
bool operator!=(Invalid) const { return _index != _last; }
|
deba@326
|
2106 |
|
deba@326
|
2107 |
private:
|
deba@326
|
2108 |
const MaxWeightedMatching* _algorithm;
|
deba@326
|
2109 |
int _last;
|
deba@326
|
2110 |
int _index;
|
deba@326
|
2111 |
};
|
deba@326
|
2112 |
|
deba@326
|
2113 |
/// @}
|
deba@326
|
2114 |
|
deba@326
|
2115 |
};
|
deba@326
|
2116 |
|
deba@326
|
2117 |
/// \ingroup matching
|
deba@326
|
2118 |
///
|
deba@326
|
2119 |
/// \brief Weighted perfect matching in general graphs
|
deba@326
|
2120 |
///
|
deba@326
|
2121 |
/// This class provides an efficient implementation of Edmond's
|
deba@327
|
2122 |
/// maximum weighted perfect matching algorithm. The implementation
|
deba@326
|
2123 |
/// is based on extensive use of priority queues and provides
|
kpeter@559
|
2124 |
/// \f$O(nm\log n)\f$ time complexity.
|
deba@326
|
2125 |
///
|
deba@868
|
2126 |
/// The maximum weighted perfect matching problem is to find a subset of
|
deba@868
|
2127 |
/// the edges in an undirected graph with maximum overall weight for which
|
kpeter@590
|
2128 |
/// each node has exactly one incident edge.
|
kpeter@590
|
2129 |
/// It can be formulated with the following linear program.
|
deba@326
|
2130 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
|
deba@327
|
2131 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
deba@327
|
2132 |
\quad \forall B\in\mathcal{O}\f] */
|
deba@326
|
2133 |
/// \f[x_e \ge 0\quad \forall e\in E\f]
|
deba@326
|
2134 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
deba@327
|
2135 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in
|
deba@327
|
2136 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
|
deba@327
|
2137 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
deba@327
|
2138 |
/// subsets of the nodes.
|
deba@326
|
2139 |
///
|
deba@326
|
2140 |
/// The algorithm calculates an optimal matching and a proof of the
|
deba@326
|
2141 |
/// optimality. The solution of the dual problem can be used to check
|
deba@327
|
2142 |
/// the result of the algorithm. The dual linear problem is the
|
kpeter@590
|
2143 |
/// following.
|
deba@327
|
2144 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
|
deba@327
|
2145 |
w_{uv} \quad \forall uv\in E\f] */
|
deba@326
|
2146 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
deba@327
|
2147 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
deba@327
|
2148 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
deba@326
|
2149 |
///
|
deba@868
|
2150 |
/// The algorithm can be executed with the run() function.
|
kpeter@590
|
2151 |
/// After it the matching (the primal solution) and the dual solution
|
deba@868
|
2152 |
/// can be obtained using the query functions and the
|
deba@868
|
2153 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class,
|
deba@868
|
2154 |
/// which is able to iterate on the nodes of a blossom.
|
kpeter@590
|
2155 |
/// If the value type is integer, then the dual solution is multiplied
|
kpeter@590
|
2156 |
/// by \ref MaxWeightedMatching::dualScale "4".
|
kpeter@590
|
2157 |
///
|
kpeter@593
|
2158 |
/// \tparam GR The undirected graph type the algorithm runs on.
|
deba@868
|
2159 |
/// \tparam WM The type edge weight map. The default type is
|
kpeter@590
|
2160 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
|
kpeter@590
|
2161 |
#ifdef DOXYGEN
|
kpeter@590
|
2162 |
template <typename GR, typename WM>
|
kpeter@590
|
2163 |
#else
|
kpeter@559
|
2164 |
template <typename GR,
|
kpeter@559
|
2165 |
typename WM = typename GR::template EdgeMap<int> >
|
kpeter@590
|
2166 |
#endif
|
deba@326
|
2167 |
class MaxWeightedPerfectMatching {
|
deba@326
|
2168 |
public:
|
deba@326
|
2169 |
|
kpeter@590
|
2170 |
/// The graph type of the algorithm
|
kpeter@559
|
2171 |
typedef GR Graph;
|
kpeter@590
|
2172 |
/// The type of the edge weight map
|
kpeter@559
|
2173 |
typedef WM WeightMap;
|
kpeter@590
|
2174 |
/// The value type of the edge weights
|
deba@326
|
2175 |
typedef typename WeightMap::Value Value;
|
deba@326
|
2176 |
|
deba@326
|
2177 |
/// \brief Scaling factor for dual solution
|
deba@326
|
2178 |
///
|
deba@326
|
2179 |
/// Scaling factor for dual solution, it is equal to 4 or 1
|
deba@326
|
2180 |
/// according to the value type.
|
deba@326
|
2181 |
static const int dualScale =
|
deba@326
|
2182 |
std::numeric_limits<Value>::is_integer ? 4 : 1;
|
deba@326
|
2183 |
|
kpeter@593
|
2184 |
/// The type of the matching map
|
deba@326
|
2185 |
typedef typename Graph::template NodeMap<typename Graph::Arc>
|
deba@326
|
2186 |
MatchingMap;
|
deba@326
|
2187 |
|
deba@326
|
2188 |
private:
|
deba@326
|
2189 |
|
deba@326
|
2190 |
TEMPLATE_GRAPH_TYPEDEFS(Graph);
|
deba@326
|
2191 |
|
deba@326
|
2192 |
typedef typename Graph::template NodeMap<Value> NodePotential;
|
deba@326
|
2193 |
typedef std::vector<Node> BlossomNodeList;
|
deba@326
|
2194 |
|
deba@326
|
2195 |
struct BlossomVariable {
|
deba@326
|
2196 |
int begin, end;
|
deba@326
|
2197 |
Value value;
|
deba@326
|
2198 |
|
deba@326
|
2199 |
BlossomVariable(int _begin, int _end, Value _value)
|
deba@326
|
2200 |
: begin(_begin), end(_end), value(_value) {}
|
deba@326
|
2201 |
|
deba@326
|
2202 |
};
|
deba@326
|
2203 |
|
deba@326
|
2204 |
typedef std::vector<BlossomVariable> BlossomPotential;
|
deba@326
|
2205 |
|
deba@326
|
2206 |
const Graph& _graph;
|
deba@326
|
2207 |
const WeightMap& _weight;
|
deba@326
|
2208 |
|
deba@326
|
2209 |
MatchingMap* _matching;
|
deba@326
|
2210 |
|
deba@326
|
2211 |
NodePotential* _node_potential;
|
deba@326
|
2212 |
|
deba@326
|
2213 |
BlossomPotential _blossom_potential;
|
deba@326
|
2214 |
BlossomNodeList _blossom_node_list;
|
deba@326
|
2215 |
|
deba@326
|
2216 |
int _node_num;
|
deba@326
|
2217 |
int _blossom_num;
|
deba@326
|
2218 |
|
deba@326
|
2219 |
typedef RangeMap<int> IntIntMap;
|
deba@326
|
2220 |
|
deba@326
|
2221 |
enum Status {
|
deba@326
|
2222 |
EVEN = -1, MATCHED = 0, ODD = 1
|
deba@326
|
2223 |
};
|
deba@326
|
2224 |
|
deba@327
|
2225 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
|
deba@326
|
2226 |
struct BlossomData {
|
deba@326
|
2227 |
int tree;
|
deba@326
|
2228 |
Status status;
|
deba@326
|
2229 |
Arc pred, next;
|
deba@326
|
2230 |
Value pot, offset;
|
deba@326
|
2231 |
};
|
deba@326
|
2232 |
|
deba@327
|
2233 |
IntNodeMap *_blossom_index;
|
deba@326
|
2234 |
BlossomSet *_blossom_set;
|
deba@326
|
2235 |
RangeMap<BlossomData>* _blossom_data;
|
deba@326
|
2236 |
|
deba@327
|
2237 |
IntNodeMap *_node_index;
|
deba@327
|
2238 |
IntArcMap *_node_heap_index;
|
deba@326
|
2239 |
|
deba@326
|
2240 |
struct NodeData {
|
deba@326
|
2241 |
|
deba@327
|
2242 |
NodeData(IntArcMap& node_heap_index)
|
deba@326
|
2243 |
: heap(node_heap_index) {}
|
deba@326
|
2244 |
|
deba@326
|
2245 |
int blossom;
|
deba@326
|
2246 |
Value pot;
|
deba@327
|
2247 |
BinHeap<Value, IntArcMap> heap;
|
deba@326
|
2248 |
std::map<int, Arc> heap_index;
|
deba@326
|
2249 |
|
deba@326
|
2250 |
int tree;
|
deba@326
|
2251 |
};
|
deba@326
|
2252 |
|
deba@326
|
2253 |
RangeMap<NodeData>* _node_data;
|
deba@326
|
2254 |
|
deba@326
|
2255 |
typedef ExtendFindEnum<IntIntMap> TreeSet;
|
deba@326
|
2256 |
|
deba@326
|
2257 |
IntIntMap *_tree_set_index;
|
deba@326
|
2258 |
TreeSet *_tree_set;
|
deba@326
|
2259 |
|
deba@326
|
2260 |
IntIntMap *_delta2_index;
|
deba@326
|
2261 |
BinHeap<Value, IntIntMap> *_delta2;
|
deba@326
|
2262 |
|
deba@327
|
2263 |
IntEdgeMap *_delta3_index;
|
deba@327
|
2264 |
BinHeap<Value, IntEdgeMap> *_delta3;
|
deba@326
|
2265 |
|
deba@326
|
2266 |
IntIntMap *_delta4_index;
|
deba@326
|
2267 |
BinHeap<Value, IntIntMap> *_delta4;
|
deba@326
|
2268 |
|
deba@326
|
2269 |
Value _delta_sum;
|
deba@870
|
2270 |
int _unmatched;
|
deba@870
|
2271 |
|
deba@870
|
2272 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap>
|
deba@870
|
2273 |
FractionalMatching;
|
deba@870
|
2274 |
FractionalMatching *_fractional;
|
deba@326
|
2275 |
|
deba@326
|
2276 |
void createStructures() {
|
deba@326
|
2277 |
_node_num = countNodes(_graph);
|
deba@326
|
2278 |
_blossom_num = _node_num * 3 / 2;
|
deba@326
|
2279 |
|
deba@326
|
2280 |
if (!_matching) {
|
deba@326
|
2281 |
_matching = new MatchingMap(_graph);
|
deba@326
|
2282 |
}
|
deba@867
|
2283 |
|
deba@326
|
2284 |
if (!_node_potential) {
|
deba@326
|
2285 |
_node_potential = new NodePotential(_graph);
|
deba@326
|
2286 |
}
|
deba@867
|
2287 |
|
deba@326
|
2288 |
if (!_blossom_set) {
|
deba@327
|
2289 |
_blossom_index = new IntNodeMap(_graph);
|
deba@326
|
2290 |
_blossom_set = new BlossomSet(*_blossom_index);
|
deba@326
|
2291 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num);
|
deba@867
|
2292 |
} else if (_blossom_data->size() != _blossom_num) {
|
deba@867
|
2293 |
delete _blossom_data;
|
deba@867
|
2294 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num);
|
deba@326
|
2295 |
}
|
deba@326
|
2296 |
|
deba@326
|
2297 |
if (!_node_index) {
|
deba@327
|
2298 |
_node_index = new IntNodeMap(_graph);
|
deba@327
|
2299 |
_node_heap_index = new IntArcMap(_graph);
|
deba@326
|
2300 |
_node_data = new RangeMap<NodeData>(_node_num,
|
deba@327
|
2301 |
NodeData(*_node_heap_index));
|
deba@867
|
2302 |
} else if (_node_data->size() != _node_num) {
|
deba@867
|
2303 |
delete _node_data;
|
deba@867
|
2304 |
_node_data = new RangeMap<NodeData>(_node_num,
|
deba@867
|
2305 |
NodeData(*_node_heap_index));
|
deba@326
|
2306 |
}
|
deba@326
|
2307 |
|
deba@326
|
2308 |
if (!_tree_set) {
|
deba@326
|
2309 |
_tree_set_index = new IntIntMap(_blossom_num);
|
deba@326
|
2310 |
_tree_set = new TreeSet(*_tree_set_index);
|
deba@867
|
2311 |
} else {
|
deba@867
|
2312 |
_tree_set_index->resize(_blossom_num);
|
deba@326
|
2313 |
}
|
deba@867
|
2314 |
|
deba@326
|
2315 |
if (!_delta2) {
|
deba@326
|
2316 |
_delta2_index = new IntIntMap(_blossom_num);
|
deba@326
|
2317 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
|
deba@867
|
2318 |
} else {
|
deba@867
|
2319 |
_delta2_index->resize(_blossom_num);
|
deba@326
|
2320 |
}
|
deba@867
|
2321 |
|
deba@326
|
2322 |
if (!_delta3) {
|
deba@327
|
2323 |
_delta3_index = new IntEdgeMap(_graph);
|
deba@327
|
2324 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
|
deba@326
|
2325 |
}
|
deba@867
|
2326 |
|
deba@326
|
2327 |
if (!_delta4) {
|
deba@326
|
2328 |
_delta4_index = new IntIntMap(_blossom_num);
|
deba@326
|
2329 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
|
deba@867
|
2330 |
} else {
|
deba@867
|
2331 |
_delta4_index->resize(_blossom_num);
|
deba@326
|
2332 |
}
|
deba@326
|
2333 |
}
|
deba@326
|
2334 |
|
deba@326
|
2335 |
void destroyStructures() {
|
deba@326
|
2336 |
if (_matching) {
|
deba@326
|
2337 |
delete _matching;
|
deba@326
|
2338 |
}
|
deba@326
|
2339 |
if (_node_potential) {
|
deba@326
|
2340 |
delete _node_potential;
|
deba@326
|
2341 |
}
|
deba@326
|
2342 |
if (_blossom_set) {
|
deba@326
|
2343 |
delete _blossom_index;
|
deba@326
|
2344 |
delete _blossom_set;
|
deba@326
|
2345 |
delete _blossom_data;
|
deba@326
|
2346 |
}
|
deba@326
|
2347 |
|
deba@326
|
2348 |
if (_node_index) {
|
deba@326
|
2349 |
delete _node_index;
|
deba@326
|
2350 |
delete _node_heap_index;
|
deba@326
|
2351 |
delete _node_data;
|
deba@326
|
2352 |
}
|
deba@326
|
2353 |
|
deba@326
|
2354 |
if (_tree_set) {
|
deba@326
|
2355 |
delete _tree_set_index;
|
deba@326
|
2356 |
delete _tree_set;
|
deba@326
|
2357 |
}
|
deba@326
|
2358 |
if (_delta2) {
|
deba@326
|
2359 |
delete _delta2_index;
|
deba@326
|
2360 |
delete _delta2;
|
deba@326
|
2361 |
}
|
deba@326
|
2362 |
if (_delta3) {
|
deba@326
|
2363 |
delete _delta3_index;
|
deba@326
|
2364 |
delete _delta3;
|
deba@326
|
2365 |
}
|
deba@326
|
2366 |
if (_delta4) {
|
deba@326
|
2367 |
delete _delta4_index;
|
deba@326
|
2368 |
delete _delta4;
|
deba@326
|
2369 |
}
|
deba@326
|
2370 |
}
|
deba@326
|
2371 |
|
deba@326
|
2372 |
void matchedToEven(int blossom, int tree) {
|
deba@326
|
2373 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
deba@326
|
2374 |
_delta2->erase(blossom);
|
deba@326
|
2375 |
}
|
deba@326
|
2376 |
|
deba@326
|
2377 |
if (!_blossom_set->trivial(blossom)) {
|
deba@326
|
2378 |
(*_blossom_data)[blossom].pot -=
|
deba@326
|
2379 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset);
|
deba@326
|
2380 |
}
|
deba@326
|
2381 |
|
deba@326
|
2382 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
|
deba@326
|
2383 |
n != INVALID; ++n) {
|
deba@326
|
2384 |
|
deba@326
|
2385 |
_blossom_set->increase(n, std::numeric_limits<Value>::max());
|
deba@326
|
2386 |
int ni = (*_node_index)[n];
|
deba@326
|
2387 |
|
deba@326
|
2388 |
(*_node_data)[ni].heap.clear();
|
deba@326
|
2389 |
(*_node_data)[ni].heap_index.clear();
|
deba@326
|
2390 |
|
deba@326
|
2391 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
|
deba@326
|
2392 |
|
deba@326
|
2393 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@326
|
2394 |
Node v = _graph.source(e);
|
deba@326
|
2395 |
int vb = _blossom_set->find(v);
|
deba@326
|
2396 |
int vi = (*_node_index)[v];
|
deba@326
|
2397 |
|
deba@326
|
2398 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
|
deba@326
|
2399 |
dualScale * _weight[e];
|
deba@326
|
2400 |
|
deba@326
|
2401 |
if ((*_blossom_data)[vb].status == EVEN) {
|
deba@326
|
2402 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
deba@326
|
2403 |
_delta3->push(e, rw / 2);
|
deba@326
|
2404 |
}
|
deba@326
|
2405 |
} else {
|
deba@326
|
2406 |
typename std::map<int, Arc>::iterator it =
|
deba@326
|
2407 |
(*_node_data)[vi].heap_index.find(tree);
|
deba@326
|
2408 |
|
deba@326
|
2409 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
deba@326
|
2410 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
deba@326
|
2411 |
(*_node_data)[vi].heap.replace(it->second, e);
|
deba@326
|
2412 |
(*_node_data)[vi].heap.decrease(e, rw);
|
deba@326
|
2413 |
it->second = e;
|
deba@326
|
2414 |
}
|
deba@326
|
2415 |
} else {
|
deba@326
|
2416 |
(*_node_data)[vi].heap.push(e, rw);
|
deba@326
|
2417 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
|
deba@326
|
2418 |
}
|
deba@326
|
2419 |
|
deba@326
|
2420 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
deba@326
|
2421 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
|
deba@326
|
2422 |
|
deba@326
|
2423 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
deba@326
|
2424 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
deba@326
|
2425 |
_delta2->push(vb, _blossom_set->classPrio(vb) -
|
deba@326
|
2426 |
(*_blossom_data)[vb].offset);
|
deba@326
|
2427 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
|
deba@326
|
2428 |
(*_blossom_data)[vb].offset){
|
deba@326
|
2429 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) -
|
deba@326
|
2430 |
(*_blossom_data)[vb].offset);
|
deba@326
|
2431 |
}
|
deba@326
|
2432 |
}
|
deba@326
|
2433 |
}
|
deba@326
|
2434 |
}
|
deba@326
|
2435 |
}
|
deba@326
|
2436 |
}
|
deba@326
|
2437 |
(*_blossom_data)[blossom].offset = 0;
|
deba@326
|
2438 |
}
|
deba@326
|
2439 |
|
deba@326
|
2440 |
void matchedToOdd(int blossom) {
|
deba@326
|
2441 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
deba@326
|
2442 |
_delta2->erase(blossom);
|
deba@326
|
2443 |
}
|
deba@326
|
2444 |
(*_blossom_data)[blossom].offset += _delta_sum;
|
deba@326
|
2445 |
if (!_blossom_set->trivial(blossom)) {
|
deba@326
|
2446 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
|
deba@326
|
2447 |
(*_blossom_data)[blossom].offset);
|
deba@326
|
2448 |
}
|
deba@326
|
2449 |
}
|
deba@326
|
2450 |
|
deba@326
|
2451 |
void evenToMatched(int blossom, int tree) {
|
deba@326
|
2452 |
if (!_blossom_set->trivial(blossom)) {
|
deba@326
|
2453 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum;
|
deba@326
|
2454 |
}
|
deba@326
|
2455 |
|
deba@326
|
2456 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
|
deba@326
|
2457 |
n != INVALID; ++n) {
|
deba@326
|
2458 |
int ni = (*_node_index)[n];
|
deba@326
|
2459 |
(*_node_data)[ni].pot -= _delta_sum;
|
deba@326
|
2460 |
|
deba@326
|
2461 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@326
|
2462 |
Node v = _graph.source(e);
|
deba@326
|
2463 |
int vb = _blossom_set->find(v);
|
deba@326
|
2464 |
int vi = (*_node_index)[v];
|
deba@326
|
2465 |
|
deba@326
|
2466 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
|
deba@326
|
2467 |
dualScale * _weight[e];
|
deba@326
|
2468 |
|
deba@326
|
2469 |
if (vb == blossom) {
|
deba@326
|
2470 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
deba@326
|
2471 |
_delta3->erase(e);
|
deba@326
|
2472 |
}
|
deba@326
|
2473 |
} else if ((*_blossom_data)[vb].status == EVEN) {
|
deba@326
|
2474 |
|
deba@326
|
2475 |
if (_delta3->state(e) == _delta3->IN_HEAP) {
|
deba@326
|
2476 |
_delta3->erase(e);
|
deba@326
|
2477 |
}
|
deba@326
|
2478 |
|
deba@326
|
2479 |
int vt = _tree_set->find(vb);
|
deba@326
|
2480 |
|
deba@326
|
2481 |
if (vt != tree) {
|
deba@326
|
2482 |
|
deba@326
|
2483 |
Arc r = _graph.oppositeArc(e);
|
deba@326
|
2484 |
|
deba@326
|
2485 |
typename std::map<int, Arc>::iterator it =
|
deba@326
|
2486 |
(*_node_data)[ni].heap_index.find(vt);
|
deba@326
|
2487 |
|
deba@326
|
2488 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
deba@326
|
2489 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
deba@326
|
2490 |
(*_node_data)[ni].heap.replace(it->second, r);
|
deba@326
|
2491 |
(*_node_data)[ni].heap.decrease(r, rw);
|
deba@326
|
2492 |
it->second = r;
|
deba@326
|
2493 |
}
|
deba@326
|
2494 |
} else {
|
deba@326
|
2495 |
(*_node_data)[ni].heap.push(r, rw);
|
deba@326
|
2496 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
|
deba@326
|
2497 |
}
|
deba@326
|
2498 |
|
deba@326
|
2499 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
|
deba@326
|
2500 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
|
deba@326
|
2501 |
|
deba@326
|
2502 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) {
|
deba@326
|
2503 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) -
|
deba@326
|
2504 |
(*_blossom_data)[blossom].offset);
|
deba@326
|
2505 |
} else if ((*_delta2)[blossom] >
|
deba@326
|
2506 |
_blossom_set->classPrio(blossom) -
|
deba@326
|
2507 |
(*_blossom_data)[blossom].offset){
|
deba@326
|
2508 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
|
deba@326
|
2509 |
(*_blossom_data)[blossom].offset);
|
deba@326
|
2510 |
}
|
deba@326
|
2511 |
}
|
deba@326
|
2512 |
}
|
deba@326
|
2513 |
} else {
|
deba@326
|
2514 |
|
deba@326
|
2515 |
typename std::map<int, Arc>::iterator it =
|
deba@326
|
2516 |
(*_node_data)[vi].heap_index.find(tree);
|
deba@326
|
2517 |
|
deba@326
|
2518 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
deba@326
|
2519 |
(*_node_data)[vi].heap.erase(it->second);
|
deba@326
|
2520 |
(*_node_data)[vi].heap_index.erase(it);
|
deba@326
|
2521 |
if ((*_node_data)[vi].heap.empty()) {
|
deba@326
|
2522 |
_blossom_set->increase(v, std::numeric_limits<Value>::max());
|
deba@326
|
2523 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
|
deba@326
|
2524 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio());
|
deba@326
|
2525 |
}
|
deba@326
|
2526 |
|
deba@326
|
2527 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
deba@326
|
2528 |
if (_blossom_set->classPrio(vb) ==
|
deba@326
|
2529 |
std::numeric_limits<Value>::max()) {
|
deba@326
|
2530 |
_delta2->erase(vb);
|
deba@326
|
2531 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
|
deba@326
|
2532 |
(*_blossom_data)[vb].offset) {
|
deba@326
|
2533 |
_delta2->increase(vb, _blossom_set->classPrio(vb) -
|
deba@326
|
2534 |
(*_blossom_data)[vb].offset);
|
deba@326
|
2535 |
}
|
deba@326
|
2536 |
}
|
deba@326
|
2537 |
}
|
deba@326
|
2538 |
}
|
deba@326
|
2539 |
}
|
deba@326
|
2540 |
}
|
deba@326
|
2541 |
}
|
deba@326
|
2542 |
|
deba@326
|
2543 |
void oddToMatched(int blossom) {
|
deba@326
|
2544 |
(*_blossom_data)[blossom].offset -= _delta_sum;
|
deba@326
|
2545 |
|
deba@326
|
2546 |
if (_blossom_set->classPrio(blossom) !=
|
deba@326
|
2547 |
std::numeric_limits<Value>::max()) {
|
deba@326
|
2548 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) -
|
deba@326
|
2549 |
(*_blossom_data)[blossom].offset);
|
deba@326
|
2550 |
}
|
deba@326
|
2551 |
|
deba@326
|
2552 |
if (!_blossom_set->trivial(blossom)) {
|
deba@326
|
2553 |
_delta4->erase(blossom);
|
deba@326
|
2554 |
}
|
deba@326
|
2555 |
}
|
deba@326
|
2556 |
|
deba@326
|
2557 |
void oddToEven(int blossom, int tree) {
|
deba@326
|
2558 |
if (!_blossom_set->trivial(blossom)) {
|
deba@326
|
2559 |
_delta4->erase(blossom);
|
deba@326
|
2560 |
(*_blossom_data)[blossom].pot -=
|
deba@326
|
2561 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
|
deba@326
|
2562 |
}
|
deba@326
|
2563 |
|
deba@326
|
2564 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
|
deba@326
|
2565 |
n != INVALID; ++n) {
|
deba@326
|
2566 |
int ni = (*_node_index)[n];
|
deba@326
|
2567 |
|
deba@326
|
2568 |
_blossom_set->increase(n, std::numeric_limits<Value>::max());
|
deba@326
|
2569 |
|
deba@326
|
2570 |
(*_node_data)[ni].heap.clear();
|
deba@326
|
2571 |
(*_node_data)[ni].heap_index.clear();
|
deba@326
|
2572 |
(*_node_data)[ni].pot +=
|
deba@326
|
2573 |
2 * _delta_sum - (*_blossom_data)[blossom].offset;
|
deba@326
|
2574 |
|
deba@326
|
2575 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@326
|
2576 |
Node v = _graph.source(e);
|
deba@326
|
2577 |
int vb = _blossom_set->find(v);
|
deba@326
|
2578 |
int vi = (*_node_index)[v];
|
deba@326
|
2579 |
|
deba@326
|
2580 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
|
deba@326
|
2581 |
dualScale * _weight[e];
|
deba@326
|
2582 |
|
deba@326
|
2583 |
if ((*_blossom_data)[vb].status == EVEN) {
|
deba@326
|
2584 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
|
deba@326
|
2585 |
_delta3->push(e, rw / 2);
|
deba@326
|
2586 |
}
|
deba@326
|
2587 |
} else {
|
deba@326
|
2588 |
|
deba@326
|
2589 |
typename std::map<int, Arc>::iterator it =
|
deba@326
|
2590 |
(*_node_data)[vi].heap_index.find(tree);
|
deba@326
|
2591 |
|
deba@326
|
2592 |
if (it != (*_node_data)[vi].heap_index.end()) {
|
deba@326
|
2593 |
if ((*_node_data)[vi].heap[it->second] > rw) {
|
deba@326
|
2594 |
(*_node_data)[vi].heap.replace(it->second, e);
|
deba@326
|
2595 |
(*_node_data)[vi].heap.decrease(e, rw);
|
deba@326
|
2596 |
it->second = e;
|
deba@326
|
2597 |
}
|
deba@326
|
2598 |
} else {
|
deba@326
|
2599 |
(*_node_data)[vi].heap.push(e, rw);
|
deba@326
|
2600 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
|
deba@326
|
2601 |
}
|
deba@326
|
2602 |
|
deba@326
|
2603 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
|
deba@326
|
2604 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
|
deba@326
|
2605 |
|
deba@326
|
2606 |
if ((*_blossom_data)[vb].status == MATCHED) {
|
deba@326
|
2607 |
if (_delta2->state(vb) != _delta2->IN_HEAP) {
|
deba@326
|
2608 |
_delta2->push(vb, _blossom_set->classPrio(vb) -
|
deba@326
|
2609 |
(*_blossom_data)[vb].offset);
|
deba@326
|
2610 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
|
deba@326
|
2611 |
(*_blossom_data)[vb].offset) {
|
deba@326
|
2612 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) -
|
deba@326
|
2613 |
(*_blossom_data)[vb].offset);
|
deba@326
|
2614 |
}
|
deba@326
|
2615 |
}
|
deba@326
|
2616 |
}
|
deba@326
|
2617 |
}
|
deba@326
|
2618 |
}
|
deba@326
|
2619 |
}
|
deba@326
|
2620 |
(*_blossom_data)[blossom].offset = 0;
|
deba@326
|
2621 |
}
|
deba@326
|
2622 |
|
deba@326
|
2623 |
void alternatePath(int even, int tree) {
|
deba@326
|
2624 |
int odd;
|
deba@326
|
2625 |
|
deba@326
|
2626 |
evenToMatched(even, tree);
|
deba@326
|
2627 |
(*_blossom_data)[even].status = MATCHED;
|
deba@326
|
2628 |
|
deba@326
|
2629 |
while ((*_blossom_data)[even].pred != INVALID) {
|
deba@326
|
2630 |
odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
|
deba@326
|
2631 |
(*_blossom_data)[odd].status = MATCHED;
|
deba@326
|
2632 |
oddToMatched(odd);
|
deba@326
|
2633 |
(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
|
deba@326
|
2634 |
|
deba@326
|
2635 |
even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
|
deba@326
|
2636 |
(*_blossom_data)[even].status = MATCHED;
|
deba@326
|
2637 |
evenToMatched(even, tree);
|
deba@326
|
2638 |
(*_blossom_data)[even].next =
|
deba@326
|
2639 |
_graph.oppositeArc((*_blossom_data)[odd].pred);
|
deba@326
|
2640 |
}
|
deba@326
|
2641 |
|
deba@326
|
2642 |
}
|
deba@326
|
2643 |
|
deba@326
|
2644 |
void destroyTree(int tree) {
|
deba@326
|
2645 |
for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
|
deba@326
|
2646 |
if ((*_blossom_data)[b].status == EVEN) {
|
deba@326
|
2647 |
(*_blossom_data)[b].status = MATCHED;
|
deba@326
|
2648 |
evenToMatched(b, tree);
|
deba@326
|
2649 |
} else if ((*_blossom_data)[b].status == ODD) {
|
deba@326
|
2650 |
(*_blossom_data)[b].status = MATCHED;
|
deba@326
|
2651 |
oddToMatched(b);
|
deba@326
|
2652 |
}
|
deba@326
|
2653 |
}
|
deba@326
|
2654 |
_tree_set->eraseClass(tree);
|
deba@326
|
2655 |
}
|
deba@326
|
2656 |
|
deba@327
|
2657 |
void augmentOnEdge(const Edge& edge) {
|
deba@327
|
2658 |
|
deba@327
|
2659 |
int left = _blossom_set->find(_graph.u(edge));
|
deba@327
|
2660 |
int right = _blossom_set->find(_graph.v(edge));
|
deba@326
|
2661 |
|
deba@326
|
2662 |
int left_tree = _tree_set->find(left);
|
deba@326
|
2663 |
alternatePath(left, left_tree);
|
deba@326
|
2664 |
destroyTree(left_tree);
|
deba@326
|
2665 |
|
deba@326
|
2666 |
int right_tree = _tree_set->find(right);
|
deba@326
|
2667 |
alternatePath(right, right_tree);
|
deba@326
|
2668 |
destroyTree(right_tree);
|
deba@326
|
2669 |
|
deba@327
|
2670 |
(*_blossom_data)[left].next = _graph.direct(edge, true);
|
deba@327
|
2671 |
(*_blossom_data)[right].next = _graph.direct(edge, false);
|
deba@326
|
2672 |
}
|
deba@326
|
2673 |
|
deba@326
|
2674 |
void extendOnArc(const Arc& arc) {
|
deba@326
|
2675 |
int base = _blossom_set->find(_graph.target(arc));
|
deba@326
|
2676 |
int tree = _tree_set->find(base);
|
deba@326
|
2677 |
|
deba@326
|
2678 |
int odd = _blossom_set->find(_graph.source(arc));
|
deba@326
|
2679 |
_tree_set->insert(odd, tree);
|
deba@326
|
2680 |
(*_blossom_data)[odd].status = ODD;
|
deba@326
|
2681 |
matchedToOdd(odd);
|
deba@326
|
2682 |
(*_blossom_data)[odd].pred = arc;
|
deba@326
|
2683 |
|
deba@326
|
2684 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
|
deba@326
|
2685 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next;
|
deba@326
|
2686 |
_tree_set->insert(even, tree);
|
deba@326
|
2687 |
(*_blossom_data)[even].status = EVEN;
|
deba@326
|
2688 |
matchedToEven(even, tree);
|
deba@326
|
2689 |
}
|
deba@326
|
2690 |
|
deba@327
|
2691 |
void shrinkOnEdge(const Edge& edge, int tree) {
|
deba@326
|
2692 |
int nca = -1;
|
deba@326
|
2693 |
std::vector<int> left_path, right_path;
|
deba@326
|
2694 |
|
deba@326
|
2695 |
{
|
deba@326
|
2696 |
std::set<int> left_set, right_set;
|
deba@326
|
2697 |
int left = _blossom_set->find(_graph.u(edge));
|
deba@326
|
2698 |
left_path.push_back(left);
|
deba@326
|
2699 |
left_set.insert(left);
|
deba@326
|
2700 |
|
deba@326
|
2701 |
int right = _blossom_set->find(_graph.v(edge));
|
deba@326
|
2702 |
right_path.push_back(right);
|
deba@326
|
2703 |
right_set.insert(right);
|
deba@326
|
2704 |
|
deba@326
|
2705 |
while (true) {
|
deba@326
|
2706 |
|
deba@326
|
2707 |
if ((*_blossom_data)[left].pred == INVALID) break;
|
deba@326
|
2708 |
|
deba@326
|
2709 |
left =
|
deba@326
|
2710 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred));
|
deba@326
|
2711 |
left_path.push_back(left);
|
deba@326
|
2712 |
left =
|
deba@326
|
2713 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred));
|
deba@326
|
2714 |
left_path.push_back(left);
|
deba@326
|
2715 |
|
deba@326
|
2716 |
left_set.insert(left);
|
deba@326
|
2717 |
|
deba@326
|
2718 |
if (right_set.find(left) != right_set.end()) {
|
deba@326
|
2719 |
nca = left;
|
deba@326
|
2720 |
break;
|
deba@326
|
2721 |
}
|
deba@326
|
2722 |
|
deba@326
|
2723 |
if ((*_blossom_data)[right].pred == INVALID) break;
|
deba@326
|
2724 |
|
deba@326
|
2725 |
right =
|
deba@326
|
2726 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred));
|
deba@326
|
2727 |
right_path.push_back(right);
|
deba@326
|
2728 |
right =
|
deba@326
|
2729 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred));
|
deba@326
|
2730 |
right_path.push_back(right);
|
deba@326
|
2731 |
|
deba@326
|
2732 |
right_set.insert(right);
|
deba@326
|
2733 |
|
deba@326
|
2734 |
if (left_set.find(right) != left_set.end()) {
|
deba@326
|
2735 |
nca = right;
|
deba@326
|
2736 |
break;
|
deba@326
|
2737 |
}
|
deba@326
|
2738 |
|
deba@326
|
2739 |
}
|
deba@326
|
2740 |
|
deba@326
|
2741 |
if (nca == -1) {
|
deba@326
|
2742 |
if ((*_blossom_data)[left].pred == INVALID) {
|
deba@326
|
2743 |
nca = right;
|
deba@326
|
2744 |
while (left_set.find(nca) == left_set.end()) {
|
deba@326
|
2745 |
nca =
|
deba@326
|
2746 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
|
deba@326
|
2747 |
right_path.push_back(nca);
|
deba@326
|
2748 |
nca =
|
deba@326
|
2749 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
|
deba@326
|
2750 |
right_path.push_back(nca);
|
deba@326
|
2751 |
}
|
deba@326
|
2752 |
} else {
|
deba@326
|
2753 |
nca = left;
|
deba@326
|
2754 |
while (right_set.find(nca) == right_set.end()) {
|
deba@326
|
2755 |
nca =
|
deba@326
|
2756 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
|
deba@326
|
2757 |
left_path.push_back(nca);
|
deba@326
|
2758 |
nca =
|
deba@326
|
2759 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
|
deba@326
|
2760 |
left_path.push_back(nca);
|
deba@326
|
2761 |
}
|
deba@326
|
2762 |
}
|
deba@326
|
2763 |
}
|
deba@326
|
2764 |
}
|
deba@326
|
2765 |
|
deba@326
|
2766 |
std::vector<int> subblossoms;
|
deba@326
|
2767 |
Arc prev;
|
deba@326
|
2768 |
|
deba@326
|
2769 |
prev = _graph.direct(edge, true);
|
deba@326
|
2770 |
for (int i = 0; left_path[i] != nca; i += 2) {
|
deba@326
|
2771 |
subblossoms.push_back(left_path[i]);
|
deba@326
|
2772 |
(*_blossom_data)[left_path[i]].next = prev;
|
deba@326
|
2773 |
_tree_set->erase(left_path[i]);
|
deba@326
|
2774 |
|
deba@326
|
2775 |
subblossoms.push_back(left_path[i + 1]);
|
deba@326
|
2776 |
(*_blossom_data)[left_path[i + 1]].status = EVEN;
|
deba@326
|
2777 |
oddToEven(left_path[i + 1], tree);
|
deba@326
|
2778 |
_tree_set->erase(left_path[i + 1]);
|
deba@326
|
2779 |
prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
|
deba@326
|
2780 |
}
|
deba@326
|
2781 |
|
deba@326
|
2782 |
int k = 0;
|
deba@326
|
2783 |
while (right_path[k] != nca) ++k;
|
deba@326
|
2784 |
|
deba@326
|
2785 |
subblossoms.push_back(nca);
|
deba@326
|
2786 |
(*_blossom_data)[nca].next = prev;
|
deba@326
|
2787 |
|
deba@326
|
2788 |
for (int i = k - 2; i >= 0; i -= 2) {
|
deba@326
|
2789 |
subblossoms.push_back(right_path[i + 1]);
|
deba@326
|
2790 |
(*_blossom_data)[right_path[i + 1]].status = EVEN;
|
deba@326
|
2791 |
oddToEven(right_path[i + 1], tree);
|
deba@326
|
2792 |
_tree_set->erase(right_path[i + 1]);
|
deba@326
|
2793 |
|
deba@326
|
2794 |
(*_blossom_data)[right_path[i + 1]].next =
|
deba@326
|
2795 |
(*_blossom_data)[right_path[i + 1]].pred;
|
deba@326
|
2796 |
|
deba@326
|
2797 |
subblossoms.push_back(right_path[i]);
|
deba@326
|
2798 |
_tree_set->erase(right_path[i]);
|
deba@326
|
2799 |
}
|
deba@326
|
2800 |
|
deba@326
|
2801 |
int surface =
|
deba@326
|
2802 |
_blossom_set->join(subblossoms.begin(), subblossoms.end());
|
deba@326
|
2803 |
|
deba@326
|
2804 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
deba@326
|
2805 |
if (!_blossom_set->trivial(subblossoms[i])) {
|
deba@326
|
2806 |
(*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
|
deba@326
|
2807 |
}
|
deba@326
|
2808 |
(*_blossom_data)[subblossoms[i]].status = MATCHED;
|
deba@326
|
2809 |
}
|
deba@326
|
2810 |
|
deba@326
|
2811 |
(*_blossom_data)[surface].pot = -2 * _delta_sum;
|
deba@326
|
2812 |
(*_blossom_data)[surface].offset = 0;
|
deba@326
|
2813 |
(*_blossom_data)[surface].status = EVEN;
|
deba@326
|
2814 |
(*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
|
deba@326
|
2815 |
(*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
|
deba@326
|
2816 |
|
deba@326
|
2817 |
_tree_set->insert(surface, tree);
|
deba@326
|
2818 |
_tree_set->erase(nca);
|
deba@326
|
2819 |
}
|
deba@326
|
2820 |
|
deba@326
|
2821 |
void splitBlossom(int blossom) {
|
deba@326
|
2822 |
Arc next = (*_blossom_data)[blossom].next;
|
deba@326
|
2823 |
Arc pred = (*_blossom_data)[blossom].pred;
|
deba@326
|
2824 |
|
deba@326
|
2825 |
int tree = _tree_set->find(blossom);
|
deba@326
|
2826 |
|
deba@326
|
2827 |
(*_blossom_data)[blossom].status = MATCHED;
|
deba@326
|
2828 |
oddToMatched(blossom);
|
deba@326
|
2829 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) {
|
deba@326
|
2830 |
_delta2->erase(blossom);
|
deba@326
|
2831 |
}
|
deba@326
|
2832 |
|
deba@326
|
2833 |
std::vector<int> subblossoms;
|
deba@326
|
2834 |
_blossom_set->split(blossom, std::back_inserter(subblossoms));
|
deba@326
|
2835 |
|
deba@326
|
2836 |
Value offset = (*_blossom_data)[blossom].offset;
|
deba@326
|
2837 |
int b = _blossom_set->find(_graph.source(pred));
|
deba@326
|
2838 |
int d = _blossom_set->find(_graph.source(next));
|
deba@326
|
2839 |
|
deba@326
|
2840 |
int ib = -1, id = -1;
|
deba@326
|
2841 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
deba@326
|
2842 |
if (subblossoms[i] == b) ib = i;
|
deba@326
|
2843 |
if (subblossoms[i] == d) id = i;
|
deba@326
|
2844 |
|
deba@326
|
2845 |
(*_blossom_data)[subblossoms[i]].offset = offset;
|
deba@326
|
2846 |
if (!_blossom_set->trivial(subblossoms[i])) {
|
deba@326
|
2847 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
|
deba@326
|
2848 |
}
|
deba@326
|
2849 |
if (_blossom_set->classPrio(subblossoms[i]) !=
|
deba@326
|
2850 |
std::numeric_limits<Value>::max()) {
|
deba@326
|
2851 |
_delta2->push(subblossoms[i],
|
deba@326
|
2852 |
_blossom_set->classPrio(subblossoms[i]) -
|
deba@326
|
2853 |
(*_blossom_data)[subblossoms[i]].offset);
|
deba@326
|
2854 |
}
|
deba@326
|
2855 |
}
|
deba@326
|
2856 |
|
deba@326
|
2857 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
|
deba@326
|
2858 |
for (int i = (id + 1) % subblossoms.size();
|
deba@326
|
2859 |
i != ib; i = (i + 2) % subblossoms.size()) {
|
deba@326
|
2860 |
int sb = subblossoms[i];
|
deba@326
|
2861 |
int tb = subblossoms[(i + 1) % subblossoms.size()];
|
deba@326
|
2862 |
(*_blossom_data)[sb].next =
|
deba@326
|
2863 |
_graph.oppositeArc((*_blossom_data)[tb].next);
|
deba@326
|
2864 |
}
|
deba@326
|
2865 |
|
deba@326
|
2866 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
|
deba@326
|
2867 |
int sb = subblossoms[i];
|
deba@326
|
2868 |
int tb = subblossoms[(i + 1) % subblossoms.size()];
|
deba@326
|
2869 |
int ub = subblossoms[(i + 2) % subblossoms.size()];
|
deba@326
|
2870 |
|
deba@326
|
2871 |
(*_blossom_data)[sb].status = ODD;
|
deba@326
|
2872 |
matchedToOdd(sb);
|
deba@326
|
2873 |
_tree_set->insert(sb, tree);
|
deba@326
|
2874 |
(*_blossom_data)[sb].pred = pred;
|
deba@326
|
2875 |
(*_blossom_data)[sb].next =
|
deba@326
|
2876 |
_graph.oppositeArc((*_blossom_data)[tb].next);
|
deba@326
|
2877 |
|
deba@326
|
2878 |
pred = (*_blossom_data)[ub].next;
|
deba@326
|
2879 |
|
deba@326
|
2880 |
(*_blossom_data)[tb].status = EVEN;
|
deba@326
|
2881 |
matchedToEven(tb, tree);
|
deba@326
|
2882 |
_tree_set->insert(tb, tree);
|
deba@326
|
2883 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
|
deba@326
|
2884 |
}
|
deba@326
|
2885 |
|
deba@326
|
2886 |
(*_blossom_data)[subblossoms[id]].status = ODD;
|
deba@326
|
2887 |
matchedToOdd(subblossoms[id]);
|
deba@326
|
2888 |
_tree_set->insert(subblossoms[id], tree);
|
deba@326
|
2889 |
(*_blossom_data)[subblossoms[id]].next = next;
|
deba@326
|
2890 |
(*_blossom_data)[subblossoms[id]].pred = pred;
|
deba@326
|
2891 |
|
deba@326
|
2892 |
} else {
|
deba@326
|
2893 |
|
deba@326
|
2894 |
for (int i = (ib + 1) % subblossoms.size();
|
deba@326
|
2895 |
i != id; i = (i + 2) % subblossoms.size()) {
|
deba@326
|
2896 |
int sb = subblossoms[i];
|
deba@326
|
2897 |
int tb = subblossoms[(i + 1) % subblossoms.size()];
|
deba@326
|
2898 |
(*_blossom_data)[sb].next =
|
deba@326
|
2899 |
_graph.oppositeArc((*_blossom_data)[tb].next);
|
deba@326
|
2900 |
}
|
deba@326
|
2901 |
|
deba@326
|
2902 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
|
deba@326
|
2903 |
int sb = subblossoms[i];
|
deba@326
|
2904 |
int tb = subblossoms[(i + 1) % subblossoms.size()];
|
deba@326
|
2905 |
int ub = subblossoms[(i + 2) % subblossoms.size()];
|
deba@326
|
2906 |
|
deba@326
|
2907 |
(*_blossom_data)[sb].status = ODD;
|
deba@326
|
2908 |
matchedToOdd(sb);
|
deba@326
|
2909 |
_tree_set->insert(sb, tree);
|
deba@326
|
2910 |
(*_blossom_data)[sb].next = next;
|
deba@326
|
2911 |
(*_blossom_data)[sb].pred =
|
deba@326
|
2912 |
_graph.oppositeArc((*_blossom_data)[tb].next);
|
deba@326
|
2913 |
|
deba@326
|
2914 |
(*_blossom_data)[tb].status = EVEN;
|
deba@326
|
2915 |
matchedToEven(tb, tree);
|
deba@326
|
2916 |
_tree_set->insert(tb, tree);
|
deba@326
|
2917 |
(*_blossom_data)[tb].pred =
|
deba@326
|
2918 |
(*_blossom_data)[tb].next =
|
deba@326
|
2919 |
_graph.oppositeArc((*_blossom_data)[ub].next);
|
deba@326
|
2920 |
next = (*_blossom_data)[ub].next;
|
deba@326
|
2921 |
}
|
deba@326
|
2922 |
|
deba@326
|
2923 |
(*_blossom_data)[subblossoms[ib]].status = ODD;
|
deba@326
|
2924 |
matchedToOdd(subblossoms[ib]);
|
deba@326
|
2925 |
_tree_set->insert(subblossoms[ib], tree);
|
deba@326
|
2926 |
(*_blossom_data)[subblossoms[ib]].next = next;
|
deba@326
|
2927 |
(*_blossom_data)[subblossoms[ib]].pred = pred;
|
deba@326
|
2928 |
}
|
deba@326
|
2929 |
_tree_set->erase(blossom);
|
deba@326
|
2930 |
}
|
deba@326
|
2931 |
|
deba@326
|
2932 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) {
|
deba@326
|
2933 |
if (_blossom_set->trivial(blossom)) {
|
deba@326
|
2934 |
int bi = (*_node_index)[base];
|
deba@326
|
2935 |
Value pot = (*_node_data)[bi].pot;
|
deba@326
|
2936 |
|
kpeter@581
|
2937 |
(*_matching)[base] = matching;
|
deba@326
|
2938 |
_blossom_node_list.push_back(base);
|
kpeter@581
|
2939 |
(*_node_potential)[base] = pot;
|
deba@326
|
2940 |
} else {
|
deba@326
|
2941 |
|
deba@326
|
2942 |
Value pot = (*_blossom_data)[blossom].pot;
|
deba@326
|
2943 |
int bn = _blossom_node_list.size();
|
deba@326
|
2944 |
|
deba@326
|
2945 |
std::vector<int> subblossoms;
|
deba@326
|
2946 |
_blossom_set->split(blossom, std::back_inserter(subblossoms));
|
deba@326
|
2947 |
int b = _blossom_set->find(base);
|
deba@326
|
2948 |
int ib = -1;
|
deba@326
|
2949 |
for (int i = 0; i < int(subblossoms.size()); ++i) {
|
deba@326
|
2950 |
if (subblossoms[i] == b) { ib = i; break; }
|
deba@326
|
2951 |
}
|
deba@326
|
2952 |
|
deba@326
|
2953 |
for (int i = 1; i < int(subblossoms.size()); i += 2) {
|
deba@326
|
2954 |
int sb = subblossoms[(ib + i) % subblossoms.size()];
|
deba@326
|
2955 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
|
deba@326
|
2956 |
|
deba@326
|
2957 |
Arc m = (*_blossom_data)[tb].next;
|
deba@326
|
2958 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
|
deba@326
|
2959 |
extractBlossom(tb, _graph.source(m), m);
|
deba@326
|
2960 |
}
|
deba@326
|
2961 |
extractBlossom(subblossoms[ib], base, matching);
|
deba@326
|
2962 |
|
deba@326
|
2963 |
int en = _blossom_node_list.size();
|
deba@326
|
2964 |
|
deba@326
|
2965 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot));
|
deba@326
|
2966 |
}
|
deba@326
|
2967 |
}
|
deba@326
|
2968 |
|
deba@326
|
2969 |
void extractMatching() {
|
deba@326
|
2970 |
std::vector<int> blossoms;
|
deba@326
|
2971 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
|
deba@326
|
2972 |
blossoms.push_back(c);
|
deba@326
|
2973 |
}
|
deba@326
|
2974 |
|
deba@326
|
2975 |
for (int i = 0; i < int(blossoms.size()); ++i) {
|
deba@326
|
2976 |
|
deba@326
|
2977 |
Value offset = (*_blossom_data)[blossoms[i]].offset;
|
deba@326
|
2978 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset;
|
deba@326
|
2979 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
|
deba@326
|
2980 |
n != INVALID; ++n) {
|
deba@326
|
2981 |
(*_node_data)[(*_node_index)[n]].pot -= offset;
|
deba@326
|
2982 |
}
|
deba@326
|
2983 |
|
deba@326
|
2984 |
Arc matching = (*_blossom_data)[blossoms[i]].next;
|
deba@326
|
2985 |
Node base = _graph.source(matching);
|
deba@326
|
2986 |
extractBlossom(blossoms[i], base, matching);
|
deba@326
|
2987 |
}
|
deba@326
|
2988 |
}
|
deba@326
|
2989 |
|
deba@326
|
2990 |
public:
|
deba@326
|
2991 |
|
deba@326
|
2992 |
/// \brief Constructor
|
deba@326
|
2993 |
///
|
deba@326
|
2994 |
/// Constructor.
|
deba@326
|
2995 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
|
deba@326
|
2996 |
: _graph(graph), _weight(weight), _matching(0),
|
deba@326
|
2997 |
_node_potential(0), _blossom_potential(), _blossom_node_list(),
|
deba@326
|
2998 |
_node_num(0), _blossom_num(0),
|
deba@326
|
2999 |
|
deba@326
|
3000 |
_blossom_index(0), _blossom_set(0), _blossom_data(0),
|
deba@326
|
3001 |
_node_index(0), _node_heap_index(0), _node_data(0),
|
deba@326
|
3002 |
_tree_set_index(0), _tree_set(0),
|
deba@326
|
3003 |
|
deba@326
|
3004 |
_delta2_index(0), _delta2(0),
|
deba@326
|
3005 |
_delta3_index(0), _delta3(0),
|
deba@326
|
3006 |
_delta4_index(0), _delta4(0),
|
deba@326
|
3007 |
|
deba@870
|
3008 |
_delta_sum(), _unmatched(0),
|
deba@870
|
3009 |
|
deba@870
|
3010 |
_fractional(0)
|
deba@870
|
3011 |
{}
|
deba@326
|
3012 |
|
deba@326
|
3013 |
~MaxWeightedPerfectMatching() {
|
deba@326
|
3014 |
destroyStructures();
|
deba@870
|
3015 |
if (_fractional) {
|
deba@870
|
3016 |
delete _fractional;
|
deba@870
|
3017 |
}
|
deba@326
|
3018 |
}
|
deba@326
|
3019 |
|
kpeter@590
|
3020 |
/// \name Execution Control
|
alpar@330
|
3021 |
/// The simplest way to execute the algorithm is to use the
|
kpeter@590
|
3022 |
/// \ref run() member function.
|
deba@326
|
3023 |
|
deba@326
|
3024 |
///@{
|
deba@326
|
3025 |
|
deba@326
|
3026 |
/// \brief Initialize the algorithm
|
deba@326
|
3027 |
///
|
kpeter@590
|
3028 |
/// This function initializes the algorithm.
|
deba@326
|
3029 |
void init() {
|
deba@326
|
3030 |
createStructures();
|
deba@326
|
3031 |
|
deba@867
|
3032 |
_blossom_node_list.clear();
|
deba@867
|
3033 |
_blossom_potential.clear();
|
deba@867
|
3034 |
|
deba@326
|
3035 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
kpeter@581
|
3036 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
|
deba@326
|
3037 |
}
|
deba@326
|
3038 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
kpeter@581
|
3039 |
(*_delta3_index)[e] = _delta3->PRE_HEAP;
|
deba@326
|
3040 |
}
|
deba@326
|
3041 |
for (int i = 0; i < _blossom_num; ++i) {
|
kpeter@581
|
3042 |
(*_delta2_index)[i] = _delta2->PRE_HEAP;
|
kpeter@581
|
3043 |
(*_delta4_index)[i] = _delta4->PRE_HEAP;
|
deba@326
|
3044 |
}
|
deba@326
|
3045 |
|
deba@870
|
3046 |
_unmatched = _node_num;
|
deba@870
|
3047 |
|
deba@867
|
3048 |
_delta2->clear();
|
deba@867
|
3049 |
_delta3->clear();
|
deba@867
|
3050 |
_delta4->clear();
|
deba@867
|
3051 |
_blossom_set->clear();
|
deba@867
|
3052 |
_tree_set->clear();
|
deba@867
|
3053 |
|
deba@326
|
3054 |
int index = 0;
|
deba@326
|
3055 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@326
|
3056 |
Value max = - std::numeric_limits<Value>::max();
|
deba@326
|
3057 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@326
|
3058 |
if (_graph.target(e) == n) continue;
|
deba@326
|
3059 |
if ((dualScale * _weight[e]) / 2 > max) {
|
deba@326
|
3060 |
max = (dualScale * _weight[e]) / 2;
|
deba@326
|
3061 |
}
|
deba@326
|
3062 |
}
|
kpeter@581
|
3063 |
(*_node_index)[n] = index;
|
deba@867
|
3064 |
(*_node_data)[index].heap_index.clear();
|
deba@867
|
3065 |
(*_node_data)[index].heap.clear();
|
deba@326
|
3066 |
(*_node_data)[index].pot = max;
|
deba@326
|
3067 |
int blossom =
|
deba@326
|
3068 |
_blossom_set->insert(n, std::numeric_limits<Value>::max());
|
deba@326
|
3069 |
|
deba@326
|
3070 |
_tree_set->insert(blossom);
|
deba@326
|
3071 |
|
deba@326
|
3072 |
(*_blossom_data)[blossom].status = EVEN;
|
deba@326
|
3073 |
(*_blossom_data)[blossom].pred = INVALID;
|
deba@326
|
3074 |
(*_blossom_data)[blossom].next = INVALID;
|
deba@326
|
3075 |
(*_blossom_data)[blossom].pot = 0;
|
deba@326
|
3076 |
(*_blossom_data)[blossom].offset = 0;
|
deba@326
|
3077 |
++index;
|
deba@326
|
3078 |
}
|
deba@326
|
3079 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
deba@326
|
3080 |
int si = (*_node_index)[_graph.u(e)];
|
deba@326
|
3081 |
int ti = (*_node_index)[_graph.v(e)];
|
deba@326
|
3082 |
if (_graph.u(e) != _graph.v(e)) {
|
deba@326
|
3083 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
|
deba@326
|
3084 |
dualScale * _weight[e]) / 2);
|
deba@326
|
3085 |
}
|
deba@326
|
3086 |
}
|
deba@326
|
3087 |
}
|
deba@326
|
3088 |
|
deba@870
|
3089 |
/// \brief Initialize the algorithm with fractional matching
|
deba@870
|
3090 |
///
|
deba@870
|
3091 |
/// This function initializes the algorithm with a fractional
|
deba@870
|
3092 |
/// matching. This initialization is also called jumpstart heuristic.
|
deba@870
|
3093 |
void fractionalInit() {
|
deba@870
|
3094 |
createStructures();
|
deba@876
|
3095 |
|
deba@876
|
3096 |
_blossom_node_list.clear();
|
deba@876
|
3097 |
_blossom_potential.clear();
|
deba@870
|
3098 |
|
deba@870
|
3099 |
if (_fractional == 0) {
|
deba@870
|
3100 |
_fractional = new FractionalMatching(_graph, _weight, false);
|
deba@870
|
3101 |
}
|
deba@870
|
3102 |
if (!_fractional->run()) {
|
deba@870
|
3103 |
_unmatched = -1;
|
deba@870
|
3104 |
return;
|
deba@870
|
3105 |
}
|
deba@870
|
3106 |
|
deba@870
|
3107 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
deba@870
|
3108 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
|
deba@870
|
3109 |
}
|
deba@870
|
3110 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
deba@870
|
3111 |
(*_delta3_index)[e] = _delta3->PRE_HEAP;
|
deba@870
|
3112 |
}
|
deba@870
|
3113 |
for (int i = 0; i < _blossom_num; ++i) {
|
deba@870
|
3114 |
(*_delta2_index)[i] = _delta2->PRE_HEAP;
|
deba@870
|
3115 |
(*_delta4_index)[i] = _delta4->PRE_HEAP;
|
deba@870
|
3116 |
}
|
deba@870
|
3117 |
|
deba@870
|
3118 |
_unmatched = 0;
|
deba@870
|
3119 |
|
deba@876
|
3120 |
_delta2->clear();
|
deba@876
|
3121 |
_delta3->clear();
|
deba@876
|
3122 |
_delta4->clear();
|
deba@876
|
3123 |
_blossom_set->clear();
|
deba@876
|
3124 |
_tree_set->clear();
|
deba@876
|
3125 |
|
deba@870
|
3126 |
int index = 0;
|
deba@870
|
3127 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@870
|
3128 |
Value pot = _fractional->nodeValue(n);
|
deba@870
|
3129 |
(*_node_index)[n] = index;
|
deba@870
|
3130 |
(*_node_data)[index].pot = pot;
|
deba@876
|
3131 |
(*_node_data)[index].heap_index.clear();
|
deba@876
|
3132 |
(*_node_data)[index].heap.clear();
|
deba@870
|
3133 |
int blossom =
|
deba@870
|
3134 |
_blossom_set->insert(n, std::numeric_limits<Value>::max());
|
deba@870
|
3135 |
|
deba@870
|
3136 |
(*_blossom_data)[blossom].status = MATCHED;
|
deba@870
|
3137 |
(*_blossom_data)[blossom].pred = INVALID;
|
deba@870
|
3138 |
(*_blossom_data)[blossom].next = _fractional->matching(n);
|
deba@870
|
3139 |
(*_blossom_data)[blossom].pot = 0;
|
deba@870
|
3140 |
(*_blossom_data)[blossom].offset = 0;
|
deba@870
|
3141 |
++index;
|
deba@870
|
3142 |
}
|
deba@870
|
3143 |
|
deba@870
|
3144 |
typename Graph::template NodeMap<bool> processed(_graph, false);
|
deba@870
|
3145 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@870
|
3146 |
if (processed[n]) continue;
|
deba@870
|
3147 |
processed[n] = true;
|
deba@870
|
3148 |
if (_fractional->matching(n) == INVALID) continue;
|
deba@870
|
3149 |
int num = 1;
|
deba@870
|
3150 |
Node v = _graph.target(_fractional->matching(n));
|
deba@870
|
3151 |
while (n != v) {
|
deba@870
|
3152 |
processed[v] = true;
|
deba@870
|
3153 |
v = _graph.target(_fractional->matching(v));
|
deba@870
|
3154 |
++num;
|
deba@870
|
3155 |
}
|
deba@870
|
3156 |
|
deba@870
|
3157 |
if (num % 2 == 1) {
|
deba@870
|
3158 |
std::vector<int> subblossoms(num);
|
deba@870
|
3159 |
|
deba@870
|
3160 |
subblossoms[--num] = _blossom_set->find(n);
|
deba@870
|
3161 |
v = _graph.target(_fractional->matching(n));
|
deba@870
|
3162 |
while (n != v) {
|
deba@870
|
3163 |
subblossoms[--num] = _blossom_set->find(v);
|
deba@870
|
3164 |
v = _graph.target(_fractional->matching(v));
|
deba@870
|
3165 |
}
|
deba@870
|
3166 |
|
deba@870
|
3167 |
int surface =
|
deba@870
|
3168 |
_blossom_set->join(subblossoms.begin(), subblossoms.end());
|
deba@870
|
3169 |
(*_blossom_data)[surface].status = EVEN;
|
deba@870
|
3170 |
(*_blossom_data)[surface].pred = INVALID;
|
deba@870
|
3171 |
(*_blossom_data)[surface].next = INVALID;
|
deba@870
|
3172 |
(*_blossom_data)[surface].pot = 0;
|
deba@870
|
3173 |
(*_blossom_data)[surface].offset = 0;
|
deba@870
|
3174 |
|
deba@870
|
3175 |
_tree_set->insert(surface);
|
deba@870
|
3176 |
++_unmatched;
|
deba@870
|
3177 |
}
|
deba@870
|
3178 |
}
|
deba@870
|
3179 |
|
deba@870
|
3180 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
deba@870
|
3181 |
int si = (*_node_index)[_graph.u(e)];
|
deba@870
|
3182 |
int sb = _blossom_set->find(_graph.u(e));
|
deba@870
|
3183 |
int ti = (*_node_index)[_graph.v(e)];
|
deba@870
|
3184 |
int tb = _blossom_set->find(_graph.v(e));
|
deba@870
|
3185 |
if ((*_blossom_data)[sb].status == EVEN &&
|
deba@870
|
3186 |
(*_blossom_data)[tb].status == EVEN && sb != tb) {
|
deba@870
|
3187 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
|
deba@870
|
3188 |
dualScale * _weight[e]) / 2);
|
deba@870
|
3189 |
}
|
deba@870
|
3190 |
}
|
deba@870
|
3191 |
|
deba@870
|
3192 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@870
|
3193 |
int nb = _blossom_set->find(n);
|
deba@870
|
3194 |
if ((*_blossom_data)[nb].status != MATCHED) continue;
|
deba@870
|
3195 |
int ni = (*_node_index)[n];
|
deba@870
|
3196 |
|
deba@870
|
3197 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
deba@870
|
3198 |
Node v = _graph.target(e);
|
deba@870
|
3199 |
int vb = _blossom_set->find(v);
|
deba@870
|
3200 |
int vi = (*_node_index)[v];
|
deba@870
|
3201 |
|
deba@870
|
3202 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
|
deba@870
|
3203 |
dualScale * _weight[e];
|
deba@870
|
3204 |
|
deba@870
|
3205 |
if ((*_blossom_data)[vb].status == EVEN) {
|
deba@870
|
3206 |
|
deba@870
|
3207 |
int vt = _tree_set->find(vb);
|
deba@870
|
3208 |
|
deba@870
|
3209 |
typename std::map<int, Arc>::iterator it =
|
deba@870
|
3210 |
(*_node_data)[ni].heap_index.find(vt);
|
deba@870
|
3211 |
|
deba@870
|
3212 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
deba@870
|
3213 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
deba@870
|
3214 |
(*_node_data)[ni].heap.replace(it->second, e);
|
deba@870
|
3215 |
(*_node_data)[ni].heap.decrease(e, rw);
|
deba@870
|
3216 |
it->second = e;
|
deba@870
|
3217 |
}
|
deba@870
|
3218 |
} else {
|
deba@870
|
3219 |
(*_node_data)[ni].heap.push(e, rw);
|
deba@870
|
3220 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
|
deba@870
|
3221 |
}
|
deba@870
|
3222 |
}
|
deba@870
|
3223 |
}
|
deba@870
|
3224 |
|
deba@870
|
3225 |
if (!(*_node_data)[ni].heap.empty()) {
|
deba@870
|
3226 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
|
deba@870
|
3227 |
_delta2->push(nb, _blossom_set->classPrio(nb));
|
deba@870
|
3228 |
}
|
deba@870
|
3229 |
}
|
deba@870
|
3230 |
}
|
deba@870
|
3231 |
|
kpeter@590
|
3232 |
/// \brief Start the algorithm
|
deba@326
|
3233 |
///
|
kpeter@590
|
3234 |
/// This function starts the algorithm.
|
kpeter@590
|
3235 |
///
|
deba@870
|
3236 |
/// \pre \ref init() or \ref fractionalInit() must be called before
|
deba@870
|
3237 |
/// using this function.
|
deba@326
|
3238 |
bool start() {
|
deba@326
|
3239 |
enum OpType {
|
deba@326
|
3240 |
D2, D3, D4
|
deba@326
|
3241 |
};
|
deba@326
|
3242 |
|
deba@870
|
3243 |
if (_unmatched == -1) return false;
|
deba@870
|
3244 |
|
deba@870
|
3245 |
while (_unmatched > 0) {
|
deba@326
|
3246 |
Value d2 = !_delta2->empty() ?
|
deba@326
|
3247 |
_delta2->prio() : std::numeric_limits<Value>::max();
|
deba@326
|
3248 |
|
deba@326
|
3249 |
Value d3 = !_delta3->empty() ?
|
deba@326
|
3250 |
_delta3->prio() : std::numeric_limits<Value>::max();
|
deba@326
|
3251 |
|
deba@326
|
3252 |
Value d4 = !_delta4->empty() ?
|
deba@326
|
3253 |
_delta4->prio() : std::numeric_limits<Value>::max();
|
deba@326
|
3254 |
|
deba@868
|
3255 |
_delta_sum = d3; OpType ot = D3;
|
deba@868
|
3256 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
deba@326
|
3257 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
deba@326
|
3258 |
|
deba@326
|
3259 |
if (_delta_sum == std::numeric_limits<Value>::max()) {
|
deba@326
|
3260 |
return false;
|
deba@326
|
3261 |
}
|
deba@326
|
3262 |
|
deba@326
|
3263 |
switch (ot) {
|
deba@326
|
3264 |
case D2:
|
deba@326
|
3265 |
{
|
deba@326
|
3266 |
int blossom = _delta2->top();
|
deba@326
|
3267 |
Node n = _blossom_set->classTop(blossom);
|
deba@326
|
3268 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
|
deba@326
|
3269 |
extendOnArc(e);
|
deba@326
|
3270 |
}
|
deba@326
|
3271 |
break;
|
deba@326
|
3272 |
case D3:
|
deba@326
|
3273 |
{
|
deba@326
|
3274 |
Edge e = _delta3->top();
|
deba@326
|
3275 |
|
deba@326
|
3276 |
int left_blossom = _blossom_set->find(_graph.u(e));
|
deba@326
|
3277 |
int right_blossom = _blossom_set->find(_graph.v(e));
|
deba@326
|
3278 |
|
deba@326
|
3279 |
if (left_blossom == right_blossom) {
|
deba@326
|
3280 |
_delta3->pop();
|
deba@326
|
3281 |
} else {
|
deba@326
|
3282 |
int left_tree = _tree_set->find(left_blossom);
|
deba@326
|
3283 |
int right_tree = _tree_set->find(right_blossom);
|
deba@326
|
3284 |
|
deba@326
|
3285 |
if (left_tree == right_tree) {
|
deba@327
|
3286 |
shrinkOnEdge(e, left_tree);
|
deba@326
|
3287 |
} else {
|
deba@327
|
3288 |
augmentOnEdge(e);
|
deba@870
|
3289 |
_unmatched -= 2;
|
deba@326
|
3290 |
}
|
deba@326
|
3291 |
}
|
deba@326
|
3292 |
} break;
|
deba@326
|
3293 |
case D4:
|
deba@326
|
3294 |
splitBlossom(_delta4->top());
|
deba@326
|
3295 |
break;
|
deba@326
|
3296 |
}
|
deba@326
|
3297 |
}
|
deba@326
|
3298 |
extractMatching();
|
deba@326
|
3299 |
return true;
|
deba@326
|
3300 |
}
|
deba@326
|
3301 |
|
kpeter@590
|
3302 |
/// \brief Run the algorithm.
|
deba@326
|
3303 |
///
|
kpeter@590
|
3304 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm.
|
deba@326
|
3305 |
///
|
kpeter@590
|
3306 |
/// \note mwpm.run() is just a shortcut of the following code.
|
deba@326
|
3307 |
/// \code
|
deba@870
|
3308 |
/// mwpm.fractionalInit();
|
kpeter@590
|
3309 |
/// mwpm.start();
|
deba@326
|
3310 |
/// \endcode
|
deba@326
|
3311 |
bool run() {
|
deba@870
|
3312 |
fractionalInit();
|
deba@326
|
3313 |
return start();
|
deba@326
|
3314 |
}
|
deba@326
|
3315 |
|
deba@326
|
3316 |
/// @}
|
deba@326
|
3317 |
|
kpeter@590
|
3318 |
/// \name Primal Solution
|
deba@868
|
3319 |
/// Functions to get the primal solution, i.e. the maximum weighted
|
kpeter@590
|
3320 |
/// perfect matching.\n
|
kpeter@590
|
3321 |
/// Either \ref run() or \ref start() function should be called before
|
kpeter@590
|
3322 |
/// using them.
|
deba@326
|
3323 |
|
deba@326
|
3324 |
/// @{
|
deba@326
|
3325 |
|
kpeter@590
|
3326 |
/// \brief Return the weight of the matching.
|
deba@326
|
3327 |
///
|
kpeter@590
|
3328 |
/// This function returns the weight of the found matching.
|
kpeter@590
|
3329 |
///
|
kpeter@590
|
3330 |
/// \pre Either run() or start() must be called before using this function.
|
kpeter@593
|
3331 |
Value matchingWeight() const {
|
deba@326
|
3332 |
Value sum = 0;
|
deba@326
|
3333 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@326
|
3334 |
if ((*_matching)[n] != INVALID) {
|
deba@326
|
3335 |
sum += _weight[(*_matching)[n]];
|
deba@326
|
3336 |
}
|
deba@326
|
3337 |
}
|
deba@868
|
3338 |
return sum / 2;
|
deba@326
|
3339 |
}
|
deba@326
|
3340 |
|
kpeter@590
|
3341 |
/// \brief Return \c true if the given edge is in the matching.
|
deba@326
|
3342 |
///
|
deba@868
|
3343 |
/// This function returns \c true if the given edge is in the found
|
kpeter@590
|
3344 |
/// matching.
|
kpeter@590
|
3345 |
///
|
kpeter@590
|
3346 |
/// \pre Either run() or start() must be called before using this function.
|
deba@327
|
3347 |
bool matching(const Edge& edge) const {
|
deba@327
|
3348 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
|
deba@326
|
3349 |
}
|
deba@326
|
3350 |
|
kpeter@590
|
3351 |
/// \brief Return the matching arc (or edge) incident to the given node.
|
deba@326
|
3352 |
///
|
kpeter@590
|
3353 |
/// This function returns the matching arc (or edge) incident to the
|
deba@868
|
3354 |
/// given node in the found matching or \c INVALID if the node is
|
kpeter@590
|
3355 |
/// not covered by the matching.
|
kpeter@590
|
3356 |
///
|
kpeter@590
|
3357 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
3358 |
Arc matching(const Node& node) const {
|
deba@326
|
3359 |
return (*_matching)[node];
|
deba@326
|
3360 |
}
|
deba@326
|
3361 |
|
kpeter@593
|
3362 |
/// \brief Return a const reference to the matching map.
|
kpeter@593
|
3363 |
///
|
kpeter@593
|
3364 |
/// This function returns a const reference to a node map that stores
|
kpeter@593
|
3365 |
/// the matching arc (or edge) incident to each node.
|
kpeter@593
|
3366 |
const MatchingMap& matchingMap() const {
|
kpeter@593
|
3367 |
return *_matching;
|
kpeter@593
|
3368 |
}
|
kpeter@593
|
3369 |
|
kpeter@590
|
3370 |
/// \brief Return the mate of the given node.
|
deba@326
|
3371 |
///
|
deba@868
|
3372 |
/// This function returns the mate of the given node in the found
|
kpeter@590
|
3373 |
/// matching or \c INVALID if the node is not covered by the matching.
|
kpeter@590
|
3374 |
///
|
kpeter@590
|
3375 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
3376 |
Node mate(const Node& node) const {
|
deba@326
|
3377 |
return _graph.target((*_matching)[node]);
|
deba@326
|
3378 |
}
|
deba@326
|
3379 |
|
deba@326
|
3380 |
/// @}
|
deba@326
|
3381 |
|
kpeter@590
|
3382 |
/// \name Dual Solution
|
kpeter@590
|
3383 |
/// Functions to get the dual solution.\n
|
kpeter@590
|
3384 |
/// Either \ref run() or \ref start() function should be called before
|
kpeter@590
|
3385 |
/// using them.
|
deba@326
|
3386 |
|
deba@326
|
3387 |
/// @{
|
deba@326
|
3388 |
|
kpeter@590
|
3389 |
/// \brief Return the value of the dual solution.
|
deba@326
|
3390 |
///
|
deba@868
|
3391 |
/// This function returns the value of the dual solution.
|
deba@868
|
3392 |
/// It should be equal to the primal value scaled by \ref dualScale
|
kpeter@590
|
3393 |
/// "dual scale".
|
kpeter@590
|
3394 |
///
|
kpeter@590
|
3395 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
3396 |
Value dualValue() const {
|
deba@326
|
3397 |
Value sum = 0;
|
deba@326
|
3398 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
deba@326
|
3399 |
sum += nodeValue(n);
|
deba@326
|
3400 |
}
|
deba@326
|
3401 |
for (int i = 0; i < blossomNum(); ++i) {
|
deba@326
|
3402 |
sum += blossomValue(i) * (blossomSize(i) / 2);
|
deba@326
|
3403 |
}
|
deba@326
|
3404 |
return sum;
|
deba@326
|
3405 |
}
|
deba@326
|
3406 |
|
kpeter@590
|
3407 |
/// \brief Return the dual value (potential) of the given node.
|
deba@326
|
3408 |
///
|
kpeter@590
|
3409 |
/// This function returns the dual value (potential) of the given node.
|
kpeter@590
|
3410 |
///
|
kpeter@590
|
3411 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
3412 |
Value nodeValue(const Node& n) const {
|
deba@326
|
3413 |
return (*_node_potential)[n];
|
deba@326
|
3414 |
}
|
deba@326
|
3415 |
|
kpeter@590
|
3416 |
/// \brief Return the number of the blossoms in the basis.
|
deba@326
|
3417 |
///
|
kpeter@590
|
3418 |
/// This function returns the number of the blossoms in the basis.
|
kpeter@590
|
3419 |
///
|
kpeter@590
|
3420 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
3421 |
/// \see BlossomIt
|
deba@326
|
3422 |
int blossomNum() const {
|
deba@326
|
3423 |
return _blossom_potential.size();
|
deba@326
|
3424 |
}
|
deba@326
|
3425 |
|
kpeter@590
|
3426 |
/// \brief Return the number of the nodes in the given blossom.
|
deba@326
|
3427 |
///
|
kpeter@590
|
3428 |
/// This function returns the number of the nodes in the given blossom.
|
kpeter@590
|
3429 |
///
|
kpeter@590
|
3430 |
/// \pre Either run() or start() must be called before using this function.
|
kpeter@590
|
3431 |
/// \see BlossomIt
|
deba@326
|
3432 |
int blossomSize(int k) const {
|
deba@326
|
3433 |
return _blossom_potential[k].end - _blossom_potential[k].begin;
|
deba@326
|
3434 |
}
|
deba@326
|
3435 |
|
kpeter@590
|
3436 |
/// \brief Return the dual value (ptential) of the given blossom.
|
deba@326
|
3437 |
///
|
kpeter@590
|
3438 |
/// This function returns the dual value (ptential) of the given blossom.
|
kpeter@590
|
3439 |
///
|
kpeter@590
|
3440 |
/// \pre Either run() or start() must be called before using this function.
|
deba@326
|
3441 |
Value blossomValue(int k) const {
|
deba@326
|
3442 |
return _blossom_potential[k].value;
|
deba@326
|
3443 |
}
|
deba@326
|
3444 |
|
kpeter@590
|
3445 |
/// \brief Iterator for obtaining the nodes of a blossom.
|
deba@326
|
3446 |
///
|
deba@868
|
3447 |
/// This class provides an iterator for obtaining the nodes of the
|
kpeter@590
|
3448 |
/// given blossom. It lists a subset of the nodes.
|
deba@868
|
3449 |
/// Before using this iterator, you must allocate a
|
kpeter@590
|
3450 |
/// MaxWeightedPerfectMatching class and execute it.
|
deba@326
|
3451 |
class BlossomIt {
|
deba@326
|
3452 |
public:
|
deba@326
|
3453 |
|
deba@326
|
3454 |
/// \brief Constructor.
|
deba@326
|
3455 |
///
|
kpeter@590
|
3456 |
/// Constructor to get the nodes of the given variable.
|
kpeter@590
|
3457 |
///
|
deba@868
|
3458 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()"
|
deba@868
|
3459 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()"
|
kpeter@590
|
3460 |
/// must be called before initializing this iterator.
|
deba@326
|
3461 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
|
deba@326
|
3462 |
: _algorithm(&algorithm)
|
deba@326
|
3463 |
{
|
deba@326
|
3464 |
_index = _algorithm->_blossom_potential[variable].begin;
|
deba@326
|
3465 |
_last = _algorithm->_blossom_potential[variable].end;
|
deba@326
|
3466 |
}
|
deba@326
|
3467 |
|
kpeter@590
|
3468 |
/// \brief Conversion to \c Node.
|
deba@326
|
3469 |
///
|
kpeter@590
|
3470 |
/// Conversion to \c Node.
|
deba@326
|
3471 |
operator Node() const {
|
deba@327
|
3472 |
return _algorithm->_blossom_node_list[_index];
|
deba@326
|
3473 |
}
|
deba@326
|
3474 |
|
deba@326
|
3475 |
/// \brief Increment operator.
|
deba@326
|
3476 |
///
|
deba@326
|
3477 |
/// Increment operator.
|
deba@326
|
3478 |
BlossomIt& operator++() {
|
deba@326
|
3479 |
++_index;
|
deba@326
|
3480 |
return *this;
|
deba@326
|
3481 |
}
|
deba@326
|
3482 |
|
deba@327
|
3483 |
/// \brief Validity checking
|
deba@327
|
3484 |
///
|
kpeter@590
|
3485 |
/// This function checks whether the iterator is invalid.
|
deba@327
|
3486 |
bool operator==(Invalid) const { return _index == _last; }
|
deba@327
|
3487 |
|
deba@327
|
3488 |
/// \brief Validity checking
|
deba@327
|
3489 |
///
|
kpeter@590
|
3490 |
/// This function checks whether the iterator is valid.
|
deba@327
|
3491 |
bool operator!=(Invalid) const { return _index != _last; }
|
deba@326
|
3492 |
|
deba@326
|
3493 |
private:
|
deba@326
|
3494 |
const MaxWeightedPerfectMatching* _algorithm;
|
deba@326
|
3495 |
int _last;
|
deba@326
|
3496 |
int _index;
|
deba@326
|
3497 |
};
|
deba@326
|
3498 |
|
deba@326
|
3499 |
/// @}
|
deba@326
|
3500 |
|
deba@326
|
3501 |
};
|
deba@326
|
3502 |
|
deba@326
|
3503 |
} //END OF NAMESPACE LEMON
|
deba@326
|
3504 |
|
deba@868
|
3505 |
#endif //LEMON_MATCHING_H
|