lemon/max_matching.h
changeset 783 ef88c0a30f85
parent 504 c35afa9e89e7
parent 782 ceb2756dea2a
child 784 1a7fe3bef514
     1.1 --- a/lemon/max_matching.h	Mon Jan 12 23:11:39 2009 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,3104 +0,0 @@
     1.4 -/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library.
     1.7 - *
     1.8 - * Copyright (C) 2003-2009
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -#ifndef LEMON_MAX_MATCHING_H
    1.23 -#define LEMON_MAX_MATCHING_H
    1.24 -
    1.25 -#include <vector>
    1.26 -#include <queue>
    1.27 -#include <set>
    1.28 -#include <limits>
    1.29 -
    1.30 -#include <lemon/core.h>
    1.31 -#include <lemon/unionfind.h>
    1.32 -#include <lemon/bin_heap.h>
    1.33 -#include <lemon/maps.h>
    1.34 -
    1.35 -///\ingroup matching
    1.36 -///\file
    1.37 -///\brief Maximum matching algorithms in general graphs.
    1.38 -
    1.39 -namespace lemon {
    1.40 -
    1.41 -  /// \ingroup matching
    1.42 -  ///
    1.43 -  /// \brief Edmonds' alternating forest maximum matching algorithm.
    1.44 -  ///
    1.45 -  /// This class implements Edmonds' alternating forest matching
    1.46 -  /// algorithm. The algorithm can be started from an arbitrary initial
    1.47 -  /// matching (the default is the empty one)
    1.48 -  ///
    1.49 -  /// The dual solution of the problem is a map of the nodes to
    1.50 -  /// MaxMatching::Status, having values \c EVEN/D, \c ODD/A and \c
    1.51 -  /// MATCHED/C showing the Gallai-Edmonds decomposition of the
    1.52 -  /// graph. The nodes in \c EVEN/D induce a graph with
    1.53 -  /// factor-critical components, the nodes in \c ODD/A form the
    1.54 -  /// barrier, and the nodes in \c MATCHED/C induce a graph having a
    1.55 -  /// perfect matching. The number of the factor-critical components
    1.56 -  /// minus the number of barrier nodes is a lower bound on the
    1.57 -  /// unmatched nodes, and the matching is optimal if and only if this bound is
    1.58 -  /// tight. This decomposition can be attained by calling \c
    1.59 -  /// decomposition() after running the algorithm.
    1.60 -  ///
    1.61 -  /// \param _Graph The graph type the algorithm runs on.
    1.62 -  template <typename _Graph>
    1.63 -  class MaxMatching {
    1.64 -  public:
    1.65 -
    1.66 -    typedef _Graph Graph;
    1.67 -    typedef typename Graph::template NodeMap<typename Graph::Arc>
    1.68 -    MatchingMap;
    1.69 -
    1.70 -    ///\brief Indicates the Gallai-Edmonds decomposition of the graph.
    1.71 -    ///
    1.72 -    ///Indicates the Gallai-Edmonds decomposition of the graph. The
    1.73 -    ///nodes with Status \c EVEN/D induce a graph with factor-critical
    1.74 -    ///components, the nodes in \c ODD/A form the canonical barrier,
    1.75 -    ///and the nodes in \c MATCHED/C induce a graph having a perfect
    1.76 -    ///matching.
    1.77 -    enum Status {
    1.78 -      EVEN = 1, D = 1, MATCHED = 0, C = 0, ODD = -1, A = -1, UNMATCHED = -2
    1.79 -    };
    1.80 -
    1.81 -    typedef typename Graph::template NodeMap<Status> StatusMap;
    1.82 -
    1.83 -  private:
    1.84 -
    1.85 -    TEMPLATE_GRAPH_TYPEDEFS(Graph);
    1.86 -
    1.87 -    typedef UnionFindEnum<IntNodeMap> BlossomSet;
    1.88 -    typedef ExtendFindEnum<IntNodeMap> TreeSet;
    1.89 -    typedef RangeMap<Node> NodeIntMap;
    1.90 -    typedef MatchingMap EarMap;
    1.91 -    typedef std::vector<Node> NodeQueue;
    1.92 -
    1.93 -    const Graph& _graph;
    1.94 -    MatchingMap* _matching;
    1.95 -    StatusMap* _status;
    1.96 -
    1.97 -    EarMap* _ear;
    1.98 -
    1.99 -    IntNodeMap* _blossom_set_index;
   1.100 -    BlossomSet* _blossom_set;
   1.101 -    NodeIntMap* _blossom_rep;
   1.102 -
   1.103 -    IntNodeMap* _tree_set_index;
   1.104 -    TreeSet* _tree_set;
   1.105 -
   1.106 -    NodeQueue _node_queue;
   1.107 -    int _process, _postpone, _last;
   1.108 -
   1.109 -    int _node_num;
   1.110 -
   1.111 -  private:
   1.112 -
   1.113 -    void createStructures() {
   1.114 -      _node_num = countNodes(_graph);
   1.115 -      if (!_matching) {
   1.116 -        _matching = new MatchingMap(_graph);
   1.117 -      }
   1.118 -      if (!_status) {
   1.119 -        _status = new StatusMap(_graph);
   1.120 -      }
   1.121 -      if (!_ear) {
   1.122 -        _ear = new EarMap(_graph);
   1.123 -      }
   1.124 -      if (!_blossom_set) {
   1.125 -        _blossom_set_index = new IntNodeMap(_graph);
   1.126 -        _blossom_set = new BlossomSet(*_blossom_set_index);
   1.127 -      }
   1.128 -      if (!_blossom_rep) {
   1.129 -        _blossom_rep = new NodeIntMap(_node_num);
   1.130 -      }
   1.131 -      if (!_tree_set) {
   1.132 -        _tree_set_index = new IntNodeMap(_graph);
   1.133 -        _tree_set = new TreeSet(*_tree_set_index);
   1.134 -      }
   1.135 -      _node_queue.resize(_node_num);
   1.136 -    }
   1.137 -
   1.138 -    void destroyStructures() {
   1.139 -      if (_matching) {
   1.140 -        delete _matching;
   1.141 -      }
   1.142 -      if (_status) {
   1.143 -        delete _status;
   1.144 -      }
   1.145 -      if (_ear) {
   1.146 -        delete _ear;
   1.147 -      }
   1.148 -      if (_blossom_set) {
   1.149 -        delete _blossom_set;
   1.150 -        delete _blossom_set_index;
   1.151 -      }
   1.152 -      if (_blossom_rep) {
   1.153 -        delete _blossom_rep;
   1.154 -      }
   1.155 -      if (_tree_set) {
   1.156 -        delete _tree_set_index;
   1.157 -        delete _tree_set;
   1.158 -      }
   1.159 -    }
   1.160 -
   1.161 -    void processDense(const Node& n) {
   1.162 -      _process = _postpone = _last = 0;
   1.163 -      _node_queue[_last++] = n;
   1.164 -
   1.165 -      while (_process != _last) {
   1.166 -        Node u = _node_queue[_process++];
   1.167 -        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
   1.168 -          Node v = _graph.target(a);
   1.169 -          if ((*_status)[v] == MATCHED) {
   1.170 -            extendOnArc(a);
   1.171 -          } else if ((*_status)[v] == UNMATCHED) {
   1.172 -            augmentOnArc(a);
   1.173 -            return;
   1.174 -          }
   1.175 -        }
   1.176 -      }
   1.177 -
   1.178 -      while (_postpone != _last) {
   1.179 -        Node u = _node_queue[_postpone++];
   1.180 -
   1.181 -        for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
   1.182 -          Node v = _graph.target(a);
   1.183 -
   1.184 -          if ((*_status)[v] == EVEN) {
   1.185 -            if (_blossom_set->find(u) != _blossom_set->find(v)) {
   1.186 -              shrinkOnEdge(a);
   1.187 -            }
   1.188 -          }
   1.189 -
   1.190 -          while (_process != _last) {
   1.191 -            Node w = _node_queue[_process++];
   1.192 -            for (OutArcIt b(_graph, w); b != INVALID; ++b) {
   1.193 -              Node x = _graph.target(b);
   1.194 -              if ((*_status)[x] == MATCHED) {
   1.195 -                extendOnArc(b);
   1.196 -              } else if ((*_status)[x] == UNMATCHED) {
   1.197 -                augmentOnArc(b);
   1.198 -                return;
   1.199 -              }
   1.200 -            }
   1.201 -          }
   1.202 -        }
   1.203 -      }
   1.204 -    }
   1.205 -
   1.206 -    void processSparse(const Node& n) {
   1.207 -      _process = _last = 0;
   1.208 -      _node_queue[_last++] = n;
   1.209 -      while (_process != _last) {
   1.210 -        Node u = _node_queue[_process++];
   1.211 -        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
   1.212 -          Node v = _graph.target(a);
   1.213 -
   1.214 -          if ((*_status)[v] == EVEN) {
   1.215 -            if (_blossom_set->find(u) != _blossom_set->find(v)) {
   1.216 -              shrinkOnEdge(a);
   1.217 -            }
   1.218 -          } else if ((*_status)[v] == MATCHED) {
   1.219 -            extendOnArc(a);
   1.220 -          } else if ((*_status)[v] == UNMATCHED) {
   1.221 -            augmentOnArc(a);
   1.222 -            return;
   1.223 -          }
   1.224 -        }
   1.225 -      }
   1.226 -    }
   1.227 -
   1.228 -    void shrinkOnEdge(const Edge& e) {
   1.229 -      Node nca = INVALID;
   1.230 -
   1.231 -      {
   1.232 -        std::set<Node> left_set, right_set;
   1.233 -
   1.234 -        Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
   1.235 -        left_set.insert(left);
   1.236 -
   1.237 -        Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
   1.238 -        right_set.insert(right);
   1.239 -
   1.240 -        while (true) {
   1.241 -          if ((*_matching)[left] == INVALID) break;
   1.242 -          left = _graph.target((*_matching)[left]);
   1.243 -          left = (*_blossom_rep)[_blossom_set->
   1.244 -                                 find(_graph.target((*_ear)[left]))];
   1.245 -          if (right_set.find(left) != right_set.end()) {
   1.246 -            nca = left;
   1.247 -            break;
   1.248 -          }
   1.249 -          left_set.insert(left);
   1.250 -
   1.251 -          if ((*_matching)[right] == INVALID) break;
   1.252 -          right = _graph.target((*_matching)[right]);
   1.253 -          right = (*_blossom_rep)[_blossom_set->
   1.254 -                                  find(_graph.target((*_ear)[right]))];
   1.255 -          if (left_set.find(right) != left_set.end()) {
   1.256 -            nca = right;
   1.257 -            break;
   1.258 -          }
   1.259 -          right_set.insert(right);
   1.260 -        }
   1.261 -
   1.262 -        if (nca == INVALID) {
   1.263 -          if ((*_matching)[left] == INVALID) {
   1.264 -            nca = right;
   1.265 -            while (left_set.find(nca) == left_set.end()) {
   1.266 -              nca = _graph.target((*_matching)[nca]);
   1.267 -              nca =(*_blossom_rep)[_blossom_set->
   1.268 -                                   find(_graph.target((*_ear)[nca]))];
   1.269 -            }
   1.270 -          } else {
   1.271 -            nca = left;
   1.272 -            while (right_set.find(nca) == right_set.end()) {
   1.273 -              nca = _graph.target((*_matching)[nca]);
   1.274 -              nca = (*_blossom_rep)[_blossom_set->
   1.275 -                                   find(_graph.target((*_ear)[nca]))];
   1.276 -            }
   1.277 -          }
   1.278 -        }
   1.279 -      }
   1.280 -
   1.281 -      {
   1.282 -
   1.283 -        Node node = _graph.u(e);
   1.284 -        Arc arc = _graph.direct(e, true);
   1.285 -        Node base = (*_blossom_rep)[_blossom_set->find(node)];
   1.286 -
   1.287 -        while (base != nca) {
   1.288 -          _ear->set(node, arc);
   1.289 -
   1.290 -          Node n = node;
   1.291 -          while (n != base) {
   1.292 -            n = _graph.target((*_matching)[n]);
   1.293 -            Arc a = (*_ear)[n];
   1.294 -            n = _graph.target(a);
   1.295 -            _ear->set(n, _graph.oppositeArc(a));
   1.296 -          }
   1.297 -          node = _graph.target((*_matching)[base]);
   1.298 -          _tree_set->erase(base);
   1.299 -          _tree_set->erase(node);
   1.300 -          _blossom_set->insert(node, _blossom_set->find(base));
   1.301 -          _status->set(node, EVEN);
   1.302 -          _node_queue[_last++] = node;
   1.303 -          arc = _graph.oppositeArc((*_ear)[node]);
   1.304 -          node = _graph.target((*_ear)[node]);
   1.305 -          base = (*_blossom_rep)[_blossom_set->find(node)];
   1.306 -          _blossom_set->join(_graph.target(arc), base);
   1.307 -        }
   1.308 -      }
   1.309 -
   1.310 -      _blossom_rep->set(_blossom_set->find(nca), nca);
   1.311 -
   1.312 -      {
   1.313 -
   1.314 -        Node node = _graph.v(e);
   1.315 -        Arc arc = _graph.direct(e, false);
   1.316 -        Node base = (*_blossom_rep)[_blossom_set->find(node)];
   1.317 -
   1.318 -        while (base != nca) {
   1.319 -          _ear->set(node, arc);
   1.320 -
   1.321 -          Node n = node;
   1.322 -          while (n != base) {
   1.323 -            n = _graph.target((*_matching)[n]);
   1.324 -            Arc a = (*_ear)[n];
   1.325 -            n = _graph.target(a);
   1.326 -            _ear->set(n, _graph.oppositeArc(a));
   1.327 -          }
   1.328 -          node = _graph.target((*_matching)[base]);
   1.329 -          _tree_set->erase(base);
   1.330 -          _tree_set->erase(node);
   1.331 -          _blossom_set->insert(node, _blossom_set->find(base));
   1.332 -          _status->set(node, EVEN);
   1.333 -          _node_queue[_last++] = node;
   1.334 -          arc = _graph.oppositeArc((*_ear)[node]);
   1.335 -          node = _graph.target((*_ear)[node]);
   1.336 -          base = (*_blossom_rep)[_blossom_set->find(node)];
   1.337 -          _blossom_set->join(_graph.target(arc), base);
   1.338 -        }
   1.339 -      }
   1.340 -
   1.341 -      _blossom_rep->set(_blossom_set->find(nca), nca);
   1.342 -    }
   1.343 -
   1.344 -
   1.345 -
   1.346 -    void extendOnArc(const Arc& a) {
   1.347 -      Node base = _graph.source(a);
   1.348 -      Node odd = _graph.target(a);
   1.349 -
   1.350 -      _ear->set(odd, _graph.oppositeArc(a));
   1.351 -      Node even = _graph.target((*_matching)[odd]);
   1.352 -      _blossom_rep->set(_blossom_set->insert(even), even);
   1.353 -      _status->set(odd, ODD);
   1.354 -      _status->set(even, EVEN);
   1.355 -      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
   1.356 -      _tree_set->insert(odd, tree);
   1.357 -      _tree_set->insert(even, tree);
   1.358 -      _node_queue[_last++] = even;
   1.359 -
   1.360 -    }
   1.361 -
   1.362 -    void augmentOnArc(const Arc& a) {
   1.363 -      Node even = _graph.source(a);
   1.364 -      Node odd = _graph.target(a);
   1.365 -
   1.366 -      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
   1.367 -
   1.368 -      _matching->set(odd, _graph.oppositeArc(a));
   1.369 -      _status->set(odd, MATCHED);
   1.370 -
   1.371 -      Arc arc = (*_matching)[even];
   1.372 -      _matching->set(even, a);
   1.373 -
   1.374 -      while (arc != INVALID) {
   1.375 -        odd = _graph.target(arc);
   1.376 -        arc = (*_ear)[odd];
   1.377 -        even = _graph.target(arc);
   1.378 -        _matching->set(odd, arc);
   1.379 -        arc = (*_matching)[even];
   1.380 -        _matching->set(even, _graph.oppositeArc((*_matching)[odd]));
   1.381 -      }
   1.382 -
   1.383 -      for (typename TreeSet::ItemIt it(*_tree_set, tree);
   1.384 -           it != INVALID; ++it) {
   1.385 -        if ((*_status)[it] == ODD) {
   1.386 -          _status->set(it, MATCHED);
   1.387 -        } else {
   1.388 -          int blossom = _blossom_set->find(it);
   1.389 -          for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
   1.390 -               jt != INVALID; ++jt) {
   1.391 -            _status->set(jt, MATCHED);
   1.392 -          }
   1.393 -          _blossom_set->eraseClass(blossom);
   1.394 -        }
   1.395 -      }
   1.396 -      _tree_set->eraseClass(tree);
   1.397 -
   1.398 -    }
   1.399 -
   1.400 -  public:
   1.401 -
   1.402 -    /// \brief Constructor
   1.403 -    ///
   1.404 -    /// Constructor.
   1.405 -    MaxMatching(const Graph& graph)
   1.406 -      : _graph(graph), _matching(0), _status(0), _ear(0),
   1.407 -        _blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
   1.408 -        _tree_set_index(0), _tree_set(0) {}
   1.409 -
   1.410 -    ~MaxMatching() {
   1.411 -      destroyStructures();
   1.412 -    }
   1.413 -
   1.414 -    /// \name Execution control
   1.415 -    /// The simplest way to execute the algorithm is to use the
   1.416 -    /// \c run() member function.
   1.417 -    /// \n
   1.418 -
   1.419 -    /// If you need better control on the execution, you must call
   1.420 -    /// \ref init(), \ref greedyInit() or \ref matchingInit()
   1.421 -    /// functions first, then you can start the algorithm with the \ref
   1.422 -    /// startSparse() or startDense() functions.
   1.423 -
   1.424 -    ///@{
   1.425 -
   1.426 -    /// \brief Sets the actual matching to the empty matching.
   1.427 -    ///
   1.428 -    /// Sets the actual matching to the empty matching.
   1.429 -    ///
   1.430 -    void init() {
   1.431 -      createStructures();
   1.432 -      for(NodeIt n(_graph); n != INVALID; ++n) {
   1.433 -        _matching->set(n, INVALID);
   1.434 -        _status->set(n, UNMATCHED);
   1.435 -      }
   1.436 -    }
   1.437 -
   1.438 -    ///\brief Finds an initial matching in a greedy way
   1.439 -    ///
   1.440 -    ///It finds an initial matching in a greedy way.
   1.441 -    void greedyInit() {
   1.442 -      createStructures();
   1.443 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.444 -        _matching->set(n, INVALID);
   1.445 -        _status->set(n, UNMATCHED);
   1.446 -      }
   1.447 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.448 -        if ((*_matching)[n] == INVALID) {
   1.449 -          for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
   1.450 -            Node v = _graph.target(a);
   1.451 -            if ((*_matching)[v] == INVALID && v != n) {
   1.452 -              _matching->set(n, a);
   1.453 -              _status->set(n, MATCHED);
   1.454 -              _matching->set(v, _graph.oppositeArc(a));
   1.455 -              _status->set(v, MATCHED);
   1.456 -              break;
   1.457 -            }
   1.458 -          }
   1.459 -        }
   1.460 -      }
   1.461 -    }
   1.462 -
   1.463 -
   1.464 -    /// \brief Initialize the matching from a map containing.
   1.465 -    ///
   1.466 -    /// Initialize the matching from a \c bool valued \c Edge map. This
   1.467 -    /// map must have the property that there are no two incident edges
   1.468 -    /// with true value, ie. it contains a matching.
   1.469 -    /// \return %True if the map contains a matching.
   1.470 -    template <typename MatchingMap>
   1.471 -    bool matchingInit(const MatchingMap& matching) {
   1.472 -      createStructures();
   1.473 -
   1.474 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.475 -        _matching->set(n, INVALID);
   1.476 -        _status->set(n, UNMATCHED);
   1.477 -      }
   1.478 -      for(EdgeIt e(_graph); e!=INVALID; ++e) {
   1.479 -        if (matching[e]) {
   1.480 -
   1.481 -          Node u = _graph.u(e);
   1.482 -          if ((*_matching)[u] != INVALID) return false;
   1.483 -          _matching->set(u, _graph.direct(e, true));
   1.484 -          _status->set(u, MATCHED);
   1.485 -
   1.486 -          Node v = _graph.v(e);
   1.487 -          if ((*_matching)[v] != INVALID) return false;
   1.488 -          _matching->set(v, _graph.direct(e, false));
   1.489 -          _status->set(v, MATCHED);
   1.490 -        }
   1.491 -      }
   1.492 -      return true;
   1.493 -    }
   1.494 -
   1.495 -    /// \brief Starts Edmonds' algorithm
   1.496 -    ///
   1.497 -    /// If runs the original Edmonds' algorithm.
   1.498 -    void startSparse() {
   1.499 -      for(NodeIt n(_graph); n != INVALID; ++n) {
   1.500 -        if ((*_status)[n] == UNMATCHED) {
   1.501 -          (*_blossom_rep)[_blossom_set->insert(n)] = n;
   1.502 -          _tree_set->insert(n);
   1.503 -          _status->set(n, EVEN);
   1.504 -          processSparse(n);
   1.505 -        }
   1.506 -      }
   1.507 -    }
   1.508 -
   1.509 -    /// \brief Starts Edmonds' algorithm.
   1.510 -    ///
   1.511 -    /// It runs Edmonds' algorithm with a heuristic of postponing
   1.512 -    /// shrinks, therefore resulting in a faster algorithm for dense graphs.
   1.513 -    void startDense() {
   1.514 -      for(NodeIt n(_graph); n != INVALID; ++n) {
   1.515 -        if ((*_status)[n] == UNMATCHED) {
   1.516 -          (*_blossom_rep)[_blossom_set->insert(n)] = n;
   1.517 -          _tree_set->insert(n);
   1.518 -          _status->set(n, EVEN);
   1.519 -          processDense(n);
   1.520 -        }
   1.521 -      }
   1.522 -    }
   1.523 -
   1.524 -
   1.525 -    /// \brief Runs Edmonds' algorithm
   1.526 -    ///
   1.527 -    /// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>)
   1.528 -    /// or Edmonds' algorithm with a heuristic of
   1.529 -    /// postponing shrinks for dense graphs.
   1.530 -    void run() {
   1.531 -      if (countEdges(_graph) < 2 * countNodes(_graph)) {
   1.532 -        greedyInit();
   1.533 -        startSparse();
   1.534 -      } else {
   1.535 -        init();
   1.536 -        startDense();
   1.537 -      }
   1.538 -    }
   1.539 -
   1.540 -    /// @}
   1.541 -
   1.542 -    /// \name Primal solution
   1.543 -    /// Functions to get the primal solution, ie. the matching.
   1.544 -
   1.545 -    /// @{
   1.546 -
   1.547 -    ///\brief Returns the size of the current matching.
   1.548 -    ///
   1.549 -    ///Returns the size of the current matching. After \ref
   1.550 -    ///run() it returns the size of the maximum matching in the graph.
   1.551 -    int matchingSize() const {
   1.552 -      int size = 0;
   1.553 -      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.554 -        if ((*_matching)[n] != INVALID) {
   1.555 -          ++size;
   1.556 -        }
   1.557 -      }
   1.558 -      return size / 2;
   1.559 -    }
   1.560 -
   1.561 -    /// \brief Returns true when the edge is in the matching.
   1.562 -    ///
   1.563 -    /// Returns true when the edge is in the matching.
   1.564 -    bool matching(const Edge& edge) const {
   1.565 -      return edge == (*_matching)[_graph.u(edge)];
   1.566 -    }
   1.567 -
   1.568 -    /// \brief Returns the matching edge incident to the given node.
   1.569 -    ///
   1.570 -    /// Returns the matching edge of a \c node in the actual matching or
   1.571 -    /// INVALID if the \c node is not covered by the actual matching.
   1.572 -    Arc matching(const Node& n) const {
   1.573 -      return (*_matching)[n];
   1.574 -    }
   1.575 -
   1.576 -    ///\brief Returns the mate of a node in the actual matching.
   1.577 -    ///
   1.578 -    ///Returns the mate of a \c node in the actual matching or
   1.579 -    ///INVALID if the \c node is not covered by the actual matching.
   1.580 -    Node mate(const Node& n) const {
   1.581 -      return (*_matching)[n] != INVALID ?
   1.582 -        _graph.target((*_matching)[n]) : INVALID;
   1.583 -    }
   1.584 -
   1.585 -    /// @}
   1.586 -
   1.587 -    /// \name Dual solution
   1.588 -    /// Functions to get the dual solution, ie. the decomposition.
   1.589 -
   1.590 -    /// @{
   1.591 -
   1.592 -    /// \brief Returns the class of the node in the Edmonds-Gallai
   1.593 -    /// decomposition.
   1.594 -    ///
   1.595 -    /// Returns the class of the node in the Edmonds-Gallai
   1.596 -    /// decomposition.
   1.597 -    Status decomposition(const Node& n) const {
   1.598 -      return (*_status)[n];
   1.599 -    }
   1.600 -
   1.601 -    /// \brief Returns true when the node is in the barrier.
   1.602 -    ///
   1.603 -    /// Returns true when the node is in the barrier.
   1.604 -    bool barrier(const Node& n) const {
   1.605 -      return (*_status)[n] == ODD;
   1.606 -    }
   1.607 -
   1.608 -    /// @}
   1.609 -
   1.610 -  };
   1.611 -
   1.612 -  /// \ingroup matching
   1.613 -  ///
   1.614 -  /// \brief Weighted matching in general graphs
   1.615 -  ///
   1.616 -  /// This class provides an efficient implementation of Edmond's
   1.617 -  /// maximum weighted matching algorithm. The implementation is based
   1.618 -  /// on extensive use of priority queues and provides
   1.619 -  /// \f$O(nm\log(n))\f$ time complexity.
   1.620 -  ///
   1.621 -  /// The maximum weighted matching problem is to find undirected
   1.622 -  /// edges in the graph with maximum overall weight and no two of
   1.623 -  /// them shares their ends. The problem can be formulated with the
   1.624 -  /// following linear program.
   1.625 -  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   1.626 -  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
   1.627 -      \quad \forall B\in\mathcal{O}\f] */
   1.628 -  /// \f[x_e \ge 0\quad \forall e\in E\f]
   1.629 -  /// \f[\max \sum_{e\in E}x_ew_e\f]
   1.630 -  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
   1.631 -  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
   1.632 -  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
   1.633 -  /// subsets of the nodes.
   1.634 -  ///
   1.635 -  /// The algorithm calculates an optimal matching and a proof of the
   1.636 -  /// optimality. The solution of the dual problem can be used to check
   1.637 -  /// the result of the algorithm. The dual linear problem is the
   1.638 -  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
   1.639 -      z_B \ge w_{uv} \quad \forall uv\in E\f] */
   1.640 -  /// \f[y_u \ge 0 \quad \forall u \in V\f]
   1.641 -  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
   1.642 -  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
   1.643 -      \frac{\vert B \vert - 1}{2}z_B\f] */
   1.644 -  ///
   1.645 -  /// The algorithm can be executed with \c run() or the \c init() and
   1.646 -  /// then the \c start() member functions. After it the matching can
   1.647 -  /// be asked with \c matching() or mate() functions. The dual
   1.648 -  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
   1.649 -  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
   1.650 -  /// "BlossomIt" nested class, which is able to iterate on the nodes
   1.651 -  /// of a blossom. If the value type is integral then the dual
   1.652 -  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
   1.653 -  template <typename _Graph,
   1.654 -            typename _WeightMap = typename _Graph::template EdgeMap<int> >
   1.655 -  class MaxWeightedMatching {
   1.656 -  public:
   1.657 -
   1.658 -    typedef _Graph Graph;
   1.659 -    typedef _WeightMap WeightMap;
   1.660 -    typedef typename WeightMap::Value Value;
   1.661 -
   1.662 -    /// \brief Scaling factor for dual solution
   1.663 -    ///
   1.664 -    /// Scaling factor for dual solution, it is equal to 4 or 1
   1.665 -    /// according to the value type.
   1.666 -    static const int dualScale =
   1.667 -      std::numeric_limits<Value>::is_integer ? 4 : 1;
   1.668 -
   1.669 -    typedef typename Graph::template NodeMap<typename Graph::Arc>
   1.670 -    MatchingMap;
   1.671 -
   1.672 -  private:
   1.673 -
   1.674 -    TEMPLATE_GRAPH_TYPEDEFS(Graph);
   1.675 -
   1.676 -    typedef typename Graph::template NodeMap<Value> NodePotential;
   1.677 -    typedef std::vector<Node> BlossomNodeList;
   1.678 -
   1.679 -    struct BlossomVariable {
   1.680 -      int begin, end;
   1.681 -      Value value;
   1.682 -
   1.683 -      BlossomVariable(int _begin, int _end, Value _value)
   1.684 -        : begin(_begin), end(_end), value(_value) {}
   1.685 -
   1.686 -    };
   1.687 -
   1.688 -    typedef std::vector<BlossomVariable> BlossomPotential;
   1.689 -
   1.690 -    const Graph& _graph;
   1.691 -    const WeightMap& _weight;
   1.692 -
   1.693 -    MatchingMap* _matching;
   1.694 -
   1.695 -    NodePotential* _node_potential;
   1.696 -
   1.697 -    BlossomPotential _blossom_potential;
   1.698 -    BlossomNodeList _blossom_node_list;
   1.699 -
   1.700 -    int _node_num;
   1.701 -    int _blossom_num;
   1.702 -
   1.703 -    typedef RangeMap<int> IntIntMap;
   1.704 -
   1.705 -    enum Status {
   1.706 -      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
   1.707 -    };
   1.708 -
   1.709 -    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
   1.710 -    struct BlossomData {
   1.711 -      int tree;
   1.712 -      Status status;
   1.713 -      Arc pred, next;
   1.714 -      Value pot, offset;
   1.715 -      Node base;
   1.716 -    };
   1.717 -
   1.718 -    IntNodeMap *_blossom_index;
   1.719 -    BlossomSet *_blossom_set;
   1.720 -    RangeMap<BlossomData>* _blossom_data;
   1.721 -
   1.722 -    IntNodeMap *_node_index;
   1.723 -    IntArcMap *_node_heap_index;
   1.724 -
   1.725 -    struct NodeData {
   1.726 -
   1.727 -      NodeData(IntArcMap& node_heap_index)
   1.728 -        : heap(node_heap_index) {}
   1.729 -
   1.730 -      int blossom;
   1.731 -      Value pot;
   1.732 -      BinHeap<Value, IntArcMap> heap;
   1.733 -      std::map<int, Arc> heap_index;
   1.734 -
   1.735 -      int tree;
   1.736 -    };
   1.737 -
   1.738 -    RangeMap<NodeData>* _node_data;
   1.739 -
   1.740 -    typedef ExtendFindEnum<IntIntMap> TreeSet;
   1.741 -
   1.742 -    IntIntMap *_tree_set_index;
   1.743 -    TreeSet *_tree_set;
   1.744 -
   1.745 -    IntNodeMap *_delta1_index;
   1.746 -    BinHeap<Value, IntNodeMap> *_delta1;
   1.747 -
   1.748 -    IntIntMap *_delta2_index;
   1.749 -    BinHeap<Value, IntIntMap> *_delta2;
   1.750 -
   1.751 -    IntEdgeMap *_delta3_index;
   1.752 -    BinHeap<Value, IntEdgeMap> *_delta3;
   1.753 -
   1.754 -    IntIntMap *_delta4_index;
   1.755 -    BinHeap<Value, IntIntMap> *_delta4;
   1.756 -
   1.757 -    Value _delta_sum;
   1.758 -
   1.759 -    void createStructures() {
   1.760 -      _node_num = countNodes(_graph);
   1.761 -      _blossom_num = _node_num * 3 / 2;
   1.762 -
   1.763 -      if (!_matching) {
   1.764 -        _matching = new MatchingMap(_graph);
   1.765 -      }
   1.766 -      if (!_node_potential) {
   1.767 -        _node_potential = new NodePotential(_graph);
   1.768 -      }
   1.769 -      if (!_blossom_set) {
   1.770 -        _blossom_index = new IntNodeMap(_graph);
   1.771 -        _blossom_set = new BlossomSet(*_blossom_index);
   1.772 -        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
   1.773 -      }
   1.774 -
   1.775 -      if (!_node_index) {
   1.776 -        _node_index = new IntNodeMap(_graph);
   1.777 -        _node_heap_index = new IntArcMap(_graph);
   1.778 -        _node_data = new RangeMap<NodeData>(_node_num,
   1.779 -                                              NodeData(*_node_heap_index));
   1.780 -      }
   1.781 -
   1.782 -      if (!_tree_set) {
   1.783 -        _tree_set_index = new IntIntMap(_blossom_num);
   1.784 -        _tree_set = new TreeSet(*_tree_set_index);
   1.785 -      }
   1.786 -      if (!_delta1) {
   1.787 -        _delta1_index = new IntNodeMap(_graph);
   1.788 -        _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
   1.789 -      }
   1.790 -      if (!_delta2) {
   1.791 -        _delta2_index = new IntIntMap(_blossom_num);
   1.792 -        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
   1.793 -      }
   1.794 -      if (!_delta3) {
   1.795 -        _delta3_index = new IntEdgeMap(_graph);
   1.796 -        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
   1.797 -      }
   1.798 -      if (!_delta4) {
   1.799 -        _delta4_index = new IntIntMap(_blossom_num);
   1.800 -        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
   1.801 -      }
   1.802 -    }
   1.803 -
   1.804 -    void destroyStructures() {
   1.805 -      _node_num = countNodes(_graph);
   1.806 -      _blossom_num = _node_num * 3 / 2;
   1.807 -
   1.808 -      if (_matching) {
   1.809 -        delete _matching;
   1.810 -      }
   1.811 -      if (_node_potential) {
   1.812 -        delete _node_potential;
   1.813 -      }
   1.814 -      if (_blossom_set) {
   1.815 -        delete _blossom_index;
   1.816 -        delete _blossom_set;
   1.817 -        delete _blossom_data;
   1.818 -      }
   1.819 -
   1.820 -      if (_node_index) {
   1.821 -        delete _node_index;
   1.822 -        delete _node_heap_index;
   1.823 -        delete _node_data;
   1.824 -      }
   1.825 -
   1.826 -      if (_tree_set) {
   1.827 -        delete _tree_set_index;
   1.828 -        delete _tree_set;
   1.829 -      }
   1.830 -      if (_delta1) {
   1.831 -        delete _delta1_index;
   1.832 -        delete _delta1;
   1.833 -      }
   1.834 -      if (_delta2) {
   1.835 -        delete _delta2_index;
   1.836 -        delete _delta2;
   1.837 -      }
   1.838 -      if (_delta3) {
   1.839 -        delete _delta3_index;
   1.840 -        delete _delta3;
   1.841 -      }
   1.842 -      if (_delta4) {
   1.843 -        delete _delta4_index;
   1.844 -        delete _delta4;
   1.845 -      }
   1.846 -    }
   1.847 -
   1.848 -    void matchedToEven(int blossom, int tree) {
   1.849 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.850 -        _delta2->erase(blossom);
   1.851 -      }
   1.852 -
   1.853 -      if (!_blossom_set->trivial(blossom)) {
   1.854 -        (*_blossom_data)[blossom].pot -=
   1.855 -          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
   1.856 -      }
   1.857 -
   1.858 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.859 -           n != INVALID; ++n) {
   1.860 -
   1.861 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
   1.862 -        int ni = (*_node_index)[n];
   1.863 -
   1.864 -        (*_node_data)[ni].heap.clear();
   1.865 -        (*_node_data)[ni].heap_index.clear();
   1.866 -
   1.867 -        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
   1.868 -
   1.869 -        _delta1->push(n, (*_node_data)[ni].pot);
   1.870 -
   1.871 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.872 -          Node v = _graph.source(e);
   1.873 -          int vb = _blossom_set->find(v);
   1.874 -          int vi = (*_node_index)[v];
   1.875 -
   1.876 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   1.877 -            dualScale * _weight[e];
   1.878 -
   1.879 -          if ((*_blossom_data)[vb].status == EVEN) {
   1.880 -            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   1.881 -              _delta3->push(e, rw / 2);
   1.882 -            }
   1.883 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.884 -            if (_delta3->state(e) != _delta3->IN_HEAP) {
   1.885 -              _delta3->push(e, rw);
   1.886 -            }
   1.887 -          } else {
   1.888 -            typename std::map<int, Arc>::iterator it =
   1.889 -              (*_node_data)[vi].heap_index.find(tree);
   1.890 -
   1.891 -            if (it != (*_node_data)[vi].heap_index.end()) {
   1.892 -              if ((*_node_data)[vi].heap[it->second] > rw) {
   1.893 -                (*_node_data)[vi].heap.replace(it->second, e);
   1.894 -                (*_node_data)[vi].heap.decrease(e, rw);
   1.895 -                it->second = e;
   1.896 -              }
   1.897 -            } else {
   1.898 -              (*_node_data)[vi].heap.push(e, rw);
   1.899 -              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   1.900 -            }
   1.901 -
   1.902 -            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   1.903 -              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   1.904 -
   1.905 -              if ((*_blossom_data)[vb].status == MATCHED) {
   1.906 -                if (_delta2->state(vb) != _delta2->IN_HEAP) {
   1.907 -                  _delta2->push(vb, _blossom_set->classPrio(vb) -
   1.908 -                               (*_blossom_data)[vb].offset);
   1.909 -                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   1.910 -                           (*_blossom_data)[vb].offset){
   1.911 -                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   1.912 -                                   (*_blossom_data)[vb].offset);
   1.913 -                }
   1.914 -              }
   1.915 -            }
   1.916 -          }
   1.917 -        }
   1.918 -      }
   1.919 -      (*_blossom_data)[blossom].offset = 0;
   1.920 -    }
   1.921 -
   1.922 -    void matchedToOdd(int blossom) {
   1.923 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.924 -        _delta2->erase(blossom);
   1.925 -      }
   1.926 -      (*_blossom_data)[blossom].offset += _delta_sum;
   1.927 -      if (!_blossom_set->trivial(blossom)) {
   1.928 -        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
   1.929 -                     (*_blossom_data)[blossom].offset);
   1.930 -      }
   1.931 -    }
   1.932 -
   1.933 -    void evenToMatched(int blossom, int tree) {
   1.934 -      if (!_blossom_set->trivial(blossom)) {
   1.935 -        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
   1.936 -      }
   1.937 -
   1.938 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.939 -           n != INVALID; ++n) {
   1.940 -        int ni = (*_node_index)[n];
   1.941 -        (*_node_data)[ni].pot -= _delta_sum;
   1.942 -
   1.943 -        _delta1->erase(n);
   1.944 -
   1.945 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.946 -          Node v = _graph.source(e);
   1.947 -          int vb = _blossom_set->find(v);
   1.948 -          int vi = (*_node_index)[v];
   1.949 -
   1.950 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   1.951 -            dualScale * _weight[e];
   1.952 -
   1.953 -          if (vb == blossom) {
   1.954 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.955 -              _delta3->erase(e);
   1.956 -            }
   1.957 -          } else if ((*_blossom_data)[vb].status == EVEN) {
   1.958 -
   1.959 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.960 -              _delta3->erase(e);
   1.961 -            }
   1.962 -
   1.963 -            int vt = _tree_set->find(vb);
   1.964 -
   1.965 -            if (vt != tree) {
   1.966 -
   1.967 -              Arc r = _graph.oppositeArc(e);
   1.968 -
   1.969 -              typename std::map<int, Arc>::iterator it =
   1.970 -                (*_node_data)[ni].heap_index.find(vt);
   1.971 -
   1.972 -              if (it != (*_node_data)[ni].heap_index.end()) {
   1.973 -                if ((*_node_data)[ni].heap[it->second] > rw) {
   1.974 -                  (*_node_data)[ni].heap.replace(it->second, r);
   1.975 -                  (*_node_data)[ni].heap.decrease(r, rw);
   1.976 -                  it->second = r;
   1.977 -                }
   1.978 -              } else {
   1.979 -                (*_node_data)[ni].heap.push(r, rw);
   1.980 -                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
   1.981 -              }
   1.982 -
   1.983 -              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
   1.984 -                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
   1.985 -
   1.986 -                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
   1.987 -                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
   1.988 -                               (*_blossom_data)[blossom].offset);
   1.989 -                } else if ((*_delta2)[blossom] >
   1.990 -                           _blossom_set->classPrio(blossom) -
   1.991 -                           (*_blossom_data)[blossom].offset){
   1.992 -                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
   1.993 -                                   (*_blossom_data)[blossom].offset);
   1.994 -                }
   1.995 -              }
   1.996 -            }
   1.997 -
   1.998 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.999 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1000 -              _delta3->erase(e);
  1.1001 -            }
  1.1002 -          } else {
  1.1003 -
  1.1004 -            typename std::map<int, Arc>::iterator it =
  1.1005 -              (*_node_data)[vi].heap_index.find(tree);
  1.1006 -
  1.1007 -            if (it != (*_node_data)[vi].heap_index.end()) {
  1.1008 -              (*_node_data)[vi].heap.erase(it->second);
  1.1009 -              (*_node_data)[vi].heap_index.erase(it);
  1.1010 -              if ((*_node_data)[vi].heap.empty()) {
  1.1011 -                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  1.1012 -              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  1.1013 -                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  1.1014 -              }
  1.1015 -
  1.1016 -              if ((*_blossom_data)[vb].status == MATCHED) {
  1.1017 -                if (_blossom_set->classPrio(vb) ==
  1.1018 -                    std::numeric_limits<Value>::max()) {
  1.1019 -                  _delta2->erase(vb);
  1.1020 -                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  1.1021 -                           (*_blossom_data)[vb].offset) {
  1.1022 -                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  1.1023 -                                   (*_blossom_data)[vb].offset);
  1.1024 -                }
  1.1025 -              }
  1.1026 -            }
  1.1027 -          }
  1.1028 -        }
  1.1029 -      }
  1.1030 -    }
  1.1031 -
  1.1032 -    void oddToMatched(int blossom) {
  1.1033 -      (*_blossom_data)[blossom].offset -= _delta_sum;
  1.1034 -
  1.1035 -      if (_blossom_set->classPrio(blossom) !=
  1.1036 -          std::numeric_limits<Value>::max()) {
  1.1037 -        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1.1038 -                       (*_blossom_data)[blossom].offset);
  1.1039 -      }
  1.1040 -
  1.1041 -      if (!_blossom_set->trivial(blossom)) {
  1.1042 -        _delta4->erase(blossom);
  1.1043 -      }
  1.1044 -    }
  1.1045 -
  1.1046 -    void oddToEven(int blossom, int tree) {
  1.1047 -      if (!_blossom_set->trivial(blossom)) {
  1.1048 -        _delta4->erase(blossom);
  1.1049 -        (*_blossom_data)[blossom].pot -=
  1.1050 -          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  1.1051 -      }
  1.1052 -
  1.1053 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.1054 -           n != INVALID; ++n) {
  1.1055 -        int ni = (*_node_index)[n];
  1.1056 -
  1.1057 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.1058 -
  1.1059 -        (*_node_data)[ni].heap.clear();
  1.1060 -        (*_node_data)[ni].heap_index.clear();
  1.1061 -        (*_node_data)[ni].pot +=
  1.1062 -          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  1.1063 -
  1.1064 -        _delta1->push(n, (*_node_data)[ni].pot);
  1.1065 -
  1.1066 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.1067 -          Node v = _graph.source(e);
  1.1068 -          int vb = _blossom_set->find(v);
  1.1069 -          int vi = (*_node_index)[v];
  1.1070 -
  1.1071 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.1072 -            dualScale * _weight[e];
  1.1073 -
  1.1074 -          if ((*_blossom_data)[vb].status == EVEN) {
  1.1075 -            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1.1076 -              _delta3->push(e, rw / 2);
  1.1077 -            }
  1.1078 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  1.1079 -            if (_delta3->state(e) != _delta3->IN_HEAP) {
  1.1080 -              _delta3->push(e, rw);
  1.1081 -            }
  1.1082 -          } else {
  1.1083 -
  1.1084 -            typename std::map<int, Arc>::iterator it =
  1.1085 -              (*_node_data)[vi].heap_index.find(tree);
  1.1086 -
  1.1087 -            if (it != (*_node_data)[vi].heap_index.end()) {
  1.1088 -              if ((*_node_data)[vi].heap[it->second] > rw) {
  1.1089 -                (*_node_data)[vi].heap.replace(it->second, e);
  1.1090 -                (*_node_data)[vi].heap.decrease(e, rw);
  1.1091 -                it->second = e;
  1.1092 -              }
  1.1093 -            } else {
  1.1094 -              (*_node_data)[vi].heap.push(e, rw);
  1.1095 -              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1.1096 -            }
  1.1097 -
  1.1098 -            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1.1099 -              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1.1100 -
  1.1101 -              if ((*_blossom_data)[vb].status == MATCHED) {
  1.1102 -                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1.1103 -                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  1.1104 -                               (*_blossom_data)[vb].offset);
  1.1105 -                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  1.1106 -                           (*_blossom_data)[vb].offset) {
  1.1107 -                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1.1108 -                                   (*_blossom_data)[vb].offset);
  1.1109 -                }
  1.1110 -              }
  1.1111 -            }
  1.1112 -          }
  1.1113 -        }
  1.1114 -      }
  1.1115 -      (*_blossom_data)[blossom].offset = 0;
  1.1116 -    }
  1.1117 -
  1.1118 -
  1.1119 -    void matchedToUnmatched(int blossom) {
  1.1120 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.1121 -        _delta2->erase(blossom);
  1.1122 -      }
  1.1123 -
  1.1124 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.1125 -           n != INVALID; ++n) {
  1.1126 -        int ni = (*_node_index)[n];
  1.1127 -
  1.1128 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.1129 -
  1.1130 -        (*_node_data)[ni].heap.clear();
  1.1131 -        (*_node_data)[ni].heap_index.clear();
  1.1132 -
  1.1133 -        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  1.1134 -          Node v = _graph.target(e);
  1.1135 -          int vb = _blossom_set->find(v);
  1.1136 -          int vi = (*_node_index)[v];
  1.1137 -
  1.1138 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.1139 -            dualScale * _weight[e];
  1.1140 -
  1.1141 -          if ((*_blossom_data)[vb].status == EVEN) {
  1.1142 -            if (_delta3->state(e) != _delta3->IN_HEAP) {
  1.1143 -              _delta3->push(e, rw);
  1.1144 -            }
  1.1145 -          }
  1.1146 -        }
  1.1147 -      }
  1.1148 -    }
  1.1149 -
  1.1150 -    void unmatchedToMatched(int blossom) {
  1.1151 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.1152 -           n != INVALID; ++n) {
  1.1153 -        int ni = (*_node_index)[n];
  1.1154 -
  1.1155 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.1156 -          Node v = _graph.source(e);
  1.1157 -          int vb = _blossom_set->find(v);
  1.1158 -          int vi = (*_node_index)[v];
  1.1159 -
  1.1160 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.1161 -            dualScale * _weight[e];
  1.1162 -
  1.1163 -          if (vb == blossom) {
  1.1164 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1165 -              _delta3->erase(e);
  1.1166 -            }
  1.1167 -          } else if ((*_blossom_data)[vb].status == EVEN) {
  1.1168 -
  1.1169 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1170 -              _delta3->erase(e);
  1.1171 -            }
  1.1172 -
  1.1173 -            int vt = _tree_set->find(vb);
  1.1174 -
  1.1175 -            Arc r = _graph.oppositeArc(e);
  1.1176 -
  1.1177 -            typename std::map<int, Arc>::iterator it =
  1.1178 -              (*_node_data)[ni].heap_index.find(vt);
  1.1179 -
  1.1180 -            if (it != (*_node_data)[ni].heap_index.end()) {
  1.1181 -              if ((*_node_data)[ni].heap[it->second] > rw) {
  1.1182 -                (*_node_data)[ni].heap.replace(it->second, r);
  1.1183 -                (*_node_data)[ni].heap.decrease(r, rw);
  1.1184 -                it->second = r;
  1.1185 -              }
  1.1186 -            } else {
  1.1187 -              (*_node_data)[ni].heap.push(r, rw);
  1.1188 -              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  1.1189 -            }
  1.1190 -
  1.1191 -            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  1.1192 -              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1.1193 -
  1.1194 -              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  1.1195 -                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1.1196 -                             (*_blossom_data)[blossom].offset);
  1.1197 -              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
  1.1198 -                         (*_blossom_data)[blossom].offset){
  1.1199 -                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  1.1200 -                                 (*_blossom_data)[blossom].offset);
  1.1201 -              }
  1.1202 -            }
  1.1203 -
  1.1204 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  1.1205 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1206 -              _delta3->erase(e);
  1.1207 -            }
  1.1208 -          }
  1.1209 -        }
  1.1210 -      }
  1.1211 -    }
  1.1212 -
  1.1213 -    void alternatePath(int even, int tree) {
  1.1214 -      int odd;
  1.1215 -
  1.1216 -      evenToMatched(even, tree);
  1.1217 -      (*_blossom_data)[even].status = MATCHED;
  1.1218 -
  1.1219 -      while ((*_blossom_data)[even].pred != INVALID) {
  1.1220 -        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  1.1221 -        (*_blossom_data)[odd].status = MATCHED;
  1.1222 -        oddToMatched(odd);
  1.1223 -        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  1.1224 -
  1.1225 -        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  1.1226 -        (*_blossom_data)[even].status = MATCHED;
  1.1227 -        evenToMatched(even, tree);
  1.1228 -        (*_blossom_data)[even].next =
  1.1229 -          _graph.oppositeArc((*_blossom_data)[odd].pred);
  1.1230 -      }
  1.1231 -
  1.1232 -    }
  1.1233 -
  1.1234 -    void destroyTree(int tree) {
  1.1235 -      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  1.1236 -        if ((*_blossom_data)[b].status == EVEN) {
  1.1237 -          (*_blossom_data)[b].status = MATCHED;
  1.1238 -          evenToMatched(b, tree);
  1.1239 -        } else if ((*_blossom_data)[b].status == ODD) {
  1.1240 -          (*_blossom_data)[b].status = MATCHED;
  1.1241 -          oddToMatched(b);
  1.1242 -        }
  1.1243 -      }
  1.1244 -      _tree_set->eraseClass(tree);
  1.1245 -    }
  1.1246 -
  1.1247 -
  1.1248 -    void unmatchNode(const Node& node) {
  1.1249 -      int blossom = _blossom_set->find(node);
  1.1250 -      int tree = _tree_set->find(blossom);
  1.1251 -
  1.1252 -      alternatePath(blossom, tree);
  1.1253 -      destroyTree(tree);
  1.1254 -
  1.1255 -      (*_blossom_data)[blossom].status = UNMATCHED;
  1.1256 -      (*_blossom_data)[blossom].base = node;
  1.1257 -      matchedToUnmatched(blossom);
  1.1258 -    }
  1.1259 -
  1.1260 -
  1.1261 -    void augmentOnEdge(const Edge& edge) {
  1.1262 -
  1.1263 -      int left = _blossom_set->find(_graph.u(edge));
  1.1264 -      int right = _blossom_set->find(_graph.v(edge));
  1.1265 -
  1.1266 -      if ((*_blossom_data)[left].status == EVEN) {
  1.1267 -        int left_tree = _tree_set->find(left);
  1.1268 -        alternatePath(left, left_tree);
  1.1269 -        destroyTree(left_tree);
  1.1270 -      } else {
  1.1271 -        (*_blossom_data)[left].status = MATCHED;
  1.1272 -        unmatchedToMatched(left);
  1.1273 -      }
  1.1274 -
  1.1275 -      if ((*_blossom_data)[right].status == EVEN) {
  1.1276 -        int right_tree = _tree_set->find(right);
  1.1277 -        alternatePath(right, right_tree);
  1.1278 -        destroyTree(right_tree);
  1.1279 -      } else {
  1.1280 -        (*_blossom_data)[right].status = MATCHED;
  1.1281 -        unmatchedToMatched(right);
  1.1282 -      }
  1.1283 -
  1.1284 -      (*_blossom_data)[left].next = _graph.direct(edge, true);
  1.1285 -      (*_blossom_data)[right].next = _graph.direct(edge, false);
  1.1286 -    }
  1.1287 -
  1.1288 -    void extendOnArc(const Arc& arc) {
  1.1289 -      int base = _blossom_set->find(_graph.target(arc));
  1.1290 -      int tree = _tree_set->find(base);
  1.1291 -
  1.1292 -      int odd = _blossom_set->find(_graph.source(arc));
  1.1293 -      _tree_set->insert(odd, tree);
  1.1294 -      (*_blossom_data)[odd].status = ODD;
  1.1295 -      matchedToOdd(odd);
  1.1296 -      (*_blossom_data)[odd].pred = arc;
  1.1297 -
  1.1298 -      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  1.1299 -      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  1.1300 -      _tree_set->insert(even, tree);
  1.1301 -      (*_blossom_data)[even].status = EVEN;
  1.1302 -      matchedToEven(even, tree);
  1.1303 -    }
  1.1304 -
  1.1305 -    void shrinkOnEdge(const Edge& edge, int tree) {
  1.1306 -      int nca = -1;
  1.1307 -      std::vector<int> left_path, right_path;
  1.1308 -
  1.1309 -      {
  1.1310 -        std::set<int> left_set, right_set;
  1.1311 -        int left = _blossom_set->find(_graph.u(edge));
  1.1312 -        left_path.push_back(left);
  1.1313 -        left_set.insert(left);
  1.1314 -
  1.1315 -        int right = _blossom_set->find(_graph.v(edge));
  1.1316 -        right_path.push_back(right);
  1.1317 -        right_set.insert(right);
  1.1318 -
  1.1319 -        while (true) {
  1.1320 -
  1.1321 -          if ((*_blossom_data)[left].pred == INVALID) break;
  1.1322 -
  1.1323 -          left =
  1.1324 -            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1.1325 -          left_path.push_back(left);
  1.1326 -          left =
  1.1327 -            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1.1328 -          left_path.push_back(left);
  1.1329 -
  1.1330 -          left_set.insert(left);
  1.1331 -
  1.1332 -          if (right_set.find(left) != right_set.end()) {
  1.1333 -            nca = left;
  1.1334 -            break;
  1.1335 -          }
  1.1336 -
  1.1337 -          if ((*_blossom_data)[right].pred == INVALID) break;
  1.1338 -
  1.1339 -          right =
  1.1340 -            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1.1341 -          right_path.push_back(right);
  1.1342 -          right =
  1.1343 -            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1.1344 -          right_path.push_back(right);
  1.1345 -
  1.1346 -          right_set.insert(right);
  1.1347 -
  1.1348 -          if (left_set.find(right) != left_set.end()) {
  1.1349 -            nca = right;
  1.1350 -            break;
  1.1351 -          }
  1.1352 -
  1.1353 -        }
  1.1354 -
  1.1355 -        if (nca == -1) {
  1.1356 -          if ((*_blossom_data)[left].pred == INVALID) {
  1.1357 -            nca = right;
  1.1358 -            while (left_set.find(nca) == left_set.end()) {
  1.1359 -              nca =
  1.1360 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.1361 -              right_path.push_back(nca);
  1.1362 -              nca =
  1.1363 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.1364 -              right_path.push_back(nca);
  1.1365 -            }
  1.1366 -          } else {
  1.1367 -            nca = left;
  1.1368 -            while (right_set.find(nca) == right_set.end()) {
  1.1369 -              nca =
  1.1370 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.1371 -              left_path.push_back(nca);
  1.1372 -              nca =
  1.1373 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.1374 -              left_path.push_back(nca);
  1.1375 -            }
  1.1376 -          }
  1.1377 -        }
  1.1378 -      }
  1.1379 -
  1.1380 -      std::vector<int> subblossoms;
  1.1381 -      Arc prev;
  1.1382 -
  1.1383 -      prev = _graph.direct(edge, true);
  1.1384 -      for (int i = 0; left_path[i] != nca; i += 2) {
  1.1385 -        subblossoms.push_back(left_path[i]);
  1.1386 -        (*_blossom_data)[left_path[i]].next = prev;
  1.1387 -        _tree_set->erase(left_path[i]);
  1.1388 -
  1.1389 -        subblossoms.push_back(left_path[i + 1]);
  1.1390 -        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  1.1391 -        oddToEven(left_path[i + 1], tree);
  1.1392 -        _tree_set->erase(left_path[i + 1]);
  1.1393 -        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  1.1394 -      }
  1.1395 -
  1.1396 -      int k = 0;
  1.1397 -      while (right_path[k] != nca) ++k;
  1.1398 -
  1.1399 -      subblossoms.push_back(nca);
  1.1400 -      (*_blossom_data)[nca].next = prev;
  1.1401 -
  1.1402 -      for (int i = k - 2; i >= 0; i -= 2) {
  1.1403 -        subblossoms.push_back(right_path[i + 1]);
  1.1404 -        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  1.1405 -        oddToEven(right_path[i + 1], tree);
  1.1406 -        _tree_set->erase(right_path[i + 1]);
  1.1407 -
  1.1408 -        (*_blossom_data)[right_path[i + 1]].next =
  1.1409 -          (*_blossom_data)[right_path[i + 1]].pred;
  1.1410 -
  1.1411 -        subblossoms.push_back(right_path[i]);
  1.1412 -        _tree_set->erase(right_path[i]);
  1.1413 -      }
  1.1414 -
  1.1415 -      int surface =
  1.1416 -        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  1.1417 -
  1.1418 -      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.1419 -        if (!_blossom_set->trivial(subblossoms[i])) {
  1.1420 -          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  1.1421 -        }
  1.1422 -        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  1.1423 -      }
  1.1424 -
  1.1425 -      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  1.1426 -      (*_blossom_data)[surface].offset = 0;
  1.1427 -      (*_blossom_data)[surface].status = EVEN;
  1.1428 -      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  1.1429 -      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  1.1430 -
  1.1431 -      _tree_set->insert(surface, tree);
  1.1432 -      _tree_set->erase(nca);
  1.1433 -    }
  1.1434 -
  1.1435 -    void splitBlossom(int blossom) {
  1.1436 -      Arc next = (*_blossom_data)[blossom].next;
  1.1437 -      Arc pred = (*_blossom_data)[blossom].pred;
  1.1438 -
  1.1439 -      int tree = _tree_set->find(blossom);
  1.1440 -
  1.1441 -      (*_blossom_data)[blossom].status = MATCHED;
  1.1442 -      oddToMatched(blossom);
  1.1443 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.1444 -        _delta2->erase(blossom);
  1.1445 -      }
  1.1446 -
  1.1447 -      std::vector<int> subblossoms;
  1.1448 -      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.1449 -
  1.1450 -      Value offset = (*_blossom_data)[blossom].offset;
  1.1451 -      int b = _blossom_set->find(_graph.source(pred));
  1.1452 -      int d = _blossom_set->find(_graph.source(next));
  1.1453 -
  1.1454 -      int ib = -1, id = -1;
  1.1455 -      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.1456 -        if (subblossoms[i] == b) ib = i;
  1.1457 -        if (subblossoms[i] == d) id = i;
  1.1458 -
  1.1459 -        (*_blossom_data)[subblossoms[i]].offset = offset;
  1.1460 -        if (!_blossom_set->trivial(subblossoms[i])) {
  1.1461 -          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  1.1462 -        }
  1.1463 -        if (_blossom_set->classPrio(subblossoms[i]) !=
  1.1464 -            std::numeric_limits<Value>::max()) {
  1.1465 -          _delta2->push(subblossoms[i],
  1.1466 -                        _blossom_set->classPrio(subblossoms[i]) -
  1.1467 -                        (*_blossom_data)[subblossoms[i]].offset);
  1.1468 -        }
  1.1469 -      }
  1.1470 -
  1.1471 -      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  1.1472 -        for (int i = (id + 1) % subblossoms.size();
  1.1473 -             i != ib; i = (i + 2) % subblossoms.size()) {
  1.1474 -          int sb = subblossoms[i];
  1.1475 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.1476 -          (*_blossom_data)[sb].next =
  1.1477 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.1478 -        }
  1.1479 -
  1.1480 -        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  1.1481 -          int sb = subblossoms[i];
  1.1482 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.1483 -          int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.1484 -
  1.1485 -          (*_blossom_data)[sb].status = ODD;
  1.1486 -          matchedToOdd(sb);
  1.1487 -          _tree_set->insert(sb, tree);
  1.1488 -          (*_blossom_data)[sb].pred = pred;
  1.1489 -          (*_blossom_data)[sb].next =
  1.1490 -                           _graph.oppositeArc((*_blossom_data)[tb].next);
  1.1491 -
  1.1492 -          pred = (*_blossom_data)[ub].next;
  1.1493 -
  1.1494 -          (*_blossom_data)[tb].status = EVEN;
  1.1495 -          matchedToEven(tb, tree);
  1.1496 -          _tree_set->insert(tb, tree);
  1.1497 -          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  1.1498 -        }
  1.1499 -
  1.1500 -        (*_blossom_data)[subblossoms[id]].status = ODD;
  1.1501 -        matchedToOdd(subblossoms[id]);
  1.1502 -        _tree_set->insert(subblossoms[id], tree);
  1.1503 -        (*_blossom_data)[subblossoms[id]].next = next;
  1.1504 -        (*_blossom_data)[subblossoms[id]].pred = pred;
  1.1505 -
  1.1506 -      } else {
  1.1507 -
  1.1508 -        for (int i = (ib + 1) % subblossoms.size();
  1.1509 -             i != id; i = (i + 2) % subblossoms.size()) {
  1.1510 -          int sb = subblossoms[i];
  1.1511 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.1512 -          (*_blossom_data)[sb].next =
  1.1513 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.1514 -        }
  1.1515 -
  1.1516 -        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  1.1517 -          int sb = subblossoms[i];
  1.1518 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.1519 -          int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.1520 -
  1.1521 -          (*_blossom_data)[sb].status = ODD;
  1.1522 -          matchedToOdd(sb);
  1.1523 -          _tree_set->insert(sb, tree);
  1.1524 -          (*_blossom_data)[sb].next = next;
  1.1525 -          (*_blossom_data)[sb].pred =
  1.1526 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.1527 -
  1.1528 -          (*_blossom_data)[tb].status = EVEN;
  1.1529 -          matchedToEven(tb, tree);
  1.1530 -          _tree_set->insert(tb, tree);
  1.1531 -          (*_blossom_data)[tb].pred =
  1.1532 -            (*_blossom_data)[tb].next =
  1.1533 -            _graph.oppositeArc((*_blossom_data)[ub].next);
  1.1534 -          next = (*_blossom_data)[ub].next;
  1.1535 -        }
  1.1536 -
  1.1537 -        (*_blossom_data)[subblossoms[ib]].status = ODD;
  1.1538 -        matchedToOdd(subblossoms[ib]);
  1.1539 -        _tree_set->insert(subblossoms[ib], tree);
  1.1540 -        (*_blossom_data)[subblossoms[ib]].next = next;
  1.1541 -        (*_blossom_data)[subblossoms[ib]].pred = pred;
  1.1542 -      }
  1.1543 -      _tree_set->erase(blossom);
  1.1544 -    }
  1.1545 -
  1.1546 -    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  1.1547 -      if (_blossom_set->trivial(blossom)) {
  1.1548 -        int bi = (*_node_index)[base];
  1.1549 -        Value pot = (*_node_data)[bi].pot;
  1.1550 -
  1.1551 -        _matching->set(base, matching);
  1.1552 -        _blossom_node_list.push_back(base);
  1.1553 -        _node_potential->set(base, pot);
  1.1554 -      } else {
  1.1555 -
  1.1556 -        Value pot = (*_blossom_data)[blossom].pot;
  1.1557 -        int bn = _blossom_node_list.size();
  1.1558 -
  1.1559 -        std::vector<int> subblossoms;
  1.1560 -        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.1561 -        int b = _blossom_set->find(base);
  1.1562 -        int ib = -1;
  1.1563 -        for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.1564 -          if (subblossoms[i] == b) { ib = i; break; }
  1.1565 -        }
  1.1566 -
  1.1567 -        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  1.1568 -          int sb = subblossoms[(ib + i) % subblossoms.size()];
  1.1569 -          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  1.1570 -
  1.1571 -          Arc m = (*_blossom_data)[tb].next;
  1.1572 -          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  1.1573 -          extractBlossom(tb, _graph.source(m), m);
  1.1574 -        }
  1.1575 -        extractBlossom(subblossoms[ib], base, matching);
  1.1576 -
  1.1577 -        int en = _blossom_node_list.size();
  1.1578 -
  1.1579 -        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  1.1580 -      }
  1.1581 -    }
  1.1582 -
  1.1583 -    void extractMatching() {
  1.1584 -      std::vector<int> blossoms;
  1.1585 -      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  1.1586 -        blossoms.push_back(c);
  1.1587 -      }
  1.1588 -
  1.1589 -      for (int i = 0; i < int(blossoms.size()); ++i) {
  1.1590 -        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
  1.1591 -
  1.1592 -          Value offset = (*_blossom_data)[blossoms[i]].offset;
  1.1593 -          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  1.1594 -          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  1.1595 -               n != INVALID; ++n) {
  1.1596 -            (*_node_data)[(*_node_index)[n]].pot -= offset;
  1.1597 -          }
  1.1598 -
  1.1599 -          Arc matching = (*_blossom_data)[blossoms[i]].next;
  1.1600 -          Node base = _graph.source(matching);
  1.1601 -          extractBlossom(blossoms[i], base, matching);
  1.1602 -        } else {
  1.1603 -          Node base = (*_blossom_data)[blossoms[i]].base;
  1.1604 -          extractBlossom(blossoms[i], base, INVALID);
  1.1605 -        }
  1.1606 -      }
  1.1607 -    }
  1.1608 -
  1.1609 -  public:
  1.1610 -
  1.1611 -    /// \brief Constructor
  1.1612 -    ///
  1.1613 -    /// Constructor.
  1.1614 -    MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
  1.1615 -      : _graph(graph), _weight(weight), _matching(0),
  1.1616 -        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  1.1617 -        _node_num(0), _blossom_num(0),
  1.1618 -
  1.1619 -        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  1.1620 -        _node_index(0), _node_heap_index(0), _node_data(0),
  1.1621 -        _tree_set_index(0), _tree_set(0),
  1.1622 -
  1.1623 -        _delta1_index(0), _delta1(0),
  1.1624 -        _delta2_index(0), _delta2(0),
  1.1625 -        _delta3_index(0), _delta3(0),
  1.1626 -        _delta4_index(0), _delta4(0),
  1.1627 -
  1.1628 -        _delta_sum() {}
  1.1629 -
  1.1630 -    ~MaxWeightedMatching() {
  1.1631 -      destroyStructures();
  1.1632 -    }
  1.1633 -
  1.1634 -    /// \name Execution control
  1.1635 -    /// The simplest way to execute the algorithm is to use the
  1.1636 -    /// \c run() member function.
  1.1637 -
  1.1638 -    ///@{
  1.1639 -
  1.1640 -    /// \brief Initialize the algorithm
  1.1641 -    ///
  1.1642 -    /// Initialize the algorithm
  1.1643 -    void init() {
  1.1644 -      createStructures();
  1.1645 -
  1.1646 -      for (ArcIt e(_graph); e != INVALID; ++e) {
  1.1647 -        _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP);
  1.1648 -      }
  1.1649 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1650 -        _delta1_index->set(n, _delta1->PRE_HEAP);
  1.1651 -      }
  1.1652 -      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.1653 -        _delta3_index->set(e, _delta3->PRE_HEAP);
  1.1654 -      }
  1.1655 -      for (int i = 0; i < _blossom_num; ++i) {
  1.1656 -        _delta2_index->set(i, _delta2->PRE_HEAP);
  1.1657 -        _delta4_index->set(i, _delta4->PRE_HEAP);
  1.1658 -      }
  1.1659 -
  1.1660 -      int index = 0;
  1.1661 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1662 -        Value max = 0;
  1.1663 -        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  1.1664 -          if (_graph.target(e) == n) continue;
  1.1665 -          if ((dualScale * _weight[e]) / 2 > max) {
  1.1666 -            max = (dualScale * _weight[e]) / 2;
  1.1667 -          }
  1.1668 -        }
  1.1669 -        _node_index->set(n, index);
  1.1670 -        (*_node_data)[index].pot = max;
  1.1671 -        _delta1->push(n, max);
  1.1672 -        int blossom =
  1.1673 -          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1.1674 -
  1.1675 -        _tree_set->insert(blossom);
  1.1676 -
  1.1677 -        (*_blossom_data)[blossom].status = EVEN;
  1.1678 -        (*_blossom_data)[blossom].pred = INVALID;
  1.1679 -        (*_blossom_data)[blossom].next = INVALID;
  1.1680 -        (*_blossom_data)[blossom].pot = 0;
  1.1681 -        (*_blossom_data)[blossom].offset = 0;
  1.1682 -        ++index;
  1.1683 -      }
  1.1684 -      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.1685 -        int si = (*_node_index)[_graph.u(e)];
  1.1686 -        int ti = (*_node_index)[_graph.v(e)];
  1.1687 -        if (_graph.u(e) != _graph.v(e)) {
  1.1688 -          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  1.1689 -                            dualScale * _weight[e]) / 2);
  1.1690 -        }
  1.1691 -      }
  1.1692 -    }
  1.1693 -
  1.1694 -    /// \brief Starts the algorithm
  1.1695 -    ///
  1.1696 -    /// Starts the algorithm
  1.1697 -    void start() {
  1.1698 -      enum OpType {
  1.1699 -        D1, D2, D3, D4
  1.1700 -      };
  1.1701 -
  1.1702 -      int unmatched = _node_num;
  1.1703 -      while (unmatched > 0) {
  1.1704 -        Value d1 = !_delta1->empty() ?
  1.1705 -          _delta1->prio() : std::numeric_limits<Value>::max();
  1.1706 -
  1.1707 -        Value d2 = !_delta2->empty() ?
  1.1708 -          _delta2->prio() : std::numeric_limits<Value>::max();
  1.1709 -
  1.1710 -        Value d3 = !_delta3->empty() ?
  1.1711 -          _delta3->prio() : std::numeric_limits<Value>::max();
  1.1712 -
  1.1713 -        Value d4 = !_delta4->empty() ?
  1.1714 -          _delta4->prio() : std::numeric_limits<Value>::max();
  1.1715 -
  1.1716 -        _delta_sum = d1; OpType ot = D1;
  1.1717 -        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  1.1718 -        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  1.1719 -        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  1.1720 -
  1.1721 -
  1.1722 -        switch (ot) {
  1.1723 -        case D1:
  1.1724 -          {
  1.1725 -            Node n = _delta1->top();
  1.1726 -            unmatchNode(n);
  1.1727 -            --unmatched;
  1.1728 -          }
  1.1729 -          break;
  1.1730 -        case D2:
  1.1731 -          {
  1.1732 -            int blossom = _delta2->top();
  1.1733 -            Node n = _blossom_set->classTop(blossom);
  1.1734 -            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  1.1735 -            extendOnArc(e);
  1.1736 -          }
  1.1737 -          break;
  1.1738 -        case D3:
  1.1739 -          {
  1.1740 -            Edge e = _delta3->top();
  1.1741 -
  1.1742 -            int left_blossom = _blossom_set->find(_graph.u(e));
  1.1743 -            int right_blossom = _blossom_set->find(_graph.v(e));
  1.1744 -
  1.1745 -            if (left_blossom == right_blossom) {
  1.1746 -              _delta3->pop();
  1.1747 -            } else {
  1.1748 -              int left_tree;
  1.1749 -              if ((*_blossom_data)[left_blossom].status == EVEN) {
  1.1750 -                left_tree = _tree_set->find(left_blossom);
  1.1751 -              } else {
  1.1752 -                left_tree = -1;
  1.1753 -                ++unmatched;
  1.1754 -              }
  1.1755 -              int right_tree;
  1.1756 -              if ((*_blossom_data)[right_blossom].status == EVEN) {
  1.1757 -                right_tree = _tree_set->find(right_blossom);
  1.1758 -              } else {
  1.1759 -                right_tree = -1;
  1.1760 -                ++unmatched;
  1.1761 -              }
  1.1762 -
  1.1763 -              if (left_tree == right_tree) {
  1.1764 -                shrinkOnEdge(e, left_tree);
  1.1765 -              } else {
  1.1766 -                augmentOnEdge(e);
  1.1767 -                unmatched -= 2;
  1.1768 -              }
  1.1769 -            }
  1.1770 -          } break;
  1.1771 -        case D4:
  1.1772 -          splitBlossom(_delta4->top());
  1.1773 -          break;
  1.1774 -        }
  1.1775 -      }
  1.1776 -      extractMatching();
  1.1777 -    }
  1.1778 -
  1.1779 -    /// \brief Runs %MaxWeightedMatching algorithm.
  1.1780 -    ///
  1.1781 -    /// This method runs the %MaxWeightedMatching algorithm.
  1.1782 -    ///
  1.1783 -    /// \note mwm.run() is just a shortcut of the following code.
  1.1784 -    /// \code
  1.1785 -    ///   mwm.init();
  1.1786 -    ///   mwm.start();
  1.1787 -    /// \endcode
  1.1788 -    void run() {
  1.1789 -      init();
  1.1790 -      start();
  1.1791 -    }
  1.1792 -
  1.1793 -    /// @}
  1.1794 -
  1.1795 -    /// \name Primal solution
  1.1796 -    /// Functions to get the primal solution, ie. the matching.
  1.1797 -
  1.1798 -    /// @{
  1.1799 -
  1.1800 -    /// \brief Returns the weight of the matching.
  1.1801 -    ///
  1.1802 -    /// Returns the weight of the matching.
  1.1803 -    Value matchingValue() const {
  1.1804 -      Value sum = 0;
  1.1805 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1806 -        if ((*_matching)[n] != INVALID) {
  1.1807 -          sum += _weight[(*_matching)[n]];
  1.1808 -        }
  1.1809 -      }
  1.1810 -      return sum /= 2;
  1.1811 -    }
  1.1812 -
  1.1813 -    /// \brief Returns the cardinality of the matching.
  1.1814 -    ///
  1.1815 -    /// Returns the cardinality of the matching.
  1.1816 -    int matchingSize() const {
  1.1817 -      int num = 0;
  1.1818 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1819 -        if ((*_matching)[n] != INVALID) {
  1.1820 -          ++num;
  1.1821 -        }
  1.1822 -      }
  1.1823 -      return num /= 2;
  1.1824 -    }
  1.1825 -
  1.1826 -    /// \brief Returns true when the edge is in the matching.
  1.1827 -    ///
  1.1828 -    /// Returns true when the edge is in the matching.
  1.1829 -    bool matching(const Edge& edge) const {
  1.1830 -      return edge == (*_matching)[_graph.u(edge)];
  1.1831 -    }
  1.1832 -
  1.1833 -    /// \brief Returns the incident matching arc.
  1.1834 -    ///
  1.1835 -    /// Returns the incident matching arc from given node. If the
  1.1836 -    /// node is not matched then it gives back \c INVALID.
  1.1837 -    Arc matching(const Node& node) const {
  1.1838 -      return (*_matching)[node];
  1.1839 -    }
  1.1840 -
  1.1841 -    /// \brief Returns the mate of the node.
  1.1842 -    ///
  1.1843 -    /// Returns the adjancent node in a mathcing arc. If the node is
  1.1844 -    /// not matched then it gives back \c INVALID.
  1.1845 -    Node mate(const Node& node) const {
  1.1846 -      return (*_matching)[node] != INVALID ?
  1.1847 -        _graph.target((*_matching)[node]) : INVALID;
  1.1848 -    }
  1.1849 -
  1.1850 -    /// @}
  1.1851 -
  1.1852 -    /// \name Dual solution
  1.1853 -    /// Functions to get the dual solution.
  1.1854 -
  1.1855 -    /// @{
  1.1856 -
  1.1857 -    /// \brief Returns the value of the dual solution.
  1.1858 -    ///
  1.1859 -    /// Returns the value of the dual solution. It should be equal to
  1.1860 -    /// the primal value scaled by \ref dualScale "dual scale".
  1.1861 -    Value dualValue() const {
  1.1862 -      Value sum = 0;
  1.1863 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1864 -        sum += nodeValue(n);
  1.1865 -      }
  1.1866 -      for (int i = 0; i < blossomNum(); ++i) {
  1.1867 -        sum += blossomValue(i) * (blossomSize(i) / 2);
  1.1868 -      }
  1.1869 -      return sum;
  1.1870 -    }
  1.1871 -
  1.1872 -    /// \brief Returns the value of the node.
  1.1873 -    ///
  1.1874 -    /// Returns the the value of the node.
  1.1875 -    Value nodeValue(const Node& n) const {
  1.1876 -      return (*_node_potential)[n];
  1.1877 -    }
  1.1878 -
  1.1879 -    /// \brief Returns the number of the blossoms in the basis.
  1.1880 -    ///
  1.1881 -    /// Returns the number of the blossoms in the basis.
  1.1882 -    /// \see BlossomIt
  1.1883 -    int blossomNum() const {
  1.1884 -      return _blossom_potential.size();
  1.1885 -    }
  1.1886 -
  1.1887 -
  1.1888 -    /// \brief Returns the number of the nodes in the blossom.
  1.1889 -    ///
  1.1890 -    /// Returns the number of the nodes in the blossom.
  1.1891 -    int blossomSize(int k) const {
  1.1892 -      return _blossom_potential[k].end - _blossom_potential[k].begin;
  1.1893 -    }
  1.1894 -
  1.1895 -    /// \brief Returns the value of the blossom.
  1.1896 -    ///
  1.1897 -    /// Returns the the value of the blossom.
  1.1898 -    /// \see BlossomIt
  1.1899 -    Value blossomValue(int k) const {
  1.1900 -      return _blossom_potential[k].value;
  1.1901 -    }
  1.1902 -
  1.1903 -    /// \brief Iterator for obtaining the nodes of the blossom.
  1.1904 -    ///
  1.1905 -    /// Iterator for obtaining the nodes of the blossom. This class
  1.1906 -    /// provides a common lemon style iterator for listing a
  1.1907 -    /// subset of the nodes.
  1.1908 -    class BlossomIt {
  1.1909 -    public:
  1.1910 -
  1.1911 -      /// \brief Constructor.
  1.1912 -      ///
  1.1913 -      /// Constructor to get the nodes of the variable.
  1.1914 -      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
  1.1915 -        : _algorithm(&algorithm)
  1.1916 -      {
  1.1917 -        _index = _algorithm->_blossom_potential[variable].begin;
  1.1918 -        _last = _algorithm->_blossom_potential[variable].end;
  1.1919 -      }
  1.1920 -
  1.1921 -      /// \brief Conversion to node.
  1.1922 -      ///
  1.1923 -      /// Conversion to node.
  1.1924 -      operator Node() const {
  1.1925 -        return _algorithm->_blossom_node_list[_index];
  1.1926 -      }
  1.1927 -
  1.1928 -      /// \brief Increment operator.
  1.1929 -      ///
  1.1930 -      /// Increment operator.
  1.1931 -      BlossomIt& operator++() {
  1.1932 -        ++_index;
  1.1933 -        return *this;
  1.1934 -      }
  1.1935 -
  1.1936 -      /// \brief Validity checking
  1.1937 -      ///
  1.1938 -      /// Checks whether the iterator is invalid.
  1.1939 -      bool operator==(Invalid) const { return _index == _last; }
  1.1940 -
  1.1941 -      /// \brief Validity checking
  1.1942 -      ///
  1.1943 -      /// Checks whether the iterator is valid.
  1.1944 -      bool operator!=(Invalid) const { return _index != _last; }
  1.1945 -
  1.1946 -    private:
  1.1947 -      const MaxWeightedMatching* _algorithm;
  1.1948 -      int _last;
  1.1949 -      int _index;
  1.1950 -    };
  1.1951 -
  1.1952 -    /// @}
  1.1953 -
  1.1954 -  };
  1.1955 -
  1.1956 -  /// \ingroup matching
  1.1957 -  ///
  1.1958 -  /// \brief Weighted perfect matching in general graphs
  1.1959 -  ///
  1.1960 -  /// This class provides an efficient implementation of Edmond's
  1.1961 -  /// maximum weighted perfect matching algorithm. The implementation
  1.1962 -  /// is based on extensive use of priority queues and provides
  1.1963 -  /// \f$O(nm\log(n))\f$ time complexity.
  1.1964 -  ///
  1.1965 -  /// The maximum weighted matching problem is to find undirected
  1.1966 -  /// edges in the graph with maximum overall weight and no two of
  1.1967 -  /// them shares their ends and covers all nodes. The problem can be
  1.1968 -  /// formulated with the following linear program.
  1.1969 -  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  1.1970 -  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
  1.1971 -      \quad \forall B\in\mathcal{O}\f] */
  1.1972 -  /// \f[x_e \ge 0\quad \forall e\in E\f]
  1.1973 -  /// \f[\max \sum_{e\in E}x_ew_e\f]
  1.1974 -  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
  1.1975 -  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
  1.1976 -  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
  1.1977 -  /// subsets of the nodes.
  1.1978 -  ///
  1.1979 -  /// The algorithm calculates an optimal matching and a proof of the
  1.1980 -  /// optimality. The solution of the dual problem can be used to check
  1.1981 -  /// the result of the algorithm. The dual linear problem is the
  1.1982 -  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
  1.1983 -      w_{uv} \quad \forall uv\in E\f] */
  1.1984 -  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  1.1985 -  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
  1.1986 -      \frac{\vert B \vert - 1}{2}z_B\f] */
  1.1987 -  ///
  1.1988 -  /// The algorithm can be executed with \c run() or the \c init() and
  1.1989 -  /// then the \c start() member functions. After it the matching can
  1.1990 -  /// be asked with \c matching() or mate() functions. The dual
  1.1991 -  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
  1.1992 -  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
  1.1993 -  /// "BlossomIt" nested class which is able to iterate on the nodes
  1.1994 -  /// of a blossom. If the value type is integral then the dual
  1.1995 -  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
  1.1996 -  template <typename _Graph,
  1.1997 -            typename _WeightMap = typename _Graph::template EdgeMap<int> >
  1.1998 -  class MaxWeightedPerfectMatching {
  1.1999 -  public:
  1.2000 -
  1.2001 -    typedef _Graph Graph;
  1.2002 -    typedef _WeightMap WeightMap;
  1.2003 -    typedef typename WeightMap::Value Value;
  1.2004 -
  1.2005 -    /// \brief Scaling factor for dual solution
  1.2006 -    ///
  1.2007 -    /// Scaling factor for dual solution, it is equal to 4 or 1
  1.2008 -    /// according to the value type.
  1.2009 -    static const int dualScale =
  1.2010 -      std::numeric_limits<Value>::is_integer ? 4 : 1;
  1.2011 -
  1.2012 -    typedef typename Graph::template NodeMap<typename Graph::Arc>
  1.2013 -    MatchingMap;
  1.2014 -
  1.2015 -  private:
  1.2016 -
  1.2017 -    TEMPLATE_GRAPH_TYPEDEFS(Graph);
  1.2018 -
  1.2019 -    typedef typename Graph::template NodeMap<Value> NodePotential;
  1.2020 -    typedef std::vector<Node> BlossomNodeList;
  1.2021 -
  1.2022 -    struct BlossomVariable {
  1.2023 -      int begin, end;
  1.2024 -      Value value;
  1.2025 -
  1.2026 -      BlossomVariable(int _begin, int _end, Value _value)
  1.2027 -        : begin(_begin), end(_end), value(_value) {}
  1.2028 -
  1.2029 -    };
  1.2030 -
  1.2031 -    typedef std::vector<BlossomVariable> BlossomPotential;
  1.2032 -
  1.2033 -    const Graph& _graph;
  1.2034 -    const WeightMap& _weight;
  1.2035 -
  1.2036 -    MatchingMap* _matching;
  1.2037 -
  1.2038 -    NodePotential* _node_potential;
  1.2039 -
  1.2040 -    BlossomPotential _blossom_potential;
  1.2041 -    BlossomNodeList _blossom_node_list;
  1.2042 -
  1.2043 -    int _node_num;
  1.2044 -    int _blossom_num;
  1.2045 -
  1.2046 -    typedef RangeMap<int> IntIntMap;
  1.2047 -
  1.2048 -    enum Status {
  1.2049 -      EVEN = -1, MATCHED = 0, ODD = 1
  1.2050 -    };
  1.2051 -
  1.2052 -    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
  1.2053 -    struct BlossomData {
  1.2054 -      int tree;
  1.2055 -      Status status;
  1.2056 -      Arc pred, next;
  1.2057 -      Value pot, offset;
  1.2058 -    };
  1.2059 -
  1.2060 -    IntNodeMap *_blossom_index;
  1.2061 -    BlossomSet *_blossom_set;
  1.2062 -    RangeMap<BlossomData>* _blossom_data;
  1.2063 -
  1.2064 -    IntNodeMap *_node_index;
  1.2065 -    IntArcMap *_node_heap_index;
  1.2066 -
  1.2067 -    struct NodeData {
  1.2068 -
  1.2069 -      NodeData(IntArcMap& node_heap_index)
  1.2070 -        : heap(node_heap_index) {}
  1.2071 -
  1.2072 -      int blossom;
  1.2073 -      Value pot;
  1.2074 -      BinHeap<Value, IntArcMap> heap;
  1.2075 -      std::map<int, Arc> heap_index;
  1.2076 -
  1.2077 -      int tree;
  1.2078 -    };
  1.2079 -
  1.2080 -    RangeMap<NodeData>* _node_data;
  1.2081 -
  1.2082 -    typedef ExtendFindEnum<IntIntMap> TreeSet;
  1.2083 -
  1.2084 -    IntIntMap *_tree_set_index;
  1.2085 -    TreeSet *_tree_set;
  1.2086 -
  1.2087 -    IntIntMap *_delta2_index;
  1.2088 -    BinHeap<Value, IntIntMap> *_delta2;
  1.2089 -
  1.2090 -    IntEdgeMap *_delta3_index;
  1.2091 -    BinHeap<Value, IntEdgeMap> *_delta3;
  1.2092 -
  1.2093 -    IntIntMap *_delta4_index;
  1.2094 -    BinHeap<Value, IntIntMap> *_delta4;
  1.2095 -
  1.2096 -    Value _delta_sum;
  1.2097 -
  1.2098 -    void createStructures() {
  1.2099 -      _node_num = countNodes(_graph);
  1.2100 -      _blossom_num = _node_num * 3 / 2;
  1.2101 -
  1.2102 -      if (!_matching) {
  1.2103 -        _matching = new MatchingMap(_graph);
  1.2104 -      }
  1.2105 -      if (!_node_potential) {
  1.2106 -        _node_potential = new NodePotential(_graph);
  1.2107 -      }
  1.2108 -      if (!_blossom_set) {
  1.2109 -        _blossom_index = new IntNodeMap(_graph);
  1.2110 -        _blossom_set = new BlossomSet(*_blossom_index);
  1.2111 -        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
  1.2112 -      }
  1.2113 -
  1.2114 -      if (!_node_index) {
  1.2115 -        _node_index = new IntNodeMap(_graph);
  1.2116 -        _node_heap_index = new IntArcMap(_graph);
  1.2117 -        _node_data = new RangeMap<NodeData>(_node_num,
  1.2118 -                                            NodeData(*_node_heap_index));
  1.2119 -      }
  1.2120 -
  1.2121 -      if (!_tree_set) {
  1.2122 -        _tree_set_index = new IntIntMap(_blossom_num);
  1.2123 -        _tree_set = new TreeSet(*_tree_set_index);
  1.2124 -      }
  1.2125 -      if (!_delta2) {
  1.2126 -        _delta2_index = new IntIntMap(_blossom_num);
  1.2127 -        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
  1.2128 -      }
  1.2129 -      if (!_delta3) {
  1.2130 -        _delta3_index = new IntEdgeMap(_graph);
  1.2131 -        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
  1.2132 -      }
  1.2133 -      if (!_delta4) {
  1.2134 -        _delta4_index = new IntIntMap(_blossom_num);
  1.2135 -        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
  1.2136 -      }
  1.2137 -    }
  1.2138 -
  1.2139 -    void destroyStructures() {
  1.2140 -      _node_num = countNodes(_graph);
  1.2141 -      _blossom_num = _node_num * 3 / 2;
  1.2142 -
  1.2143 -      if (_matching) {
  1.2144 -        delete _matching;
  1.2145 -      }
  1.2146 -      if (_node_potential) {
  1.2147 -        delete _node_potential;
  1.2148 -      }
  1.2149 -      if (_blossom_set) {
  1.2150 -        delete _blossom_index;
  1.2151 -        delete _blossom_set;
  1.2152 -        delete _blossom_data;
  1.2153 -      }
  1.2154 -
  1.2155 -      if (_node_index) {
  1.2156 -        delete _node_index;
  1.2157 -        delete _node_heap_index;
  1.2158 -        delete _node_data;
  1.2159 -      }
  1.2160 -
  1.2161 -      if (_tree_set) {
  1.2162 -        delete _tree_set_index;
  1.2163 -        delete _tree_set;
  1.2164 -      }
  1.2165 -      if (_delta2) {
  1.2166 -        delete _delta2_index;
  1.2167 -        delete _delta2;
  1.2168 -      }
  1.2169 -      if (_delta3) {
  1.2170 -        delete _delta3_index;
  1.2171 -        delete _delta3;
  1.2172 -      }
  1.2173 -      if (_delta4) {
  1.2174 -        delete _delta4_index;
  1.2175 -        delete _delta4;
  1.2176 -      }
  1.2177 -    }
  1.2178 -
  1.2179 -    void matchedToEven(int blossom, int tree) {
  1.2180 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.2181 -        _delta2->erase(blossom);
  1.2182 -      }
  1.2183 -
  1.2184 -      if (!_blossom_set->trivial(blossom)) {
  1.2185 -        (*_blossom_data)[blossom].pot -=
  1.2186 -          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
  1.2187 -      }
  1.2188 -
  1.2189 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.2190 -           n != INVALID; ++n) {
  1.2191 -
  1.2192 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.2193 -        int ni = (*_node_index)[n];
  1.2194 -
  1.2195 -        (*_node_data)[ni].heap.clear();
  1.2196 -        (*_node_data)[ni].heap_index.clear();
  1.2197 -
  1.2198 -        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
  1.2199 -
  1.2200 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.2201 -          Node v = _graph.source(e);
  1.2202 -          int vb = _blossom_set->find(v);
  1.2203 -          int vi = (*_node_index)[v];
  1.2204 -
  1.2205 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.2206 -            dualScale * _weight[e];
  1.2207 -
  1.2208 -          if ((*_blossom_data)[vb].status == EVEN) {
  1.2209 -            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1.2210 -              _delta3->push(e, rw / 2);
  1.2211 -            }
  1.2212 -          } else {
  1.2213 -            typename std::map<int, Arc>::iterator it =
  1.2214 -              (*_node_data)[vi].heap_index.find(tree);
  1.2215 -
  1.2216 -            if (it != (*_node_data)[vi].heap_index.end()) {
  1.2217 -              if ((*_node_data)[vi].heap[it->second] > rw) {
  1.2218 -                (*_node_data)[vi].heap.replace(it->second, e);
  1.2219 -                (*_node_data)[vi].heap.decrease(e, rw);
  1.2220 -                it->second = e;
  1.2221 -              }
  1.2222 -            } else {
  1.2223 -              (*_node_data)[vi].heap.push(e, rw);
  1.2224 -              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1.2225 -            }
  1.2226 -
  1.2227 -            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1.2228 -              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1.2229 -
  1.2230 -              if ((*_blossom_data)[vb].status == MATCHED) {
  1.2231 -                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1.2232 -                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  1.2233 -                               (*_blossom_data)[vb].offset);
  1.2234 -                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  1.2235 -                           (*_blossom_data)[vb].offset){
  1.2236 -                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1.2237 -                                   (*_blossom_data)[vb].offset);
  1.2238 -                }
  1.2239 -              }
  1.2240 -            }
  1.2241 -          }
  1.2242 -        }
  1.2243 -      }
  1.2244 -      (*_blossom_data)[blossom].offset = 0;
  1.2245 -    }
  1.2246 -
  1.2247 -    void matchedToOdd(int blossom) {
  1.2248 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.2249 -        _delta2->erase(blossom);
  1.2250 -      }
  1.2251 -      (*_blossom_data)[blossom].offset += _delta_sum;
  1.2252 -      if (!_blossom_set->trivial(blossom)) {
  1.2253 -        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
  1.2254 -                     (*_blossom_data)[blossom].offset);
  1.2255 -      }
  1.2256 -    }
  1.2257 -
  1.2258 -    void evenToMatched(int blossom, int tree) {
  1.2259 -      if (!_blossom_set->trivial(blossom)) {
  1.2260 -        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
  1.2261 -      }
  1.2262 -
  1.2263 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.2264 -           n != INVALID; ++n) {
  1.2265 -        int ni = (*_node_index)[n];
  1.2266 -        (*_node_data)[ni].pot -= _delta_sum;
  1.2267 -
  1.2268 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.2269 -          Node v = _graph.source(e);
  1.2270 -          int vb = _blossom_set->find(v);
  1.2271 -          int vi = (*_node_index)[v];
  1.2272 -
  1.2273 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.2274 -            dualScale * _weight[e];
  1.2275 -
  1.2276 -          if (vb == blossom) {
  1.2277 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.2278 -              _delta3->erase(e);
  1.2279 -            }
  1.2280 -          } else if ((*_blossom_data)[vb].status == EVEN) {
  1.2281 -
  1.2282 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.2283 -              _delta3->erase(e);
  1.2284 -            }
  1.2285 -
  1.2286 -            int vt = _tree_set->find(vb);
  1.2287 -
  1.2288 -            if (vt != tree) {
  1.2289 -
  1.2290 -              Arc r = _graph.oppositeArc(e);
  1.2291 -
  1.2292 -              typename std::map<int, Arc>::iterator it =
  1.2293 -                (*_node_data)[ni].heap_index.find(vt);
  1.2294 -
  1.2295 -              if (it != (*_node_data)[ni].heap_index.end()) {
  1.2296 -                if ((*_node_data)[ni].heap[it->second] > rw) {
  1.2297 -                  (*_node_data)[ni].heap.replace(it->second, r);
  1.2298 -                  (*_node_data)[ni].heap.decrease(r, rw);
  1.2299 -                  it->second = r;
  1.2300 -                }
  1.2301 -              } else {
  1.2302 -                (*_node_data)[ni].heap.push(r, rw);
  1.2303 -                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  1.2304 -              }
  1.2305 -
  1.2306 -              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  1.2307 -                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1.2308 -
  1.2309 -                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  1.2310 -                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1.2311 -                               (*_blossom_data)[blossom].offset);
  1.2312 -                } else if ((*_delta2)[blossom] >
  1.2313 -                           _blossom_set->classPrio(blossom) -
  1.2314 -                           (*_blossom_data)[blossom].offset){
  1.2315 -                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  1.2316 -                                   (*_blossom_data)[blossom].offset);
  1.2317 -                }
  1.2318 -              }
  1.2319 -            }
  1.2320 -          } else {
  1.2321 -
  1.2322 -            typename std::map<int, Arc>::iterator it =
  1.2323 -              (*_node_data)[vi].heap_index.find(tree);
  1.2324 -
  1.2325 -            if (it != (*_node_data)[vi].heap_index.end()) {
  1.2326 -              (*_node_data)[vi].heap.erase(it->second);
  1.2327 -              (*_node_data)[vi].heap_index.erase(it);
  1.2328 -              if ((*_node_data)[vi].heap.empty()) {
  1.2329 -                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  1.2330 -              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  1.2331 -                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  1.2332 -              }
  1.2333 -
  1.2334 -              if ((*_blossom_data)[vb].status == MATCHED) {
  1.2335 -                if (_blossom_set->classPrio(vb) ==
  1.2336 -                    std::numeric_limits<Value>::max()) {
  1.2337 -                  _delta2->erase(vb);
  1.2338 -                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  1.2339 -                           (*_blossom_data)[vb].offset) {
  1.2340 -                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  1.2341 -                                   (*_blossom_data)[vb].offset);
  1.2342 -                }
  1.2343 -              }
  1.2344 -            }
  1.2345 -          }
  1.2346 -        }
  1.2347 -      }
  1.2348 -    }
  1.2349 -
  1.2350 -    void oddToMatched(int blossom) {
  1.2351 -      (*_blossom_data)[blossom].offset -= _delta_sum;
  1.2352 -
  1.2353 -      if (_blossom_set->classPrio(blossom) !=
  1.2354 -          std::numeric_limits<Value>::max()) {
  1.2355 -        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1.2356 -                       (*_blossom_data)[blossom].offset);
  1.2357 -      }
  1.2358 -
  1.2359 -      if (!_blossom_set->trivial(blossom)) {
  1.2360 -        _delta4->erase(blossom);
  1.2361 -      }
  1.2362 -    }
  1.2363 -
  1.2364 -    void oddToEven(int blossom, int tree) {
  1.2365 -      if (!_blossom_set->trivial(blossom)) {
  1.2366 -        _delta4->erase(blossom);
  1.2367 -        (*_blossom_data)[blossom].pot -=
  1.2368 -          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  1.2369 -      }
  1.2370 -
  1.2371 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.2372 -           n != INVALID; ++n) {
  1.2373 -        int ni = (*_node_index)[n];
  1.2374 -
  1.2375 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.2376 -
  1.2377 -        (*_node_data)[ni].heap.clear();
  1.2378 -        (*_node_data)[ni].heap_index.clear();
  1.2379 -        (*_node_data)[ni].pot +=
  1.2380 -          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  1.2381 -
  1.2382 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.2383 -          Node v = _graph.source(e);
  1.2384 -          int vb = _blossom_set->find(v);
  1.2385 -          int vi = (*_node_index)[v];
  1.2386 -
  1.2387 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.2388 -            dualScale * _weight[e];
  1.2389 -
  1.2390 -          if ((*_blossom_data)[vb].status == EVEN) {
  1.2391 -            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1.2392 -              _delta3->push(e, rw / 2);
  1.2393 -            }
  1.2394 -          } else {
  1.2395 -
  1.2396 -            typename std::map<int, Arc>::iterator it =
  1.2397 -              (*_node_data)[vi].heap_index.find(tree);
  1.2398 -
  1.2399 -            if (it != (*_node_data)[vi].heap_index.end()) {
  1.2400 -              if ((*_node_data)[vi].heap[it->second] > rw) {
  1.2401 -                (*_node_data)[vi].heap.replace(it->second, e);
  1.2402 -                (*_node_data)[vi].heap.decrease(e, rw);
  1.2403 -                it->second = e;
  1.2404 -              }
  1.2405 -            } else {
  1.2406 -              (*_node_data)[vi].heap.push(e, rw);
  1.2407 -              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1.2408 -            }
  1.2409 -
  1.2410 -            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1.2411 -              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1.2412 -
  1.2413 -              if ((*_blossom_data)[vb].status == MATCHED) {
  1.2414 -                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1.2415 -                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  1.2416 -                               (*_blossom_data)[vb].offset);
  1.2417 -                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  1.2418 -                           (*_blossom_data)[vb].offset) {
  1.2419 -                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1.2420 -                                   (*_blossom_data)[vb].offset);
  1.2421 -                }
  1.2422 -              }
  1.2423 -            }
  1.2424 -          }
  1.2425 -        }
  1.2426 -      }
  1.2427 -      (*_blossom_data)[blossom].offset = 0;
  1.2428 -    }
  1.2429 -
  1.2430 -    void alternatePath(int even, int tree) {
  1.2431 -      int odd;
  1.2432 -
  1.2433 -      evenToMatched(even, tree);
  1.2434 -      (*_blossom_data)[even].status = MATCHED;
  1.2435 -
  1.2436 -      while ((*_blossom_data)[even].pred != INVALID) {
  1.2437 -        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  1.2438 -        (*_blossom_data)[odd].status = MATCHED;
  1.2439 -        oddToMatched(odd);
  1.2440 -        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  1.2441 -
  1.2442 -        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  1.2443 -        (*_blossom_data)[even].status = MATCHED;
  1.2444 -        evenToMatched(even, tree);
  1.2445 -        (*_blossom_data)[even].next =
  1.2446 -          _graph.oppositeArc((*_blossom_data)[odd].pred);
  1.2447 -      }
  1.2448 -
  1.2449 -    }
  1.2450 -
  1.2451 -    void destroyTree(int tree) {
  1.2452 -      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  1.2453 -        if ((*_blossom_data)[b].status == EVEN) {
  1.2454 -          (*_blossom_data)[b].status = MATCHED;
  1.2455 -          evenToMatched(b, tree);
  1.2456 -        } else if ((*_blossom_data)[b].status == ODD) {
  1.2457 -          (*_blossom_data)[b].status = MATCHED;
  1.2458 -          oddToMatched(b);
  1.2459 -        }
  1.2460 -      }
  1.2461 -      _tree_set->eraseClass(tree);
  1.2462 -    }
  1.2463 -
  1.2464 -    void augmentOnEdge(const Edge& edge) {
  1.2465 -
  1.2466 -      int left = _blossom_set->find(_graph.u(edge));
  1.2467 -      int right = _blossom_set->find(_graph.v(edge));
  1.2468 -
  1.2469 -      int left_tree = _tree_set->find(left);
  1.2470 -      alternatePath(left, left_tree);
  1.2471 -      destroyTree(left_tree);
  1.2472 -
  1.2473 -      int right_tree = _tree_set->find(right);
  1.2474 -      alternatePath(right, right_tree);
  1.2475 -      destroyTree(right_tree);
  1.2476 -
  1.2477 -      (*_blossom_data)[left].next = _graph.direct(edge, true);
  1.2478 -      (*_blossom_data)[right].next = _graph.direct(edge, false);
  1.2479 -    }
  1.2480 -
  1.2481 -    void extendOnArc(const Arc& arc) {
  1.2482 -      int base = _blossom_set->find(_graph.target(arc));
  1.2483 -      int tree = _tree_set->find(base);
  1.2484 -
  1.2485 -      int odd = _blossom_set->find(_graph.source(arc));
  1.2486 -      _tree_set->insert(odd, tree);
  1.2487 -      (*_blossom_data)[odd].status = ODD;
  1.2488 -      matchedToOdd(odd);
  1.2489 -      (*_blossom_data)[odd].pred = arc;
  1.2490 -
  1.2491 -      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  1.2492 -      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  1.2493 -      _tree_set->insert(even, tree);
  1.2494 -      (*_blossom_data)[even].status = EVEN;
  1.2495 -      matchedToEven(even, tree);
  1.2496 -    }
  1.2497 -
  1.2498 -    void shrinkOnEdge(const Edge& edge, int tree) {
  1.2499 -      int nca = -1;
  1.2500 -      std::vector<int> left_path, right_path;
  1.2501 -
  1.2502 -      {
  1.2503 -        std::set<int> left_set, right_set;
  1.2504 -        int left = _blossom_set->find(_graph.u(edge));
  1.2505 -        left_path.push_back(left);
  1.2506 -        left_set.insert(left);
  1.2507 -
  1.2508 -        int right = _blossom_set->find(_graph.v(edge));
  1.2509 -        right_path.push_back(right);
  1.2510 -        right_set.insert(right);
  1.2511 -
  1.2512 -        while (true) {
  1.2513 -
  1.2514 -          if ((*_blossom_data)[left].pred == INVALID) break;
  1.2515 -
  1.2516 -          left =
  1.2517 -            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1.2518 -          left_path.push_back(left);
  1.2519 -          left =
  1.2520 -            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1.2521 -          left_path.push_back(left);
  1.2522 -
  1.2523 -          left_set.insert(left);
  1.2524 -
  1.2525 -          if (right_set.find(left) != right_set.end()) {
  1.2526 -            nca = left;
  1.2527 -            break;
  1.2528 -          }
  1.2529 -
  1.2530 -          if ((*_blossom_data)[right].pred == INVALID) break;
  1.2531 -
  1.2532 -          right =
  1.2533 -            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1.2534 -          right_path.push_back(right);
  1.2535 -          right =
  1.2536 -            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1.2537 -          right_path.push_back(right);
  1.2538 -
  1.2539 -          right_set.insert(right);
  1.2540 -
  1.2541 -          if (left_set.find(right) != left_set.end()) {
  1.2542 -            nca = right;
  1.2543 -            break;
  1.2544 -          }
  1.2545 -
  1.2546 -        }
  1.2547 -
  1.2548 -        if (nca == -1) {
  1.2549 -          if ((*_blossom_data)[left].pred == INVALID) {
  1.2550 -            nca = right;
  1.2551 -            while (left_set.find(nca) == left_set.end()) {
  1.2552 -              nca =
  1.2553 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.2554 -              right_path.push_back(nca);
  1.2555 -              nca =
  1.2556 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.2557 -              right_path.push_back(nca);
  1.2558 -            }
  1.2559 -          } else {
  1.2560 -            nca = left;
  1.2561 -            while (right_set.find(nca) == right_set.end()) {
  1.2562 -              nca =
  1.2563 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.2564 -              left_path.push_back(nca);
  1.2565 -              nca =
  1.2566 -                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.2567 -              left_path.push_back(nca);
  1.2568 -            }
  1.2569 -          }
  1.2570 -        }
  1.2571 -      }
  1.2572 -
  1.2573 -      std::vector<int> subblossoms;
  1.2574 -      Arc prev;
  1.2575 -
  1.2576 -      prev = _graph.direct(edge, true);
  1.2577 -      for (int i = 0; left_path[i] != nca; i += 2) {
  1.2578 -        subblossoms.push_back(left_path[i]);
  1.2579 -        (*_blossom_data)[left_path[i]].next = prev;
  1.2580 -        _tree_set->erase(left_path[i]);
  1.2581 -
  1.2582 -        subblossoms.push_back(left_path[i + 1]);
  1.2583 -        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  1.2584 -        oddToEven(left_path[i + 1], tree);
  1.2585 -        _tree_set->erase(left_path[i + 1]);
  1.2586 -        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  1.2587 -      }
  1.2588 -
  1.2589 -      int k = 0;
  1.2590 -      while (right_path[k] != nca) ++k;
  1.2591 -
  1.2592 -      subblossoms.push_back(nca);
  1.2593 -      (*_blossom_data)[nca].next = prev;
  1.2594 -
  1.2595 -      for (int i = k - 2; i >= 0; i -= 2) {
  1.2596 -        subblossoms.push_back(right_path[i + 1]);
  1.2597 -        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  1.2598 -        oddToEven(right_path[i + 1], tree);
  1.2599 -        _tree_set->erase(right_path[i + 1]);
  1.2600 -
  1.2601 -        (*_blossom_data)[right_path[i + 1]].next =
  1.2602 -          (*_blossom_data)[right_path[i + 1]].pred;
  1.2603 -
  1.2604 -        subblossoms.push_back(right_path[i]);
  1.2605 -        _tree_set->erase(right_path[i]);
  1.2606 -      }
  1.2607 -
  1.2608 -      int surface =
  1.2609 -        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  1.2610 -
  1.2611 -      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.2612 -        if (!_blossom_set->trivial(subblossoms[i])) {
  1.2613 -          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  1.2614 -        }
  1.2615 -        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  1.2616 -      }
  1.2617 -
  1.2618 -      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  1.2619 -      (*_blossom_data)[surface].offset = 0;
  1.2620 -      (*_blossom_data)[surface].status = EVEN;
  1.2621 -      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  1.2622 -      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  1.2623 -
  1.2624 -      _tree_set->insert(surface, tree);
  1.2625 -      _tree_set->erase(nca);
  1.2626 -    }
  1.2627 -
  1.2628 -    void splitBlossom(int blossom) {
  1.2629 -      Arc next = (*_blossom_data)[blossom].next;
  1.2630 -      Arc pred = (*_blossom_data)[blossom].pred;
  1.2631 -
  1.2632 -      int tree = _tree_set->find(blossom);
  1.2633 -
  1.2634 -      (*_blossom_data)[blossom].status = MATCHED;
  1.2635 -      oddToMatched(blossom);
  1.2636 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.2637 -        _delta2->erase(blossom);
  1.2638 -      }
  1.2639 -
  1.2640 -      std::vector<int> subblossoms;
  1.2641 -      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.2642 -
  1.2643 -      Value offset = (*_blossom_data)[blossom].offset;
  1.2644 -      int b = _blossom_set->find(_graph.source(pred));
  1.2645 -      int d = _blossom_set->find(_graph.source(next));
  1.2646 -
  1.2647 -      int ib = -1, id = -1;
  1.2648 -      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.2649 -        if (subblossoms[i] == b) ib = i;
  1.2650 -        if (subblossoms[i] == d) id = i;
  1.2651 -
  1.2652 -        (*_blossom_data)[subblossoms[i]].offset = offset;
  1.2653 -        if (!_blossom_set->trivial(subblossoms[i])) {
  1.2654 -          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  1.2655 -        }
  1.2656 -        if (_blossom_set->classPrio(subblossoms[i]) !=
  1.2657 -            std::numeric_limits<Value>::max()) {
  1.2658 -          _delta2->push(subblossoms[i],
  1.2659 -                        _blossom_set->classPrio(subblossoms[i]) -
  1.2660 -                        (*_blossom_data)[subblossoms[i]].offset);
  1.2661 -        }
  1.2662 -      }
  1.2663 -
  1.2664 -      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  1.2665 -        for (int i = (id + 1) % subblossoms.size();
  1.2666 -             i != ib; i = (i + 2) % subblossoms.size()) {
  1.2667 -          int sb = subblossoms[i];
  1.2668 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2669 -          (*_blossom_data)[sb].next =
  1.2670 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.2671 -        }
  1.2672 -
  1.2673 -        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  1.2674 -          int sb = subblossoms[i];
  1.2675 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2676 -          int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.2677 -
  1.2678 -          (*_blossom_data)[sb].status = ODD;
  1.2679 -          matchedToOdd(sb);
  1.2680 -          _tree_set->insert(sb, tree);
  1.2681 -          (*_blossom_data)[sb].pred = pred;
  1.2682 -          (*_blossom_data)[sb].next =
  1.2683 -                           _graph.oppositeArc((*_blossom_data)[tb].next);
  1.2684 -
  1.2685 -          pred = (*_blossom_data)[ub].next;
  1.2686 -
  1.2687 -          (*_blossom_data)[tb].status = EVEN;
  1.2688 -          matchedToEven(tb, tree);
  1.2689 -          _tree_set->insert(tb, tree);
  1.2690 -          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  1.2691 -        }
  1.2692 -
  1.2693 -        (*_blossom_data)[subblossoms[id]].status = ODD;
  1.2694 -        matchedToOdd(subblossoms[id]);
  1.2695 -        _tree_set->insert(subblossoms[id], tree);
  1.2696 -        (*_blossom_data)[subblossoms[id]].next = next;
  1.2697 -        (*_blossom_data)[subblossoms[id]].pred = pred;
  1.2698 -
  1.2699 -      } else {
  1.2700 -
  1.2701 -        for (int i = (ib + 1) % subblossoms.size();
  1.2702 -             i != id; i = (i + 2) % subblossoms.size()) {
  1.2703 -          int sb = subblossoms[i];
  1.2704 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2705 -          (*_blossom_data)[sb].next =
  1.2706 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.2707 -        }
  1.2708 -
  1.2709 -        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  1.2710 -          int sb = subblossoms[i];
  1.2711 -          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2712 -          int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.2713 -
  1.2714 -          (*_blossom_data)[sb].status = ODD;
  1.2715 -          matchedToOdd(sb);
  1.2716 -          _tree_set->insert(sb, tree);
  1.2717 -          (*_blossom_data)[sb].next = next;
  1.2718 -          (*_blossom_data)[sb].pred =
  1.2719 -            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.2720 -
  1.2721 -          (*_blossom_data)[tb].status = EVEN;
  1.2722 -          matchedToEven(tb, tree);
  1.2723 -          _tree_set->insert(tb, tree);
  1.2724 -          (*_blossom_data)[tb].pred =
  1.2725 -            (*_blossom_data)[tb].next =
  1.2726 -            _graph.oppositeArc((*_blossom_data)[ub].next);
  1.2727 -          next = (*_blossom_data)[ub].next;
  1.2728 -        }
  1.2729 -
  1.2730 -        (*_blossom_data)[subblossoms[ib]].status = ODD;
  1.2731 -        matchedToOdd(subblossoms[ib]);
  1.2732 -        _tree_set->insert(subblossoms[ib], tree);
  1.2733 -        (*_blossom_data)[subblossoms[ib]].next = next;
  1.2734 -        (*_blossom_data)[subblossoms[ib]].pred = pred;
  1.2735 -      }
  1.2736 -      _tree_set->erase(blossom);
  1.2737 -    }
  1.2738 -
  1.2739 -    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  1.2740 -      if (_blossom_set->trivial(blossom)) {
  1.2741 -        int bi = (*_node_index)[base];
  1.2742 -        Value pot = (*_node_data)[bi].pot;
  1.2743 -
  1.2744 -        _matching->set(base, matching);
  1.2745 -        _blossom_node_list.push_back(base);
  1.2746 -        _node_potential->set(base, pot);
  1.2747 -      } else {
  1.2748 -
  1.2749 -        Value pot = (*_blossom_data)[blossom].pot;
  1.2750 -        int bn = _blossom_node_list.size();
  1.2751 -
  1.2752 -        std::vector<int> subblossoms;
  1.2753 -        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.2754 -        int b = _blossom_set->find(base);
  1.2755 -        int ib = -1;
  1.2756 -        for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.2757 -          if (subblossoms[i] == b) { ib = i; break; }
  1.2758 -        }
  1.2759 -
  1.2760 -        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  1.2761 -          int sb = subblossoms[(ib + i) % subblossoms.size()];
  1.2762 -          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  1.2763 -
  1.2764 -          Arc m = (*_blossom_data)[tb].next;
  1.2765 -          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  1.2766 -          extractBlossom(tb, _graph.source(m), m);
  1.2767 -        }
  1.2768 -        extractBlossom(subblossoms[ib], base, matching);
  1.2769 -
  1.2770 -        int en = _blossom_node_list.size();
  1.2771 -
  1.2772 -        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  1.2773 -      }
  1.2774 -    }
  1.2775 -
  1.2776 -    void extractMatching() {
  1.2777 -      std::vector<int> blossoms;
  1.2778 -      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  1.2779 -        blossoms.push_back(c);
  1.2780 -      }
  1.2781 -
  1.2782 -      for (int i = 0; i < int(blossoms.size()); ++i) {
  1.2783 -
  1.2784 -        Value offset = (*_blossom_data)[blossoms[i]].offset;
  1.2785 -        (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  1.2786 -        for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  1.2787 -             n != INVALID; ++n) {
  1.2788 -          (*_node_data)[(*_node_index)[n]].pot -= offset;
  1.2789 -        }
  1.2790 -
  1.2791 -        Arc matching = (*_blossom_data)[blossoms[i]].next;
  1.2792 -        Node base = _graph.source(matching);
  1.2793 -        extractBlossom(blossoms[i], base, matching);
  1.2794 -      }
  1.2795 -    }
  1.2796 -
  1.2797 -  public:
  1.2798 -
  1.2799 -    /// \brief Constructor
  1.2800 -    ///
  1.2801 -    /// Constructor.
  1.2802 -    MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
  1.2803 -      : _graph(graph), _weight(weight), _matching(0),
  1.2804 -        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  1.2805 -        _node_num(0), _blossom_num(0),
  1.2806 -
  1.2807 -        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  1.2808 -        _node_index(0), _node_heap_index(0), _node_data(0),
  1.2809 -        _tree_set_index(0), _tree_set(0),
  1.2810 -
  1.2811 -        _delta2_index(0), _delta2(0),
  1.2812 -        _delta3_index(0), _delta3(0),
  1.2813 -        _delta4_index(0), _delta4(0),
  1.2814 -
  1.2815 -        _delta_sum() {}
  1.2816 -
  1.2817 -    ~MaxWeightedPerfectMatching() {
  1.2818 -      destroyStructures();
  1.2819 -    }
  1.2820 -
  1.2821 -    /// \name Execution control
  1.2822 -    /// The simplest way to execute the algorithm is to use the
  1.2823 -    /// \c run() member function.
  1.2824 -
  1.2825 -    ///@{
  1.2826 -
  1.2827 -    /// \brief Initialize the algorithm
  1.2828 -    ///
  1.2829 -    /// Initialize the algorithm
  1.2830 -    void init() {
  1.2831 -      createStructures();
  1.2832 -
  1.2833 -      for (ArcIt e(_graph); e != INVALID; ++e) {
  1.2834 -        _node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP);
  1.2835 -      }
  1.2836 -      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.2837 -        _delta3_index->set(e, _delta3->PRE_HEAP);
  1.2838 -      }
  1.2839 -      for (int i = 0; i < _blossom_num; ++i) {
  1.2840 -        _delta2_index->set(i, _delta2->PRE_HEAP);
  1.2841 -        _delta4_index->set(i, _delta4->PRE_HEAP);
  1.2842 -      }
  1.2843 -
  1.2844 -      int index = 0;
  1.2845 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.2846 -        Value max = - std::numeric_limits<Value>::max();
  1.2847 -        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  1.2848 -          if (_graph.target(e) == n) continue;
  1.2849 -          if ((dualScale * _weight[e]) / 2 > max) {
  1.2850 -            max = (dualScale * _weight[e]) / 2;
  1.2851 -          }
  1.2852 -        }
  1.2853 -        _node_index->set(n, index);
  1.2854 -        (*_node_data)[index].pot = max;
  1.2855 -        int blossom =
  1.2856 -          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1.2857 -
  1.2858 -        _tree_set->insert(blossom);
  1.2859 -
  1.2860 -        (*_blossom_data)[blossom].status = EVEN;
  1.2861 -        (*_blossom_data)[blossom].pred = INVALID;
  1.2862 -        (*_blossom_data)[blossom].next = INVALID;
  1.2863 -        (*_blossom_data)[blossom].pot = 0;
  1.2864 -        (*_blossom_data)[blossom].offset = 0;
  1.2865 -        ++index;
  1.2866 -      }
  1.2867 -      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.2868 -        int si = (*_node_index)[_graph.u(e)];
  1.2869 -        int ti = (*_node_index)[_graph.v(e)];
  1.2870 -        if (_graph.u(e) != _graph.v(e)) {
  1.2871 -          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  1.2872 -                            dualScale * _weight[e]) / 2);
  1.2873 -        }
  1.2874 -      }
  1.2875 -    }
  1.2876 -
  1.2877 -    /// \brief Starts the algorithm
  1.2878 -    ///
  1.2879 -    /// Starts the algorithm
  1.2880 -    bool start() {
  1.2881 -      enum OpType {
  1.2882 -        D2, D3, D4
  1.2883 -      };
  1.2884 -
  1.2885 -      int unmatched = _node_num;
  1.2886 -      while (unmatched > 0) {
  1.2887 -        Value d2 = !_delta2->empty() ?
  1.2888 -          _delta2->prio() : std::numeric_limits<Value>::max();
  1.2889 -
  1.2890 -        Value d3 = !_delta3->empty() ?
  1.2891 -          _delta3->prio() : std::numeric_limits<Value>::max();
  1.2892 -
  1.2893 -        Value d4 = !_delta4->empty() ?
  1.2894 -          _delta4->prio() : std::numeric_limits<Value>::max();
  1.2895 -
  1.2896 -        _delta_sum = d2; OpType ot = D2;
  1.2897 -        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  1.2898 -        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  1.2899 -
  1.2900 -        if (_delta_sum == std::numeric_limits<Value>::max()) {
  1.2901 -          return false;
  1.2902 -        }
  1.2903 -
  1.2904 -        switch (ot) {
  1.2905 -        case D2:
  1.2906 -          {
  1.2907 -            int blossom = _delta2->top();
  1.2908 -            Node n = _blossom_set->classTop(blossom);
  1.2909 -            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  1.2910 -            extendOnArc(e);
  1.2911 -          }
  1.2912 -          break;
  1.2913 -        case D3:
  1.2914 -          {
  1.2915 -            Edge e = _delta3->top();
  1.2916 -
  1.2917 -            int left_blossom = _blossom_set->find(_graph.u(e));
  1.2918 -            int right_blossom = _blossom_set->find(_graph.v(e));
  1.2919 -
  1.2920 -            if (left_blossom == right_blossom) {
  1.2921 -              _delta3->pop();
  1.2922 -            } else {
  1.2923 -              int left_tree = _tree_set->find(left_blossom);
  1.2924 -              int right_tree = _tree_set->find(right_blossom);
  1.2925 -
  1.2926 -              if (left_tree == right_tree) {
  1.2927 -                shrinkOnEdge(e, left_tree);
  1.2928 -              } else {
  1.2929 -                augmentOnEdge(e);
  1.2930 -                unmatched -= 2;
  1.2931 -              }
  1.2932 -            }
  1.2933 -          } break;
  1.2934 -        case D4:
  1.2935 -          splitBlossom(_delta4->top());
  1.2936 -          break;
  1.2937 -        }
  1.2938 -      }
  1.2939 -      extractMatching();
  1.2940 -      return true;
  1.2941 -    }
  1.2942 -
  1.2943 -    /// \brief Runs %MaxWeightedPerfectMatching algorithm.
  1.2944 -    ///
  1.2945 -    /// This method runs the %MaxWeightedPerfectMatching algorithm.
  1.2946 -    ///
  1.2947 -    /// \note mwm.run() is just a shortcut of the following code.
  1.2948 -    /// \code
  1.2949 -    ///   mwm.init();
  1.2950 -    ///   mwm.start();
  1.2951 -    /// \endcode
  1.2952 -    bool run() {
  1.2953 -      init();
  1.2954 -      return start();
  1.2955 -    }
  1.2956 -
  1.2957 -    /// @}
  1.2958 -
  1.2959 -    /// \name Primal solution
  1.2960 -    /// Functions to get the primal solution, ie. the matching.
  1.2961 -
  1.2962 -    /// @{
  1.2963 -
  1.2964 -    /// \brief Returns the matching value.
  1.2965 -    ///
  1.2966 -    /// Returns the matching value.
  1.2967 -    Value matchingValue() const {
  1.2968 -      Value sum = 0;
  1.2969 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.2970 -        if ((*_matching)[n] != INVALID) {
  1.2971 -          sum += _weight[(*_matching)[n]];
  1.2972 -        }
  1.2973 -      }
  1.2974 -      return sum /= 2;
  1.2975 -    }
  1.2976 -
  1.2977 -    /// \brief Returns true when the edge is in the matching.
  1.2978 -    ///
  1.2979 -    /// Returns true when the edge is in the matching.
  1.2980 -    bool matching(const Edge& edge) const {
  1.2981 -      return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
  1.2982 -    }
  1.2983 -
  1.2984 -    /// \brief Returns the incident matching edge.
  1.2985 -    ///
  1.2986 -    /// Returns the incident matching arc from given edge.
  1.2987 -    Arc matching(const Node& node) const {
  1.2988 -      return (*_matching)[node];
  1.2989 -    }
  1.2990 -
  1.2991 -    /// \brief Returns the mate of the node.
  1.2992 -    ///
  1.2993 -    /// Returns the adjancent node in a mathcing arc.
  1.2994 -    Node mate(const Node& node) const {
  1.2995 -      return _graph.target((*_matching)[node]);
  1.2996 -    }
  1.2997 -
  1.2998 -    /// @}
  1.2999 -
  1.3000 -    /// \name Dual solution
  1.3001 -    /// Functions to get the dual solution.
  1.3002 -
  1.3003 -    /// @{
  1.3004 -
  1.3005 -    /// \brief Returns the value of the dual solution.
  1.3006 -    ///
  1.3007 -    /// Returns the value of the dual solution. It should be equal to
  1.3008 -    /// the primal value scaled by \ref dualScale "dual scale".
  1.3009 -    Value dualValue() const {
  1.3010 -      Value sum = 0;
  1.3011 -      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.3012 -        sum += nodeValue(n);
  1.3013 -      }
  1.3014 -      for (int i = 0; i < blossomNum(); ++i) {
  1.3015 -        sum += blossomValue(i) * (blossomSize(i) / 2);
  1.3016 -      }
  1.3017 -      return sum;
  1.3018 -    }
  1.3019 -
  1.3020 -    /// \brief Returns the value of the node.
  1.3021 -    ///
  1.3022 -    /// Returns the the value of the node.
  1.3023 -    Value nodeValue(const Node& n) const {
  1.3024 -      return (*_node_potential)[n];
  1.3025 -    }
  1.3026 -
  1.3027 -    /// \brief Returns the number of the blossoms in the basis.
  1.3028 -    ///
  1.3029 -    /// Returns the number of the blossoms in the basis.
  1.3030 -    /// \see BlossomIt
  1.3031 -    int blossomNum() const {
  1.3032 -      return _blossom_potential.size();
  1.3033 -    }
  1.3034 -
  1.3035 -
  1.3036 -    /// \brief Returns the number of the nodes in the blossom.
  1.3037 -    ///
  1.3038 -    /// Returns the number of the nodes in the blossom.
  1.3039 -    int blossomSize(int k) const {
  1.3040 -      return _blossom_potential[k].end - _blossom_potential[k].begin;
  1.3041 -    }
  1.3042 -
  1.3043 -    /// \brief Returns the value of the blossom.
  1.3044 -    ///
  1.3045 -    /// Returns the the value of the blossom.
  1.3046 -    /// \see BlossomIt
  1.3047 -    Value blossomValue(int k) const {
  1.3048 -      return _blossom_potential[k].value;
  1.3049 -    }
  1.3050 -
  1.3051 -    /// \brief Iterator for obtaining the nodes of the blossom.
  1.3052 -    ///
  1.3053 -    /// Iterator for obtaining the nodes of the blossom. This class
  1.3054 -    /// provides a common lemon style iterator for listing a
  1.3055 -    /// subset of the nodes.
  1.3056 -    class BlossomIt {
  1.3057 -    public:
  1.3058 -
  1.3059 -      /// \brief Constructor.
  1.3060 -      ///
  1.3061 -      /// Constructor to get the nodes of the variable.
  1.3062 -      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
  1.3063 -        : _algorithm(&algorithm)
  1.3064 -      {
  1.3065 -        _index = _algorithm->_blossom_potential[variable].begin;
  1.3066 -        _last = _algorithm->_blossom_potential[variable].end;
  1.3067 -      }
  1.3068 -
  1.3069 -      /// \brief Conversion to node.
  1.3070 -      ///
  1.3071 -      /// Conversion to node.
  1.3072 -      operator Node() const {
  1.3073 -        return _algorithm->_blossom_node_list[_index];
  1.3074 -      }
  1.3075 -
  1.3076 -      /// \brief Increment operator.
  1.3077 -      ///
  1.3078 -      /// Increment operator.
  1.3079 -      BlossomIt& operator++() {
  1.3080 -        ++_index;
  1.3081 -        return *this;
  1.3082 -      }
  1.3083 -
  1.3084 -      /// \brief Validity checking
  1.3085 -      ///
  1.3086 -      /// Checks whether the iterator is invalid.
  1.3087 -      bool operator==(Invalid) const { return _index == _last; }
  1.3088 -
  1.3089 -      /// \brief Validity checking
  1.3090 -      ///
  1.3091 -      /// Checks whether the iterator is valid.
  1.3092 -      bool operator!=(Invalid) const { return _index != _last; }
  1.3093 -
  1.3094 -    private:
  1.3095 -      const MaxWeightedPerfectMatching* _algorithm;
  1.3096 -      int _last;
  1.3097 -      int _index;
  1.3098 -    };
  1.3099 -
  1.3100 -    /// @}
  1.3101 -
  1.3102 -  };
  1.3103 -
  1.3104 -
  1.3105 -} //END OF NAMESPACE LEMON
  1.3106 -
  1.3107 -#endif //LEMON_MAX_MATCHING_H