3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_HARTMANN_ORLIN_H
20 #define LEMON_HARTMANN_ORLIN_H
22 /// \ingroup min_mean_cycle
25 /// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
29 #include <lemon/core.h>
30 #include <lemon/path.h>
31 #include <lemon/tolerance.h>
32 #include <lemon/connectivity.h>
36 /// \brief Default traits class of HartmannOrlin algorithm.
38 /// Default traits class of HartmannOrlin algorithm.
39 /// \tparam GR The type of the digraph.
40 /// \tparam LEN The type of the length map.
41 /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
43 template <typename GR, typename LEN>
45 template <typename GR, typename LEN,
46 bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
48 struct HartmannOrlinDefaultTraits
50 /// The type of the digraph
52 /// The type of the length map
53 typedef LEN LengthMap;
54 /// The type of the arc lengths
55 typedef typename LengthMap::Value Value;
57 /// \brief The large value type used for internal computations
59 /// The large value type used for internal computations.
60 /// It is \c long \c long if the \c Value type is integer,
61 /// otherwise it is \c double.
62 /// \c Value must be convertible to \c LargeValue.
63 typedef double LargeValue;
65 /// The tolerance type used for internal computations
66 typedef lemon::Tolerance<LargeValue> Tolerance;
68 /// \brief The path type of the found cycles
70 /// The path type of the found cycles.
71 /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 /// and it must have an \c addBack() function.
73 typedef lemon::Path<Digraph> Path;
76 // Default traits class for integer value types
77 template <typename GR, typename LEN>
78 struct HartmannOrlinDefaultTraits<GR, LEN, true>
81 typedef LEN LengthMap;
82 typedef typename LengthMap::Value Value;
83 #ifdef LEMON_HAVE_LONG_LONG
84 typedef long long LargeValue;
86 typedef long LargeValue;
88 typedef lemon::Tolerance<LargeValue> Tolerance;
89 typedef lemon::Path<Digraph> Path;
93 /// \addtogroup min_mean_cycle
96 /// \brief Implementation of the Hartmann-Orlin algorithm for finding
97 /// a minimum mean cycle.
99 /// This class implements the Hartmann-Orlin algorithm for finding
100 /// a directed cycle of minimum mean length (cost) in a digraph.
101 /// It is an improved version of \ref Karp "Karp"'s original algorithm,
102 /// it applies an efficient early termination scheme.
103 /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
105 /// \tparam GR The type of the digraph the algorithm runs on.
106 /// \tparam LEN The type of the length map. The default
107 /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109 template <typename GR, typename LEN, typename TR>
111 template < typename GR,
112 typename LEN = typename GR::template ArcMap<int>,
113 typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
119 /// The type of the digraph
120 typedef typename TR::Digraph Digraph;
121 /// The type of the length map
122 typedef typename TR::LengthMap LengthMap;
123 /// The type of the arc lengths
124 typedef typename TR::Value Value;
126 /// \brief The large value type
128 /// The large value type used for internal computations.
129 /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
130 /// it is \c long \c long if the \c Value type is integer,
131 /// otherwise it is \c double.
132 typedef typename TR::LargeValue LargeValue;
134 /// The tolerance type
135 typedef typename TR::Tolerance Tolerance;
137 /// \brief The path type of the found cycles
139 /// The path type of the found cycles.
140 /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
141 /// it is \ref lemon::Path "Path<Digraph>".
142 typedef typename TR::Path Path;
144 /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
149 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
151 // Data sturcture for path data
156 PathData(LargeValue d, Arc p = INVALID) :
160 typedef typename Digraph::template NodeMap<std::vector<PathData> >
165 // The digraph the algorithm runs on
167 // The length of the arcs
168 const LengthMap &_length;
170 // Data for storing the strongly connected components
172 typename Digraph::template NodeMap<int> _comp;
173 std::vector<std::vector<Node> > _comp_nodes;
174 std::vector<Node>* _nodes;
175 typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
177 // Data for the found cycles
178 bool _curr_found, _best_found;
179 LargeValue _curr_length, _best_length;
180 int _curr_size, _best_size;
181 Node _curr_node, _best_node;
182 int _curr_level, _best_level;
187 // Node map for storing path data
188 PathDataNodeMap _data;
189 // The processed nodes in the last round
190 std::vector<Node> _process;
192 Tolerance _tolerance;
195 const LargeValue INF;
199 /// \name Named Template Parameters
202 template <typename T>
203 struct SetLargeValueTraits : public Traits {
204 typedef T LargeValue;
205 typedef lemon::Tolerance<T> Tolerance;
208 /// \brief \ref named-templ-param "Named parameter" for setting
209 /// \c LargeValue type.
211 /// \ref named-templ-param "Named parameter" for setting \c LargeValue
212 /// type. It is used for internal computations in the algorithm.
213 template <typename T>
215 : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
216 typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
219 template <typename T>
220 struct SetPathTraits : public Traits {
224 /// \brief \ref named-templ-param "Named parameter" for setting
227 /// \ref named-templ-param "Named parameter" for setting the \c %Path
228 /// type of the found cycles.
229 /// It must conform to the \ref lemon::concepts::Path "Path" concept
230 /// and it must have an \c addFront() function.
231 template <typename T>
233 : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
234 typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
241 /// \brief Constructor.
243 /// The constructor of the class.
245 /// \param digraph The digraph the algorithm runs on.
246 /// \param length The lengths (costs) of the arcs.
247 HartmannOrlin( const Digraph &digraph,
248 const LengthMap &length ) :
249 _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
250 _best_found(false), _best_length(0), _best_size(1),
251 _cycle_path(NULL), _local_path(false), _data(digraph),
252 INF(std::numeric_limits<LargeValue>::has_infinity ?
253 std::numeric_limits<LargeValue>::infinity() :
254 std::numeric_limits<LargeValue>::max())
259 if (_local_path) delete _cycle_path;
262 /// \brief Set the path structure for storing the found cycle.
264 /// This function sets an external path structure for storing the
267 /// If you don't call this function before calling \ref run() or
268 /// \ref findMinMean(), it will allocate a local \ref Path "path"
269 /// structure. The destuctor deallocates this automatically
270 /// allocated object, of course.
272 /// \note The algorithm calls only the \ref lemon::Path::addFront()
273 /// "addFront()" function of the given path structure.
275 /// \return <tt>(*this)</tt>
276 HartmannOrlin& cycle(Path &path) {
285 /// \brief Set the tolerance used by the algorithm.
287 /// This function sets the tolerance object used by the algorithm.
289 /// \return <tt>(*this)</tt>
290 HartmannOrlin& tolerance(const Tolerance& tolerance) {
291 _tolerance = tolerance;
295 /// \brief Return a const reference to the tolerance.
297 /// This function returns a const reference to the tolerance object
298 /// used by the algorithm.
299 const Tolerance& tolerance() const {
303 /// \name Execution control
304 /// The simplest way to execute the algorithm is to call the \ref run()
306 /// If you only need the minimum mean length, you may call
307 /// \ref findMinMean().
311 /// \brief Run the algorithm.
313 /// This function runs the algorithm.
314 /// It can be called more than once (e.g. if the underlying digraph
315 /// and/or the arc lengths have been modified).
317 /// \return \c true if a directed cycle exists in the digraph.
319 /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
321 /// return mmc.findMinMean() && mmc.findCycle();
324 return findMinMean() && findCycle();
327 /// \brief Find the minimum cycle mean.
329 /// This function finds the minimum mean length of the directed
330 /// cycles in the digraph.
332 /// \return \c true if a directed cycle exists in the digraph.
334 // Initialization and find strongly connected components
338 // Find the minimum cycle mean in the components
339 for (int comp = 0; comp < _comp_num; ++comp) {
340 if (!initComponent(comp)) continue;
343 // Update the best cycle (global minimum mean cycle)
344 if ( _curr_found && (!_best_found ||
345 _curr_length * _best_size < _best_length * _curr_size) ) {
347 _best_length = _curr_length;
348 _best_size = _curr_size;
349 _best_node = _curr_node;
350 _best_level = _curr_level;
356 /// \brief Find a minimum mean directed cycle.
358 /// This function finds a directed cycle of minimum mean length
359 /// in the digraph using the data computed by findMinMean().
361 /// \return \c true if a directed cycle exists in the digraph.
363 /// \pre \ref findMinMean() must be called before using this function.
365 if (!_best_found) return false;
366 IntNodeMap reached(_gr, -1);
367 int r = _best_level + 1;
369 while (reached[u] < 0) {
371 u = _gr.source(_data[u][r].pred);
374 Arc e = _data[u][r].pred;
375 _cycle_path->addFront(e);
376 _best_length = _length[e];
379 while ((v = _gr.source(e)) != u) {
380 e = _data[v][--r].pred;
381 _cycle_path->addFront(e);
382 _best_length += _length[e];
390 /// \name Query Functions
391 /// The results of the algorithm can be obtained using these
393 /// The algorithm should be executed before using them.
397 /// \brief Return the total length of the found cycle.
399 /// This function returns the total length of the found cycle.
401 /// \pre \ref run() or \ref findMinMean() must be called before
402 /// using this function.
403 LargeValue cycleLength() const {
407 /// \brief Return the number of arcs on the found cycle.
409 /// This function returns the number of arcs on the found cycle.
411 /// \pre \ref run() or \ref findMinMean() must be called before
412 /// using this function.
413 int cycleArcNum() const {
417 /// \brief Return the mean length of the found cycle.
419 /// This function returns the mean length of the found cycle.
421 /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
424 /// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
427 /// \pre \ref run() or \ref findMinMean() must be called before
428 /// using this function.
429 double cycleMean() const {
430 return static_cast<double>(_best_length) / _best_size;
433 /// \brief Return the found cycle.
435 /// This function returns a const reference to the path structure
436 /// storing the found cycle.
438 /// \pre \ref run() or \ref findCycle() must be called before using
440 const Path& cycle() const {
452 _cycle_path = new Path;
454 _cycle_path->clear();
458 _cycle_path->clear();
459 for (NodeIt u(_gr); u != INVALID; ++u)
463 // Find strongly connected components and initialize _comp_nodes
465 void findComponents() {
466 _comp_num = stronglyConnectedComponents(_gr, _comp);
467 _comp_nodes.resize(_comp_num);
468 if (_comp_num == 1) {
469 _comp_nodes[0].clear();
470 for (NodeIt n(_gr); n != INVALID; ++n) {
471 _comp_nodes[0].push_back(n);
472 _out_arcs[n].clear();
473 for (OutArcIt a(_gr, n); a != INVALID; ++a) {
474 _out_arcs[n].push_back(a);
478 for (int i = 0; i < _comp_num; ++i)
479 _comp_nodes[i].clear();
480 for (NodeIt n(_gr); n != INVALID; ++n) {
482 _comp_nodes[k].push_back(n);
483 _out_arcs[n].clear();
484 for (OutArcIt a(_gr, n); a != INVALID; ++a) {
485 if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
491 // Initialize path data for the current component
492 bool initComponent(int comp) {
493 _nodes = &(_comp_nodes[comp]);
494 int n = _nodes->size();
495 if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
498 for (int i = 0; i < n; ++i) {
499 _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
504 // Process all rounds of computing path data for the current component.
505 // _data[v][k] is the length of a shortest directed walk from the root
506 // node to node v containing exactly k arcs.
507 void processRounds() {
508 Node start = (*_nodes)[0];
509 _data[start][0] = PathData(0);
511 _process.push_back(start);
513 int k, n = _nodes->size();
515 bool terminate = false;
516 for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
517 processNextBuildRound(k);
518 if (k == next_check || k == n) {
519 terminate = checkTermination(k);
520 next_check = next_check * 3 / 2;
523 for ( ; k <= n && !terminate; ++k) {
524 processNextFullRound(k);
525 if (k == next_check || k == n) {
526 terminate = checkTermination(k);
527 next_check = next_check * 3 / 2;
532 // Process one round and rebuild _process
533 void processNextBuildRound(int k) {
534 std::vector<Node> next;
538 for (int i = 0; i < int(_process.size()); ++i) {
540 for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
543 d = _data[u][k-1].dist + _length[e];
544 if (_tolerance.less(d, _data[v][k].dist)) {
545 if (_data[v][k].dist == INF) next.push_back(v);
546 _data[v][k] = PathData(d, e);
553 // Process one round using _nodes instead of _process
554 void processNextFullRound(int k) {
558 for (int i = 0; i < int(_nodes->size()); ++i) {
560 for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
563 d = _data[u][k-1].dist + _length[e];
564 if (_tolerance.less(d, _data[v][k].dist)) {
565 _data[v][k] = PathData(d, e);
571 // Check early termination
572 bool checkTermination(int k) {
573 typedef std::pair<int, int> Pair;
574 typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
575 typename GR::template NodeMap<LargeValue> pi(_gr);
576 int n = _nodes->size();
581 // Search for cycles that are already found
583 for (int i = 0; i < n; ++i) {
585 if (_data[u][k].dist == INF) continue;
586 for (int j = k; j >= 0; --j) {
587 if (level[u].first == i && level[u].second > 0) {
589 length = _data[u][level[u].second].dist - _data[u][j].dist;
590 size = level[u].second - j;
591 if (!_curr_found || length * _curr_size < _curr_length * size) {
592 _curr_length = length;
595 _curr_level = level[u].second;
599 level[u] = Pair(i, j);
600 u = _gr.source(_data[u][j].pred);
604 // If at least one cycle is found, check the optimality condition
606 if (_curr_found && k < n) {
607 // Find node potentials
608 for (int i = 0; i < n; ++i) {
611 for (int j = 0; j <= k; ++j) {
612 if (_data[u][j].dist < INF) {
613 d = _data[u][j].dist * _curr_size - j * _curr_length;
614 if (_tolerance.less(d, pi[u])) pi[u] = d;
619 // Check the optimality condition for all arcs
621 for (ArcIt a(_gr); a != INVALID; ++a) {
622 if (_tolerance.less(_length[a] * _curr_size - _curr_length,
623 pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
633 }; //class HartmannOrlin
639 #endif //LEMON_HARTMANN_ORLIN_H