kpeter@601
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
kpeter@601
|
2 |
*
|
kpeter@601
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
kpeter@601
|
4 |
*
|
kpeter@601
|
5 |
* Copyright (C) 2003-2009
|
kpeter@601
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
kpeter@601
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
kpeter@601
|
8 |
*
|
kpeter@601
|
9 |
* Permission to use, modify and distribute this software is granted
|
kpeter@601
|
10 |
* provided that this copyright notice appears in all copies. For
|
kpeter@601
|
11 |
* precise terms see the accompanying LICENSE file.
|
kpeter@601
|
12 |
*
|
kpeter@601
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
kpeter@601
|
14 |
* express or implied, and with no claim as to its suitability for any
|
kpeter@601
|
15 |
* purpose.
|
kpeter@601
|
16 |
*
|
kpeter@601
|
17 |
*/
|
kpeter@601
|
18 |
|
kpeter@601
|
19 |
#ifndef LEMON_NETWORK_SIMPLEX_H
|
kpeter@601
|
20 |
#define LEMON_NETWORK_SIMPLEX_H
|
kpeter@601
|
21 |
|
kpeter@601
|
22 |
/// \ingroup min_cost_flow
|
kpeter@601
|
23 |
///
|
kpeter@601
|
24 |
/// \file
|
kpeter@601
|
25 |
/// \brief Network simplex algorithm for finding a minimum cost flow.
|
kpeter@601
|
26 |
|
kpeter@601
|
27 |
#include <vector>
|
kpeter@601
|
28 |
#include <limits>
|
kpeter@601
|
29 |
#include <algorithm>
|
kpeter@601
|
30 |
|
kpeter@601
|
31 |
#include <lemon/math.h>
|
kpeter@601
|
32 |
|
kpeter@601
|
33 |
namespace lemon {
|
kpeter@601
|
34 |
|
kpeter@601
|
35 |
/// \addtogroup min_cost_flow
|
kpeter@601
|
36 |
/// @{
|
kpeter@601
|
37 |
|
kpeter@601
|
38 |
/// \brief Implementation of the primal network simplex algorithm
|
kpeter@601
|
39 |
/// for finding a \ref min_cost_flow "minimum cost flow".
|
kpeter@601
|
40 |
///
|
kpeter@601
|
41 |
/// \ref NetworkSimplex implements the primal network simplex algorithm
|
kpeter@601
|
42 |
/// for finding a \ref min_cost_flow "minimum cost flow".
|
kpeter@601
|
43 |
///
|
kpeter@601
|
44 |
/// \tparam Digraph The digraph type the algorithm runs on.
|
kpeter@601
|
45 |
/// \tparam LowerMap The type of the lower bound map.
|
kpeter@601
|
46 |
/// \tparam CapacityMap The type of the capacity (upper bound) map.
|
kpeter@601
|
47 |
/// \tparam CostMap The type of the cost (length) map.
|
kpeter@601
|
48 |
/// \tparam SupplyMap The type of the supply map.
|
kpeter@601
|
49 |
///
|
kpeter@601
|
50 |
/// \warning
|
kpeter@601
|
51 |
/// - Arc capacities and costs should be \e non-negative \e integers.
|
kpeter@601
|
52 |
/// - Supply values should be \e signed \e integers.
|
kpeter@601
|
53 |
/// - The value types of the maps should be convertible to each other.
|
kpeter@601
|
54 |
/// - \c CostMap::Value must be signed type.
|
kpeter@601
|
55 |
///
|
kpeter@601
|
56 |
/// \note \ref NetworkSimplex provides five different pivot rule
|
kpeter@601
|
57 |
/// implementations that significantly affect the efficiency of the
|
kpeter@601
|
58 |
/// algorithm.
|
kpeter@601
|
59 |
/// By default "Block Search" pivot rule is used, which proved to be
|
kpeter@601
|
60 |
/// by far the most efficient according to our benchmark tests.
|
kpeter@601
|
61 |
/// However another pivot rule can be selected using \ref run()
|
kpeter@601
|
62 |
/// function with the proper parameter.
|
kpeter@601
|
63 |
#ifdef DOXYGEN
|
kpeter@601
|
64 |
template < typename Digraph,
|
kpeter@601
|
65 |
typename LowerMap,
|
kpeter@601
|
66 |
typename CapacityMap,
|
kpeter@601
|
67 |
typename CostMap,
|
kpeter@601
|
68 |
typename SupplyMap >
|
kpeter@601
|
69 |
|
kpeter@601
|
70 |
#else
|
kpeter@601
|
71 |
template < typename Digraph,
|
kpeter@601
|
72 |
typename LowerMap = typename Digraph::template ArcMap<int>,
|
kpeter@601
|
73 |
typename CapacityMap = typename Digraph::template ArcMap<int>,
|
kpeter@601
|
74 |
typename CostMap = typename Digraph::template ArcMap<int>,
|
kpeter@601
|
75 |
typename SupplyMap = typename Digraph::template NodeMap<int> >
|
kpeter@601
|
76 |
#endif
|
kpeter@601
|
77 |
class NetworkSimplex
|
kpeter@601
|
78 |
{
|
kpeter@601
|
79 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
|
kpeter@601
|
80 |
|
kpeter@601
|
81 |
typedef typename CapacityMap::Value Capacity;
|
kpeter@601
|
82 |
typedef typename CostMap::Value Cost;
|
kpeter@601
|
83 |
typedef typename SupplyMap::Value Supply;
|
kpeter@601
|
84 |
|
kpeter@601
|
85 |
typedef std::vector<Arc> ArcVector;
|
kpeter@601
|
86 |
typedef std::vector<Node> NodeVector;
|
kpeter@601
|
87 |
typedef std::vector<int> IntVector;
|
kpeter@601
|
88 |
typedef std::vector<bool> BoolVector;
|
kpeter@601
|
89 |
typedef std::vector<Capacity> CapacityVector;
|
kpeter@601
|
90 |
typedef std::vector<Cost> CostVector;
|
kpeter@601
|
91 |
typedef std::vector<Supply> SupplyVector;
|
kpeter@601
|
92 |
|
kpeter@601
|
93 |
public:
|
kpeter@601
|
94 |
|
kpeter@601
|
95 |
/// The type of the flow map
|
kpeter@601
|
96 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap;
|
kpeter@601
|
97 |
/// The type of the potential map
|
kpeter@601
|
98 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap;
|
kpeter@601
|
99 |
|
kpeter@601
|
100 |
public:
|
kpeter@601
|
101 |
|
kpeter@601
|
102 |
/// Enum type for selecting the pivot rule used by \ref run()
|
kpeter@601
|
103 |
enum PivotRuleEnum {
|
kpeter@601
|
104 |
FIRST_ELIGIBLE_PIVOT,
|
kpeter@601
|
105 |
BEST_ELIGIBLE_PIVOT,
|
kpeter@601
|
106 |
BLOCK_SEARCH_PIVOT,
|
kpeter@601
|
107 |
CANDIDATE_LIST_PIVOT,
|
kpeter@601
|
108 |
ALTERING_LIST_PIVOT
|
kpeter@601
|
109 |
};
|
kpeter@601
|
110 |
|
kpeter@601
|
111 |
private:
|
kpeter@601
|
112 |
|
kpeter@601
|
113 |
// State constants for arcs
|
kpeter@601
|
114 |
enum ArcStateEnum {
|
kpeter@601
|
115 |
STATE_UPPER = -1,
|
kpeter@601
|
116 |
STATE_TREE = 0,
|
kpeter@601
|
117 |
STATE_LOWER = 1
|
kpeter@601
|
118 |
};
|
kpeter@601
|
119 |
|
kpeter@601
|
120 |
private:
|
kpeter@601
|
121 |
|
kpeter@601
|
122 |
// References for the original data
|
kpeter@601
|
123 |
const Digraph &_orig_graph;
|
kpeter@601
|
124 |
const LowerMap *_orig_lower;
|
kpeter@601
|
125 |
const CapacityMap &_orig_cap;
|
kpeter@601
|
126 |
const CostMap &_orig_cost;
|
kpeter@601
|
127 |
const SupplyMap *_orig_supply;
|
kpeter@601
|
128 |
Node _orig_source;
|
kpeter@601
|
129 |
Node _orig_target;
|
kpeter@601
|
130 |
Capacity _orig_flow_value;
|
kpeter@601
|
131 |
|
kpeter@601
|
132 |
// Result maps
|
kpeter@601
|
133 |
FlowMap *_flow_result;
|
kpeter@601
|
134 |
PotentialMap *_potential_result;
|
kpeter@601
|
135 |
bool _local_flow;
|
kpeter@601
|
136 |
bool _local_potential;
|
kpeter@601
|
137 |
|
kpeter@601
|
138 |
// Data structures for storing the graph
|
kpeter@601
|
139 |
ArcVector _arc;
|
kpeter@601
|
140 |
NodeVector _node;
|
kpeter@601
|
141 |
IntNodeMap _node_id;
|
kpeter@601
|
142 |
IntVector _source;
|
kpeter@601
|
143 |
IntVector _target;
|
kpeter@601
|
144 |
|
kpeter@601
|
145 |
// The number of nodes and arcs in the original graph
|
kpeter@601
|
146 |
int _node_num;
|
kpeter@601
|
147 |
int _arc_num;
|
kpeter@601
|
148 |
|
kpeter@601
|
149 |
// Node and arc maps
|
kpeter@601
|
150 |
CapacityVector _cap;
|
kpeter@601
|
151 |
CostVector _cost;
|
kpeter@601
|
152 |
CostVector _supply;
|
kpeter@601
|
153 |
CapacityVector _flow;
|
kpeter@601
|
154 |
CostVector _pi;
|
kpeter@601
|
155 |
|
kpeter@601
|
156 |
// Node and arc maps for the spanning tree structure
|
kpeter@601
|
157 |
IntVector _depth;
|
kpeter@601
|
158 |
IntVector _parent;
|
kpeter@601
|
159 |
IntVector _pred;
|
kpeter@601
|
160 |
IntVector _thread;
|
kpeter@601
|
161 |
BoolVector _forward;
|
kpeter@601
|
162 |
IntVector _state;
|
kpeter@601
|
163 |
|
kpeter@601
|
164 |
// The root node
|
kpeter@601
|
165 |
int _root;
|
kpeter@601
|
166 |
|
kpeter@601
|
167 |
// The entering arc in the current pivot iteration
|
kpeter@601
|
168 |
int _in_arc;
|
kpeter@601
|
169 |
|
kpeter@601
|
170 |
// Temporary data used in the current pivot iteration
|
kpeter@601
|
171 |
int join, u_in, v_in, u_out, v_out;
|
kpeter@601
|
172 |
int right, first, second, last;
|
kpeter@601
|
173 |
int stem, par_stem, new_stem;
|
kpeter@601
|
174 |
Capacity delta;
|
kpeter@601
|
175 |
|
kpeter@601
|
176 |
private:
|
kpeter@601
|
177 |
|
kpeter@601
|
178 |
/// \brief Implementation of the "First Eligible" pivot rule for the
|
kpeter@601
|
179 |
/// \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
180 |
///
|
kpeter@601
|
181 |
/// This class implements the "First Eligible" pivot rule
|
kpeter@601
|
182 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
183 |
///
|
kpeter@601
|
184 |
/// For more information see \ref NetworkSimplex::run().
|
kpeter@601
|
185 |
class FirstEligiblePivotRule
|
kpeter@601
|
186 |
{
|
kpeter@601
|
187 |
private:
|
kpeter@601
|
188 |
|
kpeter@601
|
189 |
// References to the NetworkSimplex class
|
kpeter@601
|
190 |
const ArcVector &_arc;
|
kpeter@601
|
191 |
const IntVector &_source;
|
kpeter@601
|
192 |
const IntVector &_target;
|
kpeter@601
|
193 |
const CostVector &_cost;
|
kpeter@601
|
194 |
const IntVector &_state;
|
kpeter@601
|
195 |
const CostVector &_pi;
|
kpeter@601
|
196 |
int &_in_arc;
|
kpeter@601
|
197 |
int _arc_num;
|
kpeter@601
|
198 |
|
kpeter@601
|
199 |
// Pivot rule data
|
kpeter@601
|
200 |
int _next_arc;
|
kpeter@601
|
201 |
|
kpeter@601
|
202 |
public:
|
kpeter@601
|
203 |
|
kpeter@601
|
204 |
/// Constructor
|
kpeter@601
|
205 |
FirstEligiblePivotRule(NetworkSimplex &ns) :
|
kpeter@601
|
206 |
_arc(ns._arc), _source(ns._source), _target(ns._target),
|
kpeter@601
|
207 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@601
|
208 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0)
|
kpeter@601
|
209 |
{}
|
kpeter@601
|
210 |
|
kpeter@601
|
211 |
/// Find next entering arc
|
kpeter@601
|
212 |
bool findEnteringArc() {
|
kpeter@601
|
213 |
Cost c;
|
kpeter@601
|
214 |
for (int e = _next_arc; e < _arc_num; ++e) {
|
kpeter@601
|
215 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
216 |
if (c < 0) {
|
kpeter@601
|
217 |
_in_arc = e;
|
kpeter@601
|
218 |
_next_arc = e + 1;
|
kpeter@601
|
219 |
return true;
|
kpeter@601
|
220 |
}
|
kpeter@601
|
221 |
}
|
kpeter@601
|
222 |
for (int e = 0; e < _next_arc; ++e) {
|
kpeter@601
|
223 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
224 |
if (c < 0) {
|
kpeter@601
|
225 |
_in_arc = e;
|
kpeter@601
|
226 |
_next_arc = e + 1;
|
kpeter@601
|
227 |
return true;
|
kpeter@601
|
228 |
}
|
kpeter@601
|
229 |
}
|
kpeter@601
|
230 |
return false;
|
kpeter@601
|
231 |
}
|
kpeter@601
|
232 |
|
kpeter@601
|
233 |
}; //class FirstEligiblePivotRule
|
kpeter@601
|
234 |
|
kpeter@601
|
235 |
|
kpeter@601
|
236 |
/// \brief Implementation of the "Best Eligible" pivot rule for the
|
kpeter@601
|
237 |
/// \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
238 |
///
|
kpeter@601
|
239 |
/// This class implements the "Best Eligible" pivot rule
|
kpeter@601
|
240 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
241 |
///
|
kpeter@601
|
242 |
/// For more information see \ref NetworkSimplex::run().
|
kpeter@601
|
243 |
class BestEligiblePivotRule
|
kpeter@601
|
244 |
{
|
kpeter@601
|
245 |
private:
|
kpeter@601
|
246 |
|
kpeter@601
|
247 |
// References to the NetworkSimplex class
|
kpeter@601
|
248 |
const ArcVector &_arc;
|
kpeter@601
|
249 |
const IntVector &_source;
|
kpeter@601
|
250 |
const IntVector &_target;
|
kpeter@601
|
251 |
const CostVector &_cost;
|
kpeter@601
|
252 |
const IntVector &_state;
|
kpeter@601
|
253 |
const CostVector &_pi;
|
kpeter@601
|
254 |
int &_in_arc;
|
kpeter@601
|
255 |
int _arc_num;
|
kpeter@601
|
256 |
|
kpeter@601
|
257 |
public:
|
kpeter@601
|
258 |
|
kpeter@601
|
259 |
/// Constructor
|
kpeter@601
|
260 |
BestEligiblePivotRule(NetworkSimplex &ns) :
|
kpeter@601
|
261 |
_arc(ns._arc), _source(ns._source), _target(ns._target),
|
kpeter@601
|
262 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@601
|
263 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num)
|
kpeter@601
|
264 |
{}
|
kpeter@601
|
265 |
|
kpeter@601
|
266 |
/// Find next entering arc
|
kpeter@601
|
267 |
bool findEnteringArc() {
|
kpeter@601
|
268 |
Cost c, min = 0;
|
kpeter@601
|
269 |
for (int e = 0; e < _arc_num; ++e) {
|
kpeter@601
|
270 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
271 |
if (c < min) {
|
kpeter@601
|
272 |
min = c;
|
kpeter@601
|
273 |
_in_arc = e;
|
kpeter@601
|
274 |
}
|
kpeter@601
|
275 |
}
|
kpeter@601
|
276 |
return min < 0;
|
kpeter@601
|
277 |
}
|
kpeter@601
|
278 |
|
kpeter@601
|
279 |
}; //class BestEligiblePivotRule
|
kpeter@601
|
280 |
|
kpeter@601
|
281 |
|
kpeter@601
|
282 |
/// \brief Implementation of the "Block Search" pivot rule for the
|
kpeter@601
|
283 |
/// \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
284 |
///
|
kpeter@601
|
285 |
/// This class implements the "Block Search" pivot rule
|
kpeter@601
|
286 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
287 |
///
|
kpeter@601
|
288 |
/// For more information see \ref NetworkSimplex::run().
|
kpeter@601
|
289 |
class BlockSearchPivotRule
|
kpeter@601
|
290 |
{
|
kpeter@601
|
291 |
private:
|
kpeter@601
|
292 |
|
kpeter@601
|
293 |
// References to the NetworkSimplex class
|
kpeter@601
|
294 |
const ArcVector &_arc;
|
kpeter@601
|
295 |
const IntVector &_source;
|
kpeter@601
|
296 |
const IntVector &_target;
|
kpeter@601
|
297 |
const CostVector &_cost;
|
kpeter@601
|
298 |
const IntVector &_state;
|
kpeter@601
|
299 |
const CostVector &_pi;
|
kpeter@601
|
300 |
int &_in_arc;
|
kpeter@601
|
301 |
int _arc_num;
|
kpeter@601
|
302 |
|
kpeter@601
|
303 |
// Pivot rule data
|
kpeter@601
|
304 |
int _block_size;
|
kpeter@601
|
305 |
int _next_arc;
|
kpeter@601
|
306 |
|
kpeter@601
|
307 |
public:
|
kpeter@601
|
308 |
|
kpeter@601
|
309 |
/// Constructor
|
kpeter@601
|
310 |
BlockSearchPivotRule(NetworkSimplex &ns) :
|
kpeter@601
|
311 |
_arc(ns._arc), _source(ns._source), _target(ns._target),
|
kpeter@601
|
312 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@601
|
313 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0)
|
kpeter@601
|
314 |
{
|
kpeter@601
|
315 |
// The main parameters of the pivot rule
|
kpeter@601
|
316 |
const double BLOCK_SIZE_FACTOR = 2.0;
|
kpeter@601
|
317 |
const int MIN_BLOCK_SIZE = 10;
|
kpeter@601
|
318 |
|
kpeter@601
|
319 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
|
kpeter@601
|
320 |
MIN_BLOCK_SIZE );
|
kpeter@601
|
321 |
}
|
kpeter@601
|
322 |
|
kpeter@601
|
323 |
/// Find next entering arc
|
kpeter@601
|
324 |
bool findEnteringArc() {
|
kpeter@601
|
325 |
Cost c, min = 0;
|
kpeter@601
|
326 |
int cnt = _block_size;
|
kpeter@601
|
327 |
int e, min_arc = _next_arc;
|
kpeter@601
|
328 |
for (e = _next_arc; e < _arc_num; ++e) {
|
kpeter@601
|
329 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
330 |
if (c < min) {
|
kpeter@601
|
331 |
min = c;
|
kpeter@601
|
332 |
min_arc = e;
|
kpeter@601
|
333 |
}
|
kpeter@601
|
334 |
if (--cnt == 0) {
|
kpeter@601
|
335 |
if (min < 0) break;
|
kpeter@601
|
336 |
cnt = _block_size;
|
kpeter@601
|
337 |
}
|
kpeter@601
|
338 |
}
|
kpeter@601
|
339 |
if (min == 0 || cnt > 0) {
|
kpeter@601
|
340 |
for (e = 0; e < _next_arc; ++e) {
|
kpeter@601
|
341 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
342 |
if (c < min) {
|
kpeter@601
|
343 |
min = c;
|
kpeter@601
|
344 |
min_arc = e;
|
kpeter@601
|
345 |
}
|
kpeter@601
|
346 |
if (--cnt == 0) {
|
kpeter@601
|
347 |
if (min < 0) break;
|
kpeter@601
|
348 |
cnt = _block_size;
|
kpeter@601
|
349 |
}
|
kpeter@601
|
350 |
}
|
kpeter@601
|
351 |
}
|
kpeter@601
|
352 |
if (min >= 0) return false;
|
kpeter@601
|
353 |
_in_arc = min_arc;
|
kpeter@601
|
354 |
_next_arc = e;
|
kpeter@601
|
355 |
return true;
|
kpeter@601
|
356 |
}
|
kpeter@601
|
357 |
|
kpeter@601
|
358 |
}; //class BlockSearchPivotRule
|
kpeter@601
|
359 |
|
kpeter@601
|
360 |
|
kpeter@601
|
361 |
/// \brief Implementation of the "Candidate List" pivot rule for the
|
kpeter@601
|
362 |
/// \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
363 |
///
|
kpeter@601
|
364 |
/// This class implements the "Candidate List" pivot rule
|
kpeter@601
|
365 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
366 |
///
|
kpeter@601
|
367 |
/// For more information see \ref NetworkSimplex::run().
|
kpeter@601
|
368 |
class CandidateListPivotRule
|
kpeter@601
|
369 |
{
|
kpeter@601
|
370 |
private:
|
kpeter@601
|
371 |
|
kpeter@601
|
372 |
// References to the NetworkSimplex class
|
kpeter@601
|
373 |
const ArcVector &_arc;
|
kpeter@601
|
374 |
const IntVector &_source;
|
kpeter@601
|
375 |
const IntVector &_target;
|
kpeter@601
|
376 |
const CostVector &_cost;
|
kpeter@601
|
377 |
const IntVector &_state;
|
kpeter@601
|
378 |
const CostVector &_pi;
|
kpeter@601
|
379 |
int &_in_arc;
|
kpeter@601
|
380 |
int _arc_num;
|
kpeter@601
|
381 |
|
kpeter@601
|
382 |
// Pivot rule data
|
kpeter@601
|
383 |
IntVector _candidates;
|
kpeter@601
|
384 |
int _list_length, _minor_limit;
|
kpeter@601
|
385 |
int _curr_length, _minor_count;
|
kpeter@601
|
386 |
int _next_arc;
|
kpeter@601
|
387 |
|
kpeter@601
|
388 |
public:
|
kpeter@601
|
389 |
|
kpeter@601
|
390 |
/// Constructor
|
kpeter@601
|
391 |
CandidateListPivotRule(NetworkSimplex &ns) :
|
kpeter@601
|
392 |
_arc(ns._arc), _source(ns._source), _target(ns._target),
|
kpeter@601
|
393 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@601
|
394 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0)
|
kpeter@601
|
395 |
{
|
kpeter@601
|
396 |
// The main parameters of the pivot rule
|
kpeter@601
|
397 |
const double LIST_LENGTH_FACTOR = 1.0;
|
kpeter@601
|
398 |
const int MIN_LIST_LENGTH = 10;
|
kpeter@601
|
399 |
const double MINOR_LIMIT_FACTOR = 0.1;
|
kpeter@601
|
400 |
const int MIN_MINOR_LIMIT = 3;
|
kpeter@601
|
401 |
|
kpeter@601
|
402 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)),
|
kpeter@601
|
403 |
MIN_LIST_LENGTH );
|
kpeter@601
|
404 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
|
kpeter@601
|
405 |
MIN_MINOR_LIMIT );
|
kpeter@601
|
406 |
_curr_length = _minor_count = 0;
|
kpeter@601
|
407 |
_candidates.resize(_list_length);
|
kpeter@601
|
408 |
}
|
kpeter@601
|
409 |
|
kpeter@601
|
410 |
/// Find next entering arc
|
kpeter@601
|
411 |
bool findEnteringArc() {
|
kpeter@601
|
412 |
Cost min, c;
|
kpeter@601
|
413 |
int e, min_arc = _next_arc;
|
kpeter@601
|
414 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
kpeter@601
|
415 |
// Minor iteration: select the best eligible arc from the
|
kpeter@601
|
416 |
// current candidate list
|
kpeter@601
|
417 |
++_minor_count;
|
kpeter@601
|
418 |
min = 0;
|
kpeter@601
|
419 |
for (int i = 0; i < _curr_length; ++i) {
|
kpeter@601
|
420 |
e = _candidates[i];
|
kpeter@601
|
421 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
422 |
if (c < min) {
|
kpeter@601
|
423 |
min = c;
|
kpeter@601
|
424 |
min_arc = e;
|
kpeter@601
|
425 |
}
|
kpeter@601
|
426 |
if (c >= 0) {
|
kpeter@601
|
427 |
_candidates[i--] = _candidates[--_curr_length];
|
kpeter@601
|
428 |
}
|
kpeter@601
|
429 |
}
|
kpeter@601
|
430 |
if (min < 0) {
|
kpeter@601
|
431 |
_in_arc = min_arc;
|
kpeter@601
|
432 |
return true;
|
kpeter@601
|
433 |
}
|
kpeter@601
|
434 |
}
|
kpeter@601
|
435 |
|
kpeter@601
|
436 |
// Major iteration: build a new candidate list
|
kpeter@601
|
437 |
min = 0;
|
kpeter@601
|
438 |
_curr_length = 0;
|
kpeter@601
|
439 |
for (e = _next_arc; e < _arc_num; ++e) {
|
kpeter@601
|
440 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
441 |
if (c < 0) {
|
kpeter@601
|
442 |
_candidates[_curr_length++] = e;
|
kpeter@601
|
443 |
if (c < min) {
|
kpeter@601
|
444 |
min = c;
|
kpeter@601
|
445 |
min_arc = e;
|
kpeter@601
|
446 |
}
|
kpeter@601
|
447 |
if (_curr_length == _list_length) break;
|
kpeter@601
|
448 |
}
|
kpeter@601
|
449 |
}
|
kpeter@601
|
450 |
if (_curr_length < _list_length) {
|
kpeter@601
|
451 |
for (e = 0; e < _next_arc; ++e) {
|
kpeter@601
|
452 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
453 |
if (c < 0) {
|
kpeter@601
|
454 |
_candidates[_curr_length++] = e;
|
kpeter@601
|
455 |
if (c < min) {
|
kpeter@601
|
456 |
min = c;
|
kpeter@601
|
457 |
min_arc = e;
|
kpeter@601
|
458 |
}
|
kpeter@601
|
459 |
if (_curr_length == _list_length) break;
|
kpeter@601
|
460 |
}
|
kpeter@601
|
461 |
}
|
kpeter@601
|
462 |
}
|
kpeter@601
|
463 |
if (_curr_length == 0) return false;
|
kpeter@601
|
464 |
_minor_count = 1;
|
kpeter@601
|
465 |
_in_arc = min_arc;
|
kpeter@601
|
466 |
_next_arc = e;
|
kpeter@601
|
467 |
return true;
|
kpeter@601
|
468 |
}
|
kpeter@601
|
469 |
|
kpeter@601
|
470 |
}; //class CandidateListPivotRule
|
kpeter@601
|
471 |
|
kpeter@601
|
472 |
|
kpeter@601
|
473 |
/// \brief Implementation of the "Altering Candidate List" pivot rule
|
kpeter@601
|
474 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
475 |
///
|
kpeter@601
|
476 |
/// This class implements the "Altering Candidate List" pivot rule
|
kpeter@601
|
477 |
/// for the \ref NetworkSimplex "network simplex" algorithm.
|
kpeter@601
|
478 |
///
|
kpeter@601
|
479 |
/// For more information see \ref NetworkSimplex::run().
|
kpeter@601
|
480 |
class AlteringListPivotRule
|
kpeter@601
|
481 |
{
|
kpeter@601
|
482 |
private:
|
kpeter@601
|
483 |
|
kpeter@601
|
484 |
// References to the NetworkSimplex class
|
kpeter@601
|
485 |
const ArcVector &_arc;
|
kpeter@601
|
486 |
const IntVector &_source;
|
kpeter@601
|
487 |
const IntVector &_target;
|
kpeter@601
|
488 |
const CostVector &_cost;
|
kpeter@601
|
489 |
const IntVector &_state;
|
kpeter@601
|
490 |
const CostVector &_pi;
|
kpeter@601
|
491 |
int &_in_arc;
|
kpeter@601
|
492 |
int _arc_num;
|
kpeter@601
|
493 |
|
kpeter@601
|
494 |
// Pivot rule data
|
kpeter@601
|
495 |
int _block_size, _head_length, _curr_length;
|
kpeter@601
|
496 |
int _next_arc;
|
kpeter@601
|
497 |
IntVector _candidates;
|
kpeter@601
|
498 |
CostVector _cand_cost;
|
kpeter@601
|
499 |
|
kpeter@601
|
500 |
// Functor class to compare arcs during sort of the candidate list
|
kpeter@601
|
501 |
class SortFunc
|
kpeter@601
|
502 |
{
|
kpeter@601
|
503 |
private:
|
kpeter@601
|
504 |
const CostVector &_map;
|
kpeter@601
|
505 |
public:
|
kpeter@601
|
506 |
SortFunc(const CostVector &map) : _map(map) {}
|
kpeter@601
|
507 |
bool operator()(int left, int right) {
|
kpeter@601
|
508 |
return _map[left] > _map[right];
|
kpeter@601
|
509 |
}
|
kpeter@601
|
510 |
};
|
kpeter@601
|
511 |
|
kpeter@601
|
512 |
SortFunc _sort_func;
|
kpeter@601
|
513 |
|
kpeter@601
|
514 |
public:
|
kpeter@601
|
515 |
|
kpeter@601
|
516 |
/// Constructor
|
kpeter@601
|
517 |
AlteringListPivotRule(NetworkSimplex &ns) :
|
kpeter@601
|
518 |
_arc(ns._arc), _source(ns._source), _target(ns._target),
|
kpeter@601
|
519 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@601
|
520 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num),
|
kpeter@601
|
521 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
|
kpeter@601
|
522 |
{
|
kpeter@601
|
523 |
// The main parameters of the pivot rule
|
kpeter@601
|
524 |
const double BLOCK_SIZE_FACTOR = 1.5;
|
kpeter@601
|
525 |
const int MIN_BLOCK_SIZE = 10;
|
kpeter@601
|
526 |
const double HEAD_LENGTH_FACTOR = 0.1;
|
kpeter@601
|
527 |
const int MIN_HEAD_LENGTH = 3;
|
kpeter@601
|
528 |
|
kpeter@601
|
529 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
|
kpeter@601
|
530 |
MIN_BLOCK_SIZE );
|
kpeter@601
|
531 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
|
kpeter@601
|
532 |
MIN_HEAD_LENGTH );
|
kpeter@601
|
533 |
_candidates.resize(_head_length + _block_size);
|
kpeter@601
|
534 |
_curr_length = 0;
|
kpeter@601
|
535 |
}
|
kpeter@601
|
536 |
|
kpeter@601
|
537 |
/// Find next entering arc
|
kpeter@601
|
538 |
bool findEnteringArc() {
|
kpeter@601
|
539 |
// Check the current candidate list
|
kpeter@601
|
540 |
int e;
|
kpeter@601
|
541 |
for (int i = 0; i < _curr_length; ++i) {
|
kpeter@601
|
542 |
e = _candidates[i];
|
kpeter@601
|
543 |
_cand_cost[e] = _state[e] *
|
kpeter@601
|
544 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
545 |
if (_cand_cost[e] >= 0) {
|
kpeter@601
|
546 |
_candidates[i--] = _candidates[--_curr_length];
|
kpeter@601
|
547 |
}
|
kpeter@601
|
548 |
}
|
kpeter@601
|
549 |
|
kpeter@601
|
550 |
// Extend the list
|
kpeter@601
|
551 |
int cnt = _block_size;
|
kpeter@601
|
552 |
int last_edge = 0;
|
kpeter@601
|
553 |
int limit = _head_length;
|
kpeter@601
|
554 |
|
kpeter@601
|
555 |
for (int e = _next_arc; e < _arc_num; ++e) {
|
kpeter@601
|
556 |
_cand_cost[e] = _state[e] *
|
kpeter@601
|
557 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
558 |
if (_cand_cost[e] < 0) {
|
kpeter@601
|
559 |
_candidates[_curr_length++] = e;
|
kpeter@601
|
560 |
last_edge = e;
|
kpeter@601
|
561 |
}
|
kpeter@601
|
562 |
if (--cnt == 0) {
|
kpeter@601
|
563 |
if (_curr_length > limit) break;
|
kpeter@601
|
564 |
limit = 0;
|
kpeter@601
|
565 |
cnt = _block_size;
|
kpeter@601
|
566 |
}
|
kpeter@601
|
567 |
}
|
kpeter@601
|
568 |
if (_curr_length <= limit) {
|
kpeter@601
|
569 |
for (int e = 0; e < _next_arc; ++e) {
|
kpeter@601
|
570 |
_cand_cost[e] = _state[e] *
|
kpeter@601
|
571 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
572 |
if (_cand_cost[e] < 0) {
|
kpeter@601
|
573 |
_candidates[_curr_length++] = e;
|
kpeter@601
|
574 |
last_edge = e;
|
kpeter@601
|
575 |
}
|
kpeter@601
|
576 |
if (--cnt == 0) {
|
kpeter@601
|
577 |
if (_curr_length > limit) break;
|
kpeter@601
|
578 |
limit = 0;
|
kpeter@601
|
579 |
cnt = _block_size;
|
kpeter@601
|
580 |
}
|
kpeter@601
|
581 |
}
|
kpeter@601
|
582 |
}
|
kpeter@601
|
583 |
if (_curr_length == 0) return false;
|
kpeter@601
|
584 |
_next_arc = last_edge + 1;
|
kpeter@601
|
585 |
|
kpeter@601
|
586 |
// Make heap of the candidate list (approximating a partial sort)
|
kpeter@601
|
587 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
|
kpeter@601
|
588 |
_sort_func );
|
kpeter@601
|
589 |
|
kpeter@601
|
590 |
// Pop the first element of the heap
|
kpeter@601
|
591 |
_in_arc = _candidates[0];
|
kpeter@601
|
592 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
|
kpeter@601
|
593 |
_sort_func );
|
kpeter@601
|
594 |
_curr_length = std::min(_head_length, _curr_length - 1);
|
kpeter@601
|
595 |
return true;
|
kpeter@601
|
596 |
}
|
kpeter@601
|
597 |
|
kpeter@601
|
598 |
}; //class AlteringListPivotRule
|
kpeter@601
|
599 |
|
kpeter@601
|
600 |
public:
|
kpeter@601
|
601 |
|
kpeter@601
|
602 |
/// \brief General constructor (with lower bounds).
|
kpeter@601
|
603 |
///
|
kpeter@601
|
604 |
/// General constructor (with lower bounds).
|
kpeter@601
|
605 |
///
|
kpeter@601
|
606 |
/// \param digraph The digraph the algorithm runs on.
|
kpeter@601
|
607 |
/// \param lower The lower bounds of the arcs.
|
kpeter@601
|
608 |
/// \param capacity The capacities (upper bounds) of the arcs.
|
kpeter@601
|
609 |
/// \param cost The cost (length) values of the arcs.
|
kpeter@601
|
610 |
/// \param supply The supply values of the nodes (signed).
|
kpeter@601
|
611 |
NetworkSimplex( const Digraph &digraph,
|
kpeter@601
|
612 |
const LowerMap &lower,
|
kpeter@601
|
613 |
const CapacityMap &capacity,
|
kpeter@601
|
614 |
const CostMap &cost,
|
kpeter@601
|
615 |
const SupplyMap &supply ) :
|
kpeter@601
|
616 |
_orig_graph(digraph), _orig_lower(&lower), _orig_cap(capacity),
|
kpeter@601
|
617 |
_orig_cost(cost), _orig_supply(&supply),
|
kpeter@601
|
618 |
_flow_result(NULL), _potential_result(NULL),
|
kpeter@601
|
619 |
_local_flow(false), _local_potential(false),
|
kpeter@601
|
620 |
_node_id(digraph)
|
kpeter@601
|
621 |
{}
|
kpeter@601
|
622 |
|
kpeter@601
|
623 |
/// \brief General constructor (without lower bounds).
|
kpeter@601
|
624 |
///
|
kpeter@601
|
625 |
/// General constructor (without lower bounds).
|
kpeter@601
|
626 |
///
|
kpeter@601
|
627 |
/// \param digraph The digraph the algorithm runs on.
|
kpeter@601
|
628 |
/// \param capacity The capacities (upper bounds) of the arcs.
|
kpeter@601
|
629 |
/// \param cost The cost (length) values of the arcs.
|
kpeter@601
|
630 |
/// \param supply The supply values of the nodes (signed).
|
kpeter@601
|
631 |
NetworkSimplex( const Digraph &digraph,
|
kpeter@601
|
632 |
const CapacityMap &capacity,
|
kpeter@601
|
633 |
const CostMap &cost,
|
kpeter@601
|
634 |
const SupplyMap &supply ) :
|
kpeter@601
|
635 |
_orig_graph(digraph), _orig_lower(NULL), _orig_cap(capacity),
|
kpeter@601
|
636 |
_orig_cost(cost), _orig_supply(&supply),
|
kpeter@601
|
637 |
_flow_result(NULL), _potential_result(NULL),
|
kpeter@601
|
638 |
_local_flow(false), _local_potential(false),
|
kpeter@601
|
639 |
_node_id(digraph)
|
kpeter@601
|
640 |
{}
|
kpeter@601
|
641 |
|
kpeter@601
|
642 |
/// \brief Simple constructor (with lower bounds).
|
kpeter@601
|
643 |
///
|
kpeter@601
|
644 |
/// Simple constructor (with lower bounds).
|
kpeter@601
|
645 |
///
|
kpeter@601
|
646 |
/// \param digraph The digraph the algorithm runs on.
|
kpeter@601
|
647 |
/// \param lower The lower bounds of the arcs.
|
kpeter@601
|
648 |
/// \param capacity The capacities (upper bounds) of the arcs.
|
kpeter@601
|
649 |
/// \param cost The cost (length) values of the arcs.
|
kpeter@601
|
650 |
/// \param s The source node.
|
kpeter@601
|
651 |
/// \param t The target node.
|
kpeter@601
|
652 |
/// \param flow_value The required amount of flow from node \c s
|
kpeter@601
|
653 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
|
kpeter@601
|
654 |
NetworkSimplex( const Digraph &digraph,
|
kpeter@601
|
655 |
const LowerMap &lower,
|
kpeter@601
|
656 |
const CapacityMap &capacity,
|
kpeter@601
|
657 |
const CostMap &cost,
|
kpeter@601
|
658 |
Node s, Node t,
|
kpeter@601
|
659 |
Capacity flow_value ) :
|
kpeter@601
|
660 |
_orig_graph(digraph), _orig_lower(&lower), _orig_cap(capacity),
|
kpeter@601
|
661 |
_orig_cost(cost), _orig_supply(NULL),
|
kpeter@601
|
662 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value),
|
kpeter@601
|
663 |
_flow_result(NULL), _potential_result(NULL),
|
kpeter@601
|
664 |
_local_flow(false), _local_potential(false),
|
kpeter@601
|
665 |
_node_id(digraph)
|
kpeter@601
|
666 |
{}
|
kpeter@601
|
667 |
|
kpeter@601
|
668 |
/// \brief Simple constructor (without lower bounds).
|
kpeter@601
|
669 |
///
|
kpeter@601
|
670 |
/// Simple constructor (without lower bounds).
|
kpeter@601
|
671 |
///
|
kpeter@601
|
672 |
/// \param digraph The digraph the algorithm runs on.
|
kpeter@601
|
673 |
/// \param capacity The capacities (upper bounds) of the arcs.
|
kpeter@601
|
674 |
/// \param cost The cost (length) values of the arcs.
|
kpeter@601
|
675 |
/// \param s The source node.
|
kpeter@601
|
676 |
/// \param t The target node.
|
kpeter@601
|
677 |
/// \param flow_value The required amount of flow from node \c s
|
kpeter@601
|
678 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
|
kpeter@601
|
679 |
NetworkSimplex( const Digraph &digraph,
|
kpeter@601
|
680 |
const CapacityMap &capacity,
|
kpeter@601
|
681 |
const CostMap &cost,
|
kpeter@601
|
682 |
Node s, Node t,
|
kpeter@601
|
683 |
Capacity flow_value ) :
|
kpeter@601
|
684 |
_orig_graph(digraph), _orig_lower(NULL), _orig_cap(capacity),
|
kpeter@601
|
685 |
_orig_cost(cost), _orig_supply(NULL),
|
kpeter@601
|
686 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value),
|
kpeter@601
|
687 |
_flow_result(NULL), _potential_result(NULL),
|
kpeter@601
|
688 |
_local_flow(false), _local_potential(false),
|
kpeter@601
|
689 |
_node_id(digraph)
|
kpeter@601
|
690 |
{}
|
kpeter@601
|
691 |
|
kpeter@601
|
692 |
/// Destructor.
|
kpeter@601
|
693 |
~NetworkSimplex() {
|
kpeter@601
|
694 |
if (_local_flow) delete _flow_result;
|
kpeter@601
|
695 |
if (_local_potential) delete _potential_result;
|
kpeter@601
|
696 |
}
|
kpeter@601
|
697 |
|
kpeter@601
|
698 |
/// \brief Set the flow map.
|
kpeter@601
|
699 |
///
|
kpeter@601
|
700 |
/// This function sets the flow map.
|
kpeter@601
|
701 |
///
|
kpeter@601
|
702 |
/// \return <tt>(*this)</tt>
|
kpeter@601
|
703 |
NetworkSimplex& flowMap(FlowMap &map) {
|
kpeter@601
|
704 |
if (_local_flow) {
|
kpeter@601
|
705 |
delete _flow_result;
|
kpeter@601
|
706 |
_local_flow = false;
|
kpeter@601
|
707 |
}
|
kpeter@601
|
708 |
_flow_result = ↦
|
kpeter@601
|
709 |
return *this;
|
kpeter@601
|
710 |
}
|
kpeter@601
|
711 |
|
kpeter@601
|
712 |
/// \brief Set the potential map.
|
kpeter@601
|
713 |
///
|
kpeter@601
|
714 |
/// This function sets the potential map.
|
kpeter@601
|
715 |
///
|
kpeter@601
|
716 |
/// \return <tt>(*this)</tt>
|
kpeter@601
|
717 |
NetworkSimplex& potentialMap(PotentialMap &map) {
|
kpeter@601
|
718 |
if (_local_potential) {
|
kpeter@601
|
719 |
delete _potential_result;
|
kpeter@601
|
720 |
_local_potential = false;
|
kpeter@601
|
721 |
}
|
kpeter@601
|
722 |
_potential_result = ↦
|
kpeter@601
|
723 |
return *this;
|
kpeter@601
|
724 |
}
|
kpeter@601
|
725 |
|
kpeter@601
|
726 |
/// \name Execution control
|
kpeter@601
|
727 |
/// The algorithm can be executed using the
|
kpeter@601
|
728 |
/// \ref lemon::NetworkSimplex::run() "run()" function.
|
kpeter@601
|
729 |
/// @{
|
kpeter@601
|
730 |
|
kpeter@601
|
731 |
/// \brief Run the algorithm.
|
kpeter@601
|
732 |
///
|
kpeter@601
|
733 |
/// This function runs the algorithm.
|
kpeter@601
|
734 |
///
|
kpeter@601
|
735 |
/// \param pivot_rule The pivot rule that is used during the
|
kpeter@601
|
736 |
/// algorithm.
|
kpeter@601
|
737 |
///
|
kpeter@601
|
738 |
/// The available pivot rules:
|
kpeter@601
|
739 |
///
|
kpeter@601
|
740 |
/// - FIRST_ELIGIBLE_PIVOT The next eligible arc is selected in
|
kpeter@601
|
741 |
/// a wraparound fashion in every iteration
|
kpeter@601
|
742 |
/// (\ref FirstEligiblePivotRule).
|
kpeter@601
|
743 |
///
|
kpeter@601
|
744 |
/// - BEST_ELIGIBLE_PIVOT The best eligible arc is selected in
|
kpeter@601
|
745 |
/// every iteration (\ref BestEligiblePivotRule).
|
kpeter@601
|
746 |
///
|
kpeter@601
|
747 |
/// - BLOCK_SEARCH_PIVOT A specified number of arcs are examined in
|
kpeter@601
|
748 |
/// every iteration in a wraparound fashion and the best eligible
|
kpeter@601
|
749 |
/// arc is selected from this block (\ref BlockSearchPivotRule).
|
kpeter@601
|
750 |
///
|
kpeter@601
|
751 |
/// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is
|
kpeter@601
|
752 |
/// built from eligible arcs in a wraparound fashion and in the
|
kpeter@601
|
753 |
/// following minor iterations the best eligible arc is selected
|
kpeter@601
|
754 |
/// from this list (\ref CandidateListPivotRule).
|
kpeter@601
|
755 |
///
|
kpeter@601
|
756 |
/// - ALTERING_LIST_PIVOT It is a modified version of the
|
kpeter@601
|
757 |
/// "Candidate List" pivot rule. It keeps only the several best
|
kpeter@601
|
758 |
/// eligible arcs from the former candidate list and extends this
|
kpeter@601
|
759 |
/// list in every iteration (\ref AlteringListPivotRule).
|
kpeter@601
|
760 |
///
|
kpeter@601
|
761 |
/// According to our comprehensive benchmark tests the "Block Search"
|
kpeter@601
|
762 |
/// pivot rule proved to be the fastest and the most robust on
|
kpeter@601
|
763 |
/// various test inputs. Thus it is the default option.
|
kpeter@601
|
764 |
///
|
kpeter@601
|
765 |
/// \return \c true if a feasible flow can be found.
|
kpeter@601
|
766 |
bool run(PivotRuleEnum pivot_rule = BLOCK_SEARCH_PIVOT) {
|
kpeter@601
|
767 |
return init() && start(pivot_rule);
|
kpeter@601
|
768 |
}
|
kpeter@601
|
769 |
|
kpeter@601
|
770 |
/// @}
|
kpeter@601
|
771 |
|
kpeter@601
|
772 |
/// \name Query Functions
|
kpeter@601
|
773 |
/// The results of the algorithm can be obtained using these
|
kpeter@601
|
774 |
/// functions.\n
|
kpeter@601
|
775 |
/// \ref lemon::NetworkSimplex::run() "run()" must be called before
|
kpeter@601
|
776 |
/// using them.
|
kpeter@601
|
777 |
/// @{
|
kpeter@601
|
778 |
|
kpeter@601
|
779 |
/// \brief Return a const reference to the flow map.
|
kpeter@601
|
780 |
///
|
kpeter@601
|
781 |
/// This function returns a const reference to an arc map storing
|
kpeter@601
|
782 |
/// the found flow.
|
kpeter@601
|
783 |
///
|
kpeter@601
|
784 |
/// \pre \ref run() must be called before using this function.
|
kpeter@601
|
785 |
const FlowMap& flowMap() const {
|
kpeter@601
|
786 |
return *_flow_result;
|
kpeter@601
|
787 |
}
|
kpeter@601
|
788 |
|
kpeter@601
|
789 |
/// \brief Return a const reference to the potential map
|
kpeter@601
|
790 |
/// (the dual solution).
|
kpeter@601
|
791 |
///
|
kpeter@601
|
792 |
/// This function returns a const reference to a node map storing
|
kpeter@601
|
793 |
/// the found potentials (the dual solution).
|
kpeter@601
|
794 |
///
|
kpeter@601
|
795 |
/// \pre \ref run() must be called before using this function.
|
kpeter@601
|
796 |
const PotentialMap& potentialMap() const {
|
kpeter@601
|
797 |
return *_potential_result;
|
kpeter@601
|
798 |
}
|
kpeter@601
|
799 |
|
kpeter@601
|
800 |
/// \brief Return the flow on the given arc.
|
kpeter@601
|
801 |
///
|
kpeter@601
|
802 |
/// This function returns the flow on the given arc.
|
kpeter@601
|
803 |
///
|
kpeter@601
|
804 |
/// \pre \ref run() must be called before using this function.
|
kpeter@601
|
805 |
Capacity flow(const Arc& arc) const {
|
kpeter@601
|
806 |
return (*_flow_result)[arc];
|
kpeter@601
|
807 |
}
|
kpeter@601
|
808 |
|
kpeter@601
|
809 |
/// \brief Return the potential of the given node.
|
kpeter@601
|
810 |
///
|
kpeter@601
|
811 |
/// This function returns the potential of the given node.
|
kpeter@601
|
812 |
///
|
kpeter@601
|
813 |
/// \pre \ref run() must be called before using this function.
|
kpeter@601
|
814 |
Cost potential(const Node& node) const {
|
kpeter@601
|
815 |
return (*_potential_result)[node];
|
kpeter@601
|
816 |
}
|
kpeter@601
|
817 |
|
kpeter@601
|
818 |
/// \brief Return the total cost of the found flow.
|
kpeter@601
|
819 |
///
|
kpeter@601
|
820 |
/// This function returns the total cost of the found flow.
|
kpeter@601
|
821 |
/// The complexity of the function is \f$ O(e) \f$.
|
kpeter@601
|
822 |
///
|
kpeter@601
|
823 |
/// \pre \ref run() must be called before using this function.
|
kpeter@601
|
824 |
Cost totalCost() const {
|
kpeter@601
|
825 |
Cost c = 0;
|
kpeter@601
|
826 |
for (ArcIt e(_orig_graph); e != INVALID; ++e)
|
kpeter@601
|
827 |
c += (*_flow_result)[e] * _orig_cost[e];
|
kpeter@601
|
828 |
return c;
|
kpeter@601
|
829 |
}
|
kpeter@601
|
830 |
|
kpeter@601
|
831 |
/// @}
|
kpeter@601
|
832 |
|
kpeter@601
|
833 |
private:
|
kpeter@601
|
834 |
|
kpeter@601
|
835 |
// Initialize internal data structures
|
kpeter@601
|
836 |
bool init() {
|
kpeter@601
|
837 |
// Initialize result maps
|
kpeter@601
|
838 |
if (!_flow_result) {
|
kpeter@601
|
839 |
_flow_result = new FlowMap(_orig_graph);
|
kpeter@601
|
840 |
_local_flow = true;
|
kpeter@601
|
841 |
}
|
kpeter@601
|
842 |
if (!_potential_result) {
|
kpeter@601
|
843 |
_potential_result = new PotentialMap(_orig_graph);
|
kpeter@601
|
844 |
_local_potential = true;
|
kpeter@601
|
845 |
}
|
kpeter@601
|
846 |
|
kpeter@601
|
847 |
// Initialize vectors
|
kpeter@601
|
848 |
_node_num = countNodes(_orig_graph);
|
kpeter@601
|
849 |
_arc_num = countArcs(_orig_graph);
|
kpeter@601
|
850 |
int all_node_num = _node_num + 1;
|
kpeter@601
|
851 |
int all_edge_num = _arc_num + _node_num;
|
kpeter@601
|
852 |
|
kpeter@601
|
853 |
_arc.resize(_arc_num);
|
kpeter@601
|
854 |
_node.reserve(_node_num);
|
kpeter@601
|
855 |
_source.resize(all_edge_num);
|
kpeter@601
|
856 |
_target.resize(all_edge_num);
|
kpeter@601
|
857 |
|
kpeter@601
|
858 |
_cap.resize(all_edge_num);
|
kpeter@601
|
859 |
_cost.resize(all_edge_num);
|
kpeter@601
|
860 |
_supply.resize(all_node_num);
|
kpeter@601
|
861 |
_flow.resize(all_edge_num, 0);
|
kpeter@601
|
862 |
_pi.resize(all_node_num, 0);
|
kpeter@601
|
863 |
|
kpeter@601
|
864 |
_depth.resize(all_node_num);
|
kpeter@601
|
865 |
_parent.resize(all_node_num);
|
kpeter@601
|
866 |
_pred.resize(all_node_num);
|
kpeter@601
|
867 |
_thread.resize(all_node_num);
|
kpeter@601
|
868 |
_forward.resize(all_node_num);
|
kpeter@601
|
869 |
_state.resize(all_edge_num, STATE_LOWER);
|
kpeter@601
|
870 |
|
kpeter@601
|
871 |
// Initialize node related data
|
kpeter@601
|
872 |
bool valid_supply = true;
|
kpeter@601
|
873 |
if (_orig_supply) {
|
kpeter@601
|
874 |
Supply sum = 0;
|
kpeter@601
|
875 |
int i = 0;
|
kpeter@601
|
876 |
for (NodeIt n(_orig_graph); n != INVALID; ++n, ++i) {
|
kpeter@601
|
877 |
_node.push_back(n);
|
kpeter@601
|
878 |
_node_id[n] = i;
|
kpeter@601
|
879 |
_supply[i] = (*_orig_supply)[n];
|
kpeter@601
|
880 |
sum += _supply[i];
|
kpeter@601
|
881 |
}
|
kpeter@601
|
882 |
valid_supply = (sum == 0);
|
kpeter@601
|
883 |
} else {
|
kpeter@601
|
884 |
int i = 0;
|
kpeter@601
|
885 |
for (NodeIt n(_orig_graph); n != INVALID; ++n, ++i) {
|
kpeter@601
|
886 |
_node.push_back(n);
|
kpeter@601
|
887 |
_node_id[n] = i;
|
kpeter@601
|
888 |
_supply[i] = 0;
|
kpeter@601
|
889 |
}
|
kpeter@601
|
890 |
_supply[_node_id[_orig_source]] = _orig_flow_value;
|
kpeter@601
|
891 |
_supply[_node_id[_orig_target]] = -_orig_flow_value;
|
kpeter@601
|
892 |
}
|
kpeter@601
|
893 |
if (!valid_supply) return false;
|
kpeter@601
|
894 |
|
kpeter@601
|
895 |
// Set data for the artificial root node
|
kpeter@601
|
896 |
_root = _node_num;
|
kpeter@601
|
897 |
_depth[_root] = 0;
|
kpeter@601
|
898 |
_parent[_root] = -1;
|
kpeter@601
|
899 |
_pred[_root] = -1;
|
kpeter@601
|
900 |
_thread[_root] = 0;
|
kpeter@601
|
901 |
_supply[_root] = 0;
|
kpeter@601
|
902 |
_pi[_root] = 0;
|
kpeter@601
|
903 |
|
kpeter@601
|
904 |
// Store the arcs in a mixed order
|
kpeter@601
|
905 |
int k = std::max(int(sqrt(_arc_num)), 10);
|
kpeter@601
|
906 |
int i = 0;
|
kpeter@601
|
907 |
for (ArcIt e(_orig_graph); e != INVALID; ++e) {
|
kpeter@601
|
908 |
_arc[i] = e;
|
kpeter@601
|
909 |
if ((i += k) >= _arc_num) i = (i % k) + 1;
|
kpeter@601
|
910 |
}
|
kpeter@601
|
911 |
|
kpeter@601
|
912 |
// Initialize arc maps
|
kpeter@601
|
913 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@601
|
914 |
Arc e = _arc[i];
|
kpeter@601
|
915 |
_source[i] = _node_id[_orig_graph.source(e)];
|
kpeter@601
|
916 |
_target[i] = _node_id[_orig_graph.target(e)];
|
kpeter@601
|
917 |
_cost[i] = _orig_cost[e];
|
kpeter@601
|
918 |
_cap[i] = _orig_cap[e];
|
kpeter@601
|
919 |
}
|
kpeter@601
|
920 |
|
kpeter@601
|
921 |
// Remove non-zero lower bounds
|
kpeter@601
|
922 |
if (_orig_lower) {
|
kpeter@601
|
923 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@601
|
924 |
Capacity c = (*_orig_lower)[_arc[i]];
|
kpeter@601
|
925 |
if (c != 0) {
|
kpeter@601
|
926 |
_cap[i] -= c;
|
kpeter@601
|
927 |
_supply[_source[i]] -= c;
|
kpeter@601
|
928 |
_supply[_target[i]] += c;
|
kpeter@601
|
929 |
}
|
kpeter@601
|
930 |
}
|
kpeter@601
|
931 |
}
|
kpeter@601
|
932 |
|
kpeter@601
|
933 |
// Add artificial arcs and initialize the spanning tree data structure
|
kpeter@601
|
934 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4;
|
kpeter@601
|
935 |
Capacity max_cap = std::numeric_limits<Capacity>::max();
|
kpeter@601
|
936 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
kpeter@601
|
937 |
_thread[u] = u + 1;
|
kpeter@601
|
938 |
_depth[u] = 1;
|
kpeter@601
|
939 |
_parent[u] = _root;
|
kpeter@601
|
940 |
_pred[u] = e;
|
kpeter@601
|
941 |
if (_supply[u] >= 0) {
|
kpeter@601
|
942 |
_flow[e] = _supply[u];
|
kpeter@601
|
943 |
_forward[u] = true;
|
kpeter@601
|
944 |
_pi[u] = -max_cost;
|
kpeter@601
|
945 |
} else {
|
kpeter@601
|
946 |
_flow[e] = -_supply[u];
|
kpeter@601
|
947 |
_forward[u] = false;
|
kpeter@601
|
948 |
_pi[u] = max_cost;
|
kpeter@601
|
949 |
}
|
kpeter@601
|
950 |
_cost[e] = max_cost;
|
kpeter@601
|
951 |
_cap[e] = max_cap;
|
kpeter@601
|
952 |
_state[e] = STATE_TREE;
|
kpeter@601
|
953 |
}
|
kpeter@601
|
954 |
|
kpeter@601
|
955 |
return true;
|
kpeter@601
|
956 |
}
|
kpeter@601
|
957 |
|
kpeter@601
|
958 |
// Find the join node
|
kpeter@601
|
959 |
void findJoinNode() {
|
kpeter@601
|
960 |
int u = _source[_in_arc];
|
kpeter@601
|
961 |
int v = _target[_in_arc];
|
kpeter@601
|
962 |
while (_depth[u] > _depth[v]) u = _parent[u];
|
kpeter@601
|
963 |
while (_depth[v] > _depth[u]) v = _parent[v];
|
kpeter@601
|
964 |
while (u != v) {
|
kpeter@601
|
965 |
u = _parent[u];
|
kpeter@601
|
966 |
v = _parent[v];
|
kpeter@601
|
967 |
}
|
kpeter@601
|
968 |
join = u;
|
kpeter@601
|
969 |
}
|
kpeter@601
|
970 |
|
kpeter@601
|
971 |
// Find the leaving arc of the cycle and returns true if the
|
kpeter@601
|
972 |
// leaving arc is not the same as the entering arc
|
kpeter@601
|
973 |
bool findLeavingArc() {
|
kpeter@601
|
974 |
// Initialize first and second nodes according to the direction
|
kpeter@601
|
975 |
// of the cycle
|
kpeter@601
|
976 |
if (_state[_in_arc] == STATE_LOWER) {
|
kpeter@601
|
977 |
first = _source[_in_arc];
|
kpeter@601
|
978 |
second = _target[_in_arc];
|
kpeter@601
|
979 |
} else {
|
kpeter@601
|
980 |
first = _target[_in_arc];
|
kpeter@601
|
981 |
second = _source[_in_arc];
|
kpeter@601
|
982 |
}
|
kpeter@601
|
983 |
delta = _cap[_in_arc];
|
kpeter@601
|
984 |
int result = 0;
|
kpeter@601
|
985 |
Capacity d;
|
kpeter@601
|
986 |
int e;
|
kpeter@601
|
987 |
|
kpeter@601
|
988 |
// Search the cycle along the path form the first node to the root
|
kpeter@601
|
989 |
for (int u = first; u != join; u = _parent[u]) {
|
kpeter@601
|
990 |
e = _pred[u];
|
kpeter@601
|
991 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
|
kpeter@601
|
992 |
if (d < delta) {
|
kpeter@601
|
993 |
delta = d;
|
kpeter@601
|
994 |
u_out = u;
|
kpeter@601
|
995 |
result = 1;
|
kpeter@601
|
996 |
}
|
kpeter@601
|
997 |
}
|
kpeter@601
|
998 |
// Search the cycle along the path form the second node to the root
|
kpeter@601
|
999 |
for (int u = second; u != join; u = _parent[u]) {
|
kpeter@601
|
1000 |
e = _pred[u];
|
kpeter@601
|
1001 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
|
kpeter@601
|
1002 |
if (d <= delta) {
|
kpeter@601
|
1003 |
delta = d;
|
kpeter@601
|
1004 |
u_out = u;
|
kpeter@601
|
1005 |
result = 2;
|
kpeter@601
|
1006 |
}
|
kpeter@601
|
1007 |
}
|
kpeter@601
|
1008 |
|
kpeter@601
|
1009 |
if (result == 1) {
|
kpeter@601
|
1010 |
u_in = first;
|
kpeter@601
|
1011 |
v_in = second;
|
kpeter@601
|
1012 |
} else {
|
kpeter@601
|
1013 |
u_in = second;
|
kpeter@601
|
1014 |
v_in = first;
|
kpeter@601
|
1015 |
}
|
kpeter@601
|
1016 |
return result != 0;
|
kpeter@601
|
1017 |
}
|
kpeter@601
|
1018 |
|
kpeter@601
|
1019 |
// Change _flow and _state vectors
|
kpeter@601
|
1020 |
void changeFlow(bool change) {
|
kpeter@601
|
1021 |
// Augment along the cycle
|
kpeter@601
|
1022 |
if (delta > 0) {
|
kpeter@601
|
1023 |
Capacity val = _state[_in_arc] * delta;
|
kpeter@601
|
1024 |
_flow[_in_arc] += val;
|
kpeter@601
|
1025 |
for (int u = _source[_in_arc]; u != join; u = _parent[u]) {
|
kpeter@601
|
1026 |
_flow[_pred[u]] += _forward[u] ? -val : val;
|
kpeter@601
|
1027 |
}
|
kpeter@601
|
1028 |
for (int u = _target[_in_arc]; u != join; u = _parent[u]) {
|
kpeter@601
|
1029 |
_flow[_pred[u]] += _forward[u] ? val : -val;
|
kpeter@601
|
1030 |
}
|
kpeter@601
|
1031 |
}
|
kpeter@601
|
1032 |
// Update the state of the entering and leaving arcs
|
kpeter@601
|
1033 |
if (change) {
|
kpeter@601
|
1034 |
_state[_in_arc] = STATE_TREE;
|
kpeter@601
|
1035 |
_state[_pred[u_out]] =
|
kpeter@601
|
1036 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
|
kpeter@601
|
1037 |
} else {
|
kpeter@601
|
1038 |
_state[_in_arc] = -_state[_in_arc];
|
kpeter@601
|
1039 |
}
|
kpeter@601
|
1040 |
}
|
kpeter@601
|
1041 |
|
kpeter@601
|
1042 |
// Update _thread and _parent vectors
|
kpeter@601
|
1043 |
void updateThreadParent() {
|
kpeter@601
|
1044 |
int u;
|
kpeter@601
|
1045 |
v_out = _parent[u_out];
|
kpeter@601
|
1046 |
|
kpeter@601
|
1047 |
// Handle the case when join and v_out coincide
|
kpeter@601
|
1048 |
bool par_first = false;
|
kpeter@601
|
1049 |
if (join == v_out) {
|
kpeter@601
|
1050 |
for (u = join; u != u_in && u != v_in; u = _thread[u]) ;
|
kpeter@601
|
1051 |
if (u == v_in) {
|
kpeter@601
|
1052 |
par_first = true;
|
kpeter@601
|
1053 |
while (_thread[u] != u_out) u = _thread[u];
|
kpeter@601
|
1054 |
first = u;
|
kpeter@601
|
1055 |
}
|
kpeter@601
|
1056 |
}
|
kpeter@601
|
1057 |
|
kpeter@601
|
1058 |
// Find the last successor of u_in (u) and the node after it (right)
|
kpeter@601
|
1059 |
// according to the thread index
|
kpeter@601
|
1060 |
for (u = u_in; _depth[_thread[u]] > _depth[u_in]; u = _thread[u]) ;
|
kpeter@601
|
1061 |
right = _thread[u];
|
kpeter@601
|
1062 |
if (_thread[v_in] == u_out) {
|
kpeter@601
|
1063 |
for (last = u; _depth[last] > _depth[u_out]; last = _thread[last]) ;
|
kpeter@601
|
1064 |
if (last == u_out) last = _thread[last];
|
kpeter@601
|
1065 |
}
|
kpeter@601
|
1066 |
else last = _thread[v_in];
|
kpeter@601
|
1067 |
|
kpeter@601
|
1068 |
// Update stem nodes
|
kpeter@601
|
1069 |
_thread[v_in] = stem = u_in;
|
kpeter@601
|
1070 |
par_stem = v_in;
|
kpeter@601
|
1071 |
while (stem != u_out) {
|
kpeter@601
|
1072 |
_thread[u] = new_stem = _parent[stem];
|
kpeter@601
|
1073 |
|
kpeter@601
|
1074 |
// Find the node just before the stem node (u) according to
|
kpeter@601
|
1075 |
// the original thread index
|
kpeter@601
|
1076 |
for (u = new_stem; _thread[u] != stem; u = _thread[u]) ;
|
kpeter@601
|
1077 |
_thread[u] = right;
|
kpeter@601
|
1078 |
|
kpeter@601
|
1079 |
// Change the parent node of stem and shift stem and par_stem nodes
|
kpeter@601
|
1080 |
_parent[stem] = par_stem;
|
kpeter@601
|
1081 |
par_stem = stem;
|
kpeter@601
|
1082 |
stem = new_stem;
|
kpeter@601
|
1083 |
|
kpeter@601
|
1084 |
// Find the last successor of stem (u) and the node after it (right)
|
kpeter@601
|
1085 |
// according to the thread index
|
kpeter@601
|
1086 |
for (u = stem; _depth[_thread[u]] > _depth[stem]; u = _thread[u]) ;
|
kpeter@601
|
1087 |
right = _thread[u];
|
kpeter@601
|
1088 |
}
|
kpeter@601
|
1089 |
_parent[u_out] = par_stem;
|
kpeter@601
|
1090 |
_thread[u] = last;
|
kpeter@601
|
1091 |
|
kpeter@601
|
1092 |
if (join == v_out && par_first) {
|
kpeter@601
|
1093 |
if (first != v_in) _thread[first] = right;
|
kpeter@601
|
1094 |
} else {
|
kpeter@601
|
1095 |
for (u = v_out; _thread[u] != u_out; u = _thread[u]) ;
|
kpeter@601
|
1096 |
_thread[u] = right;
|
kpeter@601
|
1097 |
}
|
kpeter@601
|
1098 |
}
|
kpeter@601
|
1099 |
|
kpeter@601
|
1100 |
// Update _pred and _forward vectors
|
kpeter@601
|
1101 |
void updatePredArc() {
|
kpeter@601
|
1102 |
int u = u_out, v;
|
kpeter@601
|
1103 |
while (u != u_in) {
|
kpeter@601
|
1104 |
v = _parent[u];
|
kpeter@601
|
1105 |
_pred[u] = _pred[v];
|
kpeter@601
|
1106 |
_forward[u] = !_forward[v];
|
kpeter@601
|
1107 |
u = v;
|
kpeter@601
|
1108 |
}
|
kpeter@601
|
1109 |
_pred[u_in] = _in_arc;
|
kpeter@601
|
1110 |
_forward[u_in] = (u_in == _source[_in_arc]);
|
kpeter@601
|
1111 |
}
|
kpeter@601
|
1112 |
|
kpeter@601
|
1113 |
// Update _depth and _potential vectors
|
kpeter@601
|
1114 |
void updateDepthPotential() {
|
kpeter@601
|
1115 |
_depth[u_in] = _depth[v_in] + 1;
|
kpeter@601
|
1116 |
Cost sigma = _forward[u_in] ?
|
kpeter@601
|
1117 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
|
kpeter@601
|
1118 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
|
kpeter@601
|
1119 |
_pi[u_in] += sigma;
|
kpeter@601
|
1120 |
for(int u = _thread[u_in]; _parent[u] != -1; u = _thread[u]) {
|
kpeter@601
|
1121 |
_depth[u] = _depth[_parent[u]] + 1;
|
kpeter@601
|
1122 |
if (_depth[u] <= _depth[u_in]) break;
|
kpeter@601
|
1123 |
_pi[u] += sigma;
|
kpeter@601
|
1124 |
}
|
kpeter@601
|
1125 |
}
|
kpeter@601
|
1126 |
|
kpeter@601
|
1127 |
// Execute the algorithm
|
kpeter@601
|
1128 |
bool start(PivotRuleEnum pivot_rule) {
|
kpeter@601
|
1129 |
// Select the pivot rule implementation
|
kpeter@601
|
1130 |
switch (pivot_rule) {
|
kpeter@601
|
1131 |
case FIRST_ELIGIBLE_PIVOT:
|
kpeter@601
|
1132 |
return start<FirstEligiblePivotRule>();
|
kpeter@601
|
1133 |
case BEST_ELIGIBLE_PIVOT:
|
kpeter@601
|
1134 |
return start<BestEligiblePivotRule>();
|
kpeter@601
|
1135 |
case BLOCK_SEARCH_PIVOT:
|
kpeter@601
|
1136 |
return start<BlockSearchPivotRule>();
|
kpeter@601
|
1137 |
case CANDIDATE_LIST_PIVOT:
|
kpeter@601
|
1138 |
return start<CandidateListPivotRule>();
|
kpeter@601
|
1139 |
case ALTERING_LIST_PIVOT:
|
kpeter@601
|
1140 |
return start<AlteringListPivotRule>();
|
kpeter@601
|
1141 |
}
|
kpeter@601
|
1142 |
return false;
|
kpeter@601
|
1143 |
}
|
kpeter@601
|
1144 |
|
kpeter@601
|
1145 |
template<class PivotRuleImplementation>
|
kpeter@601
|
1146 |
bool start() {
|
kpeter@601
|
1147 |
PivotRuleImplementation pivot(*this);
|
kpeter@601
|
1148 |
|
kpeter@601
|
1149 |
// Execute the network simplex algorithm
|
kpeter@601
|
1150 |
while (pivot.findEnteringArc()) {
|
kpeter@601
|
1151 |
findJoinNode();
|
kpeter@601
|
1152 |
bool change = findLeavingArc();
|
kpeter@601
|
1153 |
changeFlow(change);
|
kpeter@601
|
1154 |
if (change) {
|
kpeter@601
|
1155 |
updateThreadParent();
|
kpeter@601
|
1156 |
updatePredArc();
|
kpeter@601
|
1157 |
updateDepthPotential();
|
kpeter@601
|
1158 |
}
|
kpeter@601
|
1159 |
}
|
kpeter@601
|
1160 |
|
kpeter@601
|
1161 |
// Check if the flow amount equals zero on all the artificial arcs
|
kpeter@601
|
1162 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
|
kpeter@601
|
1163 |
if (_flow[e] > 0) return false;
|
kpeter@601
|
1164 |
}
|
kpeter@601
|
1165 |
|
kpeter@601
|
1166 |
// Copy flow values to _flow_result
|
kpeter@601
|
1167 |
if (_orig_lower) {
|
kpeter@601
|
1168 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@601
|
1169 |
Arc e = _arc[i];
|
kpeter@601
|
1170 |
(*_flow_result)[e] = (*_orig_lower)[e] + _flow[i];
|
kpeter@601
|
1171 |
}
|
kpeter@601
|
1172 |
} else {
|
kpeter@601
|
1173 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@601
|
1174 |
(*_flow_result)[_arc[i]] = _flow[i];
|
kpeter@601
|
1175 |
}
|
kpeter@601
|
1176 |
}
|
kpeter@601
|
1177 |
// Copy potential values to _potential_result
|
kpeter@601
|
1178 |
for (int i = 0; i != _node_num; ++i) {
|
kpeter@601
|
1179 |
(*_potential_result)[_node[i]] = _pi[i];
|
kpeter@601
|
1180 |
}
|
kpeter@601
|
1181 |
|
kpeter@601
|
1182 |
return true;
|
kpeter@601
|
1183 |
}
|
kpeter@601
|
1184 |
|
kpeter@601
|
1185 |
}; //class NetworkSimplex
|
kpeter@601
|
1186 |
|
kpeter@601
|
1187 |
///@}
|
kpeter@601
|
1188 |
|
kpeter@601
|
1189 |
} //namespace lemon
|
kpeter@601
|
1190 |
|
kpeter@601
|
1191 |
#endif //LEMON_NETWORK_SIMPLEX_H
|