lemon/network_simplex.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 24 Feb 2009 09:52:26 +0100
changeset 602 a79ef774fae1
child 603 425cc8328c0e
permissions -rw-r--r--
Support min cost flow in dimacs-solver (#234)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief Network simplex algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <algorithm>
    30 
    31 #include <lemon/math.h>
    32 
    33 namespace lemon {
    34 
    35   /// \addtogroup min_cost_flow
    36   /// @{
    37 
    38   /// \brief Implementation of the primal network simplex algorithm
    39   /// for finding a \ref min_cost_flow "minimum cost flow".
    40   ///
    41   /// \ref NetworkSimplex implements the primal network simplex algorithm
    42   /// for finding a \ref min_cost_flow "minimum cost flow".
    43   ///
    44   /// \tparam Digraph The digraph type the algorithm runs on.
    45   /// \tparam LowerMap The type of the lower bound map.
    46   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    47   /// \tparam CostMap The type of the cost (length) map.
    48   /// \tparam SupplyMap The type of the supply map.
    49   ///
    50   /// \warning
    51   /// - Arc capacities and costs should be \e non-negative \e integers.
    52   /// - Supply values should be \e signed \e integers.
    53   /// - The value types of the maps should be convertible to each other.
    54   /// - \c CostMap::Value must be signed type.
    55   ///
    56   /// \note \ref NetworkSimplex provides five different pivot rule
    57   /// implementations that significantly affect the efficiency of the
    58   /// algorithm.
    59   /// By default "Block Search" pivot rule is used, which proved to be
    60   /// by far the most efficient according to our benchmark tests.
    61   /// However another pivot rule can be selected using \ref run()
    62   /// function with the proper parameter.
    63 #ifdef DOXYGEN
    64   template < typename Digraph,
    65              typename LowerMap,
    66              typename CapacityMap,
    67              typename CostMap,
    68              typename SupplyMap >
    69 
    70 #else
    71   template < typename Digraph,
    72              typename LowerMap = typename Digraph::template ArcMap<int>,
    73              typename CapacityMap = typename Digraph::template ArcMap<int>,
    74              typename CostMap = typename Digraph::template ArcMap<int>,
    75              typename SupplyMap = typename Digraph::template NodeMap<int> >
    76 #endif
    77   class NetworkSimplex
    78   {
    79     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
    80 
    81     typedef typename CapacityMap::Value Capacity;
    82     typedef typename CostMap::Value Cost;
    83     typedef typename SupplyMap::Value Supply;
    84 
    85     typedef std::vector<Arc> ArcVector;
    86     typedef std::vector<Node> NodeVector;
    87     typedef std::vector<int> IntVector;
    88     typedef std::vector<bool> BoolVector;
    89     typedef std::vector<Capacity> CapacityVector;
    90     typedef std::vector<Cost> CostVector;
    91     typedef std::vector<Supply> SupplyVector;
    92 
    93   public:
    94 
    95     /// The type of the flow map
    96     typedef typename Digraph::template ArcMap<Capacity> FlowMap;
    97     /// The type of the potential map
    98     typedef typename Digraph::template NodeMap<Cost> PotentialMap;
    99 
   100   public:
   101 
   102     /// Enum type for selecting the pivot rule used by \ref run()
   103     enum PivotRuleEnum {
   104       FIRST_ELIGIBLE_PIVOT,
   105       BEST_ELIGIBLE_PIVOT,
   106       BLOCK_SEARCH_PIVOT,
   107       CANDIDATE_LIST_PIVOT,
   108       ALTERING_LIST_PIVOT
   109     };
   110 
   111   private:
   112 
   113     // State constants for arcs
   114     enum ArcStateEnum {
   115       STATE_UPPER = -1,
   116       STATE_TREE  =  0,
   117       STATE_LOWER =  1
   118     };
   119 
   120   private:
   121 
   122     // References for the original data
   123     const Digraph &_orig_graph;
   124     const LowerMap *_orig_lower;
   125     const CapacityMap &_orig_cap;
   126     const CostMap &_orig_cost;
   127     const SupplyMap *_orig_supply;
   128     Node _orig_source;
   129     Node _orig_target;
   130     Capacity _orig_flow_value;
   131 
   132     // Result maps
   133     FlowMap *_flow_result;
   134     PotentialMap *_potential_result;
   135     bool _local_flow;
   136     bool _local_potential;
   137 
   138     // Data structures for storing the graph
   139     ArcVector _arc;
   140     NodeVector _node;
   141     IntNodeMap _node_id;
   142     IntVector _source;
   143     IntVector _target;
   144 
   145     // The number of nodes and arcs in the original graph
   146     int _node_num;
   147     int _arc_num;
   148 
   149     // Node and arc maps
   150     CapacityVector _cap;
   151     CostVector _cost;
   152     CostVector _supply;
   153     CapacityVector _flow;
   154     CostVector _pi;
   155 
   156     // Node and arc maps for the spanning tree structure
   157     IntVector _depth;
   158     IntVector _parent;
   159     IntVector _pred;
   160     IntVector _thread;
   161     BoolVector _forward;
   162     IntVector _state;
   163 
   164     // The root node
   165     int _root;
   166 
   167     // The entering arc in the current pivot iteration
   168     int _in_arc;
   169 
   170     // Temporary data used in the current pivot iteration
   171     int join, u_in, v_in, u_out, v_out;
   172     int right, first, second, last;
   173     int stem, par_stem, new_stem;
   174     Capacity delta;
   175 
   176   private:
   177 
   178     /// \brief Implementation of the "First Eligible" pivot rule for the
   179     /// \ref NetworkSimplex "network simplex" algorithm.
   180     ///
   181     /// This class implements the "First Eligible" pivot rule
   182     /// for the \ref NetworkSimplex "network simplex" algorithm.
   183     ///
   184     /// For more information see \ref NetworkSimplex::run().
   185     class FirstEligiblePivotRule
   186     {
   187     private:
   188 
   189       // References to the NetworkSimplex class
   190       const ArcVector &_arc;
   191       const IntVector  &_source;
   192       const IntVector  &_target;
   193       const CostVector &_cost;
   194       const IntVector  &_state;
   195       const CostVector &_pi;
   196       int &_in_arc;
   197       int _arc_num;
   198 
   199       // Pivot rule data
   200       int _next_arc;
   201 
   202     public:
   203 
   204       /// Constructor
   205       FirstEligiblePivotRule(NetworkSimplex &ns) :
   206         _arc(ns._arc), _source(ns._source), _target(ns._target),
   207         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   208         _in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0)
   209       {}
   210 
   211       /// Find next entering arc
   212       bool findEnteringArc() {
   213         Cost c;
   214         for (int e = _next_arc; e < _arc_num; ++e) {
   215           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   216           if (c < 0) {
   217             _in_arc = e;
   218             _next_arc = e + 1;
   219             return true;
   220           }
   221         }
   222         for (int e = 0; e < _next_arc; ++e) {
   223           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   224           if (c < 0) {
   225             _in_arc = e;
   226             _next_arc = e + 1;
   227             return true;
   228           }
   229         }
   230         return false;
   231       }
   232 
   233     }; //class FirstEligiblePivotRule
   234 
   235 
   236     /// \brief Implementation of the "Best Eligible" pivot rule for the
   237     /// \ref NetworkSimplex "network simplex" algorithm.
   238     ///
   239     /// This class implements the "Best Eligible" pivot rule
   240     /// for the \ref NetworkSimplex "network simplex" algorithm.
   241     ///
   242     /// For more information see \ref NetworkSimplex::run().
   243     class BestEligiblePivotRule
   244     {
   245     private:
   246 
   247       // References to the NetworkSimplex class
   248       const ArcVector &_arc;
   249       const IntVector  &_source;
   250       const IntVector  &_target;
   251       const CostVector &_cost;
   252       const IntVector  &_state;
   253       const CostVector &_pi;
   254       int &_in_arc;
   255       int _arc_num;
   256 
   257     public:
   258 
   259       /// Constructor
   260       BestEligiblePivotRule(NetworkSimplex &ns) :
   261         _arc(ns._arc), _source(ns._source), _target(ns._target),
   262         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   263         _in_arc(ns._in_arc), _arc_num(ns._arc_num)
   264       {}
   265 
   266       /// Find next entering arc
   267       bool findEnteringArc() {
   268         Cost c, min = 0;
   269         for (int e = 0; e < _arc_num; ++e) {
   270           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   271           if (c < min) {
   272             min = c;
   273             _in_arc = e;
   274           }
   275         }
   276         return min < 0;
   277       }
   278 
   279     }; //class BestEligiblePivotRule
   280 
   281 
   282     /// \brief Implementation of the "Block Search" pivot rule for the
   283     /// \ref NetworkSimplex "network simplex" algorithm.
   284     ///
   285     /// This class implements the "Block Search" pivot rule
   286     /// for the \ref NetworkSimplex "network simplex" algorithm.
   287     ///
   288     /// For more information see \ref NetworkSimplex::run().
   289     class BlockSearchPivotRule
   290     {
   291     private:
   292 
   293       // References to the NetworkSimplex class
   294       const ArcVector &_arc;
   295       const IntVector  &_source;
   296       const IntVector  &_target;
   297       const CostVector &_cost;
   298       const IntVector  &_state;
   299       const CostVector &_pi;
   300       int &_in_arc;
   301       int _arc_num;
   302 
   303       // Pivot rule data
   304       int _block_size;
   305       int _next_arc;
   306 
   307     public:
   308 
   309       /// Constructor
   310       BlockSearchPivotRule(NetworkSimplex &ns) :
   311         _arc(ns._arc), _source(ns._source), _target(ns._target),
   312         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   313         _in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0)
   314       {
   315         // The main parameters of the pivot rule
   316         const double BLOCK_SIZE_FACTOR = 2.0;
   317         const int MIN_BLOCK_SIZE = 10;
   318 
   319         _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
   320                                 MIN_BLOCK_SIZE );
   321       }
   322 
   323       /// Find next entering arc
   324       bool findEnteringArc() {
   325         Cost c, min = 0;
   326         int cnt = _block_size;
   327         int e, min_arc = _next_arc;
   328         for (e = _next_arc; e < _arc_num; ++e) {
   329           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   330           if (c < min) {
   331             min = c;
   332             min_arc = e;
   333           }
   334           if (--cnt == 0) {
   335             if (min < 0) break;
   336             cnt = _block_size;
   337           }
   338         }
   339         if (min == 0 || cnt > 0) {
   340           for (e = 0; e < _next_arc; ++e) {
   341             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   342             if (c < min) {
   343               min = c;
   344               min_arc = e;
   345             }
   346             if (--cnt == 0) {
   347               if (min < 0) break;
   348               cnt = _block_size;
   349             }
   350           }
   351         }
   352         if (min >= 0) return false;
   353         _in_arc = min_arc;
   354         _next_arc = e;
   355         return true;
   356       }
   357 
   358     }; //class BlockSearchPivotRule
   359 
   360 
   361     /// \brief Implementation of the "Candidate List" pivot rule for the
   362     /// \ref NetworkSimplex "network simplex" algorithm.
   363     ///
   364     /// This class implements the "Candidate List" pivot rule
   365     /// for the \ref NetworkSimplex "network simplex" algorithm.
   366     ///
   367     /// For more information see \ref NetworkSimplex::run().
   368     class CandidateListPivotRule
   369     {
   370     private:
   371 
   372       // References to the NetworkSimplex class
   373       const ArcVector &_arc;
   374       const IntVector  &_source;
   375       const IntVector  &_target;
   376       const CostVector &_cost;
   377       const IntVector  &_state;
   378       const CostVector &_pi;
   379       int &_in_arc;
   380       int _arc_num;
   381 
   382       // Pivot rule data
   383       IntVector _candidates;
   384       int _list_length, _minor_limit;
   385       int _curr_length, _minor_count;
   386       int _next_arc;
   387 
   388     public:
   389 
   390       /// Constructor
   391       CandidateListPivotRule(NetworkSimplex &ns) :
   392         _arc(ns._arc), _source(ns._source), _target(ns._target),
   393         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   394         _in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0)
   395       {
   396         // The main parameters of the pivot rule
   397         const double LIST_LENGTH_FACTOR = 1.0;
   398         const int MIN_LIST_LENGTH = 10;
   399         const double MINOR_LIMIT_FACTOR = 0.1;
   400         const int MIN_MINOR_LIMIT = 3;
   401 
   402         _list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)),
   403                                  MIN_LIST_LENGTH );
   404         _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   405                                  MIN_MINOR_LIMIT );
   406         _curr_length = _minor_count = 0;
   407         _candidates.resize(_list_length);
   408       }
   409 
   410       /// Find next entering arc
   411       bool findEnteringArc() {
   412         Cost min, c;
   413         int e, min_arc = _next_arc;
   414         if (_curr_length > 0 && _minor_count < _minor_limit) {
   415           // Minor iteration: select the best eligible arc from the
   416           // current candidate list
   417           ++_minor_count;
   418           min = 0;
   419           for (int i = 0; i < _curr_length; ++i) {
   420             e = _candidates[i];
   421             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   422             if (c < min) {
   423               min = c;
   424               min_arc = e;
   425             }
   426             if (c >= 0) {
   427               _candidates[i--] = _candidates[--_curr_length];
   428             }
   429           }
   430           if (min < 0) {
   431             _in_arc = min_arc;
   432             return true;
   433           }
   434         }
   435 
   436         // Major iteration: build a new candidate list
   437         min = 0;
   438         _curr_length = 0;
   439         for (e = _next_arc; e < _arc_num; ++e) {
   440           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   441           if (c < 0) {
   442             _candidates[_curr_length++] = e;
   443             if (c < min) {
   444               min = c;
   445               min_arc = e;
   446             }
   447             if (_curr_length == _list_length) break;
   448           }
   449         }
   450         if (_curr_length < _list_length) {
   451           for (e = 0; e < _next_arc; ++e) {
   452             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   453             if (c < 0) {
   454               _candidates[_curr_length++] = e;
   455               if (c < min) {
   456                 min = c;
   457                 min_arc = e;
   458               }
   459               if (_curr_length == _list_length) break;
   460             }
   461           }
   462         }
   463         if (_curr_length == 0) return false;
   464         _minor_count = 1;
   465         _in_arc = min_arc;
   466         _next_arc = e;
   467         return true;
   468       }
   469 
   470     }; //class CandidateListPivotRule
   471 
   472 
   473     /// \brief Implementation of the "Altering Candidate List" pivot rule
   474     /// for the \ref NetworkSimplex "network simplex" algorithm.
   475     ///
   476     /// This class implements the "Altering Candidate List" pivot rule
   477     /// for the \ref NetworkSimplex "network simplex" algorithm.
   478     ///
   479     /// For more information see \ref NetworkSimplex::run().
   480     class AlteringListPivotRule
   481     {
   482     private:
   483 
   484       // References to the NetworkSimplex class
   485       const ArcVector &_arc;
   486       const IntVector  &_source;
   487       const IntVector  &_target;
   488       const CostVector &_cost;
   489       const IntVector  &_state;
   490       const CostVector &_pi;
   491       int &_in_arc;
   492       int _arc_num;
   493 
   494       // Pivot rule data
   495       int _block_size, _head_length, _curr_length;
   496       int _next_arc;
   497       IntVector _candidates;
   498       CostVector _cand_cost;
   499 
   500       // Functor class to compare arcs during sort of the candidate list
   501       class SortFunc
   502       {
   503       private:
   504         const CostVector &_map;
   505       public:
   506         SortFunc(const CostVector &map) : _map(map) {}
   507         bool operator()(int left, int right) {
   508           return _map[left] > _map[right];
   509         }
   510       };
   511 
   512       SortFunc _sort_func;
   513 
   514     public:
   515 
   516       /// Constructor
   517       AlteringListPivotRule(NetworkSimplex &ns) :
   518         _arc(ns._arc), _source(ns._source), _target(ns._target),
   519         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   520         _in_arc(ns._in_arc), _arc_num(ns._arc_num),
   521         _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
   522       {
   523         // The main parameters of the pivot rule
   524         const double BLOCK_SIZE_FACTOR = 1.5;
   525         const int MIN_BLOCK_SIZE = 10;
   526         const double HEAD_LENGTH_FACTOR = 0.1;
   527         const int MIN_HEAD_LENGTH = 3;
   528 
   529         _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
   530                                 MIN_BLOCK_SIZE );
   531         _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   532                                  MIN_HEAD_LENGTH );
   533         _candidates.resize(_head_length + _block_size);
   534         _curr_length = 0;
   535       }
   536 
   537       /// Find next entering arc
   538       bool findEnteringArc() {
   539         // Check the current candidate list
   540         int e;
   541         for (int i = 0; i < _curr_length; ++i) {
   542           e = _candidates[i];
   543           _cand_cost[e] = _state[e] *
   544             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   545           if (_cand_cost[e] >= 0) {
   546             _candidates[i--] = _candidates[--_curr_length];
   547           }
   548         }
   549 
   550         // Extend the list
   551         int cnt = _block_size;
   552         int last_edge = 0;
   553         int limit = _head_length;
   554 
   555         for (int e = _next_arc; e < _arc_num; ++e) {
   556           _cand_cost[e] = _state[e] *
   557             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   558           if (_cand_cost[e] < 0) {
   559             _candidates[_curr_length++] = e;
   560             last_edge = e;
   561           }
   562           if (--cnt == 0) {
   563             if (_curr_length > limit) break;
   564             limit = 0;
   565             cnt = _block_size;
   566           }
   567         }
   568         if (_curr_length <= limit) {
   569           for (int e = 0; e < _next_arc; ++e) {
   570             _cand_cost[e] = _state[e] *
   571               (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   572             if (_cand_cost[e] < 0) {
   573               _candidates[_curr_length++] = e;
   574               last_edge = e;
   575             }
   576             if (--cnt == 0) {
   577               if (_curr_length > limit) break;
   578               limit = 0;
   579               cnt = _block_size;
   580             }
   581           }
   582         }
   583         if (_curr_length == 0) return false;
   584         _next_arc = last_edge + 1;
   585 
   586         // Make heap of the candidate list (approximating a partial sort)
   587         make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   588                    _sort_func );
   589 
   590         // Pop the first element of the heap
   591         _in_arc = _candidates[0];
   592         pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   593                   _sort_func );
   594         _curr_length = std::min(_head_length, _curr_length - 1);
   595         return true;
   596       }
   597 
   598     }; //class AlteringListPivotRule
   599 
   600   public:
   601 
   602     /// \brief General constructor (with lower bounds).
   603     ///
   604     /// General constructor (with lower bounds).
   605     ///
   606     /// \param digraph The digraph the algorithm runs on.
   607     /// \param lower The lower bounds of the arcs.
   608     /// \param capacity The capacities (upper bounds) of the arcs.
   609     /// \param cost The cost (length) values of the arcs.
   610     /// \param supply The supply values of the nodes (signed).
   611     NetworkSimplex( const Digraph &digraph,
   612                     const LowerMap &lower,
   613                     const CapacityMap &capacity,
   614                     const CostMap &cost,
   615                     const SupplyMap &supply ) :
   616       _orig_graph(digraph), _orig_lower(&lower), _orig_cap(capacity),
   617       _orig_cost(cost), _orig_supply(&supply),
   618       _flow_result(NULL), _potential_result(NULL),
   619       _local_flow(false), _local_potential(false),
   620       _node_id(digraph)
   621     {}
   622 
   623     /// \brief General constructor (without lower bounds).
   624     ///
   625     /// General constructor (without lower bounds).
   626     ///
   627     /// \param digraph The digraph the algorithm runs on.
   628     /// \param capacity The capacities (upper bounds) of the arcs.
   629     /// \param cost The cost (length) values of the arcs.
   630     /// \param supply The supply values of the nodes (signed).
   631     NetworkSimplex( const Digraph &digraph,
   632                     const CapacityMap &capacity,
   633                     const CostMap &cost,
   634                     const SupplyMap &supply ) :
   635       _orig_graph(digraph), _orig_lower(NULL), _orig_cap(capacity),
   636       _orig_cost(cost), _orig_supply(&supply),
   637       _flow_result(NULL), _potential_result(NULL),
   638       _local_flow(false), _local_potential(false),
   639       _node_id(digraph)
   640     {}
   641 
   642     /// \brief Simple constructor (with lower bounds).
   643     ///
   644     /// Simple constructor (with lower bounds).
   645     ///
   646     /// \param digraph The digraph the algorithm runs on.
   647     /// \param lower The lower bounds of the arcs.
   648     /// \param capacity The capacities (upper bounds) of the arcs.
   649     /// \param cost The cost (length) values of the arcs.
   650     /// \param s The source node.
   651     /// \param t The target node.
   652     /// \param flow_value The required amount of flow from node \c s
   653     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   654     NetworkSimplex( const Digraph &digraph,
   655                     const LowerMap &lower,
   656                     const CapacityMap &capacity,
   657                     const CostMap &cost,
   658                     Node s, Node t,
   659                     Capacity flow_value ) :
   660       _orig_graph(digraph), _orig_lower(&lower), _orig_cap(capacity),
   661       _orig_cost(cost), _orig_supply(NULL),
   662       _orig_source(s), _orig_target(t), _orig_flow_value(flow_value),
   663       _flow_result(NULL), _potential_result(NULL),
   664       _local_flow(false), _local_potential(false),
   665       _node_id(digraph)
   666     {}
   667 
   668     /// \brief Simple constructor (without lower bounds).
   669     ///
   670     /// Simple constructor (without lower bounds).
   671     ///
   672     /// \param digraph The digraph the algorithm runs on.
   673     /// \param capacity The capacities (upper bounds) of the arcs.
   674     /// \param cost The cost (length) values of the arcs.
   675     /// \param s The source node.
   676     /// \param t The target node.
   677     /// \param flow_value The required amount of flow from node \c s
   678     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   679     NetworkSimplex( const Digraph &digraph,
   680                     const CapacityMap &capacity,
   681                     const CostMap &cost,
   682                     Node s, Node t,
   683                     Capacity flow_value ) :
   684       _orig_graph(digraph), _orig_lower(NULL), _orig_cap(capacity),
   685       _orig_cost(cost), _orig_supply(NULL),
   686       _orig_source(s), _orig_target(t), _orig_flow_value(flow_value),
   687       _flow_result(NULL), _potential_result(NULL),
   688       _local_flow(false), _local_potential(false),
   689       _node_id(digraph)
   690     {}
   691 
   692     /// Destructor.
   693     ~NetworkSimplex() {
   694       if (_local_flow) delete _flow_result;
   695       if (_local_potential) delete _potential_result;
   696     }
   697 
   698     /// \brief Set the flow map.
   699     ///
   700     /// This function sets the flow map.
   701     ///
   702     /// \return <tt>(*this)</tt>
   703     NetworkSimplex& flowMap(FlowMap &map) {
   704       if (_local_flow) {
   705         delete _flow_result;
   706         _local_flow = false;
   707       }
   708       _flow_result = &map;
   709       return *this;
   710     }
   711 
   712     /// \brief Set the potential map.
   713     ///
   714     /// This function sets the potential map.
   715     ///
   716     /// \return <tt>(*this)</tt>
   717     NetworkSimplex& potentialMap(PotentialMap &map) {
   718       if (_local_potential) {
   719         delete _potential_result;
   720         _local_potential = false;
   721       }
   722       _potential_result = &map;
   723       return *this;
   724     }
   725 
   726     /// \name Execution control
   727     /// The algorithm can be executed using the
   728     /// \ref lemon::NetworkSimplex::run() "run()" function.
   729     /// @{
   730 
   731     /// \brief Run the algorithm.
   732     ///
   733     /// This function runs the algorithm.
   734     ///
   735     /// \param pivot_rule The pivot rule that is used during the
   736     /// algorithm.
   737     ///
   738     /// The available pivot rules:
   739     ///
   740     /// - FIRST_ELIGIBLE_PIVOT The next eligible arc is selected in
   741     /// a wraparound fashion in every iteration
   742     /// (\ref FirstEligiblePivotRule).
   743     ///
   744     /// - BEST_ELIGIBLE_PIVOT The best eligible arc is selected in
   745     /// every iteration (\ref BestEligiblePivotRule).
   746     ///
   747     /// - BLOCK_SEARCH_PIVOT A specified number of arcs are examined in
   748     /// every iteration in a wraparound fashion and the best eligible
   749     /// arc is selected from this block (\ref BlockSearchPivotRule).
   750     ///
   751     /// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is
   752     /// built from eligible arcs in a wraparound fashion and in the
   753     /// following minor iterations the best eligible arc is selected
   754     /// from this list (\ref CandidateListPivotRule).
   755     ///
   756     /// - ALTERING_LIST_PIVOT It is a modified version of the
   757     /// "Candidate List" pivot rule. It keeps only the several best
   758     /// eligible arcs from the former candidate list and extends this
   759     /// list in every iteration (\ref AlteringListPivotRule).
   760     ///
   761     /// According to our comprehensive benchmark tests the "Block Search"
   762     /// pivot rule proved to be the fastest and the most robust on
   763     /// various test inputs. Thus it is the default option.
   764     ///
   765     /// \return \c true if a feasible flow can be found.
   766     bool run(PivotRuleEnum pivot_rule = BLOCK_SEARCH_PIVOT) {
   767       return init() && start(pivot_rule);
   768     }
   769 
   770     /// @}
   771 
   772     /// \name Query Functions
   773     /// The results of the algorithm can be obtained using these
   774     /// functions.\n
   775     /// \ref lemon::NetworkSimplex::run() "run()" must be called before
   776     /// using them.
   777     /// @{
   778 
   779     /// \brief Return a const reference to the flow map.
   780     ///
   781     /// This function returns a const reference to an arc map storing
   782     /// the found flow.
   783     ///
   784     /// \pre \ref run() must be called before using this function.
   785     const FlowMap& flowMap() const {
   786       return *_flow_result;
   787     }
   788 
   789     /// \brief Return a const reference to the potential map
   790     /// (the dual solution).
   791     ///
   792     /// This function returns a const reference to a node map storing
   793     /// the found potentials (the dual solution).
   794     ///
   795     /// \pre \ref run() must be called before using this function.
   796     const PotentialMap& potentialMap() const {
   797       return *_potential_result;
   798     }
   799 
   800     /// \brief Return the flow on the given arc.
   801     ///
   802     /// This function returns the flow on the given arc.
   803     ///
   804     /// \pre \ref run() must be called before using this function.
   805     Capacity flow(const Arc& arc) const {
   806       return (*_flow_result)[arc];
   807     }
   808 
   809     /// \brief Return the potential of the given node.
   810     ///
   811     /// This function returns the potential of the given node.
   812     ///
   813     /// \pre \ref run() must be called before using this function.
   814     Cost potential(const Node& node) const {
   815       return (*_potential_result)[node];
   816     }
   817 
   818     /// \brief Return the total cost of the found flow.
   819     ///
   820     /// This function returns the total cost of the found flow.
   821     /// The complexity of the function is \f$ O(e) \f$.
   822     ///
   823     /// \pre \ref run() must be called before using this function.
   824     Cost totalCost() const {
   825       Cost c = 0;
   826       for (ArcIt e(_orig_graph); e != INVALID; ++e)
   827         c += (*_flow_result)[e] * _orig_cost[e];
   828       return c;
   829     }
   830 
   831     /// @}
   832 
   833   private:
   834 
   835     // Initialize internal data structures
   836     bool init() {
   837       // Initialize result maps
   838       if (!_flow_result) {
   839         _flow_result = new FlowMap(_orig_graph);
   840         _local_flow = true;
   841       }
   842       if (!_potential_result) {
   843         _potential_result = new PotentialMap(_orig_graph);
   844         _local_potential = true;
   845       }
   846 
   847       // Initialize vectors
   848       _node_num = countNodes(_orig_graph);
   849       _arc_num = countArcs(_orig_graph);
   850       int all_node_num = _node_num + 1;
   851       int all_edge_num = _arc_num + _node_num;
   852 
   853       _arc.resize(_arc_num);
   854       _node.reserve(_node_num);
   855       _source.resize(all_edge_num);
   856       _target.resize(all_edge_num);
   857 
   858       _cap.resize(all_edge_num);
   859       _cost.resize(all_edge_num);
   860       _supply.resize(all_node_num);
   861       _flow.resize(all_edge_num, 0);
   862       _pi.resize(all_node_num, 0);
   863 
   864       _depth.resize(all_node_num);
   865       _parent.resize(all_node_num);
   866       _pred.resize(all_node_num);
   867       _thread.resize(all_node_num);
   868       _forward.resize(all_node_num);
   869       _state.resize(all_edge_num, STATE_LOWER);
   870 
   871       // Initialize node related data
   872       bool valid_supply = true;
   873       if (_orig_supply) {
   874         Supply sum = 0;
   875         int i = 0;
   876         for (NodeIt n(_orig_graph); n != INVALID; ++n, ++i) {
   877           _node.push_back(n);
   878           _node_id[n] = i;
   879           _supply[i] = (*_orig_supply)[n];
   880           sum += _supply[i];
   881         }
   882         valid_supply = (sum == 0);
   883       } else {
   884         int i = 0;
   885         for (NodeIt n(_orig_graph); n != INVALID; ++n, ++i) {
   886           _node.push_back(n);
   887           _node_id[n] = i;
   888           _supply[i] = 0;
   889         }
   890         _supply[_node_id[_orig_source]] =  _orig_flow_value;
   891         _supply[_node_id[_orig_target]] = -_orig_flow_value;
   892       }
   893       if (!valid_supply) return false;
   894 
   895       // Set data for the artificial root node
   896       _root = _node_num;
   897       _depth[_root] = 0;
   898       _parent[_root] = -1;
   899       _pred[_root] = -1;
   900       _thread[_root] = 0;
   901       _supply[_root] = 0;
   902       _pi[_root] = 0;
   903 
   904       // Store the arcs in a mixed order
   905       int k = std::max(int(sqrt(_arc_num)), 10);
   906       int i = 0;
   907       for (ArcIt e(_orig_graph); e != INVALID; ++e) {
   908         _arc[i] = e;
   909         if ((i += k) >= _arc_num) i = (i % k) + 1;
   910       }
   911 
   912       // Initialize arc maps
   913       for (int i = 0; i != _arc_num; ++i) {
   914         Arc e = _arc[i];
   915         _source[i] = _node_id[_orig_graph.source(e)];
   916         _target[i] = _node_id[_orig_graph.target(e)];
   917         _cost[i] = _orig_cost[e];
   918         _cap[i] = _orig_cap[e];
   919       }
   920 
   921       // Remove non-zero lower bounds
   922       if (_orig_lower) {
   923         for (int i = 0; i != _arc_num; ++i) {
   924           Capacity c = (*_orig_lower)[_arc[i]];
   925           if (c != 0) {
   926             _cap[i] -= c;
   927             _supply[_source[i]] -= c;
   928             _supply[_target[i]] += c;
   929           }
   930         }
   931       }
   932 
   933       // Add artificial arcs and initialize the spanning tree data structure
   934       Cost max_cost = std::numeric_limits<Cost>::max() / 4;
   935       Capacity max_cap = std::numeric_limits<Capacity>::max();
   936       for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
   937         _thread[u] = u + 1;
   938         _depth[u] = 1;
   939         _parent[u] = _root;
   940         _pred[u] = e;
   941         if (_supply[u] >= 0) {
   942           _flow[e] = _supply[u];
   943           _forward[u] = true;
   944           _pi[u] = -max_cost;
   945         } else {
   946           _flow[e] = -_supply[u];
   947           _forward[u] = false;
   948           _pi[u] = max_cost;
   949         }
   950         _cost[e] = max_cost;
   951         _cap[e] = max_cap;
   952         _state[e] = STATE_TREE;
   953       }
   954 
   955       return true;
   956     }
   957 
   958     // Find the join node
   959     void findJoinNode() {
   960       int u = _source[_in_arc];
   961       int v = _target[_in_arc];
   962       while (_depth[u] > _depth[v]) u = _parent[u];
   963       while (_depth[v] > _depth[u]) v = _parent[v];
   964       while (u != v) {
   965         u = _parent[u];
   966         v = _parent[v];
   967       }
   968       join = u;
   969     }
   970 
   971     // Find the leaving arc of the cycle and returns true if the
   972     // leaving arc is not the same as the entering arc
   973     bool findLeavingArc() {
   974       // Initialize first and second nodes according to the direction
   975       // of the cycle
   976       if (_state[_in_arc] == STATE_LOWER) {
   977         first  = _source[_in_arc];
   978         second = _target[_in_arc];
   979       } else {
   980         first  = _target[_in_arc];
   981         second = _source[_in_arc];
   982       }
   983       delta = _cap[_in_arc];
   984       int result = 0;
   985       Capacity d;
   986       int e;
   987 
   988       // Search the cycle along the path form the first node to the root
   989       for (int u = first; u != join; u = _parent[u]) {
   990         e = _pred[u];
   991         d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
   992         if (d < delta) {
   993           delta = d;
   994           u_out = u;
   995           result = 1;
   996         }
   997       }
   998       // Search the cycle along the path form the second node to the root
   999       for (int u = second; u != join; u = _parent[u]) {
  1000         e = _pred[u];
  1001         d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
  1002         if (d <= delta) {
  1003           delta = d;
  1004           u_out = u;
  1005           result = 2;
  1006         }
  1007       }
  1008 
  1009       if (result == 1) {
  1010         u_in = first;
  1011         v_in = second;
  1012       } else {
  1013         u_in = second;
  1014         v_in = first;
  1015       }
  1016       return result != 0;
  1017     }
  1018 
  1019     // Change _flow and _state vectors
  1020     void changeFlow(bool change) {
  1021       // Augment along the cycle
  1022       if (delta > 0) {
  1023         Capacity val = _state[_in_arc] * delta;
  1024         _flow[_in_arc] += val;
  1025         for (int u = _source[_in_arc]; u != join; u = _parent[u]) {
  1026           _flow[_pred[u]] += _forward[u] ? -val : val;
  1027         }
  1028         for (int u = _target[_in_arc]; u != join; u = _parent[u]) {
  1029           _flow[_pred[u]] += _forward[u] ? val : -val;
  1030         }
  1031       }
  1032       // Update the state of the entering and leaving arcs
  1033       if (change) {
  1034         _state[_in_arc] = STATE_TREE;
  1035         _state[_pred[u_out]] =
  1036           (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
  1037       } else {
  1038         _state[_in_arc] = -_state[_in_arc];
  1039       }
  1040     }
  1041 
  1042     // Update _thread and _parent vectors
  1043     void updateThreadParent() {
  1044       int u;
  1045       v_out = _parent[u_out];
  1046 
  1047       // Handle the case when join and v_out coincide
  1048       bool par_first = false;
  1049       if (join == v_out) {
  1050         for (u = join; u != u_in && u != v_in; u = _thread[u]) ;
  1051         if (u == v_in) {
  1052           par_first = true;
  1053           while (_thread[u] != u_out) u = _thread[u];
  1054           first = u;
  1055         }
  1056       }
  1057 
  1058       // Find the last successor of u_in (u) and the node after it (right)
  1059       // according to the thread index
  1060       for (u = u_in; _depth[_thread[u]] > _depth[u_in]; u = _thread[u]) ;
  1061       right = _thread[u];
  1062       if (_thread[v_in] == u_out) {
  1063         for (last = u; _depth[last] > _depth[u_out]; last = _thread[last]) ;
  1064         if (last == u_out) last = _thread[last];
  1065       }
  1066       else last = _thread[v_in];
  1067 
  1068       // Update stem nodes
  1069       _thread[v_in] = stem = u_in;
  1070       par_stem = v_in;
  1071       while (stem != u_out) {
  1072         _thread[u] = new_stem = _parent[stem];
  1073 
  1074         // Find the node just before the stem node (u) according to
  1075         // the original thread index
  1076         for (u = new_stem; _thread[u] != stem; u = _thread[u]) ;
  1077         _thread[u] = right;
  1078 
  1079         // Change the parent node of stem and shift stem and par_stem nodes
  1080         _parent[stem] = par_stem;
  1081         par_stem = stem;
  1082         stem = new_stem;
  1083 
  1084         // Find the last successor of stem (u) and the node after it (right)
  1085         // according to the thread index
  1086         for (u = stem; _depth[_thread[u]] > _depth[stem]; u = _thread[u]) ;
  1087         right = _thread[u];
  1088       }
  1089       _parent[u_out] = par_stem;
  1090       _thread[u] = last;
  1091 
  1092       if (join == v_out && par_first) {
  1093         if (first != v_in) _thread[first] = right;
  1094       } else {
  1095         for (u = v_out; _thread[u] != u_out; u = _thread[u]) ;
  1096         _thread[u] = right;
  1097       }
  1098     }
  1099 
  1100     // Update _pred and _forward vectors
  1101     void updatePredArc() {
  1102       int u = u_out, v;
  1103       while (u != u_in) {
  1104         v = _parent[u];
  1105         _pred[u] = _pred[v];
  1106         _forward[u] = !_forward[v];
  1107         u = v;
  1108       }
  1109       _pred[u_in] = _in_arc;
  1110       _forward[u_in] = (u_in == _source[_in_arc]);
  1111     }
  1112 
  1113     // Update _depth and _potential vectors
  1114     void updateDepthPotential() {
  1115       _depth[u_in] = _depth[v_in] + 1;
  1116       Cost sigma = _forward[u_in] ?
  1117         _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
  1118         _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
  1119       _pi[u_in] += sigma;
  1120       for(int u = _thread[u_in]; _parent[u] != -1; u = _thread[u]) {
  1121         _depth[u] = _depth[_parent[u]] + 1;
  1122         if (_depth[u] <= _depth[u_in]) break;
  1123         _pi[u] += sigma;
  1124       }
  1125     }
  1126 
  1127     // Execute the algorithm
  1128     bool start(PivotRuleEnum pivot_rule) {
  1129       // Select the pivot rule implementation
  1130       switch (pivot_rule) {
  1131         case FIRST_ELIGIBLE_PIVOT:
  1132           return start<FirstEligiblePivotRule>();
  1133         case BEST_ELIGIBLE_PIVOT:
  1134           return start<BestEligiblePivotRule>();
  1135         case BLOCK_SEARCH_PIVOT:
  1136           return start<BlockSearchPivotRule>();
  1137         case CANDIDATE_LIST_PIVOT:
  1138           return start<CandidateListPivotRule>();
  1139         case ALTERING_LIST_PIVOT:
  1140           return start<AlteringListPivotRule>();
  1141       }
  1142       return false;
  1143     }
  1144 
  1145     template<class PivotRuleImplementation>
  1146     bool start() {
  1147       PivotRuleImplementation pivot(*this);
  1148 
  1149       // Execute the network simplex algorithm
  1150       while (pivot.findEnteringArc()) {
  1151         findJoinNode();
  1152         bool change = findLeavingArc();
  1153         changeFlow(change);
  1154         if (change) {
  1155           updateThreadParent();
  1156           updatePredArc();
  1157           updateDepthPotential();
  1158         }
  1159       }
  1160 
  1161       // Check if the flow amount equals zero on all the artificial arcs
  1162       for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
  1163         if (_flow[e] > 0) return false;
  1164       }
  1165 
  1166       // Copy flow values to _flow_result
  1167       if (_orig_lower) {
  1168         for (int i = 0; i != _arc_num; ++i) {
  1169           Arc e = _arc[i];
  1170           (*_flow_result)[e] = (*_orig_lower)[e] + _flow[i];
  1171         }
  1172       } else {
  1173         for (int i = 0; i != _arc_num; ++i) {
  1174           (*_flow_result)[_arc[i]] = _flow[i];
  1175         }
  1176       }
  1177       // Copy potential values to _potential_result
  1178       for (int i = 0; i != _node_num; ++i) {
  1179         (*_potential_result)[_node[i]] = _pi[i];
  1180       }
  1181 
  1182       return true;
  1183     }
  1184 
  1185   }; //class NetworkSimplex
  1186 
  1187   ///@}
  1188 
  1189 } //namespace lemon
  1190 
  1191 #endif //LEMON_NETWORK_SIMPLEX_H