lemon/cplex.cc
author Gabor Gevay <ggab90@gmail.com>
Sun, 05 Jan 2014 22:24:56 +0100
changeset 1130 0759d974de81
parent 1125 1ad592289f93
child 1140 f8ec64f78b5f
permissions -rw-r--r--
STL style iterators (#325)

For
* graph types,
* graph adaptors,
* paths,
* iterable maps,
* LP rows/cols and
* active nodes is BellmanFord
alpar@461
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@461
     2
 *
alpar@461
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@461
     4
 *
alpar@1092
     5
 * Copyright (C) 2003-2013
alpar@461
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@461
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@461
     8
 *
alpar@461
     9
 * Permission to use, modify and distribute this software is granted
alpar@461
    10
 * provided that this copyright notice appears in all copies. For
alpar@461
    11
 * precise terms see the accompanying LICENSE file.
alpar@461
    12
 *
alpar@461
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@461
    14
 * express or implied, and with no claim as to its suitability for any
alpar@461
    15
 * purpose.
alpar@461
    16
 *
alpar@461
    17
 */
alpar@461
    18
alpar@461
    19
#include <iostream>
alpar@461
    20
#include <vector>
alpar@461
    21
#include <cstring>
alpar@461
    22
alpar@461
    23
#include <lemon/cplex.h>
alpar@461
    24
alpar@461
    25
extern "C" {
alpar@461
    26
#include <ilcplex/cplex.h>
alpar@461
    27
}
alpar@461
    28
alpar@461
    29
alpar@461
    30
///\file
alpar@461
    31
///\brief Implementation of the LEMON-CPLEX lp solver interface.
alpar@461
    32
namespace lemon {
alpar@461
    33
alpar@461
    34
  CplexEnv::LicenseError::LicenseError(int status) {
alpar@461
    35
    if (!CPXgeterrorstring(0, status, _message)) {
alpar@461
    36
      std::strcpy(_message, "Cplex unknown error");
alpar@461
    37
    }
alpar@461
    38
  }
alpar@461
    39
alpar@461
    40
  CplexEnv::CplexEnv() {
alpar@461
    41
    int status;
alpar@461
    42
    _cnt = new int;
alpar@1015
    43
    (*_cnt) = 1;
alpar@461
    44
    _env = CPXopenCPLEX(&status);
alpar@461
    45
    if (_env == 0) {
alpar@461
    46
      delete _cnt;
alpar@461
    47
      _cnt = 0;
alpar@461
    48
      throw LicenseError(status);
alpar@461
    49
    }
alpar@461
    50
  }
alpar@461
    51
alpar@461
    52
  CplexEnv::CplexEnv(const CplexEnv& other) {
alpar@461
    53
    _env = other._env;
alpar@461
    54
    _cnt = other._cnt;
alpar@461
    55
    ++(*_cnt);
alpar@461
    56
  }
alpar@461
    57
alpar@461
    58
  CplexEnv& CplexEnv::operator=(const CplexEnv& other) {
alpar@461
    59
    _env = other._env;
alpar@461
    60
    _cnt = other._cnt;
alpar@461
    61
    ++(*_cnt);
alpar@461
    62
    return *this;
alpar@461
    63
  }
alpar@461
    64
alpar@461
    65
  CplexEnv::~CplexEnv() {
alpar@461
    66
    --(*_cnt);
alpar@461
    67
    if (*_cnt == 0) {
alpar@461
    68
      delete _cnt;
alpar@461
    69
      CPXcloseCPLEX(&_env);
alpar@461
    70
    }
alpar@461
    71
  }
alpar@461
    72
alpar@461
    73
  CplexBase::CplexBase() : LpBase() {
alpar@461
    74
    int status;
alpar@461
    75
    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
deba@576
    76
    messageLevel(MESSAGE_NOTHING);
alpar@461
    77
  }
alpar@461
    78
alpar@461
    79
  CplexBase::CplexBase(const CplexEnv& env)
alpar@461
    80
    : LpBase(), _env(env) {
alpar@461
    81
    int status;
alpar@461
    82
    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
deba@576
    83
    messageLevel(MESSAGE_NOTHING);
alpar@461
    84
  }
alpar@461
    85
alpar@461
    86
  CplexBase::CplexBase(const CplexBase& cplex)
alpar@461
    87
    : LpBase() {
alpar@461
    88
    int status;
alpar@461
    89
    _prob = CPXcloneprob(cplexEnv(), cplex._prob, &status);
ggab90@1130
    90
    _rows = cplex._rows;
ggab90@1130
    91
    _cols = cplex._cols;
deba@576
    92
    messageLevel(MESSAGE_NOTHING);
alpar@461
    93
  }
alpar@461
    94
alpar@461
    95
  CplexBase::~CplexBase() {
alpar@461
    96
    CPXfreeprob(cplexEnv(),&_prob);
alpar@461
    97
  }
alpar@461
    98
alpar@461
    99
  int CplexBase::_addCol() {
alpar@461
   100
    int i = CPXgetnumcols(cplexEnv(), _prob);
alpar@461
   101
    double lb = -INF, ub = INF;
alpar@461
   102
    CPXnewcols(cplexEnv(), _prob, 1, 0, &lb, &ub, 0, 0);
alpar@461
   103
    return i;
alpar@461
   104
  }
alpar@461
   105
alpar@461
   106
alpar@461
   107
  int CplexBase::_addRow() {
alpar@461
   108
    int i = CPXgetnumrows(cplexEnv(), _prob);
alpar@461
   109
    const double ub = INF;
alpar@461
   110
    const char s = 'L';
alpar@461
   111
    CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
alpar@461
   112
    return i;
alpar@461
   113
  }
alpar@461
   114
alpar@877
   115
  int CplexBase::_addRow(Value lb, ExprIterator b,
deba@746
   116
                         ExprIterator e, Value ub) {
deba@746
   117
    int i = CPXgetnumrows(cplexEnv(), _prob);
deba@746
   118
alpar@1125
   119
    int rmatbeg = 0;
alpar@1125
   120
    
deba@746
   121
    std::vector<int> indices;
deba@746
   122
    std::vector<Value> values;
deba@746
   123
deba@746
   124
    for(ExprIterator it=b; it!=e; ++it) {
deba@746
   125
      indices.push_back(it->first);
deba@746
   126
      values.push_back(it->second);
deba@746
   127
    }
deba@746
   128
alpar@1125
   129
    if (lb == -INF) {
alpar@1125
   130
      const char s = 'L';
alpar@1125
   131
      CPXaddrows(cplexEnv(), _prob, 0, 1, values.size(), &ub, &s,
alpar@1125
   132
                 &rmatbeg, &indices.front(), &values.front(), 0, 0);
alpar@1125
   133
    } else if (ub == INF) {
alpar@1125
   134
      const char s = 'G';
alpar@1125
   135
      CPXaddrows(cplexEnv(), _prob, 0, 1, values.size(), &lb, &s,
alpar@1125
   136
                 &rmatbeg, &indices.front(), &values.front(), 0, 0);
alpar@1125
   137
    } else if (lb == ub){
alpar@1125
   138
      const char s = 'E';
alpar@1125
   139
      CPXaddrows(cplexEnv(), _prob, 0, 1, values.size(), &lb, &s,
alpar@1125
   140
                 &rmatbeg, &indices.front(), &values.front(), 0, 0);
alpar@1125
   141
    } else {
alpar@1125
   142
      const char s = 'R';
alpar@1125
   143
      double len = ub - lb;
alpar@1125
   144
      CPXaddrows(cplexEnv(), _prob, 0, 1, values.size(), &ub, &s,
alpar@1125
   145
                 &rmatbeg, &indices.front(), &values.front(), 0, 0);
alpar@1125
   146
      CPXchgrngval(cplexEnv(), _prob, 1, &i, &len);
alpar@1125
   147
    }
alpar@1125
   148
    
deba@746
   149
    return i;
deba@746
   150
  }
alpar@461
   151
alpar@461
   152
  void CplexBase::_eraseCol(int i) {
alpar@461
   153
    CPXdelcols(cplexEnv(), _prob, i, i);
alpar@461
   154
  }
alpar@461
   155
alpar@461
   156
  void CplexBase::_eraseRow(int i) {
alpar@461
   157
    CPXdelrows(cplexEnv(), _prob, i, i);
alpar@461
   158
  }
alpar@461
   159
alpar@461
   160
  void CplexBase::_eraseColId(int i) {
ggab90@1130
   161
    _cols.eraseIndex(i);
ggab90@1130
   162
    _cols.shiftIndices(i);
alpar@461
   163
  }
alpar@461
   164
  void CplexBase::_eraseRowId(int i) {
ggab90@1130
   165
    _rows.eraseIndex(i);
ggab90@1130
   166
    _rows.shiftIndices(i);
alpar@461
   167
  }
alpar@461
   168
alpar@461
   169
  void CplexBase::_getColName(int col, std::string &name) const {
alpar@461
   170
    int size;
alpar@461
   171
    CPXgetcolname(cplexEnv(), _prob, 0, 0, 0, &size, col, col);
alpar@461
   172
    if (size == 0) {
alpar@461
   173
      name.clear();
alpar@461
   174
      return;
alpar@461
   175
    }
alpar@461
   176
alpar@461
   177
    size *= -1;
alpar@461
   178
    std::vector<char> buf(size);
alpar@461
   179
    char *cname;
alpar@461
   180
    int tmp;
alpar@461
   181
    CPXgetcolname(cplexEnv(), _prob, &cname, &buf.front(), size,
alpar@461
   182
                  &tmp, col, col);
alpar@461
   183
    name = cname;
alpar@461
   184
  }
alpar@461
   185
alpar@461
   186
  void CplexBase::_setColName(int col, const std::string &name) {
alpar@461
   187
    char *cname;
alpar@461
   188
    cname = const_cast<char*>(name.c_str());
alpar@461
   189
    CPXchgcolname(cplexEnv(), _prob, 1, &col, &cname);
alpar@461
   190
  }
alpar@461
   191
alpar@461
   192
  int CplexBase::_colByName(const std::string& name) const {
alpar@461
   193
    int index;
alpar@461
   194
    if (CPXgetcolindex(cplexEnv(), _prob,
alpar@461
   195
                       const_cast<char*>(name.c_str()), &index) == 0) {
alpar@461
   196
      return index;
alpar@461
   197
    }
alpar@461
   198
    return -1;
alpar@461
   199
  }
alpar@461
   200
alpar@461
   201
  void CplexBase::_getRowName(int row, std::string &name) const {
alpar@461
   202
    int size;
alpar@461
   203
    CPXgetrowname(cplexEnv(), _prob, 0, 0, 0, &size, row, row);
alpar@461
   204
    if (size == 0) {
alpar@461
   205
      name.clear();
alpar@461
   206
      return;
alpar@461
   207
    }
alpar@461
   208
alpar@461
   209
    size *= -1;
alpar@461
   210
    std::vector<char> buf(size);
alpar@461
   211
    char *cname;
alpar@461
   212
    int tmp;
alpar@461
   213
    CPXgetrowname(cplexEnv(), _prob, &cname, &buf.front(), size,
alpar@461
   214
                  &tmp, row, row);
alpar@461
   215
    name = cname;
alpar@461
   216
  }
alpar@461
   217
alpar@461
   218
  void CplexBase::_setRowName(int row, const std::string &name) {
alpar@461
   219
    char *cname;
alpar@461
   220
    cname = const_cast<char*>(name.c_str());
alpar@461
   221
    CPXchgrowname(cplexEnv(), _prob, 1, &row, &cname);
alpar@461
   222
  }
alpar@461
   223
alpar@461
   224
  int CplexBase::_rowByName(const std::string& name) const {
alpar@461
   225
    int index;
alpar@461
   226
    if (CPXgetrowindex(cplexEnv(), _prob,
alpar@461
   227
                       const_cast<char*>(name.c_str()), &index) == 0) {
alpar@461
   228
      return index;
alpar@461
   229
    }
alpar@461
   230
    return -1;
alpar@461
   231
  }
alpar@461
   232
alpar@461
   233
  void CplexBase::_setRowCoeffs(int i, ExprIterator b,
alpar@461
   234
                                      ExprIterator e)
alpar@461
   235
  {
alpar@461
   236
    std::vector<int> indices;
alpar@461
   237
    std::vector<int> rowlist;
alpar@461
   238
    std::vector<Value> values;
alpar@461
   239
alpar@461
   240
    for(ExprIterator it=b; it!=e; ++it) {
alpar@461
   241
      indices.push_back(it->first);
alpar@461
   242
      values.push_back(it->second);
alpar@461
   243
      rowlist.push_back(i);
alpar@461
   244
    }
alpar@461
   245
alpar@461
   246
    CPXchgcoeflist(cplexEnv(), _prob, values.size(),
alpar@461
   247
                   &rowlist.front(), &indices.front(), &values.front());
alpar@461
   248
  }
alpar@461
   249
alpar@461
   250
  void CplexBase::_getRowCoeffs(int i, InsertIterator b) const {
alpar@461
   251
    int tmp1, tmp2, tmp3, length;
alpar@461
   252
    CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
alpar@461
   253
alpar@461
   254
    length = -length;
alpar@461
   255
    std::vector<int> indices(length);
alpar@461
   256
    std::vector<double> values(length);
alpar@461
   257
alpar@461
   258
    CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2,
alpar@461
   259
               &indices.front(), &values.front(),
alpar@461
   260
               length, &tmp3, i, i);
alpar@461
   261
alpar@461
   262
    for (int i = 0; i < length; ++i) {
alpar@461
   263
      *b = std::make_pair(indices[i], values[i]);
alpar@461
   264
      ++b;
alpar@461
   265
    }
alpar@461
   266
  }
alpar@461
   267
alpar@461
   268
  void CplexBase::_setColCoeffs(int i, ExprIterator b, ExprIterator e) {
alpar@461
   269
    std::vector<int> indices;
alpar@461
   270
    std::vector<int> collist;
alpar@461
   271
    std::vector<Value> values;
alpar@461
   272
alpar@461
   273
    for(ExprIterator it=b; it!=e; ++it) {
alpar@461
   274
      indices.push_back(it->first);
alpar@461
   275
      values.push_back(it->second);
alpar@461
   276
      collist.push_back(i);
alpar@461
   277
    }
alpar@461
   278
alpar@461
   279
    CPXchgcoeflist(cplexEnv(), _prob, values.size(),
alpar@461
   280
                   &indices.front(), &collist.front(), &values.front());
alpar@461
   281
  }
alpar@461
   282
alpar@461
   283
  void CplexBase::_getColCoeffs(int i, InsertIterator b) const {
alpar@461
   284
alpar@461
   285
    int tmp1, tmp2, tmp3, length;
alpar@461
   286
    CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
alpar@461
   287
alpar@461
   288
    length = -length;
alpar@461
   289
    std::vector<int> indices(length);
alpar@461
   290
    std::vector<double> values(length);
alpar@461
   291
alpar@461
   292
    CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2,
alpar@461
   293
               &indices.front(), &values.front(),
alpar@461
   294
               length, &tmp3, i, i);
alpar@461
   295
alpar@461
   296
    for (int i = 0; i < length; ++i) {
alpar@461
   297
      *b = std::make_pair(indices[i], values[i]);
alpar@461
   298
      ++b;
alpar@461
   299
    }
alpar@461
   300
alpar@461
   301
  }
alpar@461
   302
alpar@461
   303
  void CplexBase::_setCoeff(int row, int col, Value value) {
alpar@461
   304
    CPXchgcoef(cplexEnv(), _prob, row, col, value);
alpar@461
   305
  }
alpar@461
   306
alpar@461
   307
  CplexBase::Value CplexBase::_getCoeff(int row, int col) const {
alpar@461
   308
    CplexBase::Value value;
alpar@461
   309
    CPXgetcoef(cplexEnv(), _prob, row, col, &value);
alpar@461
   310
    return value;
alpar@461
   311
  }
alpar@461
   312
alpar@461
   313
  void CplexBase::_setColLowerBound(int i, Value value) {
alpar@461
   314
    const char s = 'L';
alpar@461
   315
    CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
alpar@461
   316
  }
alpar@461
   317
alpar@461
   318
  CplexBase::Value CplexBase::_getColLowerBound(int i) const {
alpar@461
   319
    CplexBase::Value res;
alpar@461
   320
    CPXgetlb(cplexEnv(), _prob, &res, i, i);
alpar@461
   321
    return res <= -CPX_INFBOUND ? -INF : res;
alpar@461
   322
  }
alpar@461
   323
alpar@461
   324
  void CplexBase::_setColUpperBound(int i, Value value)
alpar@461
   325
  {
alpar@461
   326
    const char s = 'U';
alpar@461
   327
    CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
alpar@461
   328
  }
alpar@461
   329
alpar@461
   330
  CplexBase::Value CplexBase::_getColUpperBound(int i) const {
alpar@461
   331
    CplexBase::Value res;
alpar@461
   332
    CPXgetub(cplexEnv(), _prob, &res, i, i);
alpar@461
   333
    return res >= CPX_INFBOUND ? INF : res;
alpar@461
   334
  }
alpar@461
   335
alpar@461
   336
  CplexBase::Value CplexBase::_getRowLowerBound(int i) const {
alpar@461
   337
    char s;
alpar@461
   338
    CPXgetsense(cplexEnv(), _prob, &s, i, i);
alpar@461
   339
    CplexBase::Value res;
alpar@461
   340
alpar@461
   341
    switch (s) {
alpar@461
   342
    case 'G':
alpar@461
   343
    case 'R':
alpar@461
   344
    case 'E':
alpar@461
   345
      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
alpar@461
   346
      return res <= -CPX_INFBOUND ? -INF : res;
alpar@461
   347
    default:
alpar@461
   348
      return -INF;
alpar@461
   349
    }
alpar@461
   350
  }
alpar@461
   351
alpar@461
   352
  CplexBase::Value CplexBase::_getRowUpperBound(int i) const {
alpar@461
   353
    char s;
alpar@461
   354
    CPXgetsense(cplexEnv(), _prob, &s, i, i);
alpar@461
   355
    CplexBase::Value res;
alpar@461
   356
alpar@461
   357
    switch (s) {
alpar@461
   358
    case 'L':
alpar@461
   359
    case 'E':
alpar@461
   360
      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
alpar@461
   361
      return res >= CPX_INFBOUND ? INF : res;
alpar@461
   362
    case 'R':
alpar@461
   363
      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
alpar@461
   364
      {
alpar@461
   365
        double rng;
alpar@461
   366
        CPXgetrngval(cplexEnv(), _prob, &rng, i, i);
alpar@461
   367
        res += rng;
alpar@461
   368
      }
alpar@461
   369
      return res >= CPX_INFBOUND ? INF : res;
alpar@461
   370
    default:
alpar@461
   371
      return INF;
alpar@461
   372
    }
alpar@461
   373
  }
alpar@461
   374
alpar@461
   375
  //This is easier to implement
alpar@461
   376
  void CplexBase::_set_row_bounds(int i, Value lb, Value ub) {
alpar@461
   377
    if (lb == -INF) {
alpar@461
   378
      const char s = 'L';
alpar@461
   379
      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
alpar@461
   380
      CPXchgrhs(cplexEnv(), _prob, 1, &i, &ub);
alpar@461
   381
    } else if (ub == INF) {
alpar@461
   382
      const char s = 'G';
alpar@461
   383
      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
alpar@461
   384
      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
alpar@461
   385
    } else if (lb == ub){
alpar@461
   386
      const char s = 'E';
alpar@461
   387
      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
alpar@461
   388
      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
alpar@461
   389
    } else {
alpar@461
   390
      const char s = 'R';
alpar@461
   391
      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
alpar@461
   392
      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
alpar@461
   393
      double len = ub - lb;
alpar@461
   394
      CPXchgrngval(cplexEnv(), _prob, 1, &i, &len);
alpar@461
   395
    }
alpar@461
   396
  }
alpar@461
   397
alpar@461
   398
  void CplexBase::_setRowLowerBound(int i, Value lb)
alpar@461
   399
  {
alpar@461
   400
    LEMON_ASSERT(lb != INF, "Invalid bound");
alpar@461
   401
    _set_row_bounds(i, lb, CplexBase::_getRowUpperBound(i));
alpar@461
   402
  }
alpar@461
   403
alpar@461
   404
  void CplexBase::_setRowUpperBound(int i, Value ub)
alpar@461
   405
  {
alpar@461
   406
alpar@461
   407
    LEMON_ASSERT(ub != -INF, "Invalid bound");
alpar@461
   408
    _set_row_bounds(i, CplexBase::_getRowLowerBound(i), ub);
alpar@461
   409
  }
alpar@461
   410
alpar@461
   411
  void CplexBase::_setObjCoeffs(ExprIterator b, ExprIterator e)
alpar@461
   412
  {
alpar@461
   413
    std::vector<int> indices;
alpar@461
   414
    std::vector<Value> values;
alpar@461
   415
    for(ExprIterator it=b; it!=e; ++it) {
alpar@461
   416
      indices.push_back(it->first);
alpar@461
   417
      values.push_back(it->second);
alpar@461
   418
    }
alpar@461
   419
    CPXchgobj(cplexEnv(), _prob, values.size(),
alpar@461
   420
              &indices.front(), &values.front());
alpar@461
   421
alpar@461
   422
  }
alpar@461
   423
alpar@461
   424
  void CplexBase::_getObjCoeffs(InsertIterator b) const
alpar@461
   425
  {
alpar@461
   426
    int num = CPXgetnumcols(cplexEnv(), _prob);
alpar@461
   427
    std::vector<Value> x(num);
alpar@461
   428
alpar@461
   429
    CPXgetobj(cplexEnv(), _prob, &x.front(), 0, num - 1);
alpar@461
   430
    for (int i = 0; i < num; ++i) {
alpar@461
   431
      if (x[i] != 0.0) {
alpar@461
   432
        *b = std::make_pair(i, x[i]);
alpar@461
   433
        ++b;
alpar@461
   434
      }
alpar@461
   435
    }
alpar@461
   436
  }
alpar@461
   437
alpar@461
   438
  void CplexBase::_setObjCoeff(int i, Value obj_coef)
alpar@461
   439
  {
alpar@461
   440
    CPXchgobj(cplexEnv(), _prob, 1, &i, &obj_coef);
alpar@461
   441
  }
alpar@461
   442
alpar@461
   443
  CplexBase::Value CplexBase::_getObjCoeff(int i) const
alpar@461
   444
  {
alpar@461
   445
    Value x;
alpar@461
   446
    CPXgetobj(cplexEnv(), _prob, &x, i, i);
alpar@461
   447
    return x;
alpar@461
   448
  }
alpar@461
   449
alpar@461
   450
  void CplexBase::_setSense(CplexBase::Sense sense) {
alpar@461
   451
    switch (sense) {
alpar@461
   452
    case MIN:
alpar@461
   453
      CPXchgobjsen(cplexEnv(), _prob, CPX_MIN);
alpar@461
   454
      break;
alpar@461
   455
    case MAX:
alpar@461
   456
      CPXchgobjsen(cplexEnv(), _prob, CPX_MAX);
alpar@461
   457
      break;
alpar@461
   458
    }
alpar@461
   459
  }
alpar@461
   460
alpar@461
   461
  CplexBase::Sense CplexBase::_getSense() const {
alpar@461
   462
    switch (CPXgetobjsen(cplexEnv(), _prob)) {
alpar@461
   463
    case CPX_MIN:
alpar@461
   464
      return MIN;
alpar@461
   465
    case CPX_MAX:
alpar@461
   466
      return MAX;
alpar@461
   467
    default:
alpar@461
   468
      LEMON_ASSERT(false, "Invalid sense");
alpar@461
   469
      return CplexBase::Sense();
alpar@461
   470
    }
alpar@461
   471
  }
alpar@461
   472
alpar@461
   473
  void CplexBase::_clear() {
alpar@461
   474
    CPXfreeprob(cplexEnv(),&_prob);
alpar@461
   475
    int status;
alpar@461
   476
    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
alpar@461
   477
  }
alpar@461
   478
deba@576
   479
  void CplexBase::_messageLevel(MessageLevel level) {
deba@576
   480
    switch (level) {
deba@576
   481
    case MESSAGE_NOTHING:
deba@576
   482
      _message_enabled = false;
deba@576
   483
      break;
deba@576
   484
    case MESSAGE_ERROR:
deba@576
   485
    case MESSAGE_WARNING:
deba@576
   486
    case MESSAGE_NORMAL:
deba@576
   487
    case MESSAGE_VERBOSE:
deba@576
   488
      _message_enabled = true;
deba@576
   489
      break;
deba@576
   490
    }
deba@576
   491
  }
deba@576
   492
deba@576
   493
  void CplexBase::_applyMessageLevel() {
alpar@877
   494
    CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND,
deba@576
   495
                   _message_enabled ? CPX_ON : CPX_OFF);
deba@576
   496
  }
deba@576
   497
alpar@1063
   498
  void CplexBase::_write(std::string file, std::string format) const
alpar@1063
   499
  {
alpar@1063
   500
    if(format == "MPS" || format == "LP")
alpar@1063
   501
      CPXwriteprob(cplexEnv(), cplexLp(), file.c_str(), format.c_str());
alpar@1063
   502
    else if(format == "SOL")
alpar@1063
   503
      CPXsolwrite(cplexEnv(), cplexLp(), file.c_str());
alpar@1063
   504
    else throw UnsupportedFormatError(format);
alpar@1063
   505
  }
alpar@1063
   506
alpar@1063
   507
alpar@1063
   508
alpar@462
   509
  // CplexLp members
alpar@461
   510
alpar@462
   511
  CplexLp::CplexLp()
deba@551
   512
    : LpBase(), LpSolver(), CplexBase() {}
alpar@461
   513
alpar@462
   514
  CplexLp::CplexLp(const CplexEnv& env)
deba@551
   515
    : LpBase(), LpSolver(), CplexBase(env) {}
alpar@461
   516
alpar@462
   517
  CplexLp::CplexLp(const CplexLp& other)
deba@551
   518
    : LpBase(), LpSolver(), CplexBase(other) {}
alpar@461
   519
alpar@462
   520
  CplexLp::~CplexLp() {}
alpar@461
   521
alpar@540
   522
  CplexLp* CplexLp::newSolver() const { return new CplexLp; }
alpar@540
   523
  CplexLp* CplexLp::cloneSolver() const {return new CplexLp(*this); }
alpar@461
   524
alpar@462
   525
  const char* CplexLp::_solverName() const { return "CplexLp"; }
alpar@461
   526
alpar@462
   527
  void CplexLp::_clear_temporals() {
alpar@461
   528
    _col_status.clear();
alpar@461
   529
    _row_status.clear();
alpar@461
   530
    _primal_ray.clear();
alpar@461
   531
    _dual_ray.clear();
alpar@461
   532
  }
alpar@461
   533
alpar@461
   534
  // The routine returns zero unless an error occurred during the
alpar@461
   535
  // optimization. Examples of errors include exhausting available
alpar@461
   536
  // memory (CPXERR_NO_MEMORY) or encountering invalid data in the
alpar@461
   537
  // CPLEX problem object (CPXERR_NO_PROBLEM). Exceeding a
alpar@461
   538
  // user-specified CPLEX limit, or proving the model infeasible or
alpar@461
   539
  // unbounded, are not considered errors. Note that a zero return
alpar@461
   540
  // value does not necessarily mean that a solution exists. Use query
alpar@461
   541
  // routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain
alpar@461
   542
  // further information about the status of the optimization.
alpar@462
   543
  CplexLp::SolveExitStatus CplexLp::convertStatus(int status) {
alpar@461
   544
#if CPX_VERSION >= 800
alpar@461
   545
    if (status == 0) {
alpar@461
   546
      switch (CPXgetstat(cplexEnv(), _prob)) {
alpar@461
   547
      case CPX_STAT_OPTIMAL:
alpar@461
   548
      case CPX_STAT_INFEASIBLE:
alpar@461
   549
      case CPX_STAT_UNBOUNDED:
alpar@461
   550
        return SOLVED;
alpar@461
   551
      default:
alpar@461
   552
        return UNSOLVED;
alpar@461
   553
      }
alpar@461
   554
    } else {
alpar@461
   555
      return UNSOLVED;
alpar@461
   556
    }
alpar@461
   557
#else
alpar@461
   558
    if (status == 0) {
alpar@461
   559
      //We want to exclude some cases
alpar@461
   560
      switch (CPXgetstat(cplexEnv(), _prob)) {
alpar@461
   561
      case CPX_OBJ_LIM:
alpar@461
   562
      case CPX_IT_LIM_FEAS:
alpar@461
   563
      case CPX_IT_LIM_INFEAS:
alpar@461
   564
      case CPX_TIME_LIM_FEAS:
alpar@461
   565
      case CPX_TIME_LIM_INFEAS:
alpar@461
   566
        return UNSOLVED;
alpar@461
   567
      default:
alpar@461
   568
        return SOLVED;
alpar@461
   569
      }
alpar@461
   570
    } else {
alpar@461
   571
      return UNSOLVED;
alpar@461
   572
    }
alpar@461
   573
#endif
alpar@461
   574
  }
alpar@461
   575
alpar@462
   576
  CplexLp::SolveExitStatus CplexLp::_solve() {
alpar@461
   577
    _clear_temporals();
deba@576
   578
    _applyMessageLevel();
alpar@461
   579
    return convertStatus(CPXlpopt(cplexEnv(), _prob));
alpar@461
   580
  }
alpar@461
   581
alpar@462
   582
  CplexLp::SolveExitStatus CplexLp::solvePrimal() {
alpar@461
   583
    _clear_temporals();
deba@576
   584
    _applyMessageLevel();
alpar@461
   585
    return convertStatus(CPXprimopt(cplexEnv(), _prob));
alpar@461
   586
  }
alpar@461
   587
alpar@462
   588
  CplexLp::SolveExitStatus CplexLp::solveDual() {
alpar@461
   589
    _clear_temporals();
deba@576
   590
    _applyMessageLevel();
alpar@461
   591
    return convertStatus(CPXdualopt(cplexEnv(), _prob));
alpar@461
   592
  }
alpar@461
   593
alpar@462
   594
  CplexLp::SolveExitStatus CplexLp::solveBarrier() {
alpar@461
   595
    _clear_temporals();
deba@576
   596
    _applyMessageLevel();
alpar@461
   597
    return convertStatus(CPXbaropt(cplexEnv(), _prob));
alpar@461
   598
  }
alpar@461
   599
alpar@462
   600
  CplexLp::Value CplexLp::_getPrimal(int i) const {
alpar@461
   601
    Value x;
alpar@461
   602
    CPXgetx(cplexEnv(), _prob, &x, i, i);
alpar@461
   603
    return x;
alpar@461
   604
  }
alpar@461
   605
alpar@462
   606
  CplexLp::Value CplexLp::_getDual(int i) const {
alpar@461
   607
    Value y;
alpar@461
   608
    CPXgetpi(cplexEnv(), _prob, &y, i, i);
alpar@461
   609
    return y;
alpar@461
   610
  }
alpar@461
   611
alpar@462
   612
  CplexLp::Value CplexLp::_getPrimalValue() const {
alpar@461
   613
    Value objval;
alpar@461
   614
    CPXgetobjval(cplexEnv(), _prob, &objval);
alpar@461
   615
    return objval;
alpar@461
   616
  }
alpar@461
   617
alpar@462
   618
  CplexLp::VarStatus CplexLp::_getColStatus(int i) const {
alpar@461
   619
    if (_col_status.empty()) {
alpar@461
   620
      _col_status.resize(CPXgetnumcols(cplexEnv(), _prob));
alpar@461
   621
      CPXgetbase(cplexEnv(), _prob, &_col_status.front(), 0);
alpar@461
   622
    }
alpar@461
   623
    switch (_col_status[i]) {
alpar@461
   624
    case CPX_BASIC:
alpar@461
   625
      return BASIC;
alpar@461
   626
    case CPX_FREE_SUPER:
alpar@461
   627
      return FREE;
alpar@461
   628
    case CPX_AT_LOWER:
alpar@461
   629
      return LOWER;
alpar@461
   630
    case CPX_AT_UPPER:
alpar@461
   631
      return UPPER;
alpar@461
   632
    default:
alpar@461
   633
      LEMON_ASSERT(false, "Wrong column status");
alpar@462
   634
      return CplexLp::VarStatus();
alpar@461
   635
    }
alpar@461
   636
  }
alpar@461
   637
alpar@462
   638
  CplexLp::VarStatus CplexLp::_getRowStatus(int i) const {
alpar@461
   639
    if (_row_status.empty()) {
alpar@461
   640
      _row_status.resize(CPXgetnumrows(cplexEnv(), _prob));
alpar@461
   641
      CPXgetbase(cplexEnv(), _prob, 0, &_row_status.front());
alpar@461
   642
    }
alpar@461
   643
    switch (_row_status[i]) {
alpar@461
   644
    case CPX_BASIC:
alpar@461
   645
      return BASIC;
alpar@461
   646
    case CPX_AT_LOWER:
alpar@461
   647
      {
alpar@461
   648
        char s;
alpar@461
   649
        CPXgetsense(cplexEnv(), _prob, &s, i, i);
alpar@461
   650
        return s != 'L' ? LOWER : UPPER;
alpar@461
   651
      }
alpar@461
   652
    case CPX_AT_UPPER:
alpar@461
   653
      return UPPER;
alpar@461
   654
    default:
alpar@461
   655
      LEMON_ASSERT(false, "Wrong row status");
alpar@462
   656
      return CplexLp::VarStatus();
alpar@461
   657
    }
alpar@461
   658
  }
alpar@461
   659
alpar@462
   660
  CplexLp::Value CplexLp::_getPrimalRay(int i) const {
alpar@461
   661
    if (_primal_ray.empty()) {
alpar@461
   662
      _primal_ray.resize(CPXgetnumcols(cplexEnv(), _prob));
alpar@461
   663
      CPXgetray(cplexEnv(), _prob, &_primal_ray.front());
alpar@461
   664
    }
alpar@461
   665
    return _primal_ray[i];
alpar@461
   666
  }
alpar@461
   667
alpar@462
   668
  CplexLp::Value CplexLp::_getDualRay(int i) const {
alpar@461
   669
    if (_dual_ray.empty()) {
alpar@461
   670
alpar@461
   671
    }
alpar@461
   672
    return _dual_ray[i];
alpar@461
   673
  }
alpar@461
   674
deba@576
   675
  // Cplex 7.0 status values
alpar@461
   676
  // This table lists the statuses, returned by the CPXgetstat()
alpar@461
   677
  // routine, for solutions to LP problems or mixed integer problems. If
alpar@461
   678
  // no solution exists, the return value is zero.
alpar@461
   679
alpar@461
   680
  // For Simplex, Barrier
alpar@461
   681
  // 1          CPX_OPTIMAL
alpar@461
   682
  //          Optimal solution found
alpar@461
   683
  // 2          CPX_INFEASIBLE
alpar@461
   684
  //          Problem infeasible
alpar@461
   685
  // 3    CPX_UNBOUNDED
alpar@461
   686
  //          Problem unbounded
alpar@461
   687
  // 4          CPX_OBJ_LIM
alpar@461
   688
  //          Objective limit exceeded in Phase II
alpar@461
   689
  // 5          CPX_IT_LIM_FEAS
alpar@461
   690
  //          Iteration limit exceeded in Phase II
alpar@461
   691
  // 6          CPX_IT_LIM_INFEAS
alpar@461
   692
  //          Iteration limit exceeded in Phase I
alpar@461
   693
  // 7          CPX_TIME_LIM_FEAS
alpar@461
   694
  //          Time limit exceeded in Phase II
alpar@461
   695
  // 8          CPX_TIME_LIM_INFEAS
alpar@461
   696
  //          Time limit exceeded in Phase I
alpar@461
   697
  // 9          CPX_NUM_BEST_FEAS
alpar@461
   698
  //          Problem non-optimal, singularities in Phase II
alpar@461
   699
  // 10         CPX_NUM_BEST_INFEAS
alpar@461
   700
  //          Problem non-optimal, singularities in Phase I
alpar@461
   701
  // 11         CPX_OPTIMAL_INFEAS
alpar@461
   702
  //          Optimal solution found, unscaled infeasibilities
alpar@461
   703
  // 12         CPX_ABORT_FEAS
alpar@461
   704
  //          Aborted in Phase II
alpar@461
   705
  // 13         CPX_ABORT_INFEAS
alpar@461
   706
  //          Aborted in Phase I
alpar@461
   707
  // 14          CPX_ABORT_DUAL_INFEAS
alpar@461
   708
  //          Aborted in barrier, dual infeasible
alpar@461
   709
  // 15          CPX_ABORT_PRIM_INFEAS
alpar@461
   710
  //          Aborted in barrier, primal infeasible
alpar@461
   711
  // 16          CPX_ABORT_PRIM_DUAL_INFEAS
alpar@461
   712
  //          Aborted in barrier, primal and dual infeasible
alpar@461
   713
  // 17          CPX_ABORT_PRIM_DUAL_FEAS
alpar@461
   714
  //          Aborted in barrier, primal and dual feasible
alpar@461
   715
  // 18          CPX_ABORT_CROSSOVER
alpar@461
   716
  //          Aborted in crossover
alpar@461
   717
  // 19          CPX_INForUNBD
alpar@461
   718
  //          Infeasible or unbounded
alpar@461
   719
  // 20   CPX_PIVOT
alpar@461
   720
  //       User pivot used
alpar@461
   721
  //
deba@576
   722
  // Pending return values
alpar@461
   723
  // ??case CPX_ABORT_DUAL_INFEAS
alpar@461
   724
  // ??case CPX_ABORT_CROSSOVER
alpar@461
   725
  // ??case CPX_INForUNBD
alpar@461
   726
  // ??case CPX_PIVOT
alpar@461
   727
alpar@461
   728
  //Some more interesting stuff:
alpar@461
   729
alpar@461
   730
  // CPX_PARAM_PROBMETHOD  1062  int  LPMETHOD
alpar@461
   731
  // 0 Automatic
alpar@461
   732
  // 1 Primal Simplex
alpar@461
   733
  // 2 Dual Simplex
alpar@461
   734
  // 3 Network Simplex
alpar@461
   735
  // 4 Standard Barrier
alpar@461
   736
  // Default: 0
alpar@461
   737
  // Description: Method for linear optimization.
alpar@461
   738
  // Determines which algorithm is used when CPXlpopt() (or "optimize"
alpar@461
   739
  // in the Interactive Optimizer) is called. Currently the behavior of
alpar@461
   740
  // the "Automatic" setting is that CPLEX simply invokes the dual
alpar@461
   741
  // simplex method, but this capability may be expanded in the future
alpar@461
   742
  // so that CPLEX chooses the method based on problem characteristics
alpar@461
   743
#if CPX_VERSION < 900
alpar@461
   744
  void statusSwitch(CPXENVptr cplexEnv(),int& stat){
alpar@461
   745
    int lpmethod;
alpar@461
   746
    CPXgetintparam (cplexEnv(),CPX_PARAM_PROBMETHOD,&lpmethod);
alpar@461
   747
    if (lpmethod==2){
alpar@461
   748
      if (stat==CPX_UNBOUNDED){
alpar@461
   749
        stat=CPX_INFEASIBLE;
alpar@461
   750
      }
alpar@461
   751
      else{
alpar@461
   752
        if (stat==CPX_INFEASIBLE)
alpar@461
   753
          stat=CPX_UNBOUNDED;
alpar@461
   754
      }
alpar@461
   755
    }
alpar@461
   756
  }
alpar@461
   757
#else
alpar@461
   758
  void statusSwitch(CPXENVptr,int&){}
alpar@461
   759
#endif
alpar@461
   760
alpar@462
   761
  CplexLp::ProblemType CplexLp::_getPrimalType() const {
alpar@461
   762
    // Unboundedness not treated well: the following is from cplex 9.0 doc
alpar@461
   763
    // About Unboundedness
alpar@461
   764
alpar@461
   765
    // The treatment of models that are unbounded involves a few
alpar@461
   766
    // subtleties. Specifically, a declaration of unboundedness means that
alpar@461
   767
    // ILOG CPLEX has determined that the model has an unbounded
alpar@461
   768
    // ray. Given any feasible solution x with objective z, a multiple of
alpar@461
   769
    // the unbounded ray can be added to x to give a feasible solution
alpar@461
   770
    // with objective z-1 (or z+1 for maximization models). Thus, if a
alpar@461
   771
    // feasible solution exists, then the optimal objective is
alpar@461
   772
    // unbounded. Note that ILOG CPLEX has not necessarily concluded that
alpar@461
   773
    // a feasible solution exists. Users can call the routine CPXsolninfo
alpar@461
   774
    // to determine whether ILOG CPLEX has also concluded that the model
alpar@461
   775
    // has a feasible solution.
alpar@461
   776
alpar@461
   777
    int stat = CPXgetstat(cplexEnv(), _prob);
alpar@461
   778
#if CPX_VERSION >= 800
alpar@461
   779
    switch (stat)
alpar@461
   780
      {
alpar@461
   781
      case CPX_STAT_OPTIMAL:
alpar@461
   782
        return OPTIMAL;
alpar@461
   783
      case CPX_STAT_UNBOUNDED:
alpar@461
   784
        return UNBOUNDED;
alpar@461
   785
      case CPX_STAT_INFEASIBLE:
alpar@461
   786
        return INFEASIBLE;
alpar@461
   787
      default:
alpar@461
   788
        return UNDEFINED;
alpar@461
   789
      }
alpar@461
   790
#else
alpar@461
   791
    statusSwitch(cplexEnv(),stat);
alpar@461
   792
    //CPXgetstat(cplexEnv(), _prob);
alpar@461
   793
    switch (stat) {
alpar@461
   794
    case 0:
alpar@461
   795
      return UNDEFINED; //Undefined
alpar@461
   796
    case CPX_OPTIMAL://Optimal
alpar@461
   797
      return OPTIMAL;
alpar@461
   798
    case CPX_UNBOUNDED://Unbounded
alpar@461
   799
      return INFEASIBLE;//In case of dual simplex
alpar@461
   800
      //return UNBOUNDED;
alpar@461
   801
    case CPX_INFEASIBLE://Infeasible
alpar@461
   802
      //    case CPX_IT_LIM_INFEAS:
alpar@461
   803
      //     case CPX_TIME_LIM_INFEAS:
alpar@461
   804
      //     case CPX_NUM_BEST_INFEAS:
alpar@461
   805
      //     case CPX_OPTIMAL_INFEAS:
alpar@461
   806
      //     case CPX_ABORT_INFEAS:
alpar@461
   807
      //     case CPX_ABORT_PRIM_INFEAS:
alpar@461
   808
      //     case CPX_ABORT_PRIM_DUAL_INFEAS:
alpar@461
   809
      return UNBOUNDED;//In case of dual simplex
alpar@461
   810
      //return INFEASIBLE;
alpar@461
   811
      //     case CPX_OBJ_LIM:
alpar@461
   812
      //     case CPX_IT_LIM_FEAS:
alpar@461
   813
      //     case CPX_TIME_LIM_FEAS:
alpar@461
   814
      //     case CPX_NUM_BEST_FEAS:
alpar@461
   815
      //     case CPX_ABORT_FEAS:
alpar@461
   816
      //     case CPX_ABORT_PRIM_DUAL_FEAS:
alpar@461
   817
      //       return FEASIBLE;
alpar@461
   818
    default:
alpar@461
   819
      return UNDEFINED; //Everything else comes here
alpar@461
   820
      //FIXME error
alpar@461
   821
    }
alpar@461
   822
#endif
alpar@461
   823
  }
alpar@461
   824
deba@576
   825
  // Cplex 9.0 status values
alpar@461
   826
  // CPX_STAT_ABORT_DUAL_OBJ_LIM
alpar@461
   827
  // CPX_STAT_ABORT_IT_LIM
alpar@461
   828
  // CPX_STAT_ABORT_OBJ_LIM
alpar@461
   829
  // CPX_STAT_ABORT_PRIM_OBJ_LIM
alpar@461
   830
  // CPX_STAT_ABORT_TIME_LIM
alpar@461
   831
  // CPX_STAT_ABORT_USER
alpar@461
   832
  // CPX_STAT_FEASIBLE_RELAXED
alpar@461
   833
  // CPX_STAT_INFEASIBLE
alpar@461
   834
  // CPX_STAT_INForUNBD
alpar@461
   835
  // CPX_STAT_NUM_BEST
alpar@461
   836
  // CPX_STAT_OPTIMAL
alpar@461
   837
  // CPX_STAT_OPTIMAL_FACE_UNBOUNDED
alpar@461
   838
  // CPX_STAT_OPTIMAL_INFEAS
alpar@461
   839
  // CPX_STAT_OPTIMAL_RELAXED
alpar@461
   840
  // CPX_STAT_UNBOUNDED
alpar@461
   841
alpar@462
   842
  CplexLp::ProblemType CplexLp::_getDualType() const {
alpar@461
   843
    int stat = CPXgetstat(cplexEnv(), _prob);
alpar@461
   844
#if CPX_VERSION >= 800
alpar@461
   845
    switch (stat) {
alpar@461
   846
    case CPX_STAT_OPTIMAL:
alpar@461
   847
      return OPTIMAL;
alpar@461
   848
    case CPX_STAT_UNBOUNDED:
alpar@461
   849
      return INFEASIBLE;
alpar@461
   850
    default:
alpar@461
   851
      return UNDEFINED;
alpar@461
   852
    }
alpar@461
   853
#else
alpar@461
   854
    statusSwitch(cplexEnv(),stat);
alpar@461
   855
    switch (stat) {
alpar@461
   856
    case 0:
alpar@461
   857
      return UNDEFINED; //Undefined
alpar@461
   858
    case CPX_OPTIMAL://Optimal
alpar@461
   859
      return OPTIMAL;
alpar@461
   860
    case CPX_UNBOUNDED:
alpar@461
   861
      return INFEASIBLE;
alpar@461
   862
    default:
alpar@461
   863
      return UNDEFINED; //Everything else comes here
alpar@461
   864
      //FIXME error
alpar@461
   865
    }
alpar@461
   866
#endif
alpar@461
   867
  }
alpar@461
   868
alpar@462
   869
  // CplexMip members
alpar@461
   870
alpar@462
   871
  CplexMip::CplexMip()
deba@551
   872
    : LpBase(), MipSolver(), CplexBase() {
alpar@461
   873
alpar@461
   874
#if CPX_VERSION < 800
alpar@461
   875
    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MIP);
alpar@461
   876
#else
alpar@461
   877
    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MILP);
alpar@461
   878
#endif
alpar@461
   879
  }
alpar@461
   880
alpar@462
   881
  CplexMip::CplexMip(const CplexEnv& env)
deba@551
   882
    : LpBase(), MipSolver(), CplexBase(env) {
alpar@461
   883
alpar@461
   884
#if CPX_VERSION < 800
alpar@461
   885
    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MIP);
alpar@461
   886
#else
alpar@461
   887
    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MILP);
alpar@461
   888
#endif
alpar@461
   889
alpar@461
   890
  }
alpar@461
   891
alpar@462
   892
  CplexMip::CplexMip(const CplexMip& other)
deba@551
   893
    : LpBase(), MipSolver(), CplexBase(other) {}
alpar@461
   894
alpar@462
   895
  CplexMip::~CplexMip() {}
alpar@461
   896
alpar@540
   897
  CplexMip* CplexMip::newSolver() const { return new CplexMip; }
alpar@540
   898
  CplexMip* CplexMip::cloneSolver() const {return new CplexMip(*this); }
alpar@461
   899
alpar@462
   900
  const char* CplexMip::_solverName() const { return "CplexMip"; }
alpar@461
   901
alpar@462
   902
  void CplexMip::_setColType(int i, CplexMip::ColTypes col_type) {
alpar@461
   903
alpar@461
   904
    // Note If a variable is to be changed to binary, a call to CPXchgbds
alpar@461
   905
    // should also be made to change the bounds to 0 and 1.
alpar@461
   906
alpar@461
   907
    switch (col_type){
alpar@461
   908
    case INTEGER: {
alpar@461
   909
      const char t = 'I';
alpar@461
   910
      CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
alpar@461
   911
    } break;
alpar@461
   912
    case REAL: {
alpar@461
   913
      const char t = 'C';
alpar@461
   914
      CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
alpar@461
   915
    } break;
alpar@461
   916
    default:
alpar@461
   917
      break;
alpar@461
   918
    }
alpar@461
   919
  }
alpar@461
   920
alpar@462
   921
  CplexMip::ColTypes CplexMip::_getColType(int i) const {
alpar@461
   922
    char t;
alpar@461
   923
    CPXgetctype (cplexEnv(), _prob, &t, i, i);
alpar@461
   924
    switch (t) {
alpar@461
   925
    case 'I':
alpar@461
   926
      return INTEGER;
alpar@461
   927
    case 'C':
alpar@461
   928
      return REAL;
alpar@461
   929
    default:
alpar@461
   930
      LEMON_ASSERT(false, "Invalid column type");
alpar@461
   931
      return ColTypes();
alpar@461
   932
    }
alpar@461
   933
alpar@461
   934
  }
alpar@461
   935
alpar@462
   936
  CplexMip::SolveExitStatus CplexMip::_solve() {
alpar@461
   937
    int status;
deba@576
   938
    _applyMessageLevel();
alpar@461
   939
    status = CPXmipopt (cplexEnv(), _prob);
alpar@461
   940
    if (status==0)
alpar@461
   941
      return SOLVED;
alpar@461
   942
    else
alpar@461
   943
      return UNSOLVED;
alpar@461
   944
alpar@461
   945
  }
alpar@461
   946
alpar@461
   947
alpar@462
   948
  CplexMip::ProblemType CplexMip::_getType() const {
alpar@461
   949
alpar@461
   950
    int stat = CPXgetstat(cplexEnv(), _prob);
alpar@461
   951
alpar@461
   952
    //Fortunately, MIP statuses did not change for cplex 8.0
alpar@461
   953
    switch (stat) {
alpar@461
   954
    case CPXMIP_OPTIMAL:
alpar@461
   955
      // Optimal integer solution has been found.
alpar@461
   956
    case CPXMIP_OPTIMAL_TOL:
alpar@461
   957
      // Optimal soluton with the tolerance defined by epgap or epagap has
alpar@461
   958
      // been found.
alpar@461
   959
      return OPTIMAL;
alpar@461
   960
      //This also exists in later issues
alpar@461
   961
      //    case CPXMIP_UNBOUNDED:
alpar@461
   962
      //return UNBOUNDED;
alpar@461
   963
      case CPXMIP_INFEASIBLE:
alpar@461
   964
        return INFEASIBLE;
alpar@461
   965
    default:
alpar@461
   966
      return UNDEFINED;
alpar@461
   967
    }
alpar@461
   968
    //Unboundedness not treated well: the following is from cplex 9.0 doc
alpar@461
   969
    // About Unboundedness
alpar@461
   970
alpar@461
   971
    // The treatment of models that are unbounded involves a few
alpar@461
   972
    // subtleties. Specifically, a declaration of unboundedness means that
alpar@461
   973
    // ILOG CPLEX has determined that the model has an unbounded
alpar@461
   974
    // ray. Given any feasible solution x with objective z, a multiple of
alpar@461
   975
    // the unbounded ray can be added to x to give a feasible solution
alpar@461
   976
    // with objective z-1 (or z+1 for maximization models). Thus, if a
alpar@461
   977
    // feasible solution exists, then the optimal objective is
alpar@461
   978
    // unbounded. Note that ILOG CPLEX has not necessarily concluded that
alpar@461
   979
    // a feasible solution exists. Users can call the routine CPXsolninfo
alpar@461
   980
    // to determine whether ILOG CPLEX has also concluded that the model
alpar@461
   981
    // has a feasible solution.
alpar@461
   982
  }
alpar@461
   983
alpar@462
   984
  CplexMip::Value CplexMip::_getSol(int i) const {
alpar@461
   985
    Value x;
alpar@461
   986
    CPXgetmipx(cplexEnv(), _prob, &x, i, i);
alpar@461
   987
    return x;
alpar@461
   988
  }
alpar@461
   989
alpar@462
   990
  CplexMip::Value CplexMip::_getSolValue() const {
alpar@461
   991
    Value objval;
alpar@461
   992
    CPXgetmipobjval(cplexEnv(), _prob, &objval);
alpar@461
   993
    return objval;
alpar@461
   994
  }
alpar@461
   995
alpar@461
   996
} //namespace lemon
alpar@461
   997