thoneyvazul@1056
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
thoneyvazul@1056
|
2 |
*
|
thoneyvazul@1056
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
thoneyvazul@1056
|
4 |
*
|
thoneyvazul@1056
|
5 |
* Copyright (C) 2003-2010
|
thoneyvazul@1056
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
thoneyvazul@1056
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
thoneyvazul@1056
|
8 |
*
|
thoneyvazul@1056
|
9 |
* Permission to use, modify and distribute this software is granted
|
thoneyvazul@1056
|
10 |
* provided that this copyright notice appears in all copies. For
|
thoneyvazul@1056
|
11 |
* precise terms see the accompanying LICENSE file.
|
thoneyvazul@1056
|
12 |
*
|
thoneyvazul@1056
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
thoneyvazul@1056
|
14 |
* express or implied, and with no claim as to its suitability for any
|
thoneyvazul@1056
|
15 |
* purpose.
|
thoneyvazul@1056
|
16 |
*
|
thoneyvazul@1056
|
17 |
*/
|
thoneyvazul@1056
|
18 |
|
thoneyvazul@1056
|
19 |
#ifndef LEMON_EDMONDS_KARP_H
|
thoneyvazul@1056
|
20 |
#define LEMON_EDMONDS_KARP_H
|
thoneyvazul@1056
|
21 |
|
thoneyvazul@1056
|
22 |
/// \file
|
thoneyvazul@1056
|
23 |
/// \ingroup max_flow
|
thoneyvazul@1056
|
24 |
/// \brief Implementation of the Edmonds-Karp algorithm.
|
thoneyvazul@1056
|
25 |
|
thoneyvazul@1056
|
26 |
#include <lemon/tolerance.h>
|
thoneyvazul@1056
|
27 |
#include <vector>
|
thoneyvazul@1056
|
28 |
|
thoneyvazul@1056
|
29 |
namespace lemon {
|
thoneyvazul@1056
|
30 |
|
thoneyvazul@1056
|
31 |
/// \brief Default traits class of EdmondsKarp class.
|
thoneyvazul@1056
|
32 |
///
|
thoneyvazul@1056
|
33 |
/// Default traits class of EdmondsKarp class.
|
thoneyvazul@1056
|
34 |
/// \param GR Digraph type.
|
thoneyvazul@1056
|
35 |
/// \param CAP Type of capacity map.
|
thoneyvazul@1056
|
36 |
template <typename GR, typename CAP>
|
thoneyvazul@1056
|
37 |
struct EdmondsKarpDefaultTraits {
|
thoneyvazul@1056
|
38 |
|
thoneyvazul@1056
|
39 |
/// \brief The digraph type the algorithm runs on.
|
thoneyvazul@1056
|
40 |
typedef GR Digraph;
|
thoneyvazul@1056
|
41 |
|
thoneyvazul@1056
|
42 |
/// \brief The type of the map that stores the arc capacities.
|
thoneyvazul@1056
|
43 |
///
|
thoneyvazul@1056
|
44 |
/// The type of the map that stores the arc capacities.
|
thoneyvazul@1056
|
45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
thoneyvazul@1056
|
46 |
typedef CAP CapacityMap;
|
thoneyvazul@1056
|
47 |
|
kpeter@1057
|
48 |
/// \brief The type of the flow values.
|
thoneyvazul@1056
|
49 |
typedef typename CapacityMap::Value Value;
|
thoneyvazul@1056
|
50 |
|
kpeter@1057
|
51 |
/// \brief The type of the map that stores the flow values.
|
thoneyvazul@1056
|
52 |
///
|
kpeter@1057
|
53 |
/// The type of the map that stores the flow values.
|
thoneyvazul@1056
|
54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
|
kpeter@1057
|
55 |
#ifdef DOXYGEN
|
kpeter@1057
|
56 |
typedef GR::ArcMap<Value> FlowMap;
|
kpeter@1057
|
57 |
#else
|
thoneyvazul@1056
|
58 |
typedef typename Digraph::template ArcMap<Value> FlowMap;
|
kpeter@1057
|
59 |
#endif
|
thoneyvazul@1056
|
60 |
|
thoneyvazul@1056
|
61 |
/// \brief Instantiates a FlowMap.
|
thoneyvazul@1056
|
62 |
///
|
thoneyvazul@1056
|
63 |
/// This function instantiates a \ref FlowMap.
|
kpeter@1057
|
64 |
/// \param digraph The digraph for which we would like to define
|
kpeter@1057
|
65 |
/// the flow map.
|
thoneyvazul@1056
|
66 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
thoneyvazul@1056
|
67 |
return new FlowMap(digraph);
|
thoneyvazul@1056
|
68 |
}
|
thoneyvazul@1056
|
69 |
|
thoneyvazul@1056
|
70 |
/// \brief The tolerance used by the algorithm
|
thoneyvazul@1056
|
71 |
///
|
thoneyvazul@1056
|
72 |
/// The tolerance used by the algorithm to handle inexact computation.
|
thoneyvazul@1056
|
73 |
typedef lemon::Tolerance<Value> Tolerance;
|
thoneyvazul@1056
|
74 |
|
thoneyvazul@1056
|
75 |
};
|
thoneyvazul@1056
|
76 |
|
thoneyvazul@1056
|
77 |
/// \ingroup max_flow
|
thoneyvazul@1056
|
78 |
///
|
thoneyvazul@1056
|
79 |
/// \brief Edmonds-Karp algorithms class.
|
thoneyvazul@1056
|
80 |
///
|
thoneyvazul@1056
|
81 |
/// This class provides an implementation of the \e Edmonds-Karp \e
|
kpeter@1057
|
82 |
/// algorithm producing a \ref max_flow "flow of maximum value" in a
|
alpar@1074
|
83 |
/// digraph \cite clrs01algorithms, \cite amo93networkflows,
|
alpar@1074
|
84 |
/// \cite edmondskarp72theoretical.
|
kpeter@1057
|
85 |
/// The Edmonds-Karp algorithm is slower than the Preflow
|
kpeter@1057
|
86 |
/// algorithm, but it has an advantage of the step-by-step execution
|
thoneyvazul@1056
|
87 |
/// control with feasible flow solutions. The \e source node, the \e
|
thoneyvazul@1056
|
88 |
/// target node, the \e capacity of the arcs and the \e starting \e
|
thoneyvazul@1056
|
89 |
/// flow value of the arcs should be passed to the algorithm
|
thoneyvazul@1056
|
90 |
/// through the constructor.
|
thoneyvazul@1056
|
91 |
///
|
thoneyvazul@1056
|
92 |
/// The time complexity of the algorithm is \f$ O(nm^2) \f$ in
|
kpeter@1057
|
93 |
/// worst case. Always try the Preflow algorithm instead of this if
|
thoneyvazul@1056
|
94 |
/// you just want to compute the optimal flow.
|
thoneyvazul@1056
|
95 |
///
|
kpeter@1057
|
96 |
/// \tparam GR The type of the digraph the algorithm runs on.
|
kpeter@1057
|
97 |
/// \tparam CAP The type of the capacity map. The default map
|
kpeter@1057
|
98 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
|
kpeter@1057
|
99 |
/// \tparam TR The traits class that defines various types used by the
|
kpeter@1057
|
100 |
/// algorithm. By default, it is \ref EdmondsKarpDefaultTraits
|
kpeter@1057
|
101 |
/// "EdmondsKarpDefaultTraits<GR, CAP>".
|
kpeter@1057
|
102 |
/// In most cases, this parameter should not be set directly,
|
kpeter@1057
|
103 |
/// consider to use the named template parameters instead.
|
thoneyvazul@1056
|
104 |
|
thoneyvazul@1056
|
105 |
#ifdef DOXYGEN
|
thoneyvazul@1056
|
106 |
template <typename GR, typename CAP, typename TR>
|
thoneyvazul@1056
|
107 |
#else
|
thoneyvazul@1056
|
108 |
template <typename GR,
|
thoneyvazul@1056
|
109 |
typename CAP = typename GR::template ArcMap<int>,
|
thoneyvazul@1056
|
110 |
typename TR = EdmondsKarpDefaultTraits<GR, CAP> >
|
thoneyvazul@1056
|
111 |
#endif
|
thoneyvazul@1056
|
112 |
class EdmondsKarp {
|
thoneyvazul@1056
|
113 |
public:
|
thoneyvazul@1056
|
114 |
|
alpar@1074
|
115 |
/// \brief The \ref lemon::EdmondsKarpDefaultTraits "traits class"
|
alpar@1074
|
116 |
/// of the algorithm.
|
thoneyvazul@1056
|
117 |
typedef TR Traits;
|
kpeter@1057
|
118 |
/// The type of the digraph the algorithm runs on.
|
thoneyvazul@1056
|
119 |
typedef typename Traits::Digraph Digraph;
|
kpeter@1057
|
120 |
/// The type of the capacity map.
|
thoneyvazul@1056
|
121 |
typedef typename Traits::CapacityMap CapacityMap;
|
kpeter@1057
|
122 |
/// The type of the flow values.
|
thoneyvazul@1056
|
123 |
typedef typename Traits::Value Value;
|
thoneyvazul@1056
|
124 |
|
kpeter@1057
|
125 |
/// The type of the flow map.
|
thoneyvazul@1056
|
126 |
typedef typename Traits::FlowMap FlowMap;
|
kpeter@1057
|
127 |
/// The type of the tolerance.
|
thoneyvazul@1056
|
128 |
typedef typename Traits::Tolerance Tolerance;
|
thoneyvazul@1056
|
129 |
|
thoneyvazul@1056
|
130 |
private:
|
thoneyvazul@1056
|
131 |
|
thoneyvazul@1056
|
132 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
|
thoneyvazul@1056
|
133 |
typedef typename Digraph::template NodeMap<Arc> PredMap;
|
thoneyvazul@1056
|
134 |
|
thoneyvazul@1056
|
135 |
const Digraph& _graph;
|
thoneyvazul@1056
|
136 |
const CapacityMap* _capacity;
|
thoneyvazul@1056
|
137 |
|
thoneyvazul@1056
|
138 |
Node _source, _target;
|
thoneyvazul@1056
|
139 |
|
thoneyvazul@1056
|
140 |
FlowMap* _flow;
|
thoneyvazul@1056
|
141 |
bool _local_flow;
|
thoneyvazul@1056
|
142 |
|
thoneyvazul@1056
|
143 |
PredMap* _pred;
|
thoneyvazul@1056
|
144 |
std::vector<Node> _queue;
|
thoneyvazul@1056
|
145 |
|
thoneyvazul@1056
|
146 |
Tolerance _tolerance;
|
thoneyvazul@1056
|
147 |
Value _flow_value;
|
thoneyvazul@1056
|
148 |
|
thoneyvazul@1056
|
149 |
void createStructures() {
|
thoneyvazul@1056
|
150 |
if (!_flow) {
|
thoneyvazul@1056
|
151 |
_flow = Traits::createFlowMap(_graph);
|
thoneyvazul@1056
|
152 |
_local_flow = true;
|
thoneyvazul@1056
|
153 |
}
|
thoneyvazul@1056
|
154 |
if (!_pred) {
|
thoneyvazul@1056
|
155 |
_pred = new PredMap(_graph);
|
thoneyvazul@1056
|
156 |
}
|
thoneyvazul@1056
|
157 |
_queue.resize(countNodes(_graph));
|
thoneyvazul@1056
|
158 |
}
|
thoneyvazul@1056
|
159 |
|
thoneyvazul@1056
|
160 |
void destroyStructures() {
|
thoneyvazul@1056
|
161 |
if (_local_flow) {
|
thoneyvazul@1056
|
162 |
delete _flow;
|
thoneyvazul@1056
|
163 |
}
|
thoneyvazul@1056
|
164 |
if (_pred) {
|
thoneyvazul@1056
|
165 |
delete _pred;
|
thoneyvazul@1056
|
166 |
}
|
thoneyvazul@1056
|
167 |
}
|
thoneyvazul@1056
|
168 |
|
thoneyvazul@1056
|
169 |
public:
|
thoneyvazul@1056
|
170 |
|
kpeter@1060
|
171 |
typedef EdmondsKarp Create;
|
kpeter@1060
|
172 |
|
thoneyvazul@1056
|
173 |
///\name Named template parameters
|
thoneyvazul@1056
|
174 |
|
thoneyvazul@1056
|
175 |
///@{
|
thoneyvazul@1056
|
176 |
|
thoneyvazul@1056
|
177 |
template <typename T>
|
kpeter@1058
|
178 |
struct SetFlowMapTraits : public Traits {
|
thoneyvazul@1056
|
179 |
typedef T FlowMap;
|
thoneyvazul@1056
|
180 |
static FlowMap *createFlowMap(const Digraph&) {
|
kpeter@1057
|
181 |
LEMON_ASSERT(false, "FlowMap is not initialized");
|
thoneyvazul@1056
|
182 |
return 0;
|
thoneyvazul@1056
|
183 |
}
|
thoneyvazul@1056
|
184 |
};
|
thoneyvazul@1056
|
185 |
|
thoneyvazul@1056
|
186 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
thoneyvazul@1056
|
187 |
/// FlowMap type
|
thoneyvazul@1056
|
188 |
///
|
thoneyvazul@1056
|
189 |
/// \ref named-templ-param "Named parameter" for setting FlowMap
|
thoneyvazul@1056
|
190 |
/// type
|
thoneyvazul@1056
|
191 |
template <typename T>
|
kpeter@1058
|
192 |
struct SetFlowMap
|
kpeter@1058
|
193 |
: public EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > {
|
kpeter@1058
|
194 |
typedef EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > Create;
|
thoneyvazul@1056
|
195 |
};
|
thoneyvazul@1056
|
196 |
|
thoneyvazul@1056
|
197 |
/// @}
|
thoneyvazul@1056
|
198 |
|
thoneyvazul@1056
|
199 |
protected:
|
thoneyvazul@1056
|
200 |
|
thoneyvazul@1056
|
201 |
EdmondsKarp() {}
|
thoneyvazul@1056
|
202 |
|
thoneyvazul@1056
|
203 |
public:
|
thoneyvazul@1056
|
204 |
|
thoneyvazul@1056
|
205 |
/// \brief The constructor of the class.
|
thoneyvazul@1056
|
206 |
///
|
thoneyvazul@1056
|
207 |
/// The constructor of the class.
|
thoneyvazul@1056
|
208 |
/// \param digraph The digraph the algorithm runs on.
|
thoneyvazul@1056
|
209 |
/// \param capacity The capacity of the arcs.
|
thoneyvazul@1056
|
210 |
/// \param source The source node.
|
thoneyvazul@1056
|
211 |
/// \param target The target node.
|
thoneyvazul@1056
|
212 |
EdmondsKarp(const Digraph& digraph, const CapacityMap& capacity,
|
thoneyvazul@1056
|
213 |
Node source, Node target)
|
thoneyvazul@1056
|
214 |
: _graph(digraph), _capacity(&capacity), _source(source), _target(target),
|
thoneyvazul@1056
|
215 |
_flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value()
|
thoneyvazul@1056
|
216 |
{
|
kpeter@1057
|
217 |
LEMON_ASSERT(_source != _target,
|
kpeter@1057
|
218 |
"Flow source and target are the same nodes.");
|
thoneyvazul@1056
|
219 |
}
|
thoneyvazul@1056
|
220 |
|
thoneyvazul@1056
|
221 |
/// \brief Destructor.
|
thoneyvazul@1056
|
222 |
///
|
thoneyvazul@1056
|
223 |
/// Destructor.
|
thoneyvazul@1056
|
224 |
~EdmondsKarp() {
|
thoneyvazul@1056
|
225 |
destroyStructures();
|
thoneyvazul@1056
|
226 |
}
|
thoneyvazul@1056
|
227 |
|
thoneyvazul@1056
|
228 |
/// \brief Sets the capacity map.
|
thoneyvazul@1056
|
229 |
///
|
thoneyvazul@1056
|
230 |
/// Sets the capacity map.
|
kpeter@1057
|
231 |
/// \return <tt>(*this)</tt>
|
thoneyvazul@1056
|
232 |
EdmondsKarp& capacityMap(const CapacityMap& map) {
|
thoneyvazul@1056
|
233 |
_capacity = ↦
|
thoneyvazul@1056
|
234 |
return *this;
|
thoneyvazul@1056
|
235 |
}
|
thoneyvazul@1056
|
236 |
|
thoneyvazul@1056
|
237 |
/// \brief Sets the flow map.
|
thoneyvazul@1056
|
238 |
///
|
thoneyvazul@1056
|
239 |
/// Sets the flow map.
|
kpeter@1057
|
240 |
/// If you don't use this function before calling \ref run() or
|
kpeter@1057
|
241 |
/// \ref init(), an instance will be allocated automatically.
|
kpeter@1057
|
242 |
/// The destructor deallocates this automatically allocated map,
|
kpeter@1057
|
243 |
/// of course.
|
kpeter@1057
|
244 |
/// \return <tt>(*this)</tt>
|
thoneyvazul@1056
|
245 |
EdmondsKarp& flowMap(FlowMap& map) {
|
thoneyvazul@1056
|
246 |
if (_local_flow) {
|
thoneyvazul@1056
|
247 |
delete _flow;
|
thoneyvazul@1056
|
248 |
_local_flow = false;
|
thoneyvazul@1056
|
249 |
}
|
thoneyvazul@1056
|
250 |
_flow = ↦
|
thoneyvazul@1056
|
251 |
return *this;
|
thoneyvazul@1056
|
252 |
}
|
thoneyvazul@1056
|
253 |
|
thoneyvazul@1056
|
254 |
/// \brief Sets the source node.
|
thoneyvazul@1056
|
255 |
///
|
thoneyvazul@1056
|
256 |
/// Sets the source node.
|
kpeter@1057
|
257 |
/// \return <tt>(*this)</tt>
|
thoneyvazul@1056
|
258 |
EdmondsKarp& source(const Node& node) {
|
thoneyvazul@1056
|
259 |
_source = node;
|
thoneyvazul@1056
|
260 |
return *this;
|
thoneyvazul@1056
|
261 |
}
|
thoneyvazul@1056
|
262 |
|
thoneyvazul@1056
|
263 |
/// \brief Sets the target node.
|
thoneyvazul@1056
|
264 |
///
|
thoneyvazul@1056
|
265 |
/// Sets the target node.
|
kpeter@1057
|
266 |
/// \return <tt>(*this)</tt>
|
thoneyvazul@1056
|
267 |
EdmondsKarp& target(const Node& node) {
|
thoneyvazul@1056
|
268 |
_target = node;
|
thoneyvazul@1056
|
269 |
return *this;
|
thoneyvazul@1056
|
270 |
}
|
thoneyvazul@1056
|
271 |
|
thoneyvazul@1056
|
272 |
/// \brief Sets the tolerance used by algorithm.
|
thoneyvazul@1056
|
273 |
///
|
thoneyvazul@1056
|
274 |
/// Sets the tolerance used by algorithm.
|
kpeter@1057
|
275 |
/// \return <tt>(*this)</tt>
|
thoneyvazul@1056
|
276 |
EdmondsKarp& tolerance(const Tolerance& tolerance) {
|
thoneyvazul@1056
|
277 |
_tolerance = tolerance;
|
thoneyvazul@1056
|
278 |
return *this;
|
thoneyvazul@1056
|
279 |
}
|
thoneyvazul@1056
|
280 |
|
kpeter@1057
|
281 |
/// \brief Returns a const reference to the tolerance.
|
thoneyvazul@1056
|
282 |
///
|
kpeter@1057
|
283 |
/// Returns a const reference to the tolerance object used by
|
kpeter@1057
|
284 |
/// the algorithm.
|
thoneyvazul@1056
|
285 |
const Tolerance& tolerance() const {
|
thoneyvazul@1056
|
286 |
return _tolerance;
|
thoneyvazul@1056
|
287 |
}
|
thoneyvazul@1056
|
288 |
|
thoneyvazul@1056
|
289 |
/// \name Execution control
|
kpeter@1057
|
290 |
/// The simplest way to execute the algorithm is to use \ref run().\n
|
kpeter@1057
|
291 |
/// If you need better control on the initial solution or the execution,
|
kpeter@1057
|
292 |
/// you have to call one of the \ref init() functions first, then
|
kpeter@1057
|
293 |
/// \ref start() or multiple times the \ref augment() function.
|
thoneyvazul@1056
|
294 |
|
thoneyvazul@1056
|
295 |
///@{
|
thoneyvazul@1056
|
296 |
|
kpeter@1057
|
297 |
/// \brief Initializes the algorithm.
|
kpeter@1057
|
298 |
///
|
kpeter@1057
|
299 |
/// Initializes the internal data structures and sets the initial
|
kpeter@1057
|
300 |
/// flow to zero on each arc.
|
thoneyvazul@1056
|
301 |
void init() {
|
thoneyvazul@1056
|
302 |
createStructures();
|
thoneyvazul@1056
|
303 |
for (ArcIt it(_graph); it != INVALID; ++it) {
|
thoneyvazul@1056
|
304 |
_flow->set(it, 0);
|
thoneyvazul@1056
|
305 |
}
|
thoneyvazul@1056
|
306 |
_flow_value = 0;
|
thoneyvazul@1056
|
307 |
}
|
thoneyvazul@1056
|
308 |
|
kpeter@1057
|
309 |
/// \brief Initializes the algorithm using the given flow map.
|
kpeter@1057
|
310 |
///
|
kpeter@1057
|
311 |
/// Initializes the internal data structures and sets the initial
|
kpeter@1057
|
312 |
/// flow to the given \c flowMap. The \c flowMap should
|
kpeter@1057
|
313 |
/// contain a feasible flow, i.e. at each node excluding the source
|
kpeter@1057
|
314 |
/// and the target, the incoming flow should be equal to the
|
thoneyvazul@1056
|
315 |
/// outgoing flow.
|
thoneyvazul@1056
|
316 |
template <typename FlowMap>
|
kpeter@1059
|
317 |
void init(const FlowMap& flowMap) {
|
thoneyvazul@1056
|
318 |
createStructures();
|
thoneyvazul@1056
|
319 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
thoneyvazul@1056
|
320 |
_flow->set(e, flowMap[e]);
|
thoneyvazul@1056
|
321 |
}
|
thoneyvazul@1056
|
322 |
_flow_value = 0;
|
thoneyvazul@1056
|
323 |
for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
|
thoneyvazul@1056
|
324 |
_flow_value += (*_flow)[jt];
|
thoneyvazul@1056
|
325 |
}
|
thoneyvazul@1056
|
326 |
for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
|
thoneyvazul@1056
|
327 |
_flow_value -= (*_flow)[jt];
|
thoneyvazul@1056
|
328 |
}
|
thoneyvazul@1056
|
329 |
}
|
thoneyvazul@1056
|
330 |
|
kpeter@1057
|
331 |
/// \brief Initializes the algorithm using the given flow map.
|
kpeter@1057
|
332 |
///
|
kpeter@1057
|
333 |
/// Initializes the internal data structures and sets the initial
|
kpeter@1057
|
334 |
/// flow to the given \c flowMap. The \c flowMap should
|
kpeter@1057
|
335 |
/// contain a feasible flow, i.e. at each node excluding the source
|
kpeter@1057
|
336 |
/// and the target, the incoming flow should be equal to the
|
kpeter@1057
|
337 |
/// outgoing flow.
|
kpeter@1057
|
338 |
/// \return \c false when the given \c flowMap does not contain a
|
thoneyvazul@1056
|
339 |
/// feasible flow.
|
thoneyvazul@1056
|
340 |
template <typename FlowMap>
|
kpeter@1059
|
341 |
bool checkedInit(const FlowMap& flowMap) {
|
thoneyvazul@1056
|
342 |
createStructures();
|
thoneyvazul@1056
|
343 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
thoneyvazul@1056
|
344 |
_flow->set(e, flowMap[e]);
|
thoneyvazul@1056
|
345 |
}
|
thoneyvazul@1056
|
346 |
for (NodeIt it(_graph); it != INVALID; ++it) {
|
thoneyvazul@1056
|
347 |
if (it == _source || it == _target) continue;
|
thoneyvazul@1056
|
348 |
Value outFlow = 0;
|
thoneyvazul@1056
|
349 |
for (OutArcIt jt(_graph, it); jt != INVALID; ++jt) {
|
thoneyvazul@1056
|
350 |
outFlow += (*_flow)[jt];
|
thoneyvazul@1056
|
351 |
}
|
thoneyvazul@1056
|
352 |
Value inFlow = 0;
|
thoneyvazul@1056
|
353 |
for (InArcIt jt(_graph, it); jt != INVALID; ++jt) {
|
thoneyvazul@1056
|
354 |
inFlow += (*_flow)[jt];
|
thoneyvazul@1056
|
355 |
}
|
thoneyvazul@1056
|
356 |
if (_tolerance.different(outFlow, inFlow)) {
|
thoneyvazul@1056
|
357 |
return false;
|
thoneyvazul@1056
|
358 |
}
|
thoneyvazul@1056
|
359 |
}
|
thoneyvazul@1056
|
360 |
for (ArcIt it(_graph); it != INVALID; ++it) {
|
thoneyvazul@1056
|
361 |
if (_tolerance.less((*_flow)[it], 0)) return false;
|
thoneyvazul@1056
|
362 |
if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
|
thoneyvazul@1056
|
363 |
}
|
thoneyvazul@1056
|
364 |
_flow_value = 0;
|
thoneyvazul@1056
|
365 |
for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
|
thoneyvazul@1056
|
366 |
_flow_value += (*_flow)[jt];
|
thoneyvazul@1056
|
367 |
}
|
thoneyvazul@1056
|
368 |
for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
|
thoneyvazul@1056
|
369 |
_flow_value -= (*_flow)[jt];
|
thoneyvazul@1056
|
370 |
}
|
thoneyvazul@1056
|
371 |
return true;
|
thoneyvazul@1056
|
372 |
}
|
thoneyvazul@1056
|
373 |
|
kpeter@1057
|
374 |
/// \brief Augments the solution along a shortest path.
|
thoneyvazul@1056
|
375 |
///
|
kpeter@1057
|
376 |
/// Augments the solution along a shortest path. This function searches a
|
kpeter@1057
|
377 |
/// shortest path between the source and the target
|
kpeter@1057
|
378 |
/// in the residual digraph by the Bfs algoritm.
|
thoneyvazul@1056
|
379 |
/// Then it increases the flow on this path with the minimal residual
|
kpeter@1057
|
380 |
/// capacity on the path. If there is no such path, it gives back
|
thoneyvazul@1056
|
381 |
/// false.
|
kpeter@1057
|
382 |
/// \return \c false when the augmenting did not success, i.e. the
|
thoneyvazul@1056
|
383 |
/// current flow is a feasible and optimal solution.
|
thoneyvazul@1056
|
384 |
bool augment() {
|
thoneyvazul@1056
|
385 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
thoneyvazul@1056
|
386 |
_pred->set(n, INVALID);
|
thoneyvazul@1056
|
387 |
}
|
thoneyvazul@1056
|
388 |
|
thoneyvazul@1056
|
389 |
int first = 0, last = 1;
|
thoneyvazul@1056
|
390 |
|
thoneyvazul@1056
|
391 |
_queue[0] = _source;
|
thoneyvazul@1056
|
392 |
_pred->set(_source, OutArcIt(_graph, _source));
|
thoneyvazul@1056
|
393 |
|
thoneyvazul@1056
|
394 |
while (first != last && (*_pred)[_target] == INVALID) {
|
thoneyvazul@1056
|
395 |
Node n = _queue[first++];
|
thoneyvazul@1056
|
396 |
|
thoneyvazul@1056
|
397 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
thoneyvazul@1056
|
398 |
Value rem = (*_capacity)[e] - (*_flow)[e];
|
thoneyvazul@1056
|
399 |
Node t = _graph.target(e);
|
thoneyvazul@1056
|
400 |
if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
|
thoneyvazul@1056
|
401 |
_pred->set(t, e);
|
thoneyvazul@1056
|
402 |
_queue[last++] = t;
|
thoneyvazul@1056
|
403 |
}
|
thoneyvazul@1056
|
404 |
}
|
thoneyvazul@1056
|
405 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
thoneyvazul@1056
|
406 |
Value rem = (*_flow)[e];
|
thoneyvazul@1056
|
407 |
Node t = _graph.source(e);
|
thoneyvazul@1056
|
408 |
if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
|
thoneyvazul@1056
|
409 |
_pred->set(t, e);
|
thoneyvazul@1056
|
410 |
_queue[last++] = t;
|
thoneyvazul@1056
|
411 |
}
|
thoneyvazul@1056
|
412 |
}
|
thoneyvazul@1056
|
413 |
}
|
thoneyvazul@1056
|
414 |
|
thoneyvazul@1056
|
415 |
if ((*_pred)[_target] != INVALID) {
|
thoneyvazul@1056
|
416 |
Node n = _target;
|
thoneyvazul@1056
|
417 |
Arc e = (*_pred)[n];
|
thoneyvazul@1056
|
418 |
|
thoneyvazul@1056
|
419 |
Value prem = (*_capacity)[e] - (*_flow)[e];
|
thoneyvazul@1056
|
420 |
n = _graph.source(e);
|
thoneyvazul@1056
|
421 |
while (n != _source) {
|
thoneyvazul@1056
|
422 |
e = (*_pred)[n];
|
thoneyvazul@1056
|
423 |
if (_graph.target(e) == n) {
|
thoneyvazul@1056
|
424 |
Value rem = (*_capacity)[e] - (*_flow)[e];
|
thoneyvazul@1056
|
425 |
if (rem < prem) prem = rem;
|
thoneyvazul@1056
|
426 |
n = _graph.source(e);
|
thoneyvazul@1056
|
427 |
} else {
|
thoneyvazul@1056
|
428 |
Value rem = (*_flow)[e];
|
thoneyvazul@1056
|
429 |
if (rem < prem) prem = rem;
|
thoneyvazul@1056
|
430 |
n = _graph.target(e);
|
thoneyvazul@1056
|
431 |
}
|
thoneyvazul@1056
|
432 |
}
|
thoneyvazul@1056
|
433 |
|
thoneyvazul@1056
|
434 |
n = _target;
|
thoneyvazul@1056
|
435 |
e = (*_pred)[n];
|
thoneyvazul@1056
|
436 |
|
thoneyvazul@1056
|
437 |
_flow->set(e, (*_flow)[e] + prem);
|
thoneyvazul@1056
|
438 |
n = _graph.source(e);
|
thoneyvazul@1056
|
439 |
while (n != _source) {
|
thoneyvazul@1056
|
440 |
e = (*_pred)[n];
|
thoneyvazul@1056
|
441 |
if (_graph.target(e) == n) {
|
thoneyvazul@1056
|
442 |
_flow->set(e, (*_flow)[e] + prem);
|
thoneyvazul@1056
|
443 |
n = _graph.source(e);
|
thoneyvazul@1056
|
444 |
} else {
|
thoneyvazul@1056
|
445 |
_flow->set(e, (*_flow)[e] - prem);
|
thoneyvazul@1056
|
446 |
n = _graph.target(e);
|
thoneyvazul@1056
|
447 |
}
|
thoneyvazul@1056
|
448 |
}
|
thoneyvazul@1056
|
449 |
|
thoneyvazul@1056
|
450 |
_flow_value += prem;
|
thoneyvazul@1056
|
451 |
return true;
|
thoneyvazul@1056
|
452 |
} else {
|
thoneyvazul@1056
|
453 |
return false;
|
thoneyvazul@1056
|
454 |
}
|
thoneyvazul@1056
|
455 |
}
|
thoneyvazul@1056
|
456 |
|
thoneyvazul@1056
|
457 |
/// \brief Executes the algorithm
|
thoneyvazul@1056
|
458 |
///
|
kpeter@1057
|
459 |
/// Executes the algorithm by performing augmenting phases until the
|
kpeter@1057
|
460 |
/// optimal solution is reached.
|
kpeter@1057
|
461 |
/// \pre One of the \ref init() functions must be called before
|
kpeter@1057
|
462 |
/// using this function.
|
thoneyvazul@1056
|
463 |
void start() {
|
thoneyvazul@1056
|
464 |
while (augment()) {}
|
thoneyvazul@1056
|
465 |
}
|
thoneyvazul@1056
|
466 |
|
thoneyvazul@1056
|
467 |
/// \brief Runs the algorithm.
|
thoneyvazul@1056
|
468 |
///
|
kpeter@1057
|
469 |
/// Runs the Edmonds-Karp algorithm.
|
kpeter@1057
|
470 |
/// \note ek.run() is just a shortcut of the following code.
|
thoneyvazul@1056
|
471 |
///\code
|
thoneyvazul@1056
|
472 |
/// ek.init();
|
thoneyvazul@1056
|
473 |
/// ek.start();
|
thoneyvazul@1056
|
474 |
///\endcode
|
thoneyvazul@1056
|
475 |
void run() {
|
thoneyvazul@1056
|
476 |
init();
|
thoneyvazul@1056
|
477 |
start();
|
thoneyvazul@1056
|
478 |
}
|
thoneyvazul@1056
|
479 |
|
thoneyvazul@1056
|
480 |
/// @}
|
thoneyvazul@1056
|
481 |
|
thoneyvazul@1056
|
482 |
/// \name Query Functions
|
thoneyvazul@1056
|
483 |
/// The result of the Edmonds-Karp algorithm can be obtained using these
|
thoneyvazul@1056
|
484 |
/// functions.\n
|
kpeter@1057
|
485 |
/// Either \ref run() or \ref start() should be called before using them.
|
thoneyvazul@1056
|
486 |
|
thoneyvazul@1056
|
487 |
///@{
|
thoneyvazul@1056
|
488 |
|
thoneyvazul@1056
|
489 |
/// \brief Returns the value of the maximum flow.
|
thoneyvazul@1056
|
490 |
///
|
kpeter@1057
|
491 |
/// Returns the value of the maximum flow found by the algorithm.
|
kpeter@1057
|
492 |
///
|
kpeter@1057
|
493 |
/// \pre Either \ref run() or \ref init() must be called before
|
kpeter@1057
|
494 |
/// using this function.
|
thoneyvazul@1056
|
495 |
Value flowValue() const {
|
thoneyvazul@1056
|
496 |
return _flow_value;
|
thoneyvazul@1056
|
497 |
}
|
thoneyvazul@1056
|
498 |
|
kpeter@1057
|
499 |
/// \brief Returns the flow value on the given arc.
|
thoneyvazul@1056
|
500 |
///
|
kpeter@1057
|
501 |
/// Returns the flow value on the given arc.
|
kpeter@1057
|
502 |
///
|
kpeter@1057
|
503 |
/// \pre Either \ref run() or \ref init() must be called before
|
kpeter@1057
|
504 |
/// using this function.
|
thoneyvazul@1056
|
505 |
Value flow(const Arc& arc) const {
|
thoneyvazul@1056
|
506 |
return (*_flow)[arc];
|
thoneyvazul@1056
|
507 |
}
|
thoneyvazul@1056
|
508 |
|
kpeter@1057
|
509 |
/// \brief Returns a const reference to the flow map.
|
thoneyvazul@1056
|
510 |
///
|
kpeter@1057
|
511 |
/// Returns a const reference to the arc map storing the found flow.
|
kpeter@1057
|
512 |
///
|
kpeter@1057
|
513 |
/// \pre Either \ref run() or \ref init() must be called before
|
kpeter@1057
|
514 |
/// using this function.
|
kpeter@1057
|
515 |
const FlowMap& flowMap() const {
|
kpeter@1057
|
516 |
return *_flow;
|
kpeter@1057
|
517 |
}
|
thoneyvazul@1056
|
518 |
|
kpeter@1057
|
519 |
/// \brief Returns \c true when the node is on the source side of the
|
kpeter@1057
|
520 |
/// minimum cut.
|
kpeter@1057
|
521 |
///
|
kpeter@1057
|
522 |
/// Returns true when the node is on the source side of the found
|
kpeter@1057
|
523 |
/// minimum cut.
|
kpeter@1057
|
524 |
///
|
kpeter@1057
|
525 |
/// \pre Either \ref run() or \ref init() must be called before
|
kpeter@1057
|
526 |
/// using this function.
|
thoneyvazul@1056
|
527 |
bool minCut(const Node& node) const {
|
kpeter@1061
|
528 |
return ((*_pred)[node] != INVALID) || node == _source;
|
thoneyvazul@1056
|
529 |
}
|
thoneyvazul@1056
|
530 |
|
kpeter@1057
|
531 |
/// \brief Gives back a minimum value cut.
|
thoneyvazul@1056
|
532 |
///
|
kpeter@1057
|
533 |
/// Sets \c cutMap to the characteristic vector of a minimum value
|
kpeter@1057
|
534 |
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
|
kpeter@1057
|
535 |
/// node map with \c bool (or convertible) value type.
|
kpeter@1057
|
536 |
///
|
kpeter@1057
|
537 |
/// \note This function calls \ref minCut() for each node, so it runs in
|
kpeter@1057
|
538 |
/// O(n) time.
|
kpeter@1057
|
539 |
///
|
kpeter@1057
|
540 |
/// \pre Either \ref run() or \ref init() must be called before
|
kpeter@1057
|
541 |
/// using this function.
|
thoneyvazul@1056
|
542 |
template <typename CutMap>
|
thoneyvazul@1056
|
543 |
void minCutMap(CutMap& cutMap) const {
|
thoneyvazul@1056
|
544 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
thoneyvazul@1056
|
545 |
cutMap.set(n, (*_pred)[n] != INVALID);
|
thoneyvazul@1056
|
546 |
}
|
thoneyvazul@1056
|
547 |
cutMap.set(_source, true);
|
thoneyvazul@1056
|
548 |
}
|
thoneyvazul@1056
|
549 |
|
thoneyvazul@1056
|
550 |
/// @}
|
thoneyvazul@1056
|
551 |
|
thoneyvazul@1056
|
552 |
};
|
thoneyvazul@1056
|
553 |
|
thoneyvazul@1056
|
554 |
}
|
thoneyvazul@1056
|
555 |
|
thoneyvazul@1056
|
556 |
#endif
|