lemon/maps.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 24 Mar 2009 00:18:25 +0100
changeset 604 8c3112a66878
parent 314 2cc60866a0c9
child 559 c5fd2d996909
permissions -rw-r--r--
Use XTI implementation instead of ATI in NetworkSimplex (#234)

XTI (eXtended Threaded Index) is an imporved version of the widely
known ATI (Augmented Threaded Index) method for storing and updating
the spanning tree structure in Network Simplex algorithms.

In the ATI data structure three indices are stored for each node:
predecessor, thread and depth. In the XTI data structure depth is
replaced by the number of successors and the last successor
(according to the thread index).
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@25
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@25
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
alpar@25
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@25
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@25
     8
 *
alpar@25
     9
 * Permission to use, modify and distribute this software is granted
alpar@25
    10
 * provided that this copyright notice appears in all copies. For
alpar@25
    11
 * precise terms see the accompanying LICENSE file.
alpar@25
    12
 *
alpar@25
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@25
    14
 * express or implied, and with no claim as to its suitability for any
alpar@25
    15
 * purpose.
alpar@25
    16
 *
alpar@25
    17
 */
alpar@25
    18
alpar@25
    19
#ifndef LEMON_MAPS_H
alpar@25
    20
#define LEMON_MAPS_H
alpar@25
    21
alpar@25
    22
#include <iterator>
alpar@25
    23
#include <functional>
alpar@25
    24
#include <vector>
alpar@25
    25
deba@220
    26
#include <lemon/core.h>
alpar@25
    27
alpar@25
    28
///\file
alpar@25
    29
///\ingroup maps
alpar@25
    30
///\brief Miscellaneous property maps
kpeter@80
    31
alpar@25
    32
#include <map>
alpar@25
    33
alpar@25
    34
namespace lemon {
alpar@25
    35
alpar@25
    36
  /// \addtogroup maps
alpar@25
    37
  /// @{
alpar@25
    38
alpar@25
    39
  /// Base class of maps.
alpar@25
    40
kpeter@80
    41
  /// Base class of maps. It provides the necessary type definitions
kpeter@80
    42
  /// required by the map %concepts.
kpeter@80
    43
  template<typename K, typename V>
alpar@25
    44
  class MapBase {
alpar@25
    45
  public:
kpeter@313
    46
    /// \brief The key type of the map.
alpar@25
    47
    typedef K Key;
kpeter@80
    48
    /// \brief The value type of the map.
kpeter@80
    49
    /// (The type of objects associated with the keys).
kpeter@80
    50
    typedef V Value;
alpar@25
    51
  };
alpar@25
    52
kpeter@80
    53
alpar@25
    54
  /// Null map. (a.k.a. DoNothingMap)
alpar@25
    55
kpeter@29
    56
  /// This map can be used if you have to provide a map only for
kpeter@80
    57
  /// its type definitions, or if you have to provide a writable map,
kpeter@80
    58
  /// but data written to it is not required (i.e. it will be sent to
kpeter@29
    59
  /// <tt>/dev/null</tt>).
kpeter@80
    60
  /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
kpeter@80
    61
  ///
kpeter@80
    62
  /// \sa ConstMap
kpeter@80
    63
  template<typename K, typename V>
kpeter@80
    64
  class NullMap : public MapBase<K, V> {
alpar@25
    65
  public:
kpeter@80
    66
    typedef MapBase<K, V> Parent;
alpar@25
    67
    typedef typename Parent::Key Key;
alpar@25
    68
    typedef typename Parent::Value Value;
kpeter@80
    69
alpar@25
    70
    /// Gives back a default constructed element.
kpeter@80
    71
    Value operator[](const Key&) const { return Value(); }
alpar@25
    72
    /// Absorbs the value.
kpeter@80
    73
    void set(const Key&, const Value&) {}
alpar@25
    74
  };
alpar@25
    75
kpeter@301
    76
  /// Returns a \c NullMap class
kpeter@301
    77
kpeter@301
    78
  /// This function just returns a \c NullMap class.
kpeter@80
    79
  /// \relates NullMap
kpeter@80
    80
  template <typename K, typename V>
alpar@25
    81
  NullMap<K, V> nullMap() {
alpar@25
    82
    return NullMap<K, V>();
alpar@25
    83
  }
alpar@25
    84
alpar@25
    85
alpar@25
    86
  /// Constant map.
alpar@25
    87
kpeter@82
    88
  /// This \ref concepts::ReadMap "readable map" assigns a specified
kpeter@82
    89
  /// value to each key.
kpeter@80
    90
  ///
kpeter@301
    91
  /// In other aspects it is equivalent to \c NullMap.
kpeter@80
    92
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
kpeter@80
    93
  /// concept, but it absorbs the data written to it.
kpeter@80
    94
  ///
kpeter@80
    95
  /// The simplest way of using this map is through the constMap()
kpeter@80
    96
  /// function.
kpeter@80
    97
  ///
kpeter@80
    98
  /// \sa NullMap
kpeter@80
    99
  /// \sa IdentityMap
kpeter@80
   100
  template<typename K, typename V>
kpeter@80
   101
  class ConstMap : public MapBase<K, V> {
alpar@25
   102
  private:
kpeter@80
   103
    V _value;
alpar@25
   104
  public:
kpeter@80
   105
    typedef MapBase<K, V> Parent;
alpar@25
   106
    typedef typename Parent::Key Key;
alpar@25
   107
    typedef typename Parent::Value Value;
alpar@25
   108
alpar@25
   109
    /// Default constructor
alpar@25
   110
kpeter@29
   111
    /// Default constructor.
kpeter@80
   112
    /// The value of the map will be default constructed.
alpar@25
   113
    ConstMap() {}
kpeter@80
   114
kpeter@29
   115
    /// Constructor with specified initial value
alpar@25
   116
kpeter@29
   117
    /// Constructor with specified initial value.
kpeter@123
   118
    /// \param v The initial value of the map.
kpeter@80
   119
    ConstMap(const Value &v) : _value(v) {}
alpar@25
   120
kpeter@80
   121
    /// Gives back the specified value.
kpeter@80
   122
    Value operator[](const Key&) const { return _value; }
alpar@25
   123
kpeter@80
   124
    /// Absorbs the value.
kpeter@80
   125
    void set(const Key&, const Value&) {}
kpeter@80
   126
kpeter@80
   127
    /// Sets the value that is assigned to each key.
kpeter@80
   128
    void setAll(const Value &v) {
kpeter@80
   129
      _value = v;
kpeter@80
   130
    }
kpeter@80
   131
kpeter@80
   132
    template<typename V1>
kpeter@80
   133
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
alpar@25
   134
  };
alpar@25
   135
kpeter@301
   136
  /// Returns a \c ConstMap class
kpeter@301
   137
kpeter@301
   138
  /// This function just returns a \c ConstMap class.
kpeter@80
   139
  /// \relates ConstMap
kpeter@80
   140
  template<typename K, typename V>
alpar@25
   141
  inline ConstMap<K, V> constMap(const V &v) {
alpar@25
   142
    return ConstMap<K, V>(v);
alpar@25
   143
  }
alpar@25
   144
kpeter@123
   145
  template<typename K, typename V>
kpeter@123
   146
  inline ConstMap<K, V> constMap() {
kpeter@123
   147
    return ConstMap<K, V>();
kpeter@123
   148
  }
kpeter@123
   149
alpar@25
   150
alpar@25
   151
  template<typename T, T v>
kpeter@80
   152
  struct Const {};
alpar@25
   153
alpar@25
   154
  /// Constant map with inlined constant value.
alpar@25
   155
kpeter@82
   156
  /// This \ref concepts::ReadMap "readable map" assigns a specified
kpeter@82
   157
  /// value to each key.
kpeter@80
   158
  ///
kpeter@301
   159
  /// In other aspects it is equivalent to \c NullMap.
kpeter@80
   160
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
kpeter@80
   161
  /// concept, but it absorbs the data written to it.
kpeter@80
   162
  ///
kpeter@80
   163
  /// The simplest way of using this map is through the constMap()
kpeter@80
   164
  /// function.
kpeter@80
   165
  ///
kpeter@80
   166
  /// \sa NullMap
kpeter@80
   167
  /// \sa IdentityMap
alpar@25
   168
  template<typename K, typename V, V v>
alpar@25
   169
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
alpar@25
   170
  public:
alpar@25
   171
    typedef MapBase<K, V> Parent;
alpar@25
   172
    typedef typename Parent::Key Key;
alpar@25
   173
    typedef typename Parent::Value Value;
alpar@25
   174
kpeter@80
   175
    /// Constructor.
kpeter@80
   176
    ConstMap() {}
kpeter@80
   177
kpeter@80
   178
    /// Gives back the specified value.
kpeter@80
   179
    Value operator[](const Key&) const { return v; }
kpeter@80
   180
kpeter@80
   181
    /// Absorbs the value.
kpeter@80
   182
    void set(const Key&, const Value&) {}
alpar@25
   183
  };
alpar@25
   184
kpeter@301
   185
  /// Returns a \c ConstMap class with inlined constant value
kpeter@301
   186
kpeter@301
   187
  /// This function just returns a \c ConstMap class with inlined
kpeter@80
   188
  /// constant value.
kpeter@80
   189
  /// \relates ConstMap
kpeter@80
   190
  template<typename K, typename V, V v>
alpar@25
   191
  inline ConstMap<K, Const<V, v> > constMap() {
alpar@25
   192
    return ConstMap<K, Const<V, v> >();
alpar@25
   193
  }
alpar@25
   194
alpar@25
   195
kpeter@82
   196
  /// Identity map.
kpeter@82
   197
kpeter@82
   198
  /// This \ref concepts::ReadMap "read-only map" gives back the given
kpeter@82
   199
  /// key as value without any modification.
kpeter@80
   200
  ///
kpeter@80
   201
  /// \sa ConstMap
kpeter@80
   202
  template <typename T>
kpeter@80
   203
  class IdentityMap : public MapBase<T, T> {
kpeter@80
   204
  public:
kpeter@80
   205
    typedef MapBase<T, T> Parent;
kpeter@80
   206
    typedef typename Parent::Key Key;
kpeter@80
   207
    typedef typename Parent::Value Value;
kpeter@80
   208
kpeter@80
   209
    /// Gives back the given value without any modification.
kpeter@82
   210
    Value operator[](const Key &k) const {
kpeter@82
   211
      return k;
kpeter@80
   212
    }
kpeter@80
   213
  };
kpeter@80
   214
kpeter@301
   215
  /// Returns an \c IdentityMap class
kpeter@301
   216
kpeter@301
   217
  /// This function just returns an \c IdentityMap class.
kpeter@80
   218
  /// \relates IdentityMap
kpeter@80
   219
  template<typename T>
kpeter@80
   220
  inline IdentityMap<T> identityMap() {
kpeter@80
   221
    return IdentityMap<T>();
kpeter@80
   222
  }
kpeter@80
   223
kpeter@80
   224
kpeter@80
   225
  /// \brief Map for storing values for integer keys from the range
kpeter@80
   226
  /// <tt>[0..size-1]</tt>.
kpeter@80
   227
  ///
kpeter@80
   228
  /// This map is essentially a wrapper for \c std::vector. It assigns
kpeter@80
   229
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
kpeter@80
   230
  /// It can be used with some data structures, for example
kpeter@301
   231
  /// \c UnionFind, \c BinHeap, when the used items are small
kpeter@80
   232
  /// integers. This map conforms the \ref concepts::ReferenceMap
kpeter@80
   233
  /// "ReferenceMap" concept.
kpeter@80
   234
  ///
kpeter@80
   235
  /// The simplest way of using this map is through the rangeMap()
kpeter@80
   236
  /// function.
kpeter@80
   237
  template <typename V>
kpeter@80
   238
  class RangeMap : public MapBase<int, V> {
kpeter@80
   239
    template <typename V1>
kpeter@80
   240
    friend class RangeMap;
kpeter@80
   241
  private:
kpeter@80
   242
kpeter@80
   243
    typedef std::vector<V> Vector;
kpeter@80
   244
    Vector _vector;
kpeter@80
   245
alpar@25
   246
  public:
alpar@25
   247
kpeter@80
   248
    typedef MapBase<int, V> Parent;
kpeter@80
   249
    /// Key type
kpeter@45
   250
    typedef typename Parent::Key Key;
kpeter@80
   251
    /// Value type
kpeter@45
   252
    typedef typename Parent::Value Value;
kpeter@80
   253
    /// Reference type
kpeter@80
   254
    typedef typename Vector::reference Reference;
kpeter@80
   255
    /// Const reference type
kpeter@80
   256
    typedef typename Vector::const_reference ConstReference;
kpeter@80
   257
kpeter@80
   258
    typedef True ReferenceMapTag;
kpeter@80
   259
kpeter@80
   260
  public:
kpeter@80
   261
kpeter@80
   262
    /// Constructor with specified default value.
kpeter@80
   263
    RangeMap(int size = 0, const Value &value = Value())
kpeter@80
   264
      : _vector(size, value) {}
kpeter@80
   265
kpeter@80
   266
    /// Constructs the map from an appropriate \c std::vector.
kpeter@80
   267
    template <typename V1>
kpeter@80
   268
    RangeMap(const std::vector<V1>& vector)
kpeter@80
   269
      : _vector(vector.begin(), vector.end()) {}
kpeter@80
   270
kpeter@301
   271
    /// Constructs the map from another \c RangeMap.
kpeter@80
   272
    template <typename V1>
kpeter@80
   273
    RangeMap(const RangeMap<V1> &c)
kpeter@80
   274
      : _vector(c._vector.begin(), c._vector.end()) {}
kpeter@80
   275
kpeter@80
   276
    /// Returns the size of the map.
kpeter@80
   277
    int size() {
kpeter@80
   278
      return _vector.size();
kpeter@80
   279
    }
kpeter@80
   280
kpeter@80
   281
    /// Resizes the map.
kpeter@80
   282
kpeter@80
   283
    /// Resizes the underlying \c std::vector container, so changes the
kpeter@80
   284
    /// keyset of the map.
kpeter@80
   285
    /// \param size The new size of the map. The new keyset will be the
kpeter@80
   286
    /// range <tt>[0..size-1]</tt>.
kpeter@80
   287
    /// \param value The default value to assign to the new keys.
kpeter@80
   288
    void resize(int size, const Value &value = Value()) {
kpeter@80
   289
      _vector.resize(size, value);
kpeter@80
   290
    }
kpeter@80
   291
kpeter@80
   292
  private:
kpeter@80
   293
kpeter@80
   294
    RangeMap& operator=(const RangeMap&);
kpeter@80
   295
kpeter@80
   296
  public:
kpeter@80
   297
kpeter@80
   298
    ///\e
kpeter@80
   299
    Reference operator[](const Key &k) {
kpeter@80
   300
      return _vector[k];
kpeter@80
   301
    }
kpeter@80
   302
kpeter@80
   303
    ///\e
kpeter@80
   304
    ConstReference operator[](const Key &k) const {
kpeter@80
   305
      return _vector[k];
kpeter@80
   306
    }
kpeter@80
   307
kpeter@80
   308
    ///\e
kpeter@80
   309
    void set(const Key &k, const Value &v) {
kpeter@80
   310
      _vector[k] = v;
kpeter@80
   311
    }
kpeter@80
   312
  };
kpeter@80
   313
kpeter@301
   314
  /// Returns a \c RangeMap class
kpeter@301
   315
kpeter@301
   316
  /// This function just returns a \c RangeMap class.
kpeter@80
   317
  /// \relates RangeMap
kpeter@80
   318
  template<typename V>
kpeter@80
   319
  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
kpeter@80
   320
    return RangeMap<V>(size, value);
kpeter@80
   321
  }
kpeter@80
   322
kpeter@301
   323
  /// \brief Returns a \c RangeMap class created from an appropriate
kpeter@80
   324
  /// \c std::vector
kpeter@80
   325
kpeter@301
   326
  /// This function just returns a \c RangeMap class created from an
kpeter@80
   327
  /// appropriate \c std::vector.
kpeter@80
   328
  /// \relates RangeMap
kpeter@80
   329
  template<typename V>
kpeter@80
   330
  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
kpeter@80
   331
    return RangeMap<V>(vector);
kpeter@80
   332
  }
kpeter@80
   333
kpeter@80
   334
kpeter@80
   335
  /// Map type based on \c std::map
kpeter@80
   336
kpeter@80
   337
  /// This map is essentially a wrapper for \c std::map with addition
kpeter@80
   338
  /// that you can specify a default value for the keys that are not
kpeter@80
   339
  /// stored actually. This value can be different from the default
kpeter@80
   340
  /// contructed value (i.e. \c %Value()).
kpeter@80
   341
  /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
kpeter@80
   342
  /// concept.
kpeter@80
   343
  ///
kpeter@80
   344
  /// This map is useful if a default value should be assigned to most of
kpeter@80
   345
  /// the keys and different values should be assigned only to a few
kpeter@80
   346
  /// keys (i.e. the map is "sparse").
kpeter@80
   347
  /// The name of this type also refers to this important usage.
kpeter@80
   348
  ///
kpeter@80
   349
  /// Apart form that this map can be used in many other cases since it
kpeter@80
   350
  /// is based on \c std::map, which is a general associative container.
kpeter@80
   351
  /// However keep in mind that it is usually not as efficient as other
kpeter@80
   352
  /// maps.
kpeter@80
   353
  ///
kpeter@80
   354
  /// The simplest way of using this map is through the sparseMap()
kpeter@80
   355
  /// function.
kpeter@80
   356
  template <typename K, typename V, typename Compare = std::less<K> >
kpeter@80
   357
  class SparseMap : public MapBase<K, V> {
kpeter@80
   358
    template <typename K1, typename V1, typename C1>
kpeter@80
   359
    friend class SparseMap;
kpeter@80
   360
  public:
kpeter@80
   361
kpeter@80
   362
    typedef MapBase<K, V> Parent;
kpeter@80
   363
    /// Key type
kpeter@80
   364
    typedef typename Parent::Key Key;
kpeter@80
   365
    /// Value type
kpeter@80
   366
    typedef typename Parent::Value Value;
kpeter@80
   367
    /// Reference type
kpeter@80
   368
    typedef Value& Reference;
kpeter@80
   369
    /// Const reference type
kpeter@80
   370
    typedef const Value& ConstReference;
alpar@25
   371
kpeter@45
   372
    typedef True ReferenceMapTag;
kpeter@45
   373
alpar@25
   374
  private:
kpeter@80
   375
kpeter@80
   376
    typedef std::map<K, V, Compare> Map;
kpeter@80
   377
    Map _map;
alpar@25
   378
    Value _value;
alpar@25
   379
alpar@25
   380
  public:
alpar@25
   381
kpeter@80
   382
    /// \brief Constructor with specified default value.
kpeter@80
   383
    SparseMap(const Value &value = Value()) : _value(value) {}
kpeter@80
   384
    /// \brief Constructs the map from an appropriate \c std::map, and
kpeter@47
   385
    /// explicitly specifies a default value.
kpeter@80
   386
    template <typename V1, typename Comp1>
kpeter@80
   387
    SparseMap(const std::map<Key, V1, Comp1> &map,
kpeter@80
   388
              const Value &value = Value())
alpar@25
   389
      : _map(map.begin(), map.end()), _value(value) {}
kpeter@80
   390
kpeter@301
   391
    /// \brief Constructs the map from another \c SparseMap.
kpeter@80
   392
    template<typename V1, typename Comp1>
kpeter@80
   393
    SparseMap(const SparseMap<Key, V1, Comp1> &c)
alpar@25
   394
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
alpar@25
   395
alpar@25
   396
  private:
alpar@25
   397
kpeter@80
   398
    SparseMap& operator=(const SparseMap&);
alpar@25
   399
alpar@25
   400
  public:
alpar@25
   401
alpar@25
   402
    ///\e
alpar@25
   403
    Reference operator[](const Key &k) {
alpar@25
   404
      typename Map::iterator it = _map.lower_bound(k);
alpar@25
   405
      if (it != _map.end() && !_map.key_comp()(k, it->first))
alpar@209
   406
        return it->second;
alpar@25
   407
      else
alpar@209
   408
        return _map.insert(it, std::make_pair(k, _value))->second;
alpar@25
   409
    }
alpar@25
   410
kpeter@80
   411
    ///\e
alpar@25
   412
    ConstReference operator[](const Key &k) const {
alpar@25
   413
      typename Map::const_iterator it = _map.find(k);
alpar@25
   414
      if (it != _map.end())
alpar@209
   415
        return it->second;
alpar@25
   416
      else
alpar@209
   417
        return _value;
alpar@25
   418
    }
alpar@25
   419
kpeter@80
   420
    ///\e
kpeter@80
   421
    void set(const Key &k, const Value &v) {
alpar@25
   422
      typename Map::iterator it = _map.lower_bound(k);
alpar@25
   423
      if (it != _map.end() && !_map.key_comp()(k, it->first))
alpar@209
   424
        it->second = v;
alpar@25
   425
      else
alpar@209
   426
        _map.insert(it, std::make_pair(k, v));
alpar@25
   427
    }
alpar@25
   428
kpeter@80
   429
    ///\e
kpeter@80
   430
    void setAll(const Value &v) {
kpeter@80
   431
      _value = v;
alpar@25
   432
      _map.clear();
kpeter@80
   433
    }
kpeter@80
   434
  };
alpar@25
   435
kpeter@301
   436
  /// Returns a \c SparseMap class
kpeter@301
   437
kpeter@301
   438
  /// This function just returns a \c SparseMap class with specified
kpeter@80
   439
  /// default value.
kpeter@80
   440
  /// \relates SparseMap
kpeter@80
   441
  template<typename K, typename V, typename Compare>
kpeter@80
   442
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
kpeter@80
   443
    return SparseMap<K, V, Compare>(value);
kpeter@54
   444
  }
kpeter@45
   445
kpeter@80
   446
  template<typename K, typename V>
kpeter@80
   447
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
kpeter@80
   448
    return SparseMap<K, V, std::less<K> >(value);
kpeter@45
   449
  }
alpar@25
   450
kpeter@301
   451
  /// \brief Returns a \c SparseMap class created from an appropriate
kpeter@80
   452
  /// \c std::map
alpar@25
   453
kpeter@301
   454
  /// This function just returns a \c SparseMap class created from an
kpeter@80
   455
  /// appropriate \c std::map.
kpeter@80
   456
  /// \relates SparseMap
kpeter@80
   457
  template<typename K, typename V, typename Compare>
kpeter@80
   458
  inline SparseMap<K, V, Compare>
kpeter@80
   459
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
kpeter@80
   460
  {
kpeter@80
   461
    return SparseMap<K, V, Compare>(map, value);
kpeter@45
   462
  }
alpar@25
   463
alpar@25
   464
  /// @}
alpar@25
   465
alpar@25
   466
  /// \addtogroup map_adaptors
alpar@25
   467
  /// @{
alpar@25
   468
kpeter@80
   469
  /// Composition of two maps
kpeter@80
   470
kpeter@82
   471
  /// This \ref concepts::ReadMap "read-only map" returns the
kpeter@80
   472
  /// composition of two given maps. That is to say, if \c m1 is of
kpeter@80
   473
  /// type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   474
  /// \code
kpeter@80
   475
  ///   ComposeMap<M1, M2> cm(m1,m2);
kpeter@80
   476
  /// \endcode
kpeter@80
   477
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
alpar@25
   478
  ///
kpeter@80
   479
  /// The \c Key type of the map is inherited from \c M2 and the
kpeter@80
   480
  /// \c Value type is from \c M1.
kpeter@80
   481
  /// \c M2::Value must be convertible to \c M1::Key.
kpeter@80
   482
  ///
kpeter@80
   483
  /// The simplest way of using this map is through the composeMap()
kpeter@80
   484
  /// function.
kpeter@80
   485
  ///
kpeter@80
   486
  /// \sa CombineMap
kpeter@80
   487
  template <typename M1, typename M2>
kpeter@80
   488
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
kpeter@80
   489
    const M1 &_m1;
kpeter@80
   490
    const M2 &_m2;
alpar@25
   491
  public:
kpeter@80
   492
    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
alpar@25
   493
    typedef typename Parent::Key Key;
alpar@25
   494
    typedef typename Parent::Value Value;
alpar@25
   495
kpeter@80
   496
    /// Constructor
kpeter@80
   497
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   498
alpar@25
   499
    /// \e
kpeter@80
   500
    typename MapTraits<M1>::ConstReturnValue
kpeter@80
   501
    operator[](const Key &k) const { return _m1[_m2[k]]; }
alpar@25
   502
  };
alpar@25
   503
kpeter@301
   504
  /// Returns a \c ComposeMap class
kpeter@301
   505
kpeter@301
   506
  /// This function just returns a \c ComposeMap class.
kpeter@80
   507
  ///
kpeter@80
   508
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
kpeter@80
   509
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
kpeter@80
   510
  /// will be equal to <tt>m1[m2[x]]</tt>.
kpeter@80
   511
  ///
kpeter@80
   512
  /// \relates ComposeMap
kpeter@80
   513
  template <typename M1, typename M2>
kpeter@80
   514
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
kpeter@80
   515
    return ComposeMap<M1, M2>(m1, m2);
alpar@25
   516
  }
alpar@25
   517
kpeter@80
   518
kpeter@80
   519
  /// Combination of two maps using an STL (binary) functor.
kpeter@80
   520
kpeter@82
   521
  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
kpeter@80
   522
  /// binary functor and returns the combination of the two given maps
kpeter@80
   523
  /// using the functor.
kpeter@80
   524
  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
kpeter@80
   525
  /// and \c f is of \c F, then for
kpeter@80
   526
  /// \code
kpeter@80
   527
  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
kpeter@80
   528
  /// \endcode
kpeter@80
   529
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
alpar@26
   530
  ///
kpeter@80
   531
  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
kpeter@80
   532
  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
kpeter@80
   533
  /// \c M2::Value and \c M1::Value must be convertible to the
kpeter@80
   534
  /// corresponding input parameter of \c F and the return type of \c F
kpeter@80
   535
  /// must be convertible to \c V.
kpeter@80
   536
  ///
kpeter@80
   537
  /// The simplest way of using this map is through the combineMap()
kpeter@80
   538
  /// function.
kpeter@80
   539
  ///
kpeter@80
   540
  /// \sa ComposeMap
kpeter@80
   541
  template<typename M1, typename M2, typename F,
alpar@209
   542
           typename V = typename F::result_type>
kpeter@80
   543
  class CombineMap : public MapBase<typename M1::Key, V> {
kpeter@80
   544
    const M1 &_m1;
kpeter@80
   545
    const M2 &_m2;
kpeter@80
   546
    F _f;
alpar@25
   547
  public:
kpeter@80
   548
    typedef MapBase<typename M1::Key, V> Parent;
alpar@25
   549
    typedef typename Parent::Key Key;
alpar@25
   550
    typedef typename Parent::Value Value;
alpar@25
   551
kpeter@80
   552
    /// Constructor
kpeter@80
   553
    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
kpeter@80
   554
      : _m1(m1), _m2(m2), _f(f) {}
kpeter@80
   555
    /// \e
kpeter@80
   556
    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
kpeter@80
   557
  };
alpar@25
   558
kpeter@301
   559
  /// Returns a \c CombineMap class
kpeter@301
   560
kpeter@301
   561
  /// This function just returns a \c CombineMap class.
kpeter@80
   562
  ///
kpeter@80
   563
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   564
  /// values, then
kpeter@80
   565
  /// \code
kpeter@80
   566
  ///   combineMap(m1,m2,std::plus<double>())
kpeter@80
   567
  /// \endcode
kpeter@80
   568
  /// is equivalent to
kpeter@80
   569
  /// \code
kpeter@80
   570
  ///   addMap(m1,m2)
kpeter@80
   571
  /// \endcode
kpeter@80
   572
  ///
kpeter@80
   573
  /// This function is specialized for adaptable binary function
kpeter@80
   574
  /// classes and C++ functions.
kpeter@80
   575
  ///
kpeter@80
   576
  /// \relates CombineMap
kpeter@80
   577
  template<typename M1, typename M2, typename F, typename V>
kpeter@80
   578
  inline CombineMap<M1, M2, F, V>
kpeter@80
   579
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
kpeter@80
   580
    return CombineMap<M1, M2, F, V>(m1,m2,f);
alpar@25
   581
  }
alpar@25
   582
kpeter@80
   583
  template<typename M1, typename M2, typename F>
kpeter@80
   584
  inline CombineMap<M1, M2, F, typename F::result_type>
kpeter@80
   585
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
kpeter@80
   586
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
kpeter@80
   587
  }
alpar@25
   588
kpeter@80
   589
  template<typename M1, typename M2, typename K1, typename K2, typename V>
kpeter@80
   590
  inline CombineMap<M1, M2, V (*)(K1, K2), V>
kpeter@80
   591
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
kpeter@80
   592
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
kpeter@80
   593
  }
kpeter@80
   594
kpeter@80
   595
kpeter@80
   596
  /// Converts an STL style (unary) functor to a map
kpeter@80
   597
kpeter@82
   598
  /// This \ref concepts::ReadMap "read-only map" returns the value
kpeter@80
   599
  /// of a given functor. Actually, it just wraps the functor and
kpeter@80
   600
  /// provides the \c Key and \c Value typedefs.
alpar@26
   601
  ///
kpeter@80
   602
  /// Template parameters \c K and \c V will become its \c Key and
kpeter@80
   603
  /// \c Value. In most cases they have to be given explicitly because
kpeter@80
   604
  /// a functor typically does not provide \c argument_type and
kpeter@80
   605
  /// \c result_type typedefs.
kpeter@80
   606
  /// Parameter \c F is the type of the used functor.
kpeter@29
   607
  ///
kpeter@80
   608
  /// The simplest way of using this map is through the functorToMap()
kpeter@80
   609
  /// function.
kpeter@80
   610
  ///
kpeter@80
   611
  /// \sa MapToFunctor
kpeter@80
   612
  template<typename F,
alpar@209
   613
           typename K = typename F::argument_type,
alpar@209
   614
           typename V = typename F::result_type>
kpeter@80
   615
  class FunctorToMap : public MapBase<K, V> {
kpeter@123
   616
    F _f;
kpeter@80
   617
  public:
kpeter@80
   618
    typedef MapBase<K, V> Parent;
kpeter@80
   619
    typedef typename Parent::Key Key;
kpeter@80
   620
    typedef typename Parent::Value Value;
alpar@25
   621
kpeter@80
   622
    /// Constructor
kpeter@80
   623
    FunctorToMap(const F &f = F()) : _f(f) {}
kpeter@80
   624
    /// \e
kpeter@80
   625
    Value operator[](const Key &k) const { return _f(k); }
kpeter@80
   626
  };
kpeter@80
   627
kpeter@301
   628
  /// Returns a \c FunctorToMap class
kpeter@301
   629
kpeter@301
   630
  /// This function just returns a \c FunctorToMap class.
kpeter@80
   631
  ///
kpeter@80
   632
  /// This function is specialized for adaptable binary function
kpeter@80
   633
  /// classes and C++ functions.
kpeter@80
   634
  ///
kpeter@80
   635
  /// \relates FunctorToMap
kpeter@80
   636
  template<typename K, typename V, typename F>
kpeter@80
   637
  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
kpeter@80
   638
    return FunctorToMap<F, K, V>(f);
kpeter@80
   639
  }
kpeter@80
   640
kpeter@80
   641
  template <typename F>
kpeter@80
   642
  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
kpeter@80
   643
    functorToMap(const F &f)
kpeter@80
   644
  {
kpeter@80
   645
    return FunctorToMap<F, typename F::argument_type,
kpeter@80
   646
      typename F::result_type>(f);
kpeter@80
   647
  }
kpeter@80
   648
kpeter@80
   649
  template <typename K, typename V>
kpeter@80
   650
  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
kpeter@80
   651
    return FunctorToMap<V (*)(K), K, V>(f);
kpeter@80
   652
  }
kpeter@80
   653
kpeter@80
   654
kpeter@80
   655
  /// Converts a map to an STL style (unary) functor
kpeter@80
   656
kpeter@80
   657
  /// This class converts a map to an STL style (unary) functor.
kpeter@80
   658
  /// That is it provides an <tt>operator()</tt> to read its values.
kpeter@80
   659
  ///
kpeter@80
   660
  /// For the sake of convenience it also works as a usual
kpeter@80
   661
  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
kpeter@80
   662
  /// and the \c Key and \c Value typedefs also exist.
kpeter@80
   663
  ///
kpeter@80
   664
  /// The simplest way of using this map is through the mapToFunctor()
kpeter@80
   665
  /// function.
kpeter@80
   666
  ///
kpeter@80
   667
  ///\sa FunctorToMap
kpeter@80
   668
  template <typename M>
kpeter@80
   669
  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
   670
    const M &_m;
alpar@25
   671
  public:
alpar@25
   672
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
   673
    typedef typename Parent::Key Key;
alpar@25
   674
    typedef typename Parent::Value Value;
alpar@25
   675
kpeter@80
   676
    typedef typename Parent::Key argument_type;
kpeter@80
   677
    typedef typename Parent::Value result_type;
kpeter@80
   678
kpeter@80
   679
    /// Constructor
kpeter@80
   680
    MapToFunctor(const M &m) : _m(m) {}
kpeter@80
   681
    /// \e
kpeter@80
   682
    Value operator()(const Key &k) const { return _m[k]; }
kpeter@80
   683
    /// \e
kpeter@80
   684
    Value operator[](const Key &k) const { return _m[k]; }
alpar@25
   685
  };
kpeter@45
   686
kpeter@301
   687
  /// Returns a \c MapToFunctor class
kpeter@301
   688
kpeter@301
   689
  /// This function just returns a \c MapToFunctor class.
kpeter@80
   690
  /// \relates MapToFunctor
kpeter@45
   691
  template<typename M>
kpeter@80
   692
  inline MapToFunctor<M> mapToFunctor(const M &m) {
kpeter@80
   693
    return MapToFunctor<M>(m);
kpeter@45
   694
  }
alpar@25
   695
alpar@25
   696
kpeter@80
   697
  /// \brief Map adaptor to convert the \c Value type of a map to
kpeter@80
   698
  /// another type using the default conversion.
kpeter@80
   699
kpeter@80
   700
  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
kpeter@80
   701
  /// "readable map" to another type using the default conversion.
kpeter@80
   702
  /// The \c Key type of it is inherited from \c M and the \c Value
kpeter@80
   703
  /// type is \c V.
kpeter@80
   704
  /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
alpar@26
   705
  ///
kpeter@80
   706
  /// The simplest way of using this map is through the convertMap()
kpeter@80
   707
  /// function.
kpeter@80
   708
  template <typename M, typename V>
kpeter@80
   709
  class ConvertMap : public MapBase<typename M::Key, V> {
kpeter@80
   710
    const M &_m;
kpeter@80
   711
  public:
kpeter@80
   712
    typedef MapBase<typename M::Key, V> Parent;
kpeter@80
   713
    typedef typename Parent::Key Key;
kpeter@80
   714
    typedef typename Parent::Value Value;
kpeter@80
   715
kpeter@80
   716
    /// Constructor
kpeter@80
   717
kpeter@80
   718
    /// Constructor.
kpeter@80
   719
    /// \param m The underlying map.
kpeter@80
   720
    ConvertMap(const M &m) : _m(m) {}
kpeter@80
   721
kpeter@80
   722
    /// \e
kpeter@80
   723
    Value operator[](const Key &k) const { return _m[k]; }
kpeter@80
   724
  };
kpeter@80
   725
kpeter@301
   726
  /// Returns a \c ConvertMap class
kpeter@301
   727
kpeter@301
   728
  /// This function just returns a \c ConvertMap class.
kpeter@80
   729
  /// \relates ConvertMap
kpeter@80
   730
  template<typename V, typename M>
kpeter@80
   731
  inline ConvertMap<M, V> convertMap(const M &map) {
kpeter@80
   732
    return ConvertMap<M, V>(map);
kpeter@80
   733
  }
kpeter@80
   734
kpeter@80
   735
kpeter@80
   736
  /// Applies all map setting operations to two maps
kpeter@80
   737
kpeter@80
   738
  /// This map has two \ref concepts::WriteMap "writable map" parameters
kpeter@80
   739
  /// and each write request will be passed to both of them.
kpeter@80
   740
  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
kpeter@80
   741
  /// operations will return the corresponding values of \c M1.
kpeter@29
   742
  ///
kpeter@80
   743
  /// The \c Key and \c Value types are inherited from \c M1.
kpeter@80
   744
  /// The \c Key and \c Value of \c M2 must be convertible from those
kpeter@80
   745
  /// of \c M1.
kpeter@80
   746
  ///
kpeter@80
   747
  /// The simplest way of using this map is through the forkMap()
kpeter@80
   748
  /// function.
kpeter@80
   749
  template<typename  M1, typename M2>
kpeter@80
   750
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   751
    M1 &_m1;
kpeter@80
   752
    M2 &_m2;
kpeter@80
   753
  public:
kpeter@80
   754
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80
   755
    typedef typename Parent::Key Key;
kpeter@80
   756
    typedef typename Parent::Value Value;
alpar@25
   757
kpeter@80
   758
    /// Constructor
kpeter@80
   759
    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   760
    /// Returns the value associated with the given key in the first map.
kpeter@80
   761
    Value operator[](const Key &k) const { return _m1[k]; }
kpeter@80
   762
    /// Sets the value associated with the given key in both maps.
kpeter@80
   763
    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
kpeter@80
   764
  };
kpeter@80
   765
kpeter@301
   766
  /// Returns a \c ForkMap class
kpeter@301
   767
kpeter@301
   768
  /// This function just returns a \c ForkMap class.
kpeter@80
   769
  /// \relates ForkMap
kpeter@80
   770
  template <typename M1, typename M2>
kpeter@80
   771
  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
kpeter@80
   772
    return ForkMap<M1,M2>(m1,m2);
kpeter@80
   773
  }
kpeter@80
   774
kpeter@80
   775
kpeter@80
   776
  /// Sum of two maps
kpeter@80
   777
kpeter@82
   778
  /// This \ref concepts::ReadMap "read-only map" returns the sum
kpeter@80
   779
  /// of the values of the two given maps.
kpeter@80
   780
  /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80
   781
  /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80
   782
  /// \c M1.
kpeter@80
   783
  ///
kpeter@80
   784
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   785
  /// \code
kpeter@80
   786
  ///   AddMap<M1,M2> am(m1,m2);
kpeter@80
   787
  /// \endcode
kpeter@80
   788
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
kpeter@80
   789
  ///
kpeter@80
   790
  /// The simplest way of using this map is through the addMap()
kpeter@80
   791
  /// function.
kpeter@80
   792
  ///
kpeter@80
   793
  /// \sa SubMap, MulMap, DivMap
kpeter@80
   794
  /// \sa ShiftMap, ShiftWriteMap
kpeter@80
   795
  template<typename M1, typename M2>
alpar@25
   796
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   797
    const M1 &_m1;
kpeter@80
   798
    const M2 &_m2;
alpar@25
   799
  public:
alpar@25
   800
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
alpar@25
   801
    typedef typename Parent::Key Key;
alpar@25
   802
    typedef typename Parent::Value Value;
alpar@25
   803
kpeter@80
   804
    /// Constructor
kpeter@80
   805
    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   806
    /// \e
kpeter@80
   807
    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
alpar@25
   808
  };
alpar@25
   809
kpeter@301
   810
  /// Returns an \c AddMap class
kpeter@301
   811
kpeter@301
   812
  /// This function just returns an \c AddMap class.
alpar@25
   813
  ///
kpeter@80
   814
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   815
  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
kpeter@80
   816
  /// <tt>m1[x]+m2[x]</tt>.
kpeter@80
   817
  ///
kpeter@80
   818
  /// \relates AddMap
kpeter@80
   819
  template<typename M1, typename M2>
kpeter@80
   820
  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
alpar@25
   821
    return AddMap<M1, M2>(m1,m2);
alpar@25
   822
  }
alpar@25
   823
alpar@25
   824
kpeter@80
   825
  /// Difference of two maps
kpeter@80
   826
kpeter@82
   827
  /// This \ref concepts::ReadMap "read-only map" returns the difference
kpeter@80
   828
  /// of the values of the two given maps.
kpeter@80
   829
  /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80
   830
  /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80
   831
  /// \c M1.
alpar@25
   832
  ///
kpeter@80
   833
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   834
  /// \code
kpeter@80
   835
  ///   SubMap<M1,M2> sm(m1,m2);
kpeter@80
   836
  /// \endcode
kpeter@80
   837
  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
kpeter@29
   838
  ///
kpeter@80
   839
  /// The simplest way of using this map is through the subMap()
kpeter@80
   840
  /// function.
kpeter@80
   841
  ///
kpeter@80
   842
  /// \sa AddMap, MulMap, DivMap
kpeter@80
   843
  template<typename M1, typename M2>
kpeter@80
   844
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   845
    const M1 &_m1;
kpeter@80
   846
    const M2 &_m2;
kpeter@80
   847
  public:
kpeter@80
   848
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80
   849
    typedef typename Parent::Key Key;
kpeter@80
   850
    typedef typename Parent::Value Value;
kpeter@80
   851
kpeter@80
   852
    /// Constructor
kpeter@80
   853
    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   854
    /// \e
kpeter@80
   855
    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
kpeter@80
   856
  };
kpeter@80
   857
kpeter@301
   858
  /// Returns a \c SubMap class
kpeter@301
   859
kpeter@301
   860
  /// This function just returns a \c SubMap class.
kpeter@80
   861
  ///
kpeter@80
   862
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   863
  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
kpeter@80
   864
  /// <tt>m1[x]-m2[x]</tt>.
kpeter@80
   865
  ///
kpeter@80
   866
  /// \relates SubMap
kpeter@80
   867
  template<typename M1, typename M2>
kpeter@80
   868
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
kpeter@80
   869
    return SubMap<M1, M2>(m1,m2);
kpeter@80
   870
  }
kpeter@80
   871
kpeter@80
   872
kpeter@80
   873
  /// Product of two maps
kpeter@80
   874
kpeter@82
   875
  /// This \ref concepts::ReadMap "read-only map" returns the product
kpeter@80
   876
  /// of the values of the two given maps.
kpeter@80
   877
  /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80
   878
  /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80
   879
  /// \c M1.
kpeter@80
   880
  ///
kpeter@80
   881
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   882
  /// \code
kpeter@80
   883
  ///   MulMap<M1,M2> mm(m1,m2);
kpeter@80
   884
  /// \endcode
kpeter@80
   885
  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
kpeter@80
   886
  ///
kpeter@80
   887
  /// The simplest way of using this map is through the mulMap()
kpeter@80
   888
  /// function.
kpeter@80
   889
  ///
kpeter@80
   890
  /// \sa AddMap, SubMap, DivMap
kpeter@80
   891
  /// \sa ScaleMap, ScaleWriteMap
kpeter@80
   892
  template<typename M1, typename M2>
kpeter@80
   893
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   894
    const M1 &_m1;
kpeter@80
   895
    const M2 &_m2;
kpeter@80
   896
  public:
kpeter@80
   897
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80
   898
    typedef typename Parent::Key Key;
kpeter@80
   899
    typedef typename Parent::Value Value;
kpeter@80
   900
kpeter@80
   901
    /// Constructor
kpeter@80
   902
    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   903
    /// \e
kpeter@80
   904
    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
kpeter@80
   905
  };
kpeter@80
   906
kpeter@301
   907
  /// Returns a \c MulMap class
kpeter@301
   908
kpeter@301
   909
  /// This function just returns a \c MulMap class.
kpeter@80
   910
  ///
kpeter@80
   911
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   912
  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
kpeter@80
   913
  /// <tt>m1[x]*m2[x]</tt>.
kpeter@80
   914
  ///
kpeter@80
   915
  /// \relates MulMap
kpeter@80
   916
  template<typename M1, typename M2>
kpeter@80
   917
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
kpeter@80
   918
    return MulMap<M1, M2>(m1,m2);
kpeter@80
   919
  }
kpeter@80
   920
kpeter@80
   921
kpeter@80
   922
  /// Quotient of two maps
kpeter@80
   923
kpeter@82
   924
  /// This \ref concepts::ReadMap "read-only map" returns the quotient
kpeter@80
   925
  /// of the values of the two given maps.
kpeter@80
   926
  /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80
   927
  /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80
   928
  /// \c M1.
kpeter@80
   929
  ///
kpeter@80
   930
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80
   931
  /// \code
kpeter@80
   932
  ///   DivMap<M1,M2> dm(m1,m2);
kpeter@80
   933
  /// \endcode
kpeter@80
   934
  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
kpeter@80
   935
  ///
kpeter@80
   936
  /// The simplest way of using this map is through the divMap()
kpeter@80
   937
  /// function.
kpeter@80
   938
  ///
kpeter@80
   939
  /// \sa AddMap, SubMap, MulMap
kpeter@80
   940
  template<typename M1, typename M2>
kpeter@80
   941
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80
   942
    const M1 &_m1;
kpeter@80
   943
    const M2 &_m2;
kpeter@80
   944
  public:
kpeter@80
   945
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80
   946
    typedef typename Parent::Key Key;
kpeter@80
   947
    typedef typename Parent::Value Value;
kpeter@80
   948
kpeter@80
   949
    /// Constructor
kpeter@80
   950
    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80
   951
    /// \e
kpeter@80
   952
    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
kpeter@80
   953
  };
kpeter@80
   954
kpeter@301
   955
  /// Returns a \c DivMap class
kpeter@301
   956
kpeter@301
   957
  /// This function just returns a \c DivMap class.
kpeter@80
   958
  ///
kpeter@80
   959
  /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80
   960
  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
kpeter@80
   961
  /// <tt>m1[x]/m2[x]</tt>.
kpeter@80
   962
  ///
kpeter@80
   963
  /// \relates DivMap
kpeter@80
   964
  template<typename M1, typename M2>
kpeter@80
   965
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
kpeter@80
   966
    return DivMap<M1, M2>(m1,m2);
kpeter@80
   967
  }
kpeter@80
   968
kpeter@80
   969
kpeter@80
   970
  /// Shifts a map with a constant.
kpeter@80
   971
kpeter@82
   972
  /// This \ref concepts::ReadMap "read-only map" returns the sum of
kpeter@80
   973
  /// the given map and a constant value (i.e. it shifts the map with
kpeter@80
   974
  /// the constant). Its \c Key and \c Value are inherited from \c M.
kpeter@80
   975
  ///
kpeter@80
   976
  /// Actually,
kpeter@80
   977
  /// \code
kpeter@80
   978
  ///   ShiftMap<M> sh(m,v);
kpeter@80
   979
  /// \endcode
kpeter@80
   980
  /// is equivalent to
kpeter@80
   981
  /// \code
kpeter@80
   982
  ///   ConstMap<M::Key, M::Value> cm(v);
kpeter@80
   983
  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
kpeter@80
   984
  /// \endcode
kpeter@80
   985
  ///
kpeter@80
   986
  /// The simplest way of using this map is through the shiftMap()
kpeter@80
   987
  /// function.
kpeter@80
   988
  ///
kpeter@80
   989
  /// \sa ShiftWriteMap
kpeter@80
   990
  template<typename M, typename C = typename M::Value>
alpar@25
   991
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
   992
    const M &_m;
kpeter@80
   993
    C _v;
alpar@25
   994
  public:
alpar@25
   995
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
   996
    typedef typename Parent::Key Key;
alpar@25
   997
    typedef typename Parent::Value Value;
alpar@25
   998
kpeter@80
   999
    /// Constructor
alpar@25
  1000
kpeter@80
  1001
    /// Constructor.
kpeter@80
  1002
    /// \param m The undelying map.
kpeter@80
  1003
    /// \param v The constant value.
kpeter@80
  1004
    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
kpeter@80
  1005
    /// \e
kpeter@80
  1006
    Value operator[](const Key &k) const { return _m[k]+_v; }
alpar@25
  1007
  };
alpar@25
  1008
kpeter@80
  1009
  /// Shifts a map with a constant (read-write version).
alpar@25
  1010
kpeter@80
  1011
  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
kpeter@80
  1012
  /// of the given map and a constant value (i.e. it shifts the map with
kpeter@80
  1013
  /// the constant). Its \c Key and \c Value are inherited from \c M.
kpeter@80
  1014
  /// It makes also possible to write the map.
alpar@25
  1015
  ///
kpeter@80
  1016
  /// The simplest way of using this map is through the shiftWriteMap()
kpeter@80
  1017
  /// function.
kpeter@80
  1018
  ///
kpeter@80
  1019
  /// \sa ShiftMap
kpeter@80
  1020
  template<typename M, typename C = typename M::Value>
alpar@25
  1021
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1022
    M &_m;
kpeter@80
  1023
    C _v;
alpar@25
  1024
  public:
alpar@25
  1025
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1026
    typedef typename Parent::Key Key;
alpar@25
  1027
    typedef typename Parent::Value Value;
alpar@25
  1028
kpeter@80
  1029
    /// Constructor
alpar@25
  1030
kpeter@80
  1031
    /// Constructor.
kpeter@80
  1032
    /// \param m The undelying map.
kpeter@80
  1033
    /// \param v The constant value.
kpeter@80
  1034
    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
alpar@25
  1035
    /// \e
kpeter@80
  1036
    Value operator[](const Key &k) const { return _m[k]+_v; }
alpar@25
  1037
    /// \e
kpeter@80
  1038
    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
alpar@25
  1039
  };
alpar@25
  1040
kpeter@301
  1041
  /// Returns a \c ShiftMap class
kpeter@301
  1042
kpeter@301
  1043
  /// This function just returns a \c ShiftMap class.
kpeter@80
  1044
  ///
kpeter@80
  1045
  /// For example, if \c m is a map with \c double values and \c v is
kpeter@80
  1046
  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
kpeter@80
  1047
  /// <tt>m[x]+v</tt>.
kpeter@80
  1048
  ///
kpeter@80
  1049
  /// \relates ShiftMap
kpeter@80
  1050
  template<typename M, typename C>
kpeter@80
  1051
  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
alpar@25
  1052
    return ShiftMap<M, C>(m,v);
alpar@25
  1053
  }
alpar@25
  1054
kpeter@301
  1055
  /// Returns a \c ShiftWriteMap class
kpeter@301
  1056
kpeter@301
  1057
  /// This function just returns a \c ShiftWriteMap class.
kpeter@80
  1058
  ///
kpeter@80
  1059
  /// For example, if \c m is a map with \c double values and \c v is
kpeter@80
  1060
  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
kpeter@80
  1061
  /// <tt>m[x]+v</tt>.
kpeter@80
  1062
  /// Moreover it makes also possible to write the map.
kpeter@80
  1063
  ///
kpeter@80
  1064
  /// \relates ShiftWriteMap
kpeter@80
  1065
  template<typename M, typename C>
kpeter@80
  1066
  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
alpar@25
  1067
    return ShiftWriteMap<M, C>(m,v);
alpar@25
  1068
  }
alpar@25
  1069
alpar@25
  1070
kpeter@80
  1071
  /// Scales a map with a constant.
kpeter@80
  1072
kpeter@82
  1073
  /// This \ref concepts::ReadMap "read-only map" returns the value of
kpeter@80
  1074
  /// the given map multiplied from the left side with a constant value.
kpeter@80
  1075
  /// Its \c Key and \c Value are inherited from \c M.
alpar@26
  1076
  ///
kpeter@80
  1077
  /// Actually,
kpeter@80
  1078
  /// \code
kpeter@80
  1079
  ///   ScaleMap<M> sc(m,v);
kpeter@80
  1080
  /// \endcode
kpeter@80
  1081
  /// is equivalent to
kpeter@80
  1082
  /// \code
kpeter@80
  1083
  ///   ConstMap<M::Key, M::Value> cm(v);
kpeter@80
  1084
  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
kpeter@80
  1085
  /// \endcode
alpar@25
  1086
  ///
kpeter@80
  1087
  /// The simplest way of using this map is through the scaleMap()
kpeter@80
  1088
  /// function.
alpar@25
  1089
  ///
kpeter@80
  1090
  /// \sa ScaleWriteMap
kpeter@80
  1091
  template<typename M, typename C = typename M::Value>
alpar@25
  1092
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1093
    const M &_m;
kpeter@80
  1094
    C _v;
alpar@25
  1095
  public:
alpar@25
  1096
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1097
    typedef typename Parent::Key Key;
alpar@25
  1098
    typedef typename Parent::Value Value;
alpar@25
  1099
kpeter@80
  1100
    /// Constructor
alpar@25
  1101
kpeter@80
  1102
    /// Constructor.
kpeter@80
  1103
    /// \param m The undelying map.
kpeter@80
  1104
    /// \param v The constant value.
kpeter@80
  1105
    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
alpar@25
  1106
    /// \e
kpeter@80
  1107
    Value operator[](const Key &k) const { return _v*_m[k]; }
alpar@25
  1108
  };
alpar@25
  1109
kpeter@80
  1110
  /// Scales a map with a constant (read-write version).
alpar@25
  1111
kpeter@80
  1112
  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
kpeter@80
  1113
  /// the given map multiplied from the left side with a constant value.
kpeter@80
  1114
  /// Its \c Key and \c Value are inherited from \c M.
kpeter@80
  1115
  /// It can also be used as write map if the \c / operator is defined
kpeter@80
  1116
  /// between \c Value and \c C and the given multiplier is not zero.
kpeter@29
  1117
  ///
kpeter@80
  1118
  /// The simplest way of using this map is through the scaleWriteMap()
kpeter@80
  1119
  /// function.
kpeter@80
  1120
  ///
kpeter@80
  1121
  /// \sa ScaleMap
kpeter@80
  1122
  template<typename M, typename C = typename M::Value>
alpar@25
  1123
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1124
    M &_m;
kpeter@80
  1125
    C _v;
alpar@25
  1126
  public:
alpar@25
  1127
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1128
    typedef typename Parent::Key Key;
alpar@25
  1129
    typedef typename Parent::Value Value;
alpar@25
  1130
kpeter@80
  1131
    /// Constructor
alpar@25
  1132
kpeter@80
  1133
    /// Constructor.
kpeter@80
  1134
    /// \param m The undelying map.
kpeter@80
  1135
    /// \param v The constant value.
kpeter@80
  1136
    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
alpar@25
  1137
    /// \e
kpeter@80
  1138
    Value operator[](const Key &k) const { return _v*_m[k]; }
alpar@25
  1139
    /// \e
kpeter@80
  1140
    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
alpar@25
  1141
  };
alpar@25
  1142
kpeter@301
  1143
  /// Returns a \c ScaleMap class
kpeter@301
  1144
kpeter@301
  1145
  /// This function just returns a \c ScaleMap class.
kpeter@80
  1146
  ///
kpeter@80
  1147
  /// For example, if \c m is a map with \c double values and \c v is
kpeter@80
  1148
  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
kpeter@80
  1149
  /// <tt>v*m[x]</tt>.
kpeter@80
  1150
  ///
kpeter@80
  1151
  /// \relates ScaleMap
kpeter@80
  1152
  template<typename M, typename C>
kpeter@80
  1153
  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
alpar@25
  1154
    return ScaleMap<M, C>(m,v);
alpar@25
  1155
  }
alpar@25
  1156
kpeter@301
  1157
  /// Returns a \c ScaleWriteMap class
kpeter@301
  1158
kpeter@301
  1159
  /// This function just returns a \c ScaleWriteMap class.
kpeter@80
  1160
  ///
kpeter@80
  1161
  /// For example, if \c m is a map with \c double values and \c v is
kpeter@80
  1162
  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
kpeter@80
  1163
  /// <tt>v*m[x]</tt>.
kpeter@80
  1164
  /// Moreover it makes also possible to write the map.
kpeter@80
  1165
  ///
kpeter@80
  1166
  /// \relates ScaleWriteMap
kpeter@80
  1167
  template<typename M, typename C>
kpeter@80
  1168
  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
alpar@25
  1169
    return ScaleWriteMap<M, C>(m,v);
alpar@25
  1170
  }
alpar@25
  1171
alpar@25
  1172
kpeter@80
  1173
  /// Negative of a map
alpar@25
  1174
kpeter@82
  1175
  /// This \ref concepts::ReadMap "read-only map" returns the negative
kpeter@80
  1176
  /// of the values of the given map (using the unary \c - operator).
kpeter@80
  1177
  /// Its \c Key and \c Value are inherited from \c M.
alpar@25
  1178
  ///
kpeter@80
  1179
  /// If M::Value is \c int, \c double etc., then
kpeter@80
  1180
  /// \code
kpeter@80
  1181
  ///   NegMap<M> neg(m);
kpeter@80
  1182
  /// \endcode
kpeter@80
  1183
  /// is equivalent to
kpeter@80
  1184
  /// \code
kpeter@80
  1185
  ///   ScaleMap<M> neg(m,-1);
kpeter@80
  1186
  /// \endcode
kpeter@29
  1187
  ///
kpeter@80
  1188
  /// The simplest way of using this map is through the negMap()
kpeter@80
  1189
  /// function.
kpeter@29
  1190
  ///
kpeter@80
  1191
  /// \sa NegWriteMap
kpeter@80
  1192
  template<typename M>
alpar@25
  1193
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1194
    const M& _m;
alpar@25
  1195
  public:
alpar@25
  1196
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1197
    typedef typename Parent::Key Key;
alpar@25
  1198
    typedef typename Parent::Value Value;
alpar@25
  1199
kpeter@80
  1200
    /// Constructor
kpeter@80
  1201
    NegMap(const M &m) : _m(m) {}
alpar@25
  1202
    /// \e
kpeter@80
  1203
    Value operator[](const Key &k) const { return -_m[k]; }
alpar@25
  1204
  };
alpar@25
  1205
kpeter@80
  1206
  /// Negative of a map (read-write version)
kpeter@80
  1207
kpeter@80
  1208
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
kpeter@80
  1209
  /// negative of the values of the given map (using the unary \c -
kpeter@80
  1210
  /// operator).
kpeter@80
  1211
  /// Its \c Key and \c Value are inherited from \c M.
kpeter@80
  1212
  /// It makes also possible to write the map.
kpeter@80
  1213
  ///
kpeter@80
  1214
  /// If M::Value is \c int, \c double etc., then
kpeter@80
  1215
  /// \code
kpeter@80
  1216
  ///   NegWriteMap<M> neg(m);
kpeter@80
  1217
  /// \endcode
kpeter@80
  1218
  /// is equivalent to
kpeter@80
  1219
  /// \code
kpeter@80
  1220
  ///   ScaleWriteMap<M> neg(m,-1);
kpeter@80
  1221
  /// \endcode
kpeter@80
  1222
  ///
kpeter@80
  1223
  /// The simplest way of using this map is through the negWriteMap()
kpeter@80
  1224
  /// function.
kpeter@29
  1225
  ///
kpeter@29
  1226
  /// \sa NegMap
kpeter@80
  1227
  template<typename M>
alpar@25
  1228
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1229
    M &_m;
alpar@25
  1230
  public:
alpar@25
  1231
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1232
    typedef typename Parent::Key Key;
alpar@25
  1233
    typedef typename Parent::Value Value;
alpar@25
  1234
kpeter@80
  1235
    /// Constructor
kpeter@80
  1236
    NegWriteMap(M &m) : _m(m) {}
alpar@25
  1237
    /// \e
kpeter@80
  1238
    Value operator[](const Key &k) const { return -_m[k]; }
alpar@25
  1239
    /// \e
kpeter@80
  1240
    void set(const Key &k, const Value &v) { _m.set(k, -v); }
alpar@25
  1241
  };
alpar@25
  1242
kpeter@301
  1243
  /// Returns a \c NegMap class
kpeter@301
  1244
kpeter@301
  1245
  /// This function just returns a \c NegMap class.
kpeter@80
  1246
  ///
kpeter@80
  1247
  /// For example, if \c m is a map with \c double values, then
kpeter@80
  1248
  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
kpeter@80
  1249
  ///
kpeter@80
  1250
  /// \relates NegMap
kpeter@80
  1251
  template <typename M>
alpar@25
  1252
  inline NegMap<M> negMap(const M &m) {
alpar@25
  1253
    return NegMap<M>(m);
alpar@25
  1254
  }
alpar@25
  1255
kpeter@301
  1256
  /// Returns a \c NegWriteMap class
kpeter@301
  1257
kpeter@301
  1258
  /// This function just returns a \c NegWriteMap class.
kpeter@80
  1259
  ///
kpeter@80
  1260
  /// For example, if \c m is a map with \c double values, then
kpeter@80
  1261
  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
kpeter@80
  1262
  /// Moreover it makes also possible to write the map.
kpeter@80
  1263
  ///
kpeter@80
  1264
  /// \relates NegWriteMap
kpeter@80
  1265
  template <typename M>
kpeter@80
  1266
  inline NegWriteMap<M> negWriteMap(M &m) {
alpar@25
  1267
    return NegWriteMap<M>(m);
alpar@25
  1268
  }
alpar@25
  1269
alpar@25
  1270
kpeter@80
  1271
  /// Absolute value of a map
kpeter@80
  1272
kpeter@82
  1273
  /// This \ref concepts::ReadMap "read-only map" returns the absolute
kpeter@80
  1274
  /// value of the values of the given map.
kpeter@80
  1275
  /// Its \c Key and \c Value are inherited from \c M.
kpeter@80
  1276
  /// \c Value must be comparable to \c 0 and the unary \c -
kpeter@80
  1277
  /// operator must be defined for it, of course.
kpeter@80
  1278
  ///
kpeter@80
  1279
  /// The simplest way of using this map is through the absMap()
kpeter@80
  1280
  /// function.
kpeter@80
  1281
  template<typename M>
alpar@25
  1282
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80
  1283
    const M &_m;
alpar@25
  1284
  public:
alpar@25
  1285
    typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25
  1286
    typedef typename Parent::Key Key;
alpar@25
  1287
    typedef typename Parent::Value Value;
alpar@25
  1288
kpeter@80
  1289
    /// Constructor
kpeter@80
  1290
    AbsMap(const M &m) : _m(m) {}
alpar@25
  1291
    /// \e
kpeter@80
  1292
    Value operator[](const Key &k) const {
kpeter@80
  1293
      Value tmp = _m[k];
alpar@25
  1294
      return tmp >= 0 ? tmp : -tmp;
alpar@25
  1295
    }
alpar@25
  1296
alpar@25
  1297
  };
alpar@25
  1298
kpeter@301
  1299
  /// Returns an \c AbsMap class
kpeter@301
  1300
kpeter@301
  1301
  /// This function just returns an \c AbsMap class.
kpeter@80
  1302
  ///
kpeter@80
  1303
  /// For example, if \c m is a map with \c double values, then
kpeter@80
  1304
  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
kpeter@80
  1305
  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
kpeter@80
  1306
  /// negative.
kpeter@80
  1307
  ///
kpeter@80
  1308
  /// \relates AbsMap
kpeter@80
  1309
  template<typename M>
alpar@25
  1310
  inline AbsMap<M> absMap(const M &m) {
alpar@25
  1311
    return AbsMap<M>(m);
alpar@25
  1312
  }
alpar@25
  1313
kpeter@82
  1314
  /// @}
alpar@209
  1315
kpeter@82
  1316
  // Logical maps and map adaptors:
kpeter@82
  1317
kpeter@82
  1318
  /// \addtogroup maps
kpeter@82
  1319
  /// @{
kpeter@82
  1320
kpeter@82
  1321
  /// Constant \c true map.
kpeter@82
  1322
kpeter@82
  1323
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82
  1324
  /// each key.
kpeter@82
  1325
  ///
kpeter@82
  1326
  /// Note that
kpeter@82
  1327
  /// \code
kpeter@82
  1328
  ///   TrueMap<K> tm;
kpeter@82
  1329
  /// \endcode
kpeter@82
  1330
  /// is equivalent to
kpeter@82
  1331
  /// \code
kpeter@82
  1332
  ///   ConstMap<K,bool> tm(true);
kpeter@82
  1333
  /// \endcode
kpeter@82
  1334
  ///
kpeter@82
  1335
  /// \sa FalseMap
kpeter@82
  1336
  /// \sa ConstMap
kpeter@82
  1337
  template <typename K>
kpeter@82
  1338
  class TrueMap : public MapBase<K, bool> {
kpeter@82
  1339
  public:
kpeter@82
  1340
    typedef MapBase<K, bool> Parent;
kpeter@82
  1341
    typedef typename Parent::Key Key;
kpeter@82
  1342
    typedef typename Parent::Value Value;
kpeter@82
  1343
kpeter@82
  1344
    /// Gives back \c true.
kpeter@82
  1345
    Value operator[](const Key&) const { return true; }
kpeter@82
  1346
  };
kpeter@82
  1347
kpeter@301
  1348
  /// Returns a \c TrueMap class
kpeter@301
  1349
kpeter@301
  1350
  /// This function just returns a \c TrueMap class.
kpeter@82
  1351
  /// \relates TrueMap
kpeter@82
  1352
  template<typename K>
kpeter@82
  1353
  inline TrueMap<K> trueMap() {
kpeter@82
  1354
    return TrueMap<K>();
kpeter@82
  1355
  }
kpeter@82
  1356
kpeter@82
  1357
kpeter@82
  1358
  /// Constant \c false map.
kpeter@82
  1359
kpeter@82
  1360
  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
kpeter@82
  1361
  /// each key.
kpeter@82
  1362
  ///
kpeter@82
  1363
  /// Note that
kpeter@82
  1364
  /// \code
kpeter@82
  1365
  ///   FalseMap<K> fm;
kpeter@82
  1366
  /// \endcode
kpeter@82
  1367
  /// is equivalent to
kpeter@82
  1368
  /// \code
kpeter@82
  1369
  ///   ConstMap<K,bool> fm(false);
kpeter@82
  1370
  /// \endcode
kpeter@82
  1371
  ///
kpeter@82
  1372
  /// \sa TrueMap
kpeter@82
  1373
  /// \sa ConstMap
kpeter@82
  1374
  template <typename K>
kpeter@82
  1375
  class FalseMap : public MapBase<K, bool> {
kpeter@82
  1376
  public:
kpeter@82
  1377
    typedef MapBase<K, bool> Parent;
kpeter@82
  1378
    typedef typename Parent::Key Key;
kpeter@82
  1379
    typedef typename Parent::Value Value;
kpeter@82
  1380
kpeter@82
  1381
    /// Gives back \c false.
kpeter@82
  1382
    Value operator[](const Key&) const { return false; }
kpeter@82
  1383
  };
kpeter@82
  1384
kpeter@301
  1385
  /// Returns a \c FalseMap class
kpeter@301
  1386
kpeter@301
  1387
  /// This function just returns a \c FalseMap class.
kpeter@82
  1388
  /// \relates FalseMap
kpeter@82
  1389
  template<typename K>
kpeter@82
  1390
  inline FalseMap<K> falseMap() {
kpeter@82
  1391
    return FalseMap<K>();
kpeter@82
  1392
  }
kpeter@82
  1393
kpeter@82
  1394
  /// @}
kpeter@82
  1395
kpeter@82
  1396
  /// \addtogroup map_adaptors
kpeter@82
  1397
  /// @{
kpeter@82
  1398
kpeter@82
  1399
  /// Logical 'and' of two maps
kpeter@82
  1400
kpeter@82
  1401
  /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@82
  1402
  /// 'and' of the values of the two given maps.
kpeter@82
  1403
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82
  1404
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82
  1405
  ///
kpeter@82
  1406
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82
  1407
  /// \code
kpeter@82
  1408
  ///   AndMap<M1,M2> am(m1,m2);
kpeter@82
  1409
  /// \endcode
kpeter@82
  1410
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
kpeter@82
  1411
  ///
kpeter@82
  1412
  /// The simplest way of using this map is through the andMap()
kpeter@82
  1413
  /// function.
kpeter@82
  1414
  ///
kpeter@82
  1415
  /// \sa OrMap
kpeter@82
  1416
  /// \sa NotMap, NotWriteMap
kpeter@82
  1417
  template<typename M1, typename M2>
kpeter@82
  1418
  class AndMap : public MapBase<typename M1::Key, bool> {
kpeter@82
  1419
    const M1 &_m1;
kpeter@82
  1420
    const M2 &_m2;
kpeter@82
  1421
  public:
kpeter@82
  1422
    typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82
  1423
    typedef typename Parent::Key Key;
kpeter@82
  1424
    typedef typename Parent::Value Value;
kpeter@82
  1425
kpeter@82
  1426
    /// Constructor
kpeter@82
  1427
    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82
  1428
    /// \e
kpeter@82
  1429
    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
kpeter@82
  1430
  };
kpeter@82
  1431
kpeter@301
  1432
  /// Returns an \c AndMap class
kpeter@301
  1433
kpeter@301
  1434
  /// This function just returns an \c AndMap class.
kpeter@82
  1435
  ///
kpeter@82
  1436
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
kpeter@82
  1437
  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
kpeter@82
  1438
  /// <tt>m1[x]&&m2[x]</tt>.
kpeter@82
  1439
  ///
kpeter@82
  1440
  /// \relates AndMap
kpeter@82
  1441
  template<typename M1, typename M2>
kpeter@82
  1442
  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
kpeter@82
  1443
    return AndMap<M1, M2>(m1,m2);
kpeter@82
  1444
  }
kpeter@82
  1445
kpeter@82
  1446
kpeter@82
  1447
  /// Logical 'or' of two maps
kpeter@82
  1448
kpeter@82
  1449
  /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@82
  1450
  /// 'or' of the values of the two given maps.
kpeter@82
  1451
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82
  1452
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82
  1453
  ///
kpeter@82
  1454
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82
  1455
  /// \code
kpeter@82
  1456
  ///   OrMap<M1,M2> om(m1,m2);
kpeter@82
  1457
  /// \endcode
kpeter@82
  1458
  /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
kpeter@82
  1459
  ///
kpeter@82
  1460
  /// The simplest way of using this map is through the orMap()
kpeter@82
  1461
  /// function.
kpeter@82
  1462
  ///
kpeter@82
  1463
  /// \sa AndMap
kpeter@82
  1464
  /// \sa NotMap, NotWriteMap
kpeter@82
  1465
  template<typename M1, typename M2>
kpeter@82
  1466
  class OrMap : public MapBase<typename M1::Key, bool> {
kpeter@82
  1467
    const M1 &_m1;
kpeter@82
  1468
    const M2 &_m2;
kpeter@82
  1469
  public:
kpeter@82
  1470
    typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82
  1471
    typedef typename Parent::Key Key;
kpeter@82
  1472
    typedef typename Parent::Value Value;
kpeter@82
  1473
kpeter@82
  1474
    /// Constructor
kpeter@82
  1475
    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82
  1476
    /// \e
kpeter@82
  1477
    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
kpeter@82
  1478
  };
kpeter@82
  1479
kpeter@301
  1480
  /// Returns an \c OrMap class
kpeter@301
  1481
kpeter@301
  1482
  /// This function just returns an \c OrMap class.
kpeter@82
  1483
  ///
kpeter@82
  1484
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
kpeter@82
  1485
  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
kpeter@82
  1486
  /// <tt>m1[x]||m2[x]</tt>.
kpeter@82
  1487
  ///
kpeter@82
  1488
  /// \relates OrMap
kpeter@82
  1489
  template<typename M1, typename M2>
kpeter@82
  1490
  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
kpeter@82
  1491
    return OrMap<M1, M2>(m1,m2);
kpeter@82
  1492
  }
kpeter@82
  1493
alpar@25
  1494
kpeter@80
  1495
  /// Logical 'not' of a map
kpeter@80
  1496
kpeter@82
  1497
  /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@80
  1498
  /// negation of the values of the given map.
kpeter@80
  1499
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
alpar@25
  1500
  ///
kpeter@80
  1501
  /// The simplest way of using this map is through the notMap()
kpeter@80
  1502
  /// function.
alpar@25
  1503
  ///
kpeter@80
  1504
  /// \sa NotWriteMap
kpeter@80
  1505
  template <typename M>
alpar@25
  1506
  class NotMap : public MapBase<typename M::Key, bool> {
kpeter@80
  1507
    const M &_m;
alpar@25
  1508
  public:
alpar@25
  1509
    typedef MapBase<typename M::Key, bool> Parent;
alpar@25
  1510
    typedef typename Parent::Key Key;
alpar@25
  1511
    typedef typename Parent::Value Value;
alpar@25
  1512
alpar@25
  1513
    /// Constructor
kpeter@80
  1514
    NotMap(const M &m) : _m(m) {}
kpeter@80
  1515
    /// \e
kpeter@80
  1516
    Value operator[](const Key &k) const { return !_m[k]; }
alpar@25
  1517
  };
alpar@25
  1518
kpeter@80
  1519
  /// Logical 'not' of a map (read-write version)
kpeter@80
  1520
kpeter@80
  1521
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
kpeter@80
  1522
  /// logical negation of the values of the given map.
kpeter@80
  1523
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
kpeter@80
  1524
  /// It makes also possible to write the map. When a value is set,
kpeter@80
  1525
  /// the opposite value is set to the original map.
kpeter@29
  1526
  ///
kpeter@80
  1527
  /// The simplest way of using this map is through the notWriteMap()
kpeter@80
  1528
  /// function.
kpeter@80
  1529
  ///
kpeter@80
  1530
  /// \sa NotMap
kpeter@80
  1531
  template <typename M>
alpar@25
  1532
  class NotWriteMap : public MapBase<typename M::Key, bool> {
kpeter@80
  1533
    M &_m;
alpar@25
  1534
  public:
alpar@25
  1535
    typedef MapBase<typename M::Key, bool> Parent;
alpar@25
  1536
    typedef typename Parent::Key Key;
alpar@25
  1537
    typedef typename Parent::Value Value;
alpar@25
  1538
alpar@25
  1539
    /// Constructor
kpeter@80
  1540
    NotWriteMap(M &m) : _m(m) {}
kpeter@80
  1541
    /// \e
kpeter@80
  1542
    Value operator[](const Key &k) const { return !_m[k]; }
kpeter@80
  1543
    /// \e
kpeter@80
  1544
    void set(const Key &k, bool v) { _m.set(k, !v); }
alpar@25
  1545
  };
kpeter@80
  1546
kpeter@301
  1547
  /// Returns a \c NotMap class
kpeter@301
  1548
kpeter@301
  1549
  /// This function just returns a \c NotMap class.
kpeter@80
  1550
  ///
kpeter@80
  1551
  /// For example, if \c m is a map with \c bool values, then
kpeter@80
  1552
  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
kpeter@80
  1553
  ///
kpeter@80
  1554
  /// \relates NotMap
kpeter@80
  1555
  template <typename M>
alpar@25
  1556
  inline NotMap<M> notMap(const M &m) {
alpar@25
  1557
    return NotMap<M>(m);
alpar@25
  1558
  }
kpeter@80
  1559
kpeter@301
  1560
  /// Returns a \c NotWriteMap class
kpeter@301
  1561
kpeter@301
  1562
  /// This function just returns a \c NotWriteMap class.
kpeter@80
  1563
  ///
kpeter@80
  1564
  /// For example, if \c m is a map with \c bool values, then
kpeter@80
  1565
  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
kpeter@80
  1566
  /// Moreover it makes also possible to write the map.
kpeter@80
  1567
  ///
kpeter@80
  1568
  /// \relates NotWriteMap
kpeter@80
  1569
  template <typename M>
kpeter@80
  1570
  inline NotWriteMap<M> notWriteMap(M &m) {
alpar@25
  1571
    return NotWriteMap<M>(m);
alpar@25
  1572
  }
alpar@25
  1573
kpeter@82
  1574
kpeter@82
  1575
  /// Combination of two maps using the \c == operator
kpeter@82
  1576
kpeter@82
  1577
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82
  1578
  /// the keys for which the corresponding values of the two maps are
kpeter@82
  1579
  /// equal.
kpeter@82
  1580
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82
  1581
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82
  1582
  ///
kpeter@82
  1583
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82
  1584
  /// \code
kpeter@82
  1585
  ///   EqualMap<M1,M2> em(m1,m2);
kpeter@82
  1586
  /// \endcode
kpeter@82
  1587
  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
kpeter@82
  1588
  ///
kpeter@82
  1589
  /// The simplest way of using this map is through the equalMap()
kpeter@82
  1590
  /// function.
kpeter@82
  1591
  ///
kpeter@82
  1592
  /// \sa LessMap
kpeter@82
  1593
  template<typename M1, typename M2>
kpeter@82
  1594
  class EqualMap : public MapBase<typename M1::Key, bool> {
kpeter@82
  1595
    const M1 &_m1;
kpeter@82
  1596
    const M2 &_m2;
kpeter@82
  1597
  public:
kpeter@82
  1598
    typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82
  1599
    typedef typename Parent::Key Key;
kpeter@82
  1600
    typedef typename Parent::Value Value;
kpeter@82
  1601
kpeter@82
  1602
    /// Constructor
kpeter@82
  1603
    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82
  1604
    /// \e
kpeter@82
  1605
    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
kpeter@82
  1606
  };
kpeter@82
  1607
kpeter@301
  1608
  /// Returns an \c EqualMap class
kpeter@301
  1609
kpeter@301
  1610
  /// This function just returns an \c EqualMap class.
kpeter@82
  1611
  ///
kpeter@82
  1612
  /// For example, if \c m1 and \c m2 are maps with keys and values of
kpeter@82
  1613
  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
kpeter@82
  1614
  /// <tt>m1[x]==m2[x]</tt>.
kpeter@82
  1615
  ///
kpeter@82
  1616
  /// \relates EqualMap
kpeter@82
  1617
  template<typename M1, typename M2>
kpeter@82
  1618
  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
kpeter@82
  1619
    return EqualMap<M1, M2>(m1,m2);
kpeter@82
  1620
  }
kpeter@82
  1621
kpeter@82
  1622
kpeter@82
  1623
  /// Combination of two maps using the \c < operator
kpeter@82
  1624
kpeter@82
  1625
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82
  1626
  /// the keys for which the corresponding value of the first map is
kpeter@82
  1627
  /// less then the value of the second map.
kpeter@82
  1628
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82
  1629
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82
  1630
  ///
kpeter@82
  1631
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82
  1632
  /// \code
kpeter@82
  1633
  ///   LessMap<M1,M2> lm(m1,m2);
kpeter@82
  1634
  /// \endcode
kpeter@82
  1635
  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
kpeter@82
  1636
  ///
kpeter@82
  1637
  /// The simplest way of using this map is through the lessMap()
kpeter@82
  1638
  /// function.
kpeter@82
  1639
  ///
kpeter@82
  1640
  /// \sa EqualMap
kpeter@82
  1641
  template<typename M1, typename M2>
kpeter@82
  1642
  class LessMap : public MapBase<typename M1::Key, bool> {
kpeter@82
  1643
    const M1 &_m1;
kpeter@82
  1644
    const M2 &_m2;
kpeter@82
  1645
  public:
kpeter@82
  1646
    typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82
  1647
    typedef typename Parent::Key Key;
kpeter@82
  1648
    typedef typename Parent::Value Value;
kpeter@82
  1649
kpeter@82
  1650
    /// Constructor
kpeter@82
  1651
    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82
  1652
    /// \e
kpeter@82
  1653
    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
kpeter@82
  1654
  };
kpeter@82
  1655
kpeter@301
  1656
  /// Returns an \c LessMap class
kpeter@301
  1657
kpeter@301
  1658
  /// This function just returns an \c LessMap class.
kpeter@82
  1659
  ///
kpeter@82
  1660
  /// For example, if \c m1 and \c m2 are maps with keys and values of
kpeter@82
  1661
  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
kpeter@82
  1662
  /// <tt>m1[x]<m2[x]</tt>.
kpeter@82
  1663
  ///
kpeter@82
  1664
  /// \relates LessMap
kpeter@82
  1665
  template<typename M1, typename M2>
kpeter@82
  1666
  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
kpeter@82
  1667
    return LessMap<M1, M2>(m1,m2);
kpeter@82
  1668
  }
kpeter@82
  1669
alpar@104
  1670
  namespace _maps_bits {
alpar@104
  1671
alpar@104
  1672
    template <typename _Iterator, typename Enable = void>
alpar@104
  1673
    struct IteratorTraits {
alpar@104
  1674
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
alpar@104
  1675
    };
alpar@104
  1676
alpar@104
  1677
    template <typename _Iterator>
alpar@104
  1678
    struct IteratorTraits<_Iterator,
alpar@104
  1679
      typename exists<typename _Iterator::container_type>::type>
alpar@104
  1680
    {
alpar@104
  1681
      typedef typename _Iterator::container_type::value_type Value;
alpar@104
  1682
    };
alpar@104
  1683
alpar@104
  1684
  }
alpar@104
  1685
kpeter@314
  1686
  /// @}
kpeter@314
  1687
kpeter@314
  1688
  /// \addtogroup maps
kpeter@314
  1689
  /// @{
kpeter@314
  1690
alpar@104
  1691
  /// \brief Writable bool map for logging each \c true assigned element
alpar@104
  1692
  ///
kpeter@159
  1693
  /// A \ref concepts::WriteMap "writable" bool map for logging
alpar@104
  1694
  /// each \c true assigned element, i.e it copies subsequently each
alpar@104
  1695
  /// keys set to \c true to the given iterator.
kpeter@159
  1696
  /// The most important usage of it is storing certain nodes or arcs
kpeter@159
  1697
  /// that were marked \c true by an algorithm.
alpar@104
  1698
  ///
kpeter@159
  1699
  /// There are several algorithms that provide solutions through bool
kpeter@159
  1700
  /// maps and most of them assign \c true at most once for each key.
kpeter@159
  1701
  /// In these cases it is a natural request to store each \c true
kpeter@159
  1702
  /// assigned elements (in order of the assignment), which can be
kpeter@167
  1703
  /// easily done with LoggerBoolMap.
kpeter@159
  1704
  ///
kpeter@167
  1705
  /// The simplest way of using this map is through the loggerBoolMap()
kpeter@159
  1706
  /// function.
kpeter@159
  1707
  ///
kpeter@159
  1708
  /// \tparam It The type of the iterator.
kpeter@159
  1709
  /// \tparam Ke The key type of the map. The default value set
kpeter@159
  1710
  /// according to the iterator type should work in most cases.
alpar@104
  1711
  ///
alpar@104
  1712
  /// \note The container of the iterator must contain enough space
kpeter@159
  1713
  /// for the elements or the iterator should be an inserter iterator.
kpeter@159
  1714
#ifdef DOXYGEN
kpeter@159
  1715
  template <typename It, typename Ke>
kpeter@159
  1716
#else
alpar@104
  1717
  template <typename It,
alpar@209
  1718
            typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
kpeter@159
  1719
#endif
kpeter@167
  1720
  class LoggerBoolMap {
alpar@104
  1721
  public:
alpar@104
  1722
    typedef It Iterator;
alpar@104
  1723
alpar@104
  1724
    typedef Ke Key;
alpar@104
  1725
    typedef bool Value;
alpar@104
  1726
alpar@104
  1727
    /// Constructor
kpeter@167
  1728
    LoggerBoolMap(Iterator it)
alpar@104
  1729
      : _begin(it), _end(it) {}
alpar@104
  1730
alpar@104
  1731
    /// Gives back the given iterator set for the first key
alpar@104
  1732
    Iterator begin() const {
alpar@104
  1733
      return _begin;
alpar@104
  1734
    }
alpar@104
  1735
alpar@104
  1736
    /// Gives back the the 'after the last' iterator
alpar@104
  1737
    Iterator end() const {
alpar@104
  1738
      return _end;
alpar@104
  1739
    }
alpar@104
  1740
alpar@104
  1741
    /// The set function of the map
kpeter@159
  1742
    void set(const Key& key, Value value) {
alpar@104
  1743
      if (value) {
alpar@209
  1744
        *_end++ = key;
alpar@104
  1745
      }
alpar@104
  1746
    }
alpar@104
  1747
alpar@104
  1748
  private:
alpar@104
  1749
    Iterator _begin;
kpeter@159
  1750
    Iterator _end;
alpar@104
  1751
  };
alpar@209
  1752
kpeter@301
  1753
  /// Returns a \c LoggerBoolMap class
kpeter@301
  1754
kpeter@301
  1755
  /// This function just returns a \c LoggerBoolMap class.
kpeter@159
  1756
  ///
kpeter@159
  1757
  /// The most important usage of it is storing certain nodes or arcs
kpeter@159
  1758
  /// that were marked \c true by an algorithm.
kpeter@159
  1759
  /// For example it makes easier to store the nodes in the processing
kpeter@159
  1760
  /// order of Dfs algorithm, as the following examples show.
kpeter@159
  1761
  /// \code
kpeter@159
  1762
  ///   std::vector<Node> v;
kpeter@167
  1763
  ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
kpeter@159
  1764
  /// \endcode
kpeter@159
  1765
  /// \code
kpeter@159
  1766
  ///   std::vector<Node> v(countNodes(g));
kpeter@167
  1767
  ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
kpeter@159
  1768
  /// \endcode
kpeter@159
  1769
  ///
kpeter@159
  1770
  /// \note The container of the iterator must contain enough space
kpeter@159
  1771
  /// for the elements or the iterator should be an inserter iterator.
kpeter@159
  1772
  ///
kpeter@167
  1773
  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
kpeter@159
  1774
  /// it cannot be used when a readable map is needed, for example as
kpeter@301
  1775
  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
kpeter@159
  1776
  ///
kpeter@167
  1777
  /// \relates LoggerBoolMap
kpeter@159
  1778
  template<typename Iterator>
kpeter@167
  1779
  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
kpeter@167
  1780
    return LoggerBoolMap<Iterator>(it);
kpeter@159
  1781
  }
alpar@104
  1782
kpeter@314
  1783
  /// @}
kpeter@314
  1784
kpeter@314
  1785
  /// \addtogroup graph_maps
kpeter@314
  1786
  /// @{
kpeter@314
  1787
deba@220
  1788
  /// Provides an immutable and unique id for each item in the graph.
deba@220
  1789
deba@220
  1790
  /// The IdMap class provides a unique and immutable id for each item of the
deba@220
  1791
  /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
deba@220
  1792
  /// different items (nodes) get different ids <li>\b immutable: the id of an
deba@220
  1793
  /// item (node) does not change (even if you delete other nodes).  </ul>
deba@220
  1794
  /// Through this map you get access (i.e. can read) the inner id values of
deba@220
  1795
  /// the items stored in the graph. This map can be inverted with its member
deba@220
  1796
  /// class \c InverseMap or with the \c operator() member.
deba@220
  1797
  ///
deba@220
  1798
  template <typename _Graph, typename _Item>
deba@220
  1799
  class IdMap {
deba@220
  1800
  public:
deba@220
  1801
    typedef _Graph Graph;
deba@220
  1802
    typedef int Value;
deba@220
  1803
    typedef _Item Item;
deba@220
  1804
    typedef _Item Key;
deba@220
  1805
deba@220
  1806
    /// \brief Constructor.
deba@220
  1807
    ///
deba@220
  1808
    /// Constructor of the map.
deba@220
  1809
    explicit IdMap(const Graph& graph) : _graph(&graph) {}
deba@220
  1810
deba@220
  1811
    /// \brief Gives back the \e id of the item.
deba@220
  1812
    ///
deba@220
  1813
    /// Gives back the immutable and unique \e id of the item.
deba@220
  1814
    int operator[](const Item& item) const { return _graph->id(item);}
deba@220
  1815
deba@220
  1816
    /// \brief Gives back the item by its id.
deba@220
  1817
    ///
deba@220
  1818
    /// Gives back the item by its id.
deba@220
  1819
    Item operator()(int id) { return _graph->fromId(id, Item()); }
deba@220
  1820
deba@220
  1821
  private:
deba@220
  1822
    const Graph* _graph;
deba@220
  1823
deba@220
  1824
  public:
deba@220
  1825
deba@220
  1826
    /// \brief The class represents the inverse of its owner (IdMap).
deba@220
  1827
    ///
deba@220
  1828
    /// The class represents the inverse of its owner (IdMap).
deba@220
  1829
    /// \see inverse()
deba@220
  1830
    class InverseMap {
deba@220
  1831
    public:
deba@220
  1832
deba@220
  1833
      /// \brief Constructor.
deba@220
  1834
      ///
deba@220
  1835
      /// Constructor for creating an id-to-item map.
deba@220
  1836
      explicit InverseMap(const Graph& graph) : _graph(&graph) {}
deba@220
  1837
deba@220
  1838
      /// \brief Constructor.
deba@220
  1839
      ///
deba@220
  1840
      /// Constructor for creating an id-to-item map.
deba@220
  1841
      explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
deba@220
  1842
deba@220
  1843
      /// \brief Gives back the given item from its id.
deba@220
  1844
      ///
deba@220
  1845
      /// Gives back the given item from its id.
deba@220
  1846
      ///
deba@220
  1847
      Item operator[](int id) const { return _graph->fromId(id, Item());}
deba@220
  1848
deba@220
  1849
    private:
deba@220
  1850
      const Graph* _graph;
deba@220
  1851
    };
deba@220
  1852
deba@220
  1853
    /// \brief Gives back the inverse of the map.
deba@220
  1854
    ///
deba@220
  1855
    /// Gives back the inverse of the IdMap.
deba@220
  1856
    InverseMap inverse() const { return InverseMap(*_graph);}
deba@220
  1857
deba@220
  1858
  };
deba@220
  1859
deba@220
  1860
deba@220
  1861
  /// \brief General invertable graph-map type.
deba@220
  1862
deba@220
  1863
  /// This type provides simple invertable graph-maps.
deba@220
  1864
  /// The InvertableMap wraps an arbitrary ReadWriteMap
deba@220
  1865
  /// and if a key is set to a new value then store it
deba@220
  1866
  /// in the inverse map.
deba@220
  1867
  ///
deba@220
  1868
  /// The values of the map can be accessed
deba@220
  1869
  /// with stl compatible forward iterator.
deba@220
  1870
  ///
deba@220
  1871
  /// \tparam _Graph The graph type.
deba@220
  1872
  /// \tparam _Item The item type of the graph.
deba@220
  1873
  /// \tparam _Value The value type of the map.
deba@220
  1874
  ///
deba@220
  1875
  /// \see IterableValueMap
deba@220
  1876
  template <typename _Graph, typename _Item, typename _Value>
deba@220
  1877
  class InvertableMap
deba@220
  1878
    : protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type {
deba@220
  1879
  private:
deba@220
  1880
deba@220
  1881
    typedef typename ItemSetTraits<_Graph, _Item>::
deba@220
  1882
    template Map<_Value>::Type Map;
deba@220
  1883
    typedef _Graph Graph;
deba@220
  1884
deba@220
  1885
    typedef std::map<_Value, _Item> Container;
deba@220
  1886
    Container _inv_map;
deba@220
  1887
deba@220
  1888
  public:
deba@220
  1889
deba@220
  1890
    /// The key type of InvertableMap (Node, Arc, Edge).
deba@220
  1891
    typedef typename Map::Key Key;
deba@220
  1892
    /// The value type of the InvertableMap.
deba@220
  1893
    typedef typename Map::Value Value;
deba@220
  1894
deba@220
  1895
    /// \brief Constructor.
deba@220
  1896
    ///
deba@220
  1897
    /// Construct a new InvertableMap for the graph.
deba@220
  1898
    ///
deba@220
  1899
    explicit InvertableMap(const Graph& graph) : Map(graph) {}
deba@220
  1900
deba@220
  1901
    /// \brief Forward iterator for values.
deba@220
  1902
    ///
deba@220
  1903
    /// This iterator is an stl compatible forward
deba@220
  1904
    /// iterator on the values of the map. The values can
deba@220
  1905
    /// be accessed in the [beginValue, endValue) range.
deba@220
  1906
    ///
deba@220
  1907
    class ValueIterator
deba@220
  1908
      : public std::iterator<std::forward_iterator_tag, Value> {
deba@220
  1909
      friend class InvertableMap;
deba@220
  1910
    private:
deba@220
  1911
      ValueIterator(typename Container::const_iterator _it)
deba@220
  1912
        : it(_it) {}
deba@220
  1913
    public:
deba@220
  1914
deba@220
  1915
      ValueIterator() {}
deba@220
  1916
deba@220
  1917
      ValueIterator& operator++() { ++it; return *this; }
deba@220
  1918
      ValueIterator operator++(int) {
deba@220
  1919
        ValueIterator tmp(*this);
deba@220
  1920
        operator++();
deba@220
  1921
        return tmp;
deba@220
  1922
      }
deba@220
  1923
deba@220
  1924
      const Value& operator*() const { return it->first; }
deba@220
  1925
      const Value* operator->() const { return &(it->first); }
deba@220
  1926
deba@220
  1927
      bool operator==(ValueIterator jt) const { return it == jt.it; }
deba@220
  1928
      bool operator!=(ValueIterator jt) const { return it != jt.it; }
deba@220
  1929
deba@220
  1930
    private:
deba@220
  1931
      typename Container::const_iterator it;
deba@220
  1932
    };
deba@220
  1933
deba@220
  1934
    /// \brief Returns an iterator to the first value.
deba@220
  1935
    ///
deba@220
  1936
    /// Returns an stl compatible iterator to the
deba@220
  1937
    /// first value of the map. The values of the
deba@220
  1938
    /// map can be accessed in the [beginValue, endValue)
deba@220
  1939
    /// range.
deba@220
  1940
    ValueIterator beginValue() const {
deba@220
  1941
      return ValueIterator(_inv_map.begin());
deba@220
  1942
    }
deba@220
  1943
deba@220
  1944
    /// \brief Returns an iterator after the last value.
deba@220
  1945
    ///
deba@220
  1946
    /// Returns an stl compatible iterator after the
deba@220
  1947
    /// last value of the map. The values of the
deba@220
  1948
    /// map can be accessed in the [beginValue, endValue)
deba@220
  1949
    /// range.
deba@220
  1950
    ValueIterator endValue() const {
deba@220
  1951
      return ValueIterator(_inv_map.end());
deba@220
  1952
    }
deba@220
  1953
deba@220
  1954
    /// \brief The setter function of the map.
deba@220
  1955
    ///
deba@220
  1956
    /// Sets the mapped value.
deba@220
  1957
    void set(const Key& key, const Value& val) {
deba@220
  1958
      Value oldval = Map::operator[](key);
deba@220
  1959
      typename Container::iterator it = _inv_map.find(oldval);
deba@220
  1960
      if (it != _inv_map.end() && it->second == key) {
deba@220
  1961
        _inv_map.erase(it);
deba@220
  1962
      }
deba@220
  1963
      _inv_map.insert(make_pair(val, key));
deba@220
  1964
      Map::set(key, val);
deba@220
  1965
    }
deba@220
  1966
deba@220
  1967
    /// \brief The getter function of the map.
deba@220
  1968
    ///
deba@220
  1969
    /// It gives back the value associated with the key.
deba@220
  1970
    typename MapTraits<Map>::ConstReturnValue
deba@220
  1971
    operator[](const Key& key) const {
deba@220
  1972
      return Map::operator[](key);
deba@220
  1973
    }
deba@220
  1974
deba@220
  1975
    /// \brief Gives back the item by its value.
deba@220
  1976
    ///
deba@220
  1977
    /// Gives back the item by its value.
deba@220
  1978
    Key operator()(const Value& key) const {
deba@220
  1979
      typename Container::const_iterator it = _inv_map.find(key);
deba@220
  1980
      return it != _inv_map.end() ? it->second : INVALID;
deba@220
  1981
    }
deba@220
  1982
deba@220
  1983
  protected:
deba@220
  1984
deba@220
  1985
    /// \brief Erase the key from the map.
deba@220
  1986
    ///
deba@220
  1987
    /// Erase the key to the map. It is called by the
deba@220
  1988
    /// \c AlterationNotifier.
deba@220
  1989
    virtual void erase(const Key& key) {
deba@220
  1990
      Value val = Map::operator[](key);
deba@220
  1991
      typename Container::iterator it = _inv_map.find(val);
deba@220
  1992
      if (it != _inv_map.end() && it->second == key) {
deba@220
  1993
        _inv_map.erase(it);
deba@220
  1994
      }
deba@220
  1995
      Map::erase(key);
deba@220
  1996
    }
deba@220
  1997
deba@220
  1998
    /// \brief Erase more keys from the map.
deba@220
  1999
    ///
deba@220
  2000
    /// Erase more keys from the map. It is called by the
deba@220
  2001
    /// \c AlterationNotifier.
deba@220
  2002
    virtual void erase(const std::vector<Key>& keys) {
deba@220
  2003
      for (int i = 0; i < int(keys.size()); ++i) {
deba@220
  2004
        Value val = Map::operator[](keys[i]);
deba@220
  2005
        typename Container::iterator it = _inv_map.find(val);
deba@220
  2006
        if (it != _inv_map.end() && it->second == keys[i]) {
deba@220
  2007
          _inv_map.erase(it);
deba@220
  2008
        }
deba@220
  2009
      }
deba@220
  2010
      Map::erase(keys);
deba@220
  2011
    }
deba@220
  2012
deba@220
  2013
    /// \brief Clear the keys from the map and inverse map.
deba@220
  2014
    ///
deba@220
  2015
    /// Clear the keys from the map and inverse map. It is called by the
deba@220
  2016
    /// \c AlterationNotifier.
deba@220
  2017
    virtual void clear() {
deba@220
  2018
      _inv_map.clear();
deba@220
  2019
      Map::clear();
deba@220
  2020
    }
deba@220
  2021
deba@220
  2022
  public:
deba@220
  2023
deba@220
  2024
    /// \brief The inverse map type.
deba@220
  2025
    ///
deba@220
  2026
    /// The inverse of this map. The subscript operator of the map
deba@220
  2027
    /// gives back always the item what was last assigned to the value.
deba@220
  2028
    class InverseMap {
deba@220
  2029
    public:
deba@220
  2030
      /// \brief Constructor of the InverseMap.
deba@220
  2031
      ///
deba@220
  2032
      /// Constructor of the InverseMap.
deba@220
  2033
      explicit InverseMap(const InvertableMap& inverted)
deba@220
  2034
        : _inverted(inverted) {}
deba@220
  2035
deba@220
  2036
      /// The value type of the InverseMap.
deba@220
  2037
      typedef typename InvertableMap::Key Value;
deba@220
  2038
      /// The key type of the InverseMap.
deba@220
  2039
      typedef typename InvertableMap::Value Key;
deba@220
  2040
deba@220
  2041
      /// \brief Subscript operator.
deba@220
  2042
      ///
deba@220
  2043
      /// Subscript operator. It gives back always the item
deba@220
  2044
      /// what was last assigned to the value.
deba@220
  2045
      Value operator[](const Key& key) const {
deba@220
  2046
        return _inverted(key);
deba@220
  2047
      }
deba@220
  2048
deba@220
  2049
    private:
deba@220
  2050
      const InvertableMap& _inverted;
deba@220
  2051
    };
deba@220
  2052
deba@220
  2053
    /// \brief It gives back the just readable inverse map.
deba@220
  2054
    ///
deba@220
  2055
    /// It gives back the just readable inverse map.
deba@220
  2056
    InverseMap inverse() const {
deba@220
  2057
      return InverseMap(*this);
deba@220
  2058
    }
deba@220
  2059
deba@220
  2060
  };
deba@220
  2061
deba@220
  2062
  /// \brief Provides a mutable, continuous and unique descriptor for each
deba@220
  2063
  /// item in the graph.
deba@220
  2064
  ///
deba@220
  2065
  /// The DescriptorMap class provides a unique and continuous (but mutable)
deba@220
  2066
  /// descriptor (id) for each item of the same type (e.g. node) in the
deba@220
  2067
  /// graph. This id is <ul><li>\b unique: different items (nodes) get
deba@220
  2068
  /// different ids <li>\b continuous: the range of the ids is the set of
deba@220
  2069
  /// integers between 0 and \c n-1, where \c n is the number of the items of
deba@220
  2070
  /// this type (e.g. nodes) (so the id of a node can change if you delete an
deba@220
  2071
  /// other node, i.e. this id is mutable).  </ul> This map can be inverted
deba@220
  2072
  /// with its member class \c InverseMap, or with the \c operator() member.
deba@220
  2073
  ///
deba@220
  2074
  /// \tparam _Graph The graph class the \c DescriptorMap belongs to.
deba@220
  2075
  /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or
deba@220
  2076
  /// Edge.
deba@220
  2077
  template <typename _Graph, typename _Item>
deba@220
  2078
  class DescriptorMap
deba@220
  2079
    : protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type {
deba@220
  2080
deba@220
  2081
    typedef _Item Item;
deba@220
  2082
    typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map;
deba@220
  2083
deba@220
  2084
  public:
deba@220
  2085
    /// The graph class of DescriptorMap.
deba@220
  2086
    typedef _Graph Graph;
deba@220
  2087
deba@220
  2088
    /// The key type of DescriptorMap (Node, Arc, Edge).
deba@220
  2089
    typedef typename Map::Key Key;
deba@220
  2090
    /// The value type of DescriptorMap.
deba@220
  2091
    typedef typename Map::Value Value;
deba@220
  2092
deba@220
  2093
    /// \brief Constructor.
deba@220
  2094
    ///
deba@220
  2095
    /// Constructor for descriptor map.
deba@220
  2096
    explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
deba@220
  2097
      Item it;
deba@220
  2098
      const typename Map::Notifier* nf = Map::notifier();
deba@220
  2099
      for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  2100
        Map::set(it, _inv_map.size());
deba@220
  2101
        _inv_map.push_back(it);
deba@220
  2102
      }
deba@220
  2103
    }
deba@220
  2104
deba@220
  2105
  protected:
deba@220
  2106
deba@220
  2107
    /// \brief Add a new key to the map.
deba@220
  2108
    ///
deba@220
  2109
    /// Add a new key to the map. It is called by the
deba@220
  2110
    /// \c AlterationNotifier.
deba@220
  2111
    virtual void add(const Item& item) {
deba@220
  2112
      Map::add(item);
deba@220
  2113
      Map::set(item, _inv_map.size());
deba@220
  2114
      _inv_map.push_back(item);
deba@220
  2115
    }
deba@220
  2116
deba@220
  2117
    /// \brief Add more new keys to the map.
deba@220
  2118
    ///
deba@220
  2119
    /// Add more new keys to the map. It is called by the
deba@220
  2120
    /// \c AlterationNotifier.
deba@220
  2121
    virtual void add(const std::vector<Item>& items) {
deba@220
  2122
      Map::add(items);
deba@220
  2123
      for (int i = 0; i < int(items.size()); ++i) {
deba@220
  2124
        Map::set(items[i], _inv_map.size());
deba@220
  2125
        _inv_map.push_back(items[i]);
deba@220
  2126
      }
deba@220
  2127
    }
deba@220
  2128
deba@220
  2129
    /// \brief Erase the key from the map.
deba@220
  2130
    ///
deba@220
  2131
    /// Erase the key from the map. It is called by the
deba@220
  2132
    /// \c AlterationNotifier.
deba@220
  2133
    virtual void erase(const Item& item) {
deba@220
  2134
      Map::set(_inv_map.back(), Map::operator[](item));
deba@220
  2135
      _inv_map[Map::operator[](item)] = _inv_map.back();
deba@220
  2136
      _inv_map.pop_back();
deba@220
  2137
      Map::erase(item);
deba@220
  2138
    }
deba@220
  2139
deba@220
  2140
    /// \brief Erase more keys from the map.
deba@220
  2141
    ///
deba@220
  2142
    /// Erase more keys from the map. It is called by the
deba@220
  2143
    /// \c AlterationNotifier.
deba@220
  2144
    virtual void erase(const std::vector<Item>& items) {
deba@220
  2145
      for (int i = 0; i < int(items.size()); ++i) {
deba@220
  2146
        Map::set(_inv_map.back(), Map::operator[](items[i]));
deba@220
  2147
        _inv_map[Map::operator[](items[i])] = _inv_map.back();
deba@220
  2148
        _inv_map.pop_back();
deba@220
  2149
      }
deba@220
  2150
      Map::erase(items);
deba@220
  2151
    }
deba@220
  2152
deba@220
  2153
    /// \brief Build the unique map.
deba@220
  2154
    ///
deba@220
  2155
    /// Build the unique map. It is called by the
deba@220
  2156
    /// \c AlterationNotifier.
deba@220
  2157
    virtual void build() {
deba@220
  2158
      Map::build();
deba@220
  2159
      Item it;
deba@220
  2160
      const typename Map::Notifier* nf = Map::notifier();
deba@220
  2161
      for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  2162
        Map::set(it, _inv_map.size());
deba@220
  2163
        _inv_map.push_back(it);
deba@220
  2164
      }
deba@220
  2165
    }
deba@220
  2166
deba@220
  2167
    /// \brief Clear the keys from the map.
deba@220
  2168
    ///
deba@220
  2169
    /// Clear the keys from the map. It is called by the
deba@220
  2170
    /// \c AlterationNotifier.
deba@220
  2171
    virtual void clear() {
deba@220
  2172
      _inv_map.clear();
deba@220
  2173
      Map::clear();
deba@220
  2174
    }
deba@220
  2175
deba@220
  2176
  public:
deba@220
  2177
deba@220
  2178
    /// \brief Returns the maximal value plus one.
deba@220
  2179
    ///
deba@220
  2180
    /// Returns the maximal value plus one in the map.
deba@220
  2181
    unsigned int size() const {
deba@220
  2182
      return _inv_map.size();
deba@220
  2183
    }
deba@220
  2184
deba@220
  2185
    /// \brief Swaps the position of the two items in the map.
deba@220
  2186
    ///
deba@220
  2187
    /// Swaps the position of the two items in the map.
deba@220
  2188
    void swap(const Item& p, const Item& q) {
deba@220
  2189
      int pi = Map::operator[](p);
deba@220
  2190
      int qi = Map::operator[](q);
deba@220
  2191
      Map::set(p, qi);
deba@220
  2192
      _inv_map[qi] = p;
deba@220
  2193
      Map::set(q, pi);
deba@220
  2194
      _inv_map[pi] = q;
deba@220
  2195
    }
deba@220
  2196
deba@220
  2197
    /// \brief Gives back the \e descriptor of the item.
deba@220
  2198
    ///
deba@220
  2199
    /// Gives back the mutable and unique \e descriptor of the map.
deba@220
  2200
    int operator[](const Item& item) const {
deba@220
  2201
      return Map::operator[](item);
deba@220
  2202
    }
deba@220
  2203
deba@220
  2204
    /// \brief Gives back the item by its descriptor.
deba@220
  2205
    ///
deba@220
  2206
    /// Gives back th item by its descriptor.
deba@220
  2207
    Item operator()(int id) const {
deba@220
  2208
      return _inv_map[id];
deba@220
  2209
    }
deba@220
  2210
deba@220
  2211
  private:
deba@220
  2212
deba@220
  2213
    typedef std::vector<Item> Container;
deba@220
  2214
    Container _inv_map;
deba@220
  2215
deba@220
  2216
  public:
deba@220
  2217
    /// \brief The inverse map type of DescriptorMap.
deba@220
  2218
    ///
deba@220
  2219
    /// The inverse map type of DescriptorMap.
deba@220
  2220
    class InverseMap {
deba@220
  2221
    public:
deba@220
  2222
      /// \brief Constructor of the InverseMap.
deba@220
  2223
      ///
deba@220
  2224
      /// Constructor of the InverseMap.
deba@220
  2225
      explicit InverseMap(const DescriptorMap& inverted)
deba@220
  2226
        : _inverted(inverted) {}
deba@220
  2227
deba@220
  2228
deba@220
  2229
      /// The value type of the InverseMap.
deba@220
  2230
      typedef typename DescriptorMap::Key Value;
deba@220
  2231
      /// The key type of the InverseMap.
deba@220
  2232
      typedef typename DescriptorMap::Value Key;
deba@220
  2233
deba@220
  2234
      /// \brief Subscript operator.
deba@220
  2235
      ///
deba@220
  2236
      /// Subscript operator. It gives back the item
deba@220
  2237
      /// that the descriptor belongs to currently.
deba@220
  2238
      Value operator[](const Key& key) const {
deba@220
  2239
        return _inverted(key);
deba@220
  2240
      }
deba@220
  2241
deba@220
  2242
      /// \brief Size of the map.
deba@220
  2243
      ///
deba@220
  2244
      /// Returns the size of the map.
deba@220
  2245
      unsigned int size() const {
deba@220
  2246
        return _inverted.size();
deba@220
  2247
      }
deba@220
  2248
deba@220
  2249
    private:
deba@220
  2250
      const DescriptorMap& _inverted;
deba@220
  2251
    };
deba@220
  2252
deba@220
  2253
    /// \brief Gives back the inverse of the map.
deba@220
  2254
    ///
deba@220
  2255
    /// Gives back the inverse of the map.
deba@220
  2256
    const InverseMap inverse() const {
deba@220
  2257
      return InverseMap(*this);
deba@220
  2258
    }
deba@220
  2259
  };
deba@220
  2260
deba@220
  2261
  /// \brief Returns the source of the given arc.
deba@220
  2262
  ///
deba@220
  2263
  /// The SourceMap gives back the source Node of the given arc.
deba@220
  2264
  /// \see TargetMap
deba@220
  2265
  template <typename Digraph>
deba@220
  2266
  class SourceMap {
deba@220
  2267
  public:
deba@220
  2268
deba@220
  2269
    typedef typename Digraph::Node Value;
deba@220
  2270
    typedef typename Digraph::Arc Key;
deba@220
  2271
deba@220
  2272
    /// \brief Constructor
deba@220
  2273
    ///
deba@220
  2274
    /// Constructor
kpeter@313
  2275
    /// \param digraph The digraph that the map belongs to.
deba@220
  2276
    explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
deba@220
  2277
deba@220
  2278
    /// \brief The subscript operator.
deba@220
  2279
    ///
deba@220
  2280
    /// The subscript operator.
deba@220
  2281
    /// \param arc The arc
deba@220
  2282
    /// \return The source of the arc
deba@220
  2283
    Value operator[](const Key& arc) const {
deba@220
  2284
      return _digraph.source(arc);
deba@220
  2285
    }
deba@220
  2286
deba@220
  2287
  private:
deba@220
  2288
    const Digraph& _digraph;
deba@220
  2289
  };
deba@220
  2290
kpeter@301
  2291
  /// \brief Returns a \c SourceMap class.
deba@220
  2292
  ///
kpeter@301
  2293
  /// This function just returns an \c SourceMap class.
deba@220
  2294
  /// \relates SourceMap
deba@220
  2295
  template <typename Digraph>
deba@220
  2296
  inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
deba@220
  2297
    return SourceMap<Digraph>(digraph);
deba@220
  2298
  }
deba@220
  2299
deba@220
  2300
  /// \brief Returns the target of the given arc.
deba@220
  2301
  ///
deba@220
  2302
  /// The TargetMap gives back the target Node of the given arc.
deba@220
  2303
  /// \see SourceMap
deba@220
  2304
  template <typename Digraph>
deba@220
  2305
  class TargetMap {
deba@220
  2306
  public:
deba@220
  2307
deba@220
  2308
    typedef typename Digraph::Node Value;
deba@220
  2309
    typedef typename Digraph::Arc Key;
deba@220
  2310
deba@220
  2311
    /// \brief Constructor
deba@220
  2312
    ///
deba@220
  2313
    /// Constructor
kpeter@313
  2314
    /// \param digraph The digraph that the map belongs to.
deba@220
  2315
    explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
deba@220
  2316
deba@220
  2317
    /// \brief The subscript operator.
deba@220
  2318
    ///
deba@220
  2319
    /// The subscript operator.
deba@220
  2320
    /// \param e The arc
deba@220
  2321
    /// \return The target of the arc
deba@220
  2322
    Value operator[](const Key& e) const {
deba@220
  2323
      return _digraph.target(e);
deba@220
  2324
    }
deba@220
  2325
deba@220
  2326
  private:
deba@220
  2327
    const Digraph& _digraph;
deba@220
  2328
  };
deba@220
  2329
kpeter@301
  2330
  /// \brief Returns a \c TargetMap class.
deba@220
  2331
  ///
kpeter@301
  2332
  /// This function just returns a \c TargetMap class.
deba@220
  2333
  /// \relates TargetMap
deba@220
  2334
  template <typename Digraph>
deba@220
  2335
  inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
deba@220
  2336
    return TargetMap<Digraph>(digraph);
deba@220
  2337
  }
deba@220
  2338
deba@220
  2339
  /// \brief Returns the "forward" directed arc view of an edge.
deba@220
  2340
  ///
deba@220
  2341
  /// Returns the "forward" directed arc view of an edge.
deba@220
  2342
  /// \see BackwardMap
deba@220
  2343
  template <typename Graph>
deba@220
  2344
  class ForwardMap {
deba@220
  2345
  public:
deba@220
  2346
deba@220
  2347
    typedef typename Graph::Arc Value;
deba@220
  2348
    typedef typename Graph::Edge Key;
deba@220
  2349
deba@220
  2350
    /// \brief Constructor
deba@220
  2351
    ///
deba@220
  2352
    /// Constructor
kpeter@313
  2353
    /// \param graph The graph that the map belongs to.
deba@220
  2354
    explicit ForwardMap(const Graph& graph) : _graph(graph) {}
deba@220
  2355
deba@220
  2356
    /// \brief The subscript operator.
deba@220
  2357
    ///
deba@220
  2358
    /// The subscript operator.
deba@220
  2359
    /// \param key An edge
deba@220
  2360
    /// \return The "forward" directed arc view of edge
deba@220
  2361
    Value operator[](const Key& key) const {
deba@220
  2362
      return _graph.direct(key, true);
deba@220
  2363
    }
deba@220
  2364
deba@220
  2365
  private:
deba@220
  2366
    const Graph& _graph;
deba@220
  2367
  };
deba@220
  2368
kpeter@301
  2369
  /// \brief Returns a \c ForwardMap class.
deba@220
  2370
  ///
kpeter@301
  2371
  /// This function just returns an \c ForwardMap class.
deba@220
  2372
  /// \relates ForwardMap
deba@220
  2373
  template <typename Graph>
deba@220
  2374
  inline ForwardMap<Graph> forwardMap(const Graph& graph) {
deba@220
  2375
    return ForwardMap<Graph>(graph);
deba@220
  2376
  }
deba@220
  2377
deba@220
  2378
  /// \brief Returns the "backward" directed arc view of an edge.
deba@220
  2379
  ///
deba@220
  2380
  /// Returns the "backward" directed arc view of an edge.
deba@220
  2381
  /// \see ForwardMap
deba@220
  2382
  template <typename Graph>
deba@220
  2383
  class BackwardMap {
deba@220
  2384
  public:
deba@220
  2385
deba@220
  2386
    typedef typename Graph::Arc Value;
deba@220
  2387
    typedef typename Graph::Edge Key;
deba@220
  2388
deba@220
  2389
    /// \brief Constructor
deba@220
  2390
    ///
deba@220
  2391
    /// Constructor
kpeter@313
  2392
    /// \param graph The graph that the map belongs to.
deba@220
  2393
    explicit BackwardMap(const Graph& graph) : _graph(graph) {}
deba@220
  2394
deba@220
  2395
    /// \brief The subscript operator.
deba@220
  2396
    ///
deba@220
  2397
    /// The subscript operator.
deba@220
  2398
    /// \param key An edge
deba@220
  2399
    /// \return The "backward" directed arc view of edge
deba@220
  2400
    Value operator[](const Key& key) const {
deba@220
  2401
      return _graph.direct(key, false);
deba@220
  2402
    }
deba@220
  2403
deba@220
  2404
  private:
deba@220
  2405
    const Graph& _graph;
deba@220
  2406
  };
deba@220
  2407
kpeter@301
  2408
  /// \brief Returns a \c BackwardMap class
kpeter@301
  2409
kpeter@301
  2410
  /// This function just returns a \c BackwardMap class.
deba@220
  2411
  /// \relates BackwardMap
deba@220
  2412
  template <typename Graph>
deba@220
  2413
  inline BackwardMap<Graph> backwardMap(const Graph& graph) {
deba@220
  2414
    return BackwardMap<Graph>(graph);
deba@220
  2415
  }
deba@220
  2416
deba@220
  2417
  /// \brief Potential difference map
deba@220
  2418
  ///
deba@220
  2419
  /// If there is an potential map on the nodes then we
deba@220
  2420
  /// can get an arc map as we get the substraction of the
deba@220
  2421
  /// values of the target and source.
deba@220
  2422
  template <typename Digraph, typename NodeMap>
deba@220
  2423
  class PotentialDifferenceMap {
deba@220
  2424
  public:
deba@220
  2425
    typedef typename Digraph::Arc Key;
deba@220
  2426
    typedef typename NodeMap::Value Value;
deba@220
  2427
deba@220
  2428
    /// \brief Constructor
deba@220
  2429
    ///
deba@220
  2430
    /// Contructor of the map
deba@220
  2431
    explicit PotentialDifferenceMap(const Digraph& digraph,
deba@220
  2432
                                    const NodeMap& potential)
deba@220
  2433
      : _digraph(digraph), _potential(potential) {}
deba@220
  2434
deba@220
  2435
    /// \brief Const subscription operator
deba@220
  2436
    ///
deba@220
  2437
    /// Const subscription operator
deba@220
  2438
    Value operator[](const Key& arc) const {
deba@220
  2439
      return _potential[_digraph.target(arc)] -
deba@220
  2440
        _potential[_digraph.source(arc)];
deba@220
  2441
    }
deba@220
  2442
deba@220
  2443
  private:
deba@220
  2444
    const Digraph& _digraph;
deba@220
  2445
    const NodeMap& _potential;
deba@220
  2446
  };
deba@220
  2447
deba@220
  2448
  /// \brief Returns a PotentialDifferenceMap.
deba@220
  2449
  ///
deba@220
  2450
  /// This function just returns a PotentialDifferenceMap.
deba@220
  2451
  /// \relates PotentialDifferenceMap
deba@220
  2452
  template <typename Digraph, typename NodeMap>
deba@220
  2453
  PotentialDifferenceMap<Digraph, NodeMap>
deba@220
  2454
  potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
deba@220
  2455
    return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
deba@220
  2456
  }
deba@220
  2457
deba@220
  2458
  /// \brief Map of the node in-degrees.
deba@220
  2459
  ///
deba@220
  2460
  /// This map returns the in-degree of a node. Once it is constructed,
deba@220
  2461
  /// the degrees are stored in a standard NodeMap, so each query is done
deba@220
  2462
  /// in constant time. On the other hand, the values are updated automatically
deba@220
  2463
  /// whenever the digraph changes.
deba@220
  2464
  ///
deba@220
  2465
  /// \warning Besides addNode() and addArc(), a digraph structure may provide
deba@220
  2466
  /// alternative ways to modify the digraph. The correct behavior of InDegMap
deba@220
  2467
  /// is not guarantied if these additional features are used. For example
deba@220
  2468
  /// the functions \ref ListDigraph::changeSource() "changeSource()",
deba@220
  2469
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
deba@220
  2470
  /// \ref ListDigraph::reverseArc() "reverseArc()"
deba@220
  2471
  /// of \ref ListDigraph will \e not update the degree values correctly.
deba@220
  2472
  ///
deba@220
  2473
  /// \sa OutDegMap
deba@220
  2474
deba@220
  2475
  template <typename _Digraph>
deba@220
  2476
  class InDegMap
deba@220
  2477
    : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
deba@220
  2478
      ::ItemNotifier::ObserverBase {
deba@220
  2479
deba@220
  2480
  public:
deba@220
  2481
deba@220
  2482
    typedef _Digraph Digraph;
deba@220
  2483
    typedef int Value;
deba@220
  2484
    typedef typename Digraph::Node Key;
deba@220
  2485
deba@220
  2486
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@220
  2487
    ::ItemNotifier::ObserverBase Parent;
deba@220
  2488
deba@220
  2489
  private:
deba@220
  2490
deba@220
  2491
    class AutoNodeMap
deba@220
  2492
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
deba@220
  2493
    public:
deba@220
  2494
deba@220
  2495
      typedef typename ItemSetTraits<Digraph, Key>::
deba@220
  2496
      template Map<int>::Type Parent;
deba@220
  2497
deba@220
  2498
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
deba@220
  2499
deba@220
  2500
      virtual void add(const Key& key) {
deba@220
  2501
        Parent::add(key);
deba@220
  2502
        Parent::set(key, 0);
deba@220
  2503
      }
deba@220
  2504
deba@220
  2505
      virtual void add(const std::vector<Key>& keys) {
deba@220
  2506
        Parent::add(keys);
deba@220
  2507
        for (int i = 0; i < int(keys.size()); ++i) {
deba@220
  2508
          Parent::set(keys[i], 0);
deba@220
  2509
        }
deba@220
  2510
      }
deba@220
  2511
deba@220
  2512
      virtual void build() {
deba@220
  2513
        Parent::build();
deba@220
  2514
        Key it;
deba@220
  2515
        typename Parent::Notifier* nf = Parent::notifier();
deba@220
  2516
        for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  2517
          Parent::set(it, 0);
deba@220
  2518
        }
deba@220
  2519
      }
deba@220
  2520
    };
deba@220
  2521
deba@220
  2522
  public:
deba@220
  2523
deba@220
  2524
    /// \brief Constructor.
deba@220
  2525
    ///
deba@220
  2526
    /// Constructor for creating in-degree map.
deba@220
  2527
    explicit InDegMap(const Digraph& digraph)
deba@220
  2528
      : _digraph(digraph), _deg(digraph) {
deba@220
  2529
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
deba@220
  2530
deba@220
  2531
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2532
        _deg[it] = countInArcs(_digraph, it);
deba@220
  2533
      }
deba@220
  2534
    }
deba@220
  2535
deba@220
  2536
    /// Gives back the in-degree of a Node.
deba@220
  2537
    int operator[](const Key& key) const {
deba@220
  2538
      return _deg[key];
deba@220
  2539
    }
deba@220
  2540
deba@220
  2541
  protected:
deba@220
  2542
deba@220
  2543
    typedef typename Digraph::Arc Arc;
deba@220
  2544
deba@220
  2545
    virtual void add(const Arc& arc) {
deba@220
  2546
      ++_deg[_digraph.target(arc)];
deba@220
  2547
    }
deba@220
  2548
deba@220
  2549
    virtual void add(const std::vector<Arc>& arcs) {
deba@220
  2550
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  2551
        ++_deg[_digraph.target(arcs[i])];
deba@220
  2552
      }
deba@220
  2553
    }
deba@220
  2554
deba@220
  2555
    virtual void erase(const Arc& arc) {
deba@220
  2556
      --_deg[_digraph.target(arc)];
deba@220
  2557
    }
deba@220
  2558
deba@220
  2559
    virtual void erase(const std::vector<Arc>& arcs) {
deba@220
  2560
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  2561
        --_deg[_digraph.target(arcs[i])];
deba@220
  2562
      }
deba@220
  2563
    }
deba@220
  2564
deba@220
  2565
    virtual void build() {
deba@220
  2566
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2567
        _deg[it] = countInArcs(_digraph, it);
deba@220
  2568
      }
deba@220
  2569
    }
deba@220
  2570
deba@220
  2571
    virtual void clear() {
deba@220
  2572
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2573
        _deg[it] = 0;
deba@220
  2574
      }
deba@220
  2575
    }
deba@220
  2576
  private:
deba@220
  2577
deba@220
  2578
    const Digraph& _digraph;
deba@220
  2579
    AutoNodeMap _deg;
deba@220
  2580
  };
deba@220
  2581
deba@220
  2582
  /// \brief Map of the node out-degrees.
deba@220
  2583
  ///
deba@220
  2584
  /// This map returns the out-degree of a node. Once it is constructed,
deba@220
  2585
  /// the degrees are stored in a standard NodeMap, so each query is done
deba@220
  2586
  /// in constant time. On the other hand, the values are updated automatically
deba@220
  2587
  /// whenever the digraph changes.
deba@220
  2588
  ///
deba@220
  2589
  /// \warning Besides addNode() and addArc(), a digraph structure may provide
deba@220
  2590
  /// alternative ways to modify the digraph. The correct behavior of OutDegMap
deba@220
  2591
  /// is not guarantied if these additional features are used. For example
deba@220
  2592
  /// the functions \ref ListDigraph::changeSource() "changeSource()",
deba@220
  2593
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
deba@220
  2594
  /// \ref ListDigraph::reverseArc() "reverseArc()"
deba@220
  2595
  /// of \ref ListDigraph will \e not update the degree values correctly.
deba@220
  2596
  ///
deba@220
  2597
  /// \sa InDegMap
deba@220
  2598
deba@220
  2599
  template <typename _Digraph>
deba@220
  2600
  class OutDegMap
deba@220
  2601
    : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
deba@220
  2602
      ::ItemNotifier::ObserverBase {
deba@220
  2603
deba@220
  2604
  public:
deba@220
  2605
deba@220
  2606
    typedef _Digraph Digraph;
deba@220
  2607
    typedef int Value;
deba@220
  2608
    typedef typename Digraph::Node Key;
deba@220
  2609
deba@220
  2610
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@220
  2611
    ::ItemNotifier::ObserverBase Parent;
deba@220
  2612
deba@220
  2613
  private:
deba@220
  2614
deba@220
  2615
    class AutoNodeMap
deba@220
  2616
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
deba@220
  2617
    public:
deba@220
  2618
deba@220
  2619
      typedef typename ItemSetTraits<Digraph, Key>::
deba@220
  2620
      template Map<int>::Type Parent;
deba@220
  2621
deba@220
  2622
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
deba@220
  2623
deba@220
  2624
      virtual void add(const Key& key) {
deba@220
  2625
        Parent::add(key);
deba@220
  2626
        Parent::set(key, 0);
deba@220
  2627
      }
deba@220
  2628
      virtual void add(const std::vector<Key>& keys) {
deba@220
  2629
        Parent::add(keys);
deba@220
  2630
        for (int i = 0; i < int(keys.size()); ++i) {
deba@220
  2631
          Parent::set(keys[i], 0);
deba@220
  2632
        }
deba@220
  2633
      }
deba@220
  2634
      virtual void build() {
deba@220
  2635
        Parent::build();
deba@220
  2636
        Key it;
deba@220
  2637
        typename Parent::Notifier* nf = Parent::notifier();
deba@220
  2638
        for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220
  2639
          Parent::set(it, 0);
deba@220
  2640
        }
deba@220
  2641
      }
deba@220
  2642
    };
deba@220
  2643
deba@220
  2644
  public:
deba@220
  2645
deba@220
  2646
    /// \brief Constructor.
deba@220
  2647
    ///
deba@220
  2648
    /// Constructor for creating out-degree map.
deba@220
  2649
    explicit OutDegMap(const Digraph& digraph)
deba@220
  2650
      : _digraph(digraph), _deg(digraph) {
deba@220
  2651
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
deba@220
  2652
deba@220
  2653
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2654
        _deg[it] = countOutArcs(_digraph, it);
deba@220
  2655
      }
deba@220
  2656
    }
deba@220
  2657
deba@220
  2658
    /// Gives back the out-degree of a Node.
deba@220
  2659
    int operator[](const Key& key) const {
deba@220
  2660
      return _deg[key];
deba@220
  2661
    }
deba@220
  2662
deba@220
  2663
  protected:
deba@220
  2664
deba@220
  2665
    typedef typename Digraph::Arc Arc;
deba@220
  2666
deba@220
  2667
    virtual void add(const Arc& arc) {
deba@220
  2668
      ++_deg[_digraph.source(arc)];
deba@220
  2669
    }
deba@220
  2670
deba@220
  2671
    virtual void add(const std::vector<Arc>& arcs) {
deba@220
  2672
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  2673
        ++_deg[_digraph.source(arcs[i])];
deba@220
  2674
      }
deba@220
  2675
    }
deba@220
  2676
deba@220
  2677
    virtual void erase(const Arc& arc) {
deba@220
  2678
      --_deg[_digraph.source(arc)];
deba@220
  2679
    }
deba@220
  2680
deba@220
  2681
    virtual void erase(const std::vector<Arc>& arcs) {
deba@220
  2682
      for (int i = 0; i < int(arcs.size()); ++i) {
deba@220
  2683
        --_deg[_digraph.source(arcs[i])];
deba@220
  2684
      }
deba@220
  2685
    }
deba@220
  2686
deba@220
  2687
    virtual void build() {
deba@220
  2688
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2689
        _deg[it] = countOutArcs(_digraph, it);
deba@220
  2690
      }
deba@220
  2691
    }
deba@220
  2692
deba@220
  2693
    virtual void clear() {
deba@220
  2694
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220
  2695
        _deg[it] = 0;
deba@220
  2696
      }
deba@220
  2697
    }
deba@220
  2698
  private:
deba@220
  2699
deba@220
  2700
    const Digraph& _digraph;
deba@220
  2701
    AutoNodeMap _deg;
deba@220
  2702
  };
deba@220
  2703
alpar@25
  2704
  /// @}
alpar@25
  2705
}
alpar@25
  2706
alpar@25
  2707
#endif // LEMON_MAPS_H