lemon/maps.h
author Alpar Juttner <alpar@cs.elte.hu>
Wed, 29 Jul 2020 14:56:10 +0200
changeset 1211 a278d16bd2d0
parent 1130 0759d974de81
permissions -rw-r--r--
Fix clang compilation issue (#634)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAPS_H
    20 #define LEMON_MAPS_H
    21 
    22 #include <iterator>
    23 #include <functional>
    24 #include <vector>
    25 #include <map>
    26 
    27 #include <lemon/core.h>
    28 #include <lemon/bits/stl_iterators.h>
    29 
    30 ///\file
    31 ///\ingroup maps
    32 ///\brief Miscellaneous property maps
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup maps
    37   /// @{
    38 
    39   /// Base class of maps.
    40 
    41   /// Base class of maps. It provides the necessary type definitions
    42   /// required by the map %concepts.
    43   template<typename K, typename V>
    44   class MapBase {
    45   public:
    46     /// \brief The key type of the map.
    47     typedef K Key;
    48     /// \brief The value type of the map.
    49     /// (The type of objects associated with the keys).
    50     typedef V Value;
    51   };
    52 
    53 
    54   /// Null map. (a.k.a. DoNothingMap)
    55 
    56   /// This map can be used if you have to provide a map only for
    57   /// its type definitions, or if you have to provide a writable map,
    58   /// but data written to it is not required (i.e. it will be sent to
    59   /// <tt>/dev/null</tt>).
    60   /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    61   ///
    62   /// \sa ConstMap
    63   template<typename K, typename V>
    64   class NullMap : public MapBase<K, V> {
    65   public:
    66     ///\e
    67     typedef K Key;
    68     ///\e
    69     typedef V Value;
    70 
    71     /// Gives back a default constructed element.
    72     Value operator[](const Key&) const { return Value(); }
    73     /// Absorbs the value.
    74     void set(const Key&, const Value&) {}
    75   };
    76 
    77   /// Returns a \c NullMap class
    78 
    79   /// This function just returns a \c NullMap class.
    80   /// \relates NullMap
    81   template <typename K, typename V>
    82   NullMap<K, V> nullMap() {
    83     return NullMap<K, V>();
    84   }
    85 
    86 
    87   /// Constant map.
    88 
    89   /// This \ref concepts::ReadMap "readable map" assigns a specified
    90   /// value to each key.
    91   ///
    92   /// In other aspects it is equivalent to \c NullMap.
    93   /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
    94   /// concept, but it absorbs the data written to it.
    95   ///
    96   /// The simplest way of using this map is through the constMap()
    97   /// function.
    98   ///
    99   /// \sa NullMap
   100   /// \sa IdentityMap
   101   template<typename K, typename V>
   102   class ConstMap : public MapBase<K, V> {
   103   private:
   104     V _value;
   105   public:
   106     ///\e
   107     typedef K Key;
   108     ///\e
   109     typedef V Value;
   110 
   111     /// Default constructor
   112 
   113     /// Default constructor.
   114     /// The value of the map will be default constructed.
   115     ConstMap() {}
   116 
   117     /// Constructor with specified initial value
   118 
   119     /// Constructor with specified initial value.
   120     /// \param v The initial value of the map.
   121     ConstMap(const Value &v) : _value(v) {}
   122 
   123     /// Gives back the specified value.
   124     Value operator[](const Key&) const { return _value; }
   125 
   126     /// Absorbs the value.
   127     void set(const Key&, const Value&) {}
   128 
   129     /// Sets the value that is assigned to each key.
   130     void setAll(const Value &v) {
   131       _value = v;
   132     }
   133 
   134     template<typename V1>
   135     ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
   136   };
   137 
   138   /// Returns a \c ConstMap class
   139 
   140   /// This function just returns a \c ConstMap class.
   141   /// \relates ConstMap
   142   template<typename K, typename V>
   143   inline ConstMap<K, V> constMap(const V &v) {
   144     return ConstMap<K, V>(v);
   145   }
   146 
   147   template<typename K, typename V>
   148   inline ConstMap<K, V> constMap() {
   149     return ConstMap<K, V>();
   150   }
   151 
   152 
   153   template<typename T, T v>
   154   struct Const {};
   155 
   156   /// Constant map with inlined constant value.
   157 
   158   /// This \ref concepts::ReadMap "readable map" assigns a specified
   159   /// value to each key.
   160   ///
   161   /// In other aspects it is equivalent to \c NullMap.
   162   /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
   163   /// concept, but it absorbs the data written to it.
   164   ///
   165   /// The simplest way of using this map is through the constMap()
   166   /// function.
   167   ///
   168   /// \sa NullMap
   169   /// \sa IdentityMap
   170   template<typename K, typename V, V v>
   171   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
   172   public:
   173     ///\e
   174     typedef K Key;
   175     ///\e
   176     typedef V Value;
   177 
   178     /// Constructor.
   179     ConstMap() {}
   180 
   181     /// Gives back the specified value.
   182     Value operator[](const Key&) const { return v; }
   183 
   184     /// Absorbs the value.
   185     void set(const Key&, const Value&) {}
   186   };
   187 
   188   /// Returns a \c ConstMap class with inlined constant value
   189 
   190   /// This function just returns a \c ConstMap class with inlined
   191   /// constant value.
   192   /// \relates ConstMap
   193   template<typename K, typename V, V v>
   194   inline ConstMap<K, Const<V, v> > constMap() {
   195     return ConstMap<K, Const<V, v> >();
   196   }
   197 
   198 
   199   /// Identity map.
   200 
   201   /// This \ref concepts::ReadMap "read-only map" gives back the given
   202   /// key as value without any modification.
   203   ///
   204   /// \sa ConstMap
   205   template <typename T>
   206   class IdentityMap : public MapBase<T, T> {
   207   public:
   208     ///\e
   209     typedef T Key;
   210     ///\e
   211     typedef T Value;
   212 
   213     /// Gives back the given value without any modification.
   214     Value operator[](const Key &k) const {
   215       return k;
   216     }
   217   };
   218 
   219   /// Returns an \c IdentityMap class
   220 
   221   /// This function just returns an \c IdentityMap class.
   222   /// \relates IdentityMap
   223   template<typename T>
   224   inline IdentityMap<T> identityMap() {
   225     return IdentityMap<T>();
   226   }
   227 
   228 
   229   /// \brief Map for storing values for integer keys from the range
   230   /// <tt>[0..size-1]</tt>.
   231   ///
   232   /// This map is essentially a wrapper for \c std::vector. It assigns
   233   /// values to integer keys from the range <tt>[0..size-1]</tt>.
   234   /// It can be used together with some data structures, e.g.
   235   /// heap types and \c UnionFind, when the used items are small
   236   /// integers. This map conforms to the \ref concepts::ReferenceMap
   237   /// "ReferenceMap" concept.
   238   ///
   239   /// The simplest way of using this map is through the rangeMap()
   240   /// function.
   241   template <typename V>
   242   class RangeMap : public MapBase<int, V> {
   243     template <typename V1>
   244     friend class RangeMap;
   245   private:
   246 
   247     typedef std::vector<V> Vector;
   248     Vector _vector;
   249 
   250   public:
   251 
   252     /// Key type
   253     typedef int Key;
   254     /// Value type
   255     typedef V Value;
   256     /// Reference type
   257     typedef typename Vector::reference Reference;
   258     /// Const reference type
   259     typedef typename Vector::const_reference ConstReference;
   260 
   261     typedef True ReferenceMapTag;
   262 
   263   public:
   264 
   265     /// Constructor with specified default value.
   266     RangeMap(int size = 0, const Value &value = Value())
   267       : _vector(size, value) {}
   268 
   269     /// Constructs the map from an appropriate \c std::vector.
   270     template <typename V1>
   271     RangeMap(const std::vector<V1>& vector)
   272       : _vector(vector.begin(), vector.end()) {}
   273 
   274     /// Constructs the map from another \c RangeMap.
   275     template <typename V1>
   276     RangeMap(const RangeMap<V1> &c)
   277       : _vector(c._vector.begin(), c._vector.end()) {}
   278 
   279     /// Returns the size of the map.
   280     int size() {
   281       return _vector.size();
   282     }
   283 
   284     /// Resizes the map.
   285 
   286     /// Resizes the underlying \c std::vector container, so changes the
   287     /// keyset of the map.
   288     /// \param size The new size of the map. The new keyset will be the
   289     /// range <tt>[0..size-1]</tt>.
   290     /// \param value The default value to assign to the new keys.
   291     void resize(int size, const Value &value = Value()) {
   292       _vector.resize(size, value);
   293     }
   294 
   295   private:
   296 
   297     // RangeMap& operator=(const RangeMap&);
   298 
   299   public:
   300 
   301     // ///\e
   302     // RangeMap(const RangeMap&);
   303 
   304     ///\e
   305     Reference operator[](const Key &k) {
   306       return _vector[k];
   307     }
   308 
   309     ///\e
   310     ConstReference operator[](const Key &k) const {
   311       return _vector[k];
   312     }
   313 
   314     ///\e
   315     void set(const Key &k, const Value &v) {
   316       _vector[k] = v;
   317     }
   318   };
   319 
   320   /// Returns a \c RangeMap class
   321 
   322   /// This function just returns a \c RangeMap class.
   323   /// \relates RangeMap
   324   template<typename V>
   325   inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
   326     return RangeMap<V>(size, value);
   327   }
   328 
   329   /// \brief Returns a \c RangeMap class created from an appropriate
   330   /// \c std::vector
   331 
   332   /// This function just returns a \c RangeMap class created from an
   333   /// appropriate \c std::vector.
   334   /// \relates RangeMap
   335   template<typename V>
   336   inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
   337     return RangeMap<V>(vector);
   338   }
   339 
   340 
   341   /// Map type based on \c std::map
   342 
   343   /// This map is essentially a wrapper for \c std::map with addition
   344   /// that you can specify a default value for the keys that are not
   345   /// stored actually. This value can be different from the default
   346   /// contructed value (i.e. \c %Value()).
   347   /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
   348   /// concept.
   349   ///
   350   /// This map is useful if a default value should be assigned to most of
   351   /// the keys and different values should be assigned only to a few
   352   /// keys (i.e. the map is "sparse").
   353   /// The name of this type also refers to this important usage.
   354   ///
   355   /// Apart form that, this map can be used in many other cases since it
   356   /// is based on \c std::map, which is a general associative container.
   357   /// However, keep in mind that it is usually not as efficient as other
   358   /// maps.
   359   ///
   360   /// The simplest way of using this map is through the sparseMap()
   361   /// function.
   362   template <typename K, typename V, typename Comp = std::less<K> >
   363   class SparseMap : public MapBase<K, V> {
   364     template <typename K1, typename V1, typename C1>
   365     friend class SparseMap;
   366   public:
   367 
   368     /// Key type
   369     typedef K Key;
   370     /// Value type
   371     typedef V Value;
   372     /// Reference type
   373     typedef Value& Reference;
   374     /// Const reference type
   375     typedef const Value& ConstReference;
   376 
   377     typedef True ReferenceMapTag;
   378 
   379   private:
   380 
   381     typedef std::map<K, V, Comp> Map;
   382     Map _map;
   383     Value _value;
   384 
   385   public:
   386 
   387     /// \brief Constructor with specified default value.
   388     SparseMap(const Value &value = Value()) : _value(value) {}
   389     /// \brief Constructs the map from an appropriate \c std::map, and
   390     /// explicitly specifies a default value.
   391     template <typename V1, typename Comp1>
   392     SparseMap(const std::map<Key, V1, Comp1> &map,
   393               const Value &value = Value())
   394       : _map(map.begin(), map.end()), _value(value) {}
   395 
   396     /// \brief Constructs the map from another \c SparseMap.
   397     template<typename V1, typename Comp1>
   398     SparseMap(const SparseMap<Key, V1, Comp1> &c)
   399       : _map(c._map.begin(), c._map.end()), _value(c._value) {}
   400 
   401   private:
   402 
   403     SparseMap& operator=(const SparseMap&);
   404 
   405   public:
   406 
   407     ///\e
   408     Reference operator[](const Key &k) {
   409       typename Map::iterator it = _map.lower_bound(k);
   410       if (it != _map.end() && !_map.key_comp()(k, it->first))
   411         return it->second;
   412       else
   413         return _map.insert(it, std::make_pair(k, _value))->second;
   414     }
   415 
   416     ///\e
   417     ConstReference operator[](const Key &k) const {
   418       typename Map::const_iterator it = _map.find(k);
   419       if (it != _map.end())
   420         return it->second;
   421       else
   422         return _value;
   423     }
   424 
   425     ///\e
   426     void set(const Key &k, const Value &v) {
   427       typename Map::iterator it = _map.lower_bound(k);
   428       if (it != _map.end() && !_map.key_comp()(k, it->first))
   429         it->second = v;
   430       else
   431         _map.insert(it, std::make_pair(k, v));
   432     }
   433 
   434     ///\e
   435     void setAll(const Value &v) {
   436       _value = v;
   437       _map.clear();
   438     }
   439   };
   440 
   441   /// Returns a \c SparseMap class
   442 
   443   /// This function just returns a \c SparseMap class with specified
   444   /// default value.
   445   /// \relates SparseMap
   446   template<typename K, typename V, typename Compare>
   447   inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
   448     return SparseMap<K, V, Compare>(value);
   449   }
   450 
   451   template<typename K, typename V>
   452   inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
   453     return SparseMap<K, V, std::less<K> >(value);
   454   }
   455 
   456   /// \brief Returns a \c SparseMap class created from an appropriate
   457   /// \c std::map
   458 
   459   /// This function just returns a \c SparseMap class created from an
   460   /// appropriate \c std::map.
   461   /// \relates SparseMap
   462   template<typename K, typename V, typename Compare>
   463   inline SparseMap<K, V, Compare>
   464     sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
   465   {
   466     return SparseMap<K, V, Compare>(map, value);
   467   }
   468 
   469   /// @}
   470 
   471   /// \addtogroup map_adaptors
   472   /// @{
   473 
   474   /// Composition of two maps
   475 
   476   /// This \ref concepts::ReadMap "read-only map" returns the
   477   /// composition of two given maps. That is to say, if \c m1 is of
   478   /// type \c M1 and \c m2 is of \c M2, then for
   479   /// \code
   480   ///   ComposeMap<M1, M2> cm(m1,m2);
   481   /// \endcode
   482   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
   483   ///
   484   /// The \c Key type of the map is inherited from \c M2 and the
   485   /// \c Value type is from \c M1.
   486   /// \c M2::Value must be convertible to \c M1::Key.
   487   ///
   488   /// The simplest way of using this map is through the composeMap()
   489   /// function.
   490   ///
   491   /// \sa CombineMap
   492   template <typename M1, typename M2>
   493   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
   494     const M1 &_m1;
   495     const M2 &_m2;
   496   public:
   497     ///\e
   498     typedef typename M2::Key Key;
   499     ///\e
   500     typedef typename M1::Value Value;
   501 
   502     /// Constructor
   503     ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   504 
   505     ///\e
   506     typename MapTraits<M1>::ConstReturnValue
   507     operator[](const Key &k) const { return _m1[_m2[k]]; }
   508   };
   509 
   510   /// Returns a \c ComposeMap class
   511 
   512   /// This function just returns a \c ComposeMap class.
   513   ///
   514   /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
   515   /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
   516   /// will be equal to <tt>m1[m2[x]]</tt>.
   517   ///
   518   /// \relates ComposeMap
   519   template <typename M1, typename M2>
   520   inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
   521     return ComposeMap<M1, M2>(m1, m2);
   522   }
   523 
   524 
   525   /// Combination of two maps using an STL (binary) functor.
   526 
   527   /// This \ref concepts::ReadMap "read-only map" takes two maps and a
   528   /// binary functor and returns the combination of the two given maps
   529   /// using the functor.
   530   /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
   531   /// and \c f is of \c F, then for
   532   /// \code
   533   ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
   534   /// \endcode
   535   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
   536   ///
   537   /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
   538   /// must be convertible to \c M2::Key) and the \c Value type is \c V.
   539   /// \c M2::Value and \c M1::Value must be convertible to the
   540   /// corresponding input parameter of \c F and the return type of \c F
   541   /// must be convertible to \c V.
   542   ///
   543   /// The simplest way of using this map is through the combineMap()
   544   /// function.
   545   ///
   546   /// \sa ComposeMap
   547   template<typename M1, typename M2, typename F,
   548            typename V = typename F::result_type>
   549   class CombineMap : public MapBase<typename M1::Key, V> {
   550     const M1 &_m1;
   551     const M2 &_m2;
   552     F _f;
   553   public:
   554     ///\e
   555     typedef typename M1::Key Key;
   556     ///\e
   557     typedef V Value;
   558 
   559     /// Constructor
   560     CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
   561       : _m1(m1), _m2(m2), _f(f) {}
   562     ///\e
   563     Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
   564   };
   565 
   566   /// Returns a \c CombineMap class
   567 
   568   /// This function just returns a \c CombineMap class.
   569   ///
   570   /// For example, if \c m1 and \c m2 are both maps with \c double
   571   /// values, then
   572   /// \code
   573   ///   combineMap(m1,m2,std::plus<double>())
   574   /// \endcode
   575   /// is equivalent to
   576   /// \code
   577   ///   addMap(m1,m2)
   578   /// \endcode
   579   ///
   580   /// This function is specialized for adaptable binary function
   581   /// classes and C++ functions.
   582   ///
   583   /// \relates CombineMap
   584   template<typename M1, typename M2, typename F, typename V>
   585   inline CombineMap<M1, M2, F, V>
   586   combineMap(const M1 &m1, const M2 &m2, const F &f) {
   587     return CombineMap<M1, M2, F, V>(m1,m2,f);
   588   }
   589 
   590   template<typename M1, typename M2, typename F>
   591   inline CombineMap<M1, M2, F, typename F::result_type>
   592   combineMap(const M1 &m1, const M2 &m2, const F &f) {
   593     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
   594   }
   595 
   596   template<typename M1, typename M2, typename K1, typename K2, typename V>
   597   inline CombineMap<M1, M2, V (*)(K1, K2), V>
   598   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
   599     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
   600   }
   601 
   602 
   603   /// Converts an STL style (unary) functor to a map
   604 
   605   /// This \ref concepts::ReadMap "read-only map" returns the value
   606   /// of a given functor. Actually, it just wraps the functor and
   607   /// provides the \c Key and \c Value typedefs.
   608   ///
   609   /// Template parameters \c K and \c V will become its \c Key and
   610   /// \c Value. In most cases they have to be given explicitly because
   611   /// a functor typically does not provide \c argument_type and
   612   /// \c result_type typedefs.
   613   /// Parameter \c F is the type of the used functor.
   614   ///
   615   /// The simplest way of using this map is through the functorToMap()
   616   /// function.
   617   ///
   618   /// \sa MapToFunctor
   619   template<typename F,
   620            typename K = typename F::argument_type,
   621            typename V = typename F::result_type>
   622   class FunctorToMap : public MapBase<K, V> {
   623     F _f;
   624   public:
   625     ///\e
   626     typedef K Key;
   627     ///\e
   628     typedef V Value;
   629 
   630     /// Constructor
   631     FunctorToMap(const F &f = F()) : _f(f) {}
   632     ///\e
   633     Value operator[](const Key &k) const { return _f(k); }
   634   };
   635 
   636   /// Returns a \c FunctorToMap class
   637 
   638   /// This function just returns a \c FunctorToMap class.
   639   ///
   640   /// This function is specialized for adaptable binary function
   641   /// classes and C++ functions.
   642   ///
   643   /// \relates FunctorToMap
   644   template<typename K, typename V, typename F>
   645   inline FunctorToMap<F, K, V> functorToMap(const F &f) {
   646     return FunctorToMap<F, K, V>(f);
   647   }
   648 
   649   template <typename F>
   650   inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
   651     functorToMap(const F &f)
   652   {
   653     return FunctorToMap<F, typename F::argument_type,
   654       typename F::result_type>(f);
   655   }
   656 
   657   template <typename K, typename V>
   658   inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
   659     return FunctorToMap<V (*)(K), K, V>(f);
   660   }
   661 
   662 
   663   /// Converts a map to an STL style (unary) functor
   664 
   665   /// This class converts a map to an STL style (unary) functor.
   666   /// That is it provides an <tt>operator()</tt> to read its values.
   667   ///
   668   /// For the sake of convenience it also works as a usual
   669   /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
   670   /// and the \c Key and \c Value typedefs also exist.
   671   ///
   672   /// The simplest way of using this map is through the mapToFunctor()
   673   /// function.
   674   ///
   675   ///\sa FunctorToMap
   676   template <typename M>
   677   class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
   678     const M &_m;
   679   public:
   680     ///\e
   681     typedef typename M::Key Key;
   682     ///\e
   683     typedef typename M::Value Value;
   684 
   685     typedef typename M::Key argument_type;
   686     typedef typename M::Value result_type;
   687 
   688     /// Constructor
   689     MapToFunctor(const M &m) : _m(m) {}
   690     ///\e
   691     Value operator()(const Key &k) const { return _m[k]; }
   692     ///\e
   693     Value operator[](const Key &k) const { return _m[k]; }
   694   };
   695 
   696   /// Returns a \c MapToFunctor class
   697 
   698   /// This function just returns a \c MapToFunctor class.
   699   /// \relates MapToFunctor
   700   template<typename M>
   701   inline MapToFunctor<M> mapToFunctor(const M &m) {
   702     return MapToFunctor<M>(m);
   703   }
   704 
   705 
   706   /// \brief Map adaptor to convert the \c Value type of a map to
   707   /// another type using the default conversion.
   708 
   709   /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
   710   /// "readable map" to another type using the default conversion.
   711   /// The \c Key type of it is inherited from \c M and the \c Value
   712   /// type is \c V.
   713   /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
   714   ///
   715   /// The simplest way of using this map is through the convertMap()
   716   /// function.
   717   template <typename M, typename V>
   718   class ConvertMap : public MapBase<typename M::Key, V> {
   719     const M &_m;
   720   public:
   721     ///\e
   722     typedef typename M::Key Key;
   723     ///\e
   724     typedef V Value;
   725 
   726     /// Constructor
   727 
   728     /// Constructor.
   729     /// \param m The underlying map.
   730     ConvertMap(const M &m) : _m(m) {}
   731 
   732     ///\e
   733     Value operator[](const Key &k) const { return _m[k]; }
   734   };
   735 
   736   /// Returns a \c ConvertMap class
   737 
   738   /// This function just returns a \c ConvertMap class.
   739   /// \relates ConvertMap
   740   template<typename V, typename M>
   741   inline ConvertMap<M, V> convertMap(const M &map) {
   742     return ConvertMap<M, V>(map);
   743   }
   744 
   745 
   746   /// Applies all map setting operations to two maps
   747 
   748   /// This map has two \ref concepts::WriteMap "writable map" parameters
   749   /// and each write request will be passed to both of them.
   750   /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
   751   /// operations will return the corresponding values of \c M1.
   752   ///
   753   /// The \c Key and \c Value types are inherited from \c M1.
   754   /// The \c Key and \c Value of \c M2 must be convertible from those
   755   /// of \c M1.
   756   ///
   757   /// The simplest way of using this map is through the forkMap()
   758   /// function.
   759   template<typename  M1, typename M2>
   760   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
   761     M1 &_m1;
   762     M2 &_m2;
   763   public:
   764     ///\e
   765     typedef typename M1::Key Key;
   766     ///\e
   767     typedef typename M1::Value Value;
   768 
   769     /// Constructor
   770     ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
   771     /// Returns the value associated with the given key in the first map.
   772     Value operator[](const Key &k) const { return _m1[k]; }
   773     /// Sets the value associated with the given key in both maps.
   774     void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
   775   };
   776 
   777   /// Returns a \c ForkMap class
   778 
   779   /// This function just returns a \c ForkMap class.
   780   /// \relates ForkMap
   781   template <typename M1, typename M2>
   782   inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
   783     return ForkMap<M1,M2>(m1,m2);
   784   }
   785 
   786 
   787   /// Sum of two maps
   788 
   789   /// This \ref concepts::ReadMap "read-only map" returns the sum
   790   /// of the values of the two given maps.
   791   /// Its \c Key and \c Value types are inherited from \c M1.
   792   /// The \c Key and \c Value of \c M2 must be convertible to those of
   793   /// \c M1.
   794   ///
   795   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   796   /// \code
   797   ///   AddMap<M1,M2> am(m1,m2);
   798   /// \endcode
   799   /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
   800   ///
   801   /// The simplest way of using this map is through the addMap()
   802   /// function.
   803   ///
   804   /// \sa SubMap, MulMap, DivMap
   805   /// \sa ShiftMap, ShiftWriteMap
   806   template<typename M1, typename M2>
   807   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
   808     const M1 &_m1;
   809     const M2 &_m2;
   810   public:
   811     ///\e
   812     typedef typename M1::Key Key;
   813     ///\e
   814     typedef typename M1::Value Value;
   815 
   816     /// Constructor
   817     AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   818     ///\e
   819     Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
   820   };
   821 
   822   /// Returns an \c AddMap class
   823 
   824   /// This function just returns an \c AddMap class.
   825   ///
   826   /// For example, if \c m1 and \c m2 are both maps with \c double
   827   /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
   828   /// <tt>m1[x]+m2[x]</tt>.
   829   ///
   830   /// \relates AddMap
   831   template<typename M1, typename M2>
   832   inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
   833     return AddMap<M1, M2>(m1,m2);
   834   }
   835 
   836 
   837   /// Difference of two maps
   838 
   839   /// This \ref concepts::ReadMap "read-only map" returns the difference
   840   /// of the values of the two given maps.
   841   /// Its \c Key and \c Value types are inherited from \c M1.
   842   /// The \c Key and \c Value of \c M2 must be convertible to those of
   843   /// \c M1.
   844   ///
   845   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   846   /// \code
   847   ///   SubMap<M1,M2> sm(m1,m2);
   848   /// \endcode
   849   /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
   850   ///
   851   /// The simplest way of using this map is through the subMap()
   852   /// function.
   853   ///
   854   /// \sa AddMap, MulMap, DivMap
   855   template<typename M1, typename M2>
   856   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
   857     const M1 &_m1;
   858     const M2 &_m2;
   859   public:
   860     ///\e
   861     typedef typename M1::Key Key;
   862     ///\e
   863     typedef typename M1::Value Value;
   864 
   865     /// Constructor
   866     SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   867     ///\e
   868     Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
   869   };
   870 
   871   /// Returns a \c SubMap class
   872 
   873   /// This function just returns a \c SubMap class.
   874   ///
   875   /// For example, if \c m1 and \c m2 are both maps with \c double
   876   /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
   877   /// <tt>m1[x]-m2[x]</tt>.
   878   ///
   879   /// \relates SubMap
   880   template<typename M1, typename M2>
   881   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
   882     return SubMap<M1, M2>(m1,m2);
   883   }
   884 
   885 
   886   /// Product of two maps
   887 
   888   /// This \ref concepts::ReadMap "read-only map" returns the product
   889   /// of the values of the two given maps.
   890   /// Its \c Key and \c Value types are inherited from \c M1.
   891   /// The \c Key and \c Value of \c M2 must be convertible to those of
   892   /// \c M1.
   893   ///
   894   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   895   /// \code
   896   ///   MulMap<M1,M2> mm(m1,m2);
   897   /// \endcode
   898   /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
   899   ///
   900   /// The simplest way of using this map is through the mulMap()
   901   /// function.
   902   ///
   903   /// \sa AddMap, SubMap, DivMap
   904   /// \sa ScaleMap, ScaleWriteMap
   905   template<typename M1, typename M2>
   906   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
   907     const M1 &_m1;
   908     const M2 &_m2;
   909   public:
   910     ///\e
   911     typedef typename M1::Key Key;
   912     ///\e
   913     typedef typename M1::Value Value;
   914 
   915     /// Constructor
   916     MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
   917     ///\e
   918     Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
   919   };
   920 
   921   /// Returns a \c MulMap class
   922 
   923   /// This function just returns a \c MulMap class.
   924   ///
   925   /// For example, if \c m1 and \c m2 are both maps with \c double
   926   /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
   927   /// <tt>m1[x]*m2[x]</tt>.
   928   ///
   929   /// \relates MulMap
   930   template<typename M1, typename M2>
   931   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
   932     return MulMap<M1, M2>(m1,m2);
   933   }
   934 
   935 
   936   /// Quotient of two maps
   937 
   938   /// This \ref concepts::ReadMap "read-only map" returns the quotient
   939   /// of the values of the two given maps.
   940   /// Its \c Key and \c Value types are inherited from \c M1.
   941   /// The \c Key and \c Value of \c M2 must be convertible to those of
   942   /// \c M1.
   943   ///
   944   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   945   /// \code
   946   ///   DivMap<M1,M2> dm(m1,m2);
   947   /// \endcode
   948   /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
   949   ///
   950   /// The simplest way of using this map is through the divMap()
   951   /// function.
   952   ///
   953   /// \sa AddMap, SubMap, MulMap
   954   template<typename M1, typename M2>
   955   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
   956     const M1 &_m1;
   957     const M2 &_m2;
   958   public:
   959     ///\e
   960     typedef typename M1::Key Key;
   961     ///\e
   962     typedef typename M1::Value Value;
   963 
   964     /// Constructor
   965     DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
   966     ///\e
   967     Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
   968   };
   969 
   970   /// Returns a \c DivMap class
   971 
   972   /// This function just returns a \c DivMap class.
   973   ///
   974   /// For example, if \c m1 and \c m2 are both maps with \c double
   975   /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
   976   /// <tt>m1[x]/m2[x]</tt>.
   977   ///
   978   /// \relates DivMap
   979   template<typename M1, typename M2>
   980   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
   981     return DivMap<M1, M2>(m1,m2);
   982   }
   983 
   984 
   985   /// Shifts a map with a constant.
   986 
   987   /// This \ref concepts::ReadMap "read-only map" returns the sum of
   988   /// the given map and a constant value (i.e. it shifts the map with
   989   /// the constant). Its \c Key and \c Value are inherited from \c M.
   990   ///
   991   /// Actually,
   992   /// \code
   993   ///   ShiftMap<M> sh(m,v);
   994   /// \endcode
   995   /// is equivalent to
   996   /// \code
   997   ///   ConstMap<M::Key, M::Value> cm(v);
   998   ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
   999   /// \endcode
  1000   ///
  1001   /// The simplest way of using this map is through the shiftMap()
  1002   /// function.
  1003   ///
  1004   /// \sa ShiftWriteMap
  1005   template<typename M, typename C = typename M::Value>
  1006   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
  1007     const M &_m;
  1008     C _v;
  1009   public:
  1010     ///\e
  1011     typedef typename M::Key Key;
  1012     ///\e
  1013     typedef typename M::Value Value;
  1014 
  1015     /// Constructor
  1016 
  1017     /// Constructor.
  1018     /// \param m The undelying map.
  1019     /// \param v The constant value.
  1020     ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
  1021     ///\e
  1022     Value operator[](const Key &k) const { return _m[k]+_v; }
  1023   };
  1024 
  1025   /// Shifts a map with a constant (read-write version).
  1026 
  1027   /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
  1028   /// of the given map and a constant value (i.e. it shifts the map with
  1029   /// the constant). Its \c Key and \c Value are inherited from \c M.
  1030   /// It makes also possible to write the map.
  1031   ///
  1032   /// The simplest way of using this map is through the shiftWriteMap()
  1033   /// function.
  1034   ///
  1035   /// \sa ShiftMap
  1036   template<typename M, typename C = typename M::Value>
  1037   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1038     M &_m;
  1039     C _v;
  1040   public:
  1041     ///\e
  1042     typedef typename M::Key Key;
  1043     ///\e
  1044     typedef typename M::Value Value;
  1045 
  1046     /// Constructor
  1047 
  1048     /// Constructor.
  1049     /// \param m The undelying map.
  1050     /// \param v The constant value.
  1051     ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
  1052     ///\e
  1053     Value operator[](const Key &k) const { return _m[k]+_v; }
  1054     ///\e
  1055     void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
  1056   };
  1057 
  1058   /// Returns a \c ShiftMap class
  1059 
  1060   /// This function just returns a \c ShiftMap class.
  1061   ///
  1062   /// For example, if \c m is a map with \c double values and \c v is
  1063   /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
  1064   /// <tt>m[x]+v</tt>.
  1065   ///
  1066   /// \relates ShiftMap
  1067   template<typename M, typename C>
  1068   inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
  1069     return ShiftMap<M, C>(m,v);
  1070   }
  1071 
  1072   /// Returns a \c ShiftWriteMap class
  1073 
  1074   /// This function just returns a \c ShiftWriteMap class.
  1075   ///
  1076   /// For example, if \c m is a map with \c double values and \c v is
  1077   /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
  1078   /// <tt>m[x]+v</tt>.
  1079   /// Moreover it makes also possible to write the map.
  1080   ///
  1081   /// \relates ShiftWriteMap
  1082   template<typename M, typename C>
  1083   inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
  1084     return ShiftWriteMap<M, C>(m,v);
  1085   }
  1086 
  1087 
  1088   /// Scales a map with a constant.
  1089 
  1090   /// This \ref concepts::ReadMap "read-only map" returns the value of
  1091   /// the given map multiplied from the left side with a constant value.
  1092   /// Its \c Key and \c Value are inherited from \c M.
  1093   ///
  1094   /// Actually,
  1095   /// \code
  1096   ///   ScaleMap<M> sc(m,v);
  1097   /// \endcode
  1098   /// is equivalent to
  1099   /// \code
  1100   ///   ConstMap<M::Key, M::Value> cm(v);
  1101   ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
  1102   /// \endcode
  1103   ///
  1104   /// The simplest way of using this map is through the scaleMap()
  1105   /// function.
  1106   ///
  1107   /// \sa ScaleWriteMap
  1108   template<typename M, typename C = typename M::Value>
  1109   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
  1110     const M &_m;
  1111     C _v;
  1112   public:
  1113     ///\e
  1114     typedef typename M::Key Key;
  1115     ///\e
  1116     typedef typename M::Value Value;
  1117 
  1118     /// Constructor
  1119 
  1120     /// Constructor.
  1121     /// \param m The undelying map.
  1122     /// \param v The constant value.
  1123     ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
  1124     ///\e
  1125     Value operator[](const Key &k) const { return _v*_m[k]; }
  1126   };
  1127 
  1128   /// Scales a map with a constant (read-write version).
  1129 
  1130   /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
  1131   /// the given map multiplied from the left side with a constant value.
  1132   /// Its \c Key and \c Value are inherited from \c M.
  1133   /// It can also be used as write map if the \c / operator is defined
  1134   /// between \c Value and \c C and the given multiplier is not zero.
  1135   ///
  1136   /// The simplest way of using this map is through the scaleWriteMap()
  1137   /// function.
  1138   ///
  1139   /// \sa ScaleMap
  1140   template<typename M, typename C = typename M::Value>
  1141   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1142     M &_m;
  1143     C _v;
  1144   public:
  1145     ///\e
  1146     typedef typename M::Key Key;
  1147     ///\e
  1148     typedef typename M::Value Value;
  1149 
  1150     /// Constructor
  1151 
  1152     /// Constructor.
  1153     /// \param m The undelying map.
  1154     /// \param v The constant value.
  1155     ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
  1156     ///\e
  1157     Value operator[](const Key &k) const { return _v*_m[k]; }
  1158     ///\e
  1159     void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
  1160   };
  1161 
  1162   /// Returns a \c ScaleMap class
  1163 
  1164   /// This function just returns a \c ScaleMap class.
  1165   ///
  1166   /// For example, if \c m is a map with \c double values and \c v is
  1167   /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
  1168   /// <tt>v*m[x]</tt>.
  1169   ///
  1170   /// \relates ScaleMap
  1171   template<typename M, typename C>
  1172   inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
  1173     return ScaleMap<M, C>(m,v);
  1174   }
  1175 
  1176   /// Returns a \c ScaleWriteMap class
  1177 
  1178   /// This function just returns a \c ScaleWriteMap class.
  1179   ///
  1180   /// For example, if \c m is a map with \c double values and \c v is
  1181   /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
  1182   /// <tt>v*m[x]</tt>.
  1183   /// Moreover it makes also possible to write the map.
  1184   ///
  1185   /// \relates ScaleWriteMap
  1186   template<typename M, typename C>
  1187   inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
  1188     return ScaleWriteMap<M, C>(m,v);
  1189   }
  1190 
  1191 
  1192   /// Negative of a map
  1193 
  1194   /// This \ref concepts::ReadMap "read-only map" returns the negative
  1195   /// of the values of the given map (using the unary \c - operator).
  1196   /// Its \c Key and \c Value are inherited from \c M.
  1197   ///
  1198   /// If M::Value is \c int, \c double etc., then
  1199   /// \code
  1200   ///   NegMap<M> neg(m);
  1201   /// \endcode
  1202   /// is equivalent to
  1203   /// \code
  1204   ///   ScaleMap<M> neg(m,-1);
  1205   /// \endcode
  1206   ///
  1207   /// The simplest way of using this map is through the negMap()
  1208   /// function.
  1209   ///
  1210   /// \sa NegWriteMap
  1211   template<typename M>
  1212   class NegMap : public MapBase<typename M::Key, typename M::Value> {
  1213     const M& _m;
  1214   public:
  1215     ///\e
  1216     typedef typename M::Key Key;
  1217     ///\e
  1218     typedef typename M::Value Value;
  1219 
  1220     /// Constructor
  1221     NegMap(const M &m) : _m(m) {}
  1222     ///\e
  1223     Value operator[](const Key &k) const { return -_m[k]; }
  1224   };
  1225 
  1226   /// Negative of a map (read-write version)
  1227 
  1228   /// This \ref concepts::ReadWriteMap "read-write map" returns the
  1229   /// negative of the values of the given map (using the unary \c -
  1230   /// operator).
  1231   /// Its \c Key and \c Value are inherited from \c M.
  1232   /// It makes also possible to write the map.
  1233   ///
  1234   /// If M::Value is \c int, \c double etc., then
  1235   /// \code
  1236   ///   NegWriteMap<M> neg(m);
  1237   /// \endcode
  1238   /// is equivalent to
  1239   /// \code
  1240   ///   ScaleWriteMap<M> neg(m,-1);
  1241   /// \endcode
  1242   ///
  1243   /// The simplest way of using this map is through the negWriteMap()
  1244   /// function.
  1245   ///
  1246   /// \sa NegMap
  1247   template<typename M>
  1248   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1249     M &_m;
  1250   public:
  1251     ///\e
  1252     typedef typename M::Key Key;
  1253     ///\e
  1254     typedef typename M::Value Value;
  1255 
  1256     /// Constructor
  1257     NegWriteMap(M &m) : _m(m) {}
  1258     ///\e
  1259     Value operator[](const Key &k) const { return -_m[k]; }
  1260     ///\e
  1261     void set(const Key &k, const Value &v) { _m.set(k, -v); }
  1262   };
  1263 
  1264   /// Returns a \c NegMap class
  1265 
  1266   /// This function just returns a \c NegMap class.
  1267   ///
  1268   /// For example, if \c m is a map with \c double values, then
  1269   /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
  1270   ///
  1271   /// \relates NegMap
  1272   template <typename M>
  1273   inline NegMap<M> negMap(const M &m) {
  1274     return NegMap<M>(m);
  1275   }
  1276 
  1277   /// Returns a \c NegWriteMap class
  1278 
  1279   /// This function just returns a \c NegWriteMap class.
  1280   ///
  1281   /// For example, if \c m is a map with \c double values, then
  1282   /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
  1283   /// Moreover it makes also possible to write the map.
  1284   ///
  1285   /// \relates NegWriteMap
  1286   template <typename M>
  1287   inline NegWriteMap<M> negWriteMap(M &m) {
  1288     return NegWriteMap<M>(m);
  1289   }
  1290 
  1291 
  1292   /// Absolute value of a map
  1293 
  1294   /// This \ref concepts::ReadMap "read-only map" returns the absolute
  1295   /// value of the values of the given map.
  1296   /// Its \c Key and \c Value are inherited from \c M.
  1297   /// \c Value must be comparable to \c 0 and the unary \c -
  1298   /// operator must be defined for it, of course.
  1299   ///
  1300   /// The simplest way of using this map is through the absMap()
  1301   /// function.
  1302   template<typename M>
  1303   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
  1304     const M &_m;
  1305   public:
  1306     ///\e
  1307     typedef typename M::Key Key;
  1308     ///\e
  1309     typedef typename M::Value Value;
  1310 
  1311     /// Constructor
  1312     AbsMap(const M &m) : _m(m) {}
  1313     ///\e
  1314     Value operator[](const Key &k) const {
  1315       Value tmp = _m[k];
  1316       return tmp >= 0 ? tmp : -tmp;
  1317     }
  1318 
  1319   };
  1320 
  1321   /// Returns an \c AbsMap class
  1322 
  1323   /// This function just returns an \c AbsMap class.
  1324   ///
  1325   /// For example, if \c m is a map with \c double values, then
  1326   /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
  1327   /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
  1328   /// negative.
  1329   ///
  1330   /// \relates AbsMap
  1331   template<typename M>
  1332   inline AbsMap<M> absMap(const M &m) {
  1333     return AbsMap<M>(m);
  1334   }
  1335 
  1336   /// @}
  1337 
  1338   // Logical maps and map adaptors:
  1339 
  1340   /// \addtogroup maps
  1341   /// @{
  1342 
  1343   /// Constant \c true map.
  1344 
  1345   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
  1346   /// each key.
  1347   ///
  1348   /// Note that
  1349   /// \code
  1350   ///   TrueMap<K> tm;
  1351   /// \endcode
  1352   /// is equivalent to
  1353   /// \code
  1354   ///   ConstMap<K,bool> tm(true);
  1355   /// \endcode
  1356   ///
  1357   /// \sa FalseMap
  1358   /// \sa ConstMap
  1359   template <typename K>
  1360   class TrueMap : public MapBase<K, bool> {
  1361   public:
  1362     ///\e
  1363     typedef K Key;
  1364     ///\e
  1365     typedef bool Value;
  1366 
  1367     /// Gives back \c true.
  1368     Value operator[](const Key&) const { return true; }
  1369   };
  1370 
  1371   /// Returns a \c TrueMap class
  1372 
  1373   /// This function just returns a \c TrueMap class.
  1374   /// \relates TrueMap
  1375   template<typename K>
  1376   inline TrueMap<K> trueMap() {
  1377     return TrueMap<K>();
  1378   }
  1379 
  1380 
  1381   /// Constant \c false map.
  1382 
  1383   /// This \ref concepts::ReadMap "read-only map" assigns \c false to
  1384   /// each key.
  1385   ///
  1386   /// Note that
  1387   /// \code
  1388   ///   FalseMap<K> fm;
  1389   /// \endcode
  1390   /// is equivalent to
  1391   /// \code
  1392   ///   ConstMap<K,bool> fm(false);
  1393   /// \endcode
  1394   ///
  1395   /// \sa TrueMap
  1396   /// \sa ConstMap
  1397   template <typename K>
  1398   class FalseMap : public MapBase<K, bool> {
  1399   public:
  1400     ///\e
  1401     typedef K Key;
  1402     ///\e
  1403     typedef bool Value;
  1404 
  1405     /// Gives back \c false.
  1406     Value operator[](const Key&) const { return false; }
  1407   };
  1408 
  1409   /// Returns a \c FalseMap class
  1410 
  1411   /// This function just returns a \c FalseMap class.
  1412   /// \relates FalseMap
  1413   template<typename K>
  1414   inline FalseMap<K> falseMap() {
  1415     return FalseMap<K>();
  1416   }
  1417 
  1418   /// @}
  1419 
  1420   /// \addtogroup map_adaptors
  1421   /// @{
  1422 
  1423   /// Logical 'and' of two maps
  1424 
  1425   /// This \ref concepts::ReadMap "read-only map" returns the logical
  1426   /// 'and' of the values of the two given maps.
  1427   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1428   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1429   ///
  1430   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1431   /// \code
  1432   ///   AndMap<M1,M2> am(m1,m2);
  1433   /// \endcode
  1434   /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
  1435   ///
  1436   /// The simplest way of using this map is through the andMap()
  1437   /// function.
  1438   ///
  1439   /// \sa OrMap
  1440   /// \sa NotMap, NotWriteMap
  1441   template<typename M1, typename M2>
  1442   class AndMap : public MapBase<typename M1::Key, bool> {
  1443     const M1 &_m1;
  1444     const M2 &_m2;
  1445   public:
  1446     ///\e
  1447     typedef typename M1::Key Key;
  1448     ///\e
  1449     typedef bool Value;
  1450 
  1451     /// Constructor
  1452     AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1453     ///\e
  1454     Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
  1455   };
  1456 
  1457   /// Returns an \c AndMap class
  1458 
  1459   /// This function just returns an \c AndMap class.
  1460   ///
  1461   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
  1462   /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
  1463   /// <tt>m1[x]&&m2[x]</tt>.
  1464   ///
  1465   /// \relates AndMap
  1466   template<typename M1, typename M2>
  1467   inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
  1468     return AndMap<M1, M2>(m1,m2);
  1469   }
  1470 
  1471 
  1472   /// Logical 'or' of two maps
  1473 
  1474   /// This \ref concepts::ReadMap "read-only map" returns the logical
  1475   /// 'or' of the values of the two given maps.
  1476   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1477   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1478   ///
  1479   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1480   /// \code
  1481   ///   OrMap<M1,M2> om(m1,m2);
  1482   /// \endcode
  1483   /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
  1484   ///
  1485   /// The simplest way of using this map is through the orMap()
  1486   /// function.
  1487   ///
  1488   /// \sa AndMap
  1489   /// \sa NotMap, NotWriteMap
  1490   template<typename M1, typename M2>
  1491   class OrMap : public MapBase<typename M1::Key, bool> {
  1492     const M1 &_m1;
  1493     const M2 &_m2;
  1494   public:
  1495     ///\e
  1496     typedef typename M1::Key Key;
  1497     ///\e
  1498     typedef bool Value;
  1499 
  1500     /// Constructor
  1501     OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1502     ///\e
  1503     Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
  1504   };
  1505 
  1506   /// Returns an \c OrMap class
  1507 
  1508   /// This function just returns an \c OrMap class.
  1509   ///
  1510   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
  1511   /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
  1512   /// <tt>m1[x]||m2[x]</tt>.
  1513   ///
  1514   /// \relates OrMap
  1515   template<typename M1, typename M2>
  1516   inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
  1517     return OrMap<M1, M2>(m1,m2);
  1518   }
  1519 
  1520 
  1521   /// Logical 'not' of a map
  1522 
  1523   /// This \ref concepts::ReadMap "read-only map" returns the logical
  1524   /// negation of the values of the given map.
  1525   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
  1526   ///
  1527   /// The simplest way of using this map is through the notMap()
  1528   /// function.
  1529   ///
  1530   /// \sa NotWriteMap
  1531   template <typename M>
  1532   class NotMap : public MapBase<typename M::Key, bool> {
  1533     const M &_m;
  1534   public:
  1535     ///\e
  1536     typedef typename M::Key Key;
  1537     ///\e
  1538     typedef bool Value;
  1539 
  1540     /// Constructor
  1541     NotMap(const M &m) : _m(m) {}
  1542     ///\e
  1543     Value operator[](const Key &k) const { return !_m[k]; }
  1544   };
  1545 
  1546   /// Logical 'not' of a map (read-write version)
  1547 
  1548   /// This \ref concepts::ReadWriteMap "read-write map" returns the
  1549   /// logical negation of the values of the given map.
  1550   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
  1551   /// It makes also possible to write the map. When a value is set,
  1552   /// the opposite value is set to the original map.
  1553   ///
  1554   /// The simplest way of using this map is through the notWriteMap()
  1555   /// function.
  1556   ///
  1557   /// \sa NotMap
  1558   template <typename M>
  1559   class NotWriteMap : public MapBase<typename M::Key, bool> {
  1560     M &_m;
  1561   public:
  1562     ///\e
  1563     typedef typename M::Key Key;
  1564     ///\e
  1565     typedef bool Value;
  1566 
  1567     /// Constructor
  1568     NotWriteMap(M &m) : _m(m) {}
  1569     ///\e
  1570     Value operator[](const Key &k) const { return !_m[k]; }
  1571     ///\e
  1572     void set(const Key &k, bool v) { _m.set(k, !v); }
  1573   };
  1574 
  1575   /// Returns a \c NotMap class
  1576 
  1577   /// This function just returns a \c NotMap class.
  1578   ///
  1579   /// For example, if \c m is a map with \c bool values, then
  1580   /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
  1581   ///
  1582   /// \relates NotMap
  1583   template <typename M>
  1584   inline NotMap<M> notMap(const M &m) {
  1585     return NotMap<M>(m);
  1586   }
  1587 
  1588   /// Returns a \c NotWriteMap class
  1589 
  1590   /// This function just returns a \c NotWriteMap class.
  1591   ///
  1592   /// For example, if \c m is a map with \c bool values, then
  1593   /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
  1594   /// Moreover it makes also possible to write the map.
  1595   ///
  1596   /// \relates NotWriteMap
  1597   template <typename M>
  1598   inline NotWriteMap<M> notWriteMap(M &m) {
  1599     return NotWriteMap<M>(m);
  1600   }
  1601 
  1602 
  1603   /// Combination of two maps using the \c == operator
  1604 
  1605   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
  1606   /// the keys for which the corresponding values of the two maps are
  1607   /// equal.
  1608   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1609   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1610   ///
  1611   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1612   /// \code
  1613   ///   EqualMap<M1,M2> em(m1,m2);
  1614   /// \endcode
  1615   /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
  1616   ///
  1617   /// The simplest way of using this map is through the equalMap()
  1618   /// function.
  1619   ///
  1620   /// \sa LessMap
  1621   template<typename M1, typename M2>
  1622   class EqualMap : public MapBase<typename M1::Key, bool> {
  1623     const M1 &_m1;
  1624     const M2 &_m2;
  1625   public:
  1626     ///\e
  1627     typedef typename M1::Key Key;
  1628     ///\e
  1629     typedef bool Value;
  1630 
  1631     /// Constructor
  1632     EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1633     ///\e
  1634     Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
  1635   };
  1636 
  1637   /// Returns an \c EqualMap class
  1638 
  1639   /// This function just returns an \c EqualMap class.
  1640   ///
  1641   /// For example, if \c m1 and \c m2 are maps with keys and values of
  1642   /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
  1643   /// <tt>m1[x]==m2[x]</tt>.
  1644   ///
  1645   /// \relates EqualMap
  1646   template<typename M1, typename M2>
  1647   inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
  1648     return EqualMap<M1, M2>(m1,m2);
  1649   }
  1650 
  1651 
  1652   /// Combination of two maps using the \c < operator
  1653 
  1654   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
  1655   /// the keys for which the corresponding value of the first map is
  1656   /// less then the value of the second map.
  1657   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1658   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1659   ///
  1660   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1661   /// \code
  1662   ///   LessMap<M1,M2> lm(m1,m2);
  1663   /// \endcode
  1664   /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
  1665   ///
  1666   /// The simplest way of using this map is through the lessMap()
  1667   /// function.
  1668   ///
  1669   /// \sa EqualMap
  1670   template<typename M1, typename M2>
  1671   class LessMap : public MapBase<typename M1::Key, bool> {
  1672     const M1 &_m1;
  1673     const M2 &_m2;
  1674   public:
  1675     ///\e
  1676     typedef typename M1::Key Key;
  1677     ///\e
  1678     typedef bool Value;
  1679 
  1680     /// Constructor
  1681     LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1682     ///\e
  1683     Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
  1684   };
  1685 
  1686   /// Returns an \c LessMap class
  1687 
  1688   /// This function just returns an \c LessMap class.
  1689   ///
  1690   /// For example, if \c m1 and \c m2 are maps with keys and values of
  1691   /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
  1692   /// <tt>m1[x]<m2[x]</tt>.
  1693   ///
  1694   /// \relates LessMap
  1695   template<typename M1, typename M2>
  1696   inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
  1697     return LessMap<M1, M2>(m1,m2);
  1698   }
  1699 
  1700   namespace _maps_bits {
  1701 
  1702     template <typename _Iterator, typename Enable = void>
  1703     struct IteratorTraits {
  1704       typedef typename std::iterator_traits<_Iterator>::value_type Value;
  1705     };
  1706 
  1707     template <typename _Iterator>
  1708     struct IteratorTraits<_Iterator,
  1709       typename exists<typename _Iterator::container_type>::type>
  1710     {
  1711       typedef typename _Iterator::container_type::value_type Value;
  1712     };
  1713 
  1714   }
  1715 
  1716   /// @}
  1717 
  1718   /// \addtogroup maps
  1719   /// @{
  1720 
  1721   /// \brief Writable bool map for logging each \c true assigned element
  1722   ///
  1723   /// A \ref concepts::WriteMap "writable" bool map for logging
  1724   /// each \c true assigned element, i.e it copies subsequently each
  1725   /// keys set to \c true to the given iterator.
  1726   /// The most important usage of it is storing certain nodes or arcs
  1727   /// that were marked \c true by an algorithm.
  1728   ///
  1729   /// There are several algorithms that provide solutions through bool
  1730   /// maps and most of them assign \c true at most once for each key.
  1731   /// In these cases it is a natural request to store each \c true
  1732   /// assigned elements (in order of the assignment), which can be
  1733   /// easily done with LoggerBoolMap.
  1734   ///
  1735   /// The simplest way of using this map is through the loggerBoolMap()
  1736   /// function.
  1737   ///
  1738   /// \tparam IT The type of the iterator.
  1739   /// \tparam KEY The key type of the map. The default value set
  1740   /// according to the iterator type should work in most cases.
  1741   ///
  1742   /// \note The container of the iterator must contain enough space
  1743   /// for the elements or the iterator should be an inserter iterator.
  1744 #ifdef DOXYGEN
  1745   template <typename IT, typename KEY>
  1746 #else
  1747   template <typename IT,
  1748             typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
  1749 #endif
  1750   class LoggerBoolMap : public MapBase<KEY, bool> {
  1751   public:
  1752 
  1753     ///\e
  1754     typedef KEY Key;
  1755     ///\e
  1756     typedef bool Value;
  1757     ///\e
  1758     typedef IT Iterator;
  1759 
  1760     /// Constructor
  1761     LoggerBoolMap(Iterator it)
  1762       : _begin(it), _end(it) {}
  1763 
  1764     /// Gives back the given iterator set for the first key
  1765     Iterator begin() const {
  1766       return _begin;
  1767     }
  1768 
  1769     /// Gives back the the 'after the last' iterator
  1770     Iterator end() const {
  1771       return _end;
  1772     }
  1773 
  1774     /// The set function of the map
  1775     void set(const Key& key, Value value) {
  1776       if (value) {
  1777         *_end++ = key;
  1778       }
  1779     }
  1780 
  1781   private:
  1782     Iterator _begin;
  1783     Iterator _end;
  1784   };
  1785 
  1786   /// Returns a \c LoggerBoolMap class
  1787 
  1788   /// This function just returns a \c LoggerBoolMap class.
  1789   ///
  1790   /// The most important usage of it is storing certain nodes or arcs
  1791   /// that were marked \c true by an algorithm.
  1792   /// For example, it makes easier to store the nodes in the processing
  1793   /// order of Dfs algorithm, as the following examples show.
  1794   /// \code
  1795   ///   std::vector<Node> v;
  1796   ///   dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
  1797   /// \endcode
  1798   /// \code
  1799   ///   std::vector<Node> v(countNodes(g));
  1800   ///   dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
  1801   /// \endcode
  1802   ///
  1803   /// \note The container of the iterator must contain enough space
  1804   /// for the elements or the iterator should be an inserter iterator.
  1805   ///
  1806   /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
  1807   /// it cannot be used when a readable map is needed, for example, as
  1808   /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
  1809   ///
  1810   /// \relates LoggerBoolMap
  1811   template<typename Iterator>
  1812   inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
  1813     return LoggerBoolMap<Iterator>(it);
  1814   }
  1815 
  1816   /// @}
  1817 
  1818   /// \addtogroup graph_maps
  1819   /// @{
  1820 
  1821   /// \brief Provides an immutable and unique id for each item in a graph.
  1822   ///
  1823   /// IdMap provides a unique and immutable id for each item of the
  1824   /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
  1825   ///  - \b unique: different items get different ids,
  1826   ///  - \b immutable: the id of an item does not change (even if you
  1827   ///    delete other nodes).
  1828   ///
  1829   /// Using this map you get access (i.e. can read) the inner id values of
  1830   /// the items stored in the graph, which is returned by the \c id()
  1831   /// function of the graph. This map can be inverted with its member
  1832   /// class \c InverseMap or with the \c operator()() member.
  1833   ///
  1834   /// \tparam GR The graph type.
  1835   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  1836   /// \c GR::Edge).
  1837   ///
  1838   /// \see RangeIdMap
  1839   template <typename GR, typename K>
  1840   class IdMap : public MapBase<K, int> {
  1841   public:
  1842     /// The graph type of IdMap.
  1843     typedef GR Graph;
  1844     typedef GR Digraph;
  1845     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
  1846     typedef K Item;
  1847     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
  1848     typedef K Key;
  1849     /// The value type of IdMap.
  1850     typedef int Value;
  1851 
  1852     /// \brief Constructor.
  1853     ///
  1854     /// Constructor of the map.
  1855     explicit IdMap(const Graph& graph) : _graph(&graph) {}
  1856 
  1857     /// \brief Gives back the \e id of the item.
  1858     ///
  1859     /// Gives back the immutable and unique \e id of the item.
  1860     int operator[](const Item& item) const { return _graph->id(item);}
  1861 
  1862     /// \brief Gives back the \e item by its id.
  1863     ///
  1864     /// Gives back the \e item by its id.
  1865     Item operator()(int id) { return _graph->fromId(id, Item()); }
  1866 
  1867   private:
  1868     const Graph* _graph;
  1869 
  1870   public:
  1871 
  1872     /// \brief The inverse map type of IdMap.
  1873     ///
  1874     /// The inverse map type of IdMap. The subscript operator gives back
  1875     /// an item by its id.
  1876     /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
  1877     /// \see inverse()
  1878     class InverseMap {
  1879     public:
  1880 
  1881       /// \brief Constructor.
  1882       ///
  1883       /// Constructor for creating an id-to-item map.
  1884       explicit InverseMap(const Graph& graph) : _graph(&graph) {}
  1885 
  1886       /// \brief Constructor.
  1887       ///
  1888       /// Constructor for creating an id-to-item map.
  1889       explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
  1890 
  1891       /// \brief Gives back an item by its id.
  1892       ///
  1893       /// Gives back an item by its id.
  1894       Item operator[](int id) const { return _graph->fromId(id, Item());}
  1895 
  1896     private:
  1897       const Graph* _graph;
  1898     };
  1899 
  1900     /// \brief Gives back the inverse of the map.
  1901     ///
  1902     /// Gives back the inverse of the IdMap.
  1903     InverseMap inverse() const { return InverseMap(*_graph);}
  1904   };
  1905 
  1906   /// \brief Returns an \c IdMap class.
  1907   ///
  1908   /// This function just returns an \c IdMap class.
  1909   /// \relates IdMap
  1910   template <typename K, typename GR>
  1911   inline IdMap<GR, K> idMap(const GR& graph) {
  1912     return IdMap<GR, K>(graph);
  1913   }
  1914 
  1915   /// \brief General cross reference graph map type.
  1916 
  1917   /// This class provides simple invertable graph maps.
  1918   /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
  1919   /// and if a key is set to a new value, then stores it in the inverse map.
  1920   /// The graph items can be accessed by their values either using
  1921   /// \c InverseMap or \c operator()(), and the values of the map can be
  1922   /// accessed with an STL compatible forward iterator (\c ValueIt).
  1923   ///
  1924   /// This map is intended to be used when all associated values are
  1925   /// different (the map is actually invertable) or there are only a few
  1926   /// items with the same value.
  1927   /// Otherwise consider to use \c IterableValueMap, which is more
  1928   /// suitable and more efficient for such cases. It provides iterators
  1929   /// to traverse the items with the same associated value, but
  1930   /// it does not have \c InverseMap.
  1931   ///
  1932   /// This type is not reference map, so it cannot be modified with
  1933   /// the subscript operator.
  1934   ///
  1935   /// \tparam GR The graph type.
  1936   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  1937   /// \c GR::Edge).
  1938   /// \tparam V The value type of the map.
  1939   ///
  1940   /// \see IterableValueMap
  1941   template <typename GR, typename K, typename V>
  1942   class CrossRefMap
  1943     : protected ItemSetTraits<GR, K>::template Map<V>::Type {
  1944   private:
  1945 
  1946     typedef typename ItemSetTraits<GR, K>::
  1947       template Map<V>::Type Map;
  1948 
  1949     typedef std::multimap<V, K> Container;
  1950     Container _inv_map;
  1951 
  1952   public:
  1953 
  1954     /// The graph type of CrossRefMap.
  1955     typedef GR Graph;
  1956     typedef GR Digraph;
  1957     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
  1958     typedef K Item;
  1959     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
  1960     typedef K Key;
  1961     /// The value type of CrossRefMap.
  1962     typedef V Value;
  1963 
  1964     /// \brief Constructor.
  1965     ///
  1966     /// Construct a new CrossRefMap for the given graph.
  1967     explicit CrossRefMap(const Graph& graph) : Map(graph) {}
  1968 
  1969     /// \brief Forward iterator for values.
  1970     ///
  1971     /// This iterator is an STL compatible forward
  1972     /// iterator on the values of the map. The values can
  1973     /// be accessed in the <tt>[beginValue, endValue)</tt> range.
  1974     /// They are considered with multiplicity, so each value is
  1975     /// traversed for each item it is assigned to.
  1976     class ValueIt
  1977       : public std::iterator<std::forward_iterator_tag, Value> {
  1978       friend class CrossRefMap;
  1979     private:
  1980       ValueIt(typename Container::const_iterator _it)
  1981         : it(_it) {}
  1982     public:
  1983 
  1984       /// Constructor
  1985       ValueIt() {}
  1986 
  1987       /// \e
  1988       ValueIt& operator++() { ++it; return *this; }
  1989       /// \e
  1990       ValueIt operator++(int) {
  1991         ValueIt tmp(*this);
  1992         operator++();
  1993         return tmp;
  1994       }
  1995 
  1996       /// \e
  1997       const Value& operator*() const { return it->first; }
  1998       /// \e
  1999       const Value* operator->() const { return &(it->first); }
  2000 
  2001       /// \e
  2002       bool operator==(ValueIt jt) const { return it == jt.it; }
  2003       /// \e
  2004       bool operator!=(ValueIt jt) const { return it != jt.it; }
  2005 
  2006     private:
  2007       typename Container::const_iterator it;
  2008     };
  2009 
  2010     /// Alias for \c ValueIt
  2011     typedef ValueIt ValueIterator;
  2012 
  2013     /// \brief Returns an iterator to the first value.
  2014     ///
  2015     /// Returns an STL compatible iterator to the
  2016     /// first value of the map. The values of the
  2017     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
  2018     /// range.
  2019     ValueIt beginValue() const {
  2020       return ValueIt(_inv_map.begin());
  2021     }
  2022 
  2023     /// \brief Returns an iterator after the last value.
  2024     ///
  2025     /// Returns an STL compatible iterator after the
  2026     /// last value of the map. The values of the
  2027     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
  2028     /// range.
  2029     ValueIt endValue() const {
  2030       return ValueIt(_inv_map.end());
  2031     }
  2032 
  2033     /// \brief Sets the value associated with the given key.
  2034     ///
  2035     /// Sets the value associated with the given key.
  2036     void set(const Key& key, const Value& val) {
  2037       Value oldval = Map::operator[](key);
  2038       typename Container::iterator it;
  2039       for (it = _inv_map.equal_range(oldval).first;
  2040            it != _inv_map.equal_range(oldval).second; ++it) {
  2041         if (it->second == key) {
  2042           _inv_map.erase(it);
  2043           break;
  2044         }
  2045       }
  2046       _inv_map.insert(std::make_pair(val, key));
  2047       Map::set(key, val);
  2048     }
  2049 
  2050     /// \brief Returns the value associated with the given key.
  2051     ///
  2052     /// Returns the value associated with the given key.
  2053     typename MapTraits<Map>::ConstReturnValue
  2054     operator[](const Key& key) const {
  2055       return Map::operator[](key);
  2056     }
  2057 
  2058     /// \brief Gives back an item by its value.
  2059     ///
  2060     /// This function gives back an item that is assigned to
  2061     /// the given value or \c INVALID if no such item exists.
  2062     /// If there are more items with the same associated value,
  2063     /// only one of them is returned.
  2064     Key operator()(const Value& val) const {
  2065       typename Container::const_iterator it = _inv_map.find(val);
  2066       return it != _inv_map.end() ? it->second : INVALID;
  2067     }
  2068 
  2069     /// \brief Returns the number of items with the given value.
  2070     ///
  2071     /// This function returns the number of items with the given value
  2072     /// associated with it.
  2073     int count(const Value &val) const {
  2074       return _inv_map.count(val);
  2075     }
  2076 
  2077   protected:
  2078 
  2079     /// \brief Erase the key from the map and the inverse map.
  2080     ///
  2081     /// Erase the key from the map and the inverse map. It is called by the
  2082     /// \c AlterationNotifier.
  2083     virtual void erase(const Key& key) {
  2084       Value val = Map::operator[](key);
  2085       typename Container::iterator it;
  2086       for (it = _inv_map.equal_range(val).first;
  2087            it != _inv_map.equal_range(val).second; ++it) {
  2088         if (it->second == key) {
  2089           _inv_map.erase(it);
  2090           break;
  2091         }
  2092       }
  2093       Map::erase(key);
  2094     }
  2095 
  2096     /// \brief Erase more keys from the map and the inverse map.
  2097     ///
  2098     /// Erase more keys from the map and the inverse map. It is called by the
  2099     /// \c AlterationNotifier.
  2100     virtual void erase(const std::vector<Key>& keys) {
  2101       for (int i = 0; i < int(keys.size()); ++i) {
  2102         Value val = Map::operator[](keys[i]);
  2103         typename Container::iterator it;
  2104         for (it = _inv_map.equal_range(val).first;
  2105              it != _inv_map.equal_range(val).second; ++it) {
  2106           if (it->second == keys[i]) {
  2107             _inv_map.erase(it);
  2108             break;
  2109           }
  2110         }
  2111       }
  2112       Map::erase(keys);
  2113     }
  2114 
  2115     /// \brief Clear the keys from the map and the inverse map.
  2116     ///
  2117     /// Clear the keys from the map and the inverse map. It is called by the
  2118     /// \c AlterationNotifier.
  2119     virtual void clear() {
  2120       _inv_map.clear();
  2121       Map::clear();
  2122     }
  2123 
  2124   public:
  2125 
  2126     /// \brief The inverse map type of CrossRefMap.
  2127     ///
  2128     /// The inverse map type of CrossRefMap. The subscript operator gives
  2129     /// back an item by its value.
  2130     /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
  2131     /// \see inverse()
  2132     class InverseMap {
  2133     public:
  2134       /// \brief Constructor
  2135       ///
  2136       /// Constructor of the InverseMap.
  2137       explicit InverseMap(const CrossRefMap& inverted)
  2138         : _inverted(inverted) {}
  2139 
  2140       /// The value type of the InverseMap.
  2141       typedef typename CrossRefMap::Key Value;
  2142       /// The key type of the InverseMap.
  2143       typedef typename CrossRefMap::Value Key;
  2144 
  2145       /// \brief Subscript operator.
  2146       ///
  2147       /// Subscript operator. It gives back an item
  2148       /// that is assigned to the given value or \c INVALID
  2149       /// if no such item exists.
  2150       Value operator[](const Key& key) const {
  2151         return _inverted(key);
  2152       }
  2153 
  2154     private:
  2155       const CrossRefMap& _inverted;
  2156     };
  2157 
  2158     /// \brief Gives back the inverse of the map.
  2159     ///
  2160     /// Gives back the inverse of the CrossRefMap.
  2161     InverseMap inverse() const {
  2162       return InverseMap(*this);
  2163     }
  2164 
  2165   };
  2166 
  2167   /// \brief Provides continuous and unique id for the
  2168   /// items of a graph.
  2169   ///
  2170   /// RangeIdMap provides a unique and continuous
  2171   /// id for each item of a given type (\c Node, \c Arc or
  2172   /// \c Edge) in a graph. This id is
  2173   ///  - \b unique: different items get different ids,
  2174   ///  - \b continuous: the range of the ids is the set of integers
  2175   ///    between 0 and \c n-1, where \c n is the number of the items of
  2176   ///    this type (\c Node, \c Arc or \c Edge).
  2177   ///  - So, the ids can change when deleting an item of the same type.
  2178   ///
  2179   /// Thus this id is not (necessarily) the same as what can get using
  2180   /// the \c id() function of the graph or \ref IdMap.
  2181   /// This map can be inverted with its member class \c InverseMap,
  2182   /// or with the \c operator()() member.
  2183   ///
  2184   /// \tparam GR The graph type.
  2185   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  2186   /// \c GR::Edge).
  2187   ///
  2188   /// \see IdMap
  2189   template <typename GR, typename K>
  2190   class RangeIdMap
  2191     : protected ItemSetTraits<GR, K>::template Map<int>::Type {
  2192 
  2193     typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
  2194 
  2195   public:
  2196     /// The graph type of RangeIdMap.
  2197     typedef GR Graph;
  2198     typedef GR Digraph;
  2199     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
  2200     typedef K Item;
  2201     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
  2202     typedef K Key;
  2203     /// The value type of RangeIdMap.
  2204     typedef int Value;
  2205 
  2206     /// \brief Constructor.
  2207     ///
  2208     /// Constructor.
  2209     explicit RangeIdMap(const Graph& gr) : Map(gr) {
  2210       Item it;
  2211       const typename Map::Notifier* nf = Map::notifier();
  2212       for (nf->first(it); it != INVALID; nf->next(it)) {
  2213         Map::set(it, _inv_map.size());
  2214         _inv_map.push_back(it);
  2215       }
  2216     }
  2217 
  2218   protected:
  2219 
  2220     /// \brief Adds a new key to the map.
  2221     ///
  2222     /// Add a new key to the map. It is called by the
  2223     /// \c AlterationNotifier.
  2224     virtual void add(const Item& item) {
  2225       Map::add(item);
  2226       Map::set(item, _inv_map.size());
  2227       _inv_map.push_back(item);
  2228     }
  2229 
  2230     /// \brief Add more new keys to the map.
  2231     ///
  2232     /// Add more new keys to the map. It is called by the
  2233     /// \c AlterationNotifier.
  2234     virtual void add(const std::vector<Item>& items) {
  2235       Map::add(items);
  2236       for (int i = 0; i < int(items.size()); ++i) {
  2237         Map::set(items[i], _inv_map.size());
  2238         _inv_map.push_back(items[i]);
  2239       }
  2240     }
  2241 
  2242     /// \brief Erase the key from the map.
  2243     ///
  2244     /// Erase the key from the map. It is called by the
  2245     /// \c AlterationNotifier.
  2246     virtual void erase(const Item& item) {
  2247       Map::set(_inv_map.back(), Map::operator[](item));
  2248       _inv_map[Map::operator[](item)] = _inv_map.back();
  2249       _inv_map.pop_back();
  2250       Map::erase(item);
  2251     }
  2252 
  2253     /// \brief Erase more keys from the map.
  2254     ///
  2255     /// Erase more keys from the map. It is called by the
  2256     /// \c AlterationNotifier.
  2257     virtual void erase(const std::vector<Item>& items) {
  2258       for (int i = 0; i < int(items.size()); ++i) {
  2259         Map::set(_inv_map.back(), Map::operator[](items[i]));
  2260         _inv_map[Map::operator[](items[i])] = _inv_map.back();
  2261         _inv_map.pop_back();
  2262       }
  2263       Map::erase(items);
  2264     }
  2265 
  2266     /// \brief Build the unique map.
  2267     ///
  2268     /// Build the unique map. It is called by the
  2269     /// \c AlterationNotifier.
  2270     virtual void build() {
  2271       Map::build();
  2272       Item it;
  2273       const typename Map::Notifier* nf = Map::notifier();
  2274       for (nf->first(it); it != INVALID; nf->next(it)) {
  2275         Map::set(it, _inv_map.size());
  2276         _inv_map.push_back(it);
  2277       }
  2278     }
  2279 
  2280     /// \brief Clear the keys from the map.
  2281     ///
  2282     /// Clear the keys from the map. It is called by the
  2283     /// \c AlterationNotifier.
  2284     virtual void clear() {
  2285       _inv_map.clear();
  2286       Map::clear();
  2287     }
  2288 
  2289   public:
  2290 
  2291     /// \brief Returns the maximal value plus one.
  2292     ///
  2293     /// Returns the maximal value plus one in the map.
  2294     unsigned int size() const {
  2295       return _inv_map.size();
  2296     }
  2297 
  2298     /// \brief Swaps the position of the two items in the map.
  2299     ///
  2300     /// Swaps the position of the two items in the map.
  2301     void swap(const Item& p, const Item& q) {
  2302       int pi = Map::operator[](p);
  2303       int qi = Map::operator[](q);
  2304       Map::set(p, qi);
  2305       _inv_map[qi] = p;
  2306       Map::set(q, pi);
  2307       _inv_map[pi] = q;
  2308     }
  2309 
  2310     /// \brief Gives back the \e range \e id of the item
  2311     ///
  2312     /// Gives back the \e range \e id of the item.
  2313     int operator[](const Item& item) const {
  2314       return Map::operator[](item);
  2315     }
  2316 
  2317     /// \brief Gives back the item belonging to a \e range \e id
  2318     ///
  2319     /// Gives back the item belonging to the given \e range \e id.
  2320     Item operator()(int id) const {
  2321       return _inv_map[id];
  2322     }
  2323 
  2324   private:
  2325 
  2326     typedef std::vector<Item> Container;
  2327     Container _inv_map;
  2328 
  2329   public:
  2330 
  2331     /// \brief The inverse map type of RangeIdMap.
  2332     ///
  2333     /// The inverse map type of RangeIdMap. The subscript operator gives
  2334     /// back an item by its \e range \e id.
  2335     /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
  2336     class InverseMap {
  2337     public:
  2338       /// \brief Constructor
  2339       ///
  2340       /// Constructor of the InverseMap.
  2341       explicit InverseMap(const RangeIdMap& inverted)
  2342         : _inverted(inverted) {}
  2343 
  2344 
  2345       /// The value type of the InverseMap.
  2346       typedef typename RangeIdMap::Key Value;
  2347       /// The key type of the InverseMap.
  2348       typedef typename RangeIdMap::Value Key;
  2349 
  2350       /// \brief Subscript operator.
  2351       ///
  2352       /// Subscript operator. It gives back the item
  2353       /// that the given \e range \e id currently belongs to.
  2354       Value operator[](const Key& key) const {
  2355         return _inverted(key);
  2356       }
  2357 
  2358       /// \brief Size of the map.
  2359       ///
  2360       /// Returns the size of the map.
  2361       unsigned int size() const {
  2362         return _inverted.size();
  2363       }
  2364 
  2365     private:
  2366       const RangeIdMap& _inverted;
  2367     };
  2368 
  2369     /// \brief Gives back the inverse of the map.
  2370     ///
  2371     /// Gives back the inverse of the RangeIdMap.
  2372     const InverseMap inverse() const {
  2373       return InverseMap(*this);
  2374     }
  2375   };
  2376 
  2377   /// \brief Returns a \c RangeIdMap class.
  2378   ///
  2379   /// This function just returns an \c RangeIdMap class.
  2380   /// \relates RangeIdMap
  2381   template <typename K, typename GR>
  2382   inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
  2383     return RangeIdMap<GR, K>(graph);
  2384   }
  2385 
  2386   /// \brief Dynamic iterable \c bool map.
  2387   ///
  2388   /// This class provides a special graph map type which can store a
  2389   /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
  2390   /// For both \c true and \c false values it is possible to iterate on
  2391   /// the keys mapped to the value.
  2392   ///
  2393   /// This type is a reference map, so it can be modified with the
  2394   /// subscript operator.
  2395   ///
  2396   /// \tparam GR The graph type.
  2397   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  2398   /// \c GR::Edge).
  2399   ///
  2400   /// \see IterableIntMap, IterableValueMap
  2401   /// \see CrossRefMap
  2402   template <typename GR, typename K>
  2403   class IterableBoolMap
  2404     : protected ItemSetTraits<GR, K>::template Map<int>::Type {
  2405   private:
  2406     typedef GR Graph;
  2407 
  2408     typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
  2409     typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
  2410 
  2411     std::vector<K> _array;
  2412     int _sep;
  2413 
  2414   public:
  2415 
  2416     /// Indicates that the map is reference map.
  2417     typedef True ReferenceMapTag;
  2418 
  2419     /// The key type
  2420     typedef K Key;
  2421     /// The value type
  2422     typedef bool Value;
  2423     /// The const reference type.
  2424     typedef const Value& ConstReference;
  2425 
  2426   private:
  2427 
  2428     int position(const Key& key) const {
  2429       return Parent::operator[](key);
  2430     }
  2431 
  2432   public:
  2433 
  2434     /// \brief Reference to the value of the map.
  2435     ///
  2436     /// This class is similar to the \c bool type. It can be converted to
  2437     /// \c bool and it provides the same operators.
  2438     class Reference {
  2439       friend class IterableBoolMap;
  2440     private:
  2441       Reference(IterableBoolMap& map, const Key& key)
  2442         : _key(key), _map(map) {}
  2443     public:
  2444 
  2445       Reference& operator=(const Reference& value) {
  2446         _map.set(_key, static_cast<bool>(value));
  2447          return *this;
  2448       }
  2449 
  2450       operator bool() const {
  2451         return static_cast<const IterableBoolMap&>(_map)[_key];
  2452       }
  2453 
  2454       Reference& operator=(bool value) {
  2455         _map.set(_key, value);
  2456         return *this;
  2457       }
  2458       Reference& operator&=(bool value) {
  2459         _map.set(_key, _map[_key] & value);
  2460         return *this;
  2461       }
  2462       Reference& operator|=(bool value) {
  2463         _map.set(_key, _map[_key] | value);
  2464         return *this;
  2465       }
  2466       Reference& operator^=(bool value) {
  2467         _map.set(_key, _map[_key] ^ value);
  2468         return *this;
  2469       }
  2470     private:
  2471       Key _key;
  2472       IterableBoolMap& _map;
  2473     };
  2474 
  2475     /// \brief Constructor of the map with a default value.
  2476     ///
  2477     /// Constructor of the map with a default value.
  2478     explicit IterableBoolMap(const Graph& graph, bool def = false)
  2479       : Parent(graph) {
  2480       typename Parent::Notifier* nf = Parent::notifier();
  2481       Key it;
  2482       for (nf->first(it); it != INVALID; nf->next(it)) {
  2483         Parent::set(it, _array.size());
  2484         _array.push_back(it);
  2485       }
  2486       _sep = (def ? _array.size() : 0);
  2487     }
  2488 
  2489     /// \brief Const subscript operator of the map.
  2490     ///
  2491     /// Const subscript operator of the map.
  2492     bool operator[](const Key& key) const {
  2493       return position(key) < _sep;
  2494     }
  2495 
  2496     /// \brief Subscript operator of the map.
  2497     ///
  2498     /// Subscript operator of the map.
  2499     Reference operator[](const Key& key) {
  2500       return Reference(*this, key);
  2501     }
  2502 
  2503     /// \brief Set operation of the map.
  2504     ///
  2505     /// Set operation of the map.
  2506     void set(const Key& key, bool value) {
  2507       int pos = position(key);
  2508       if (value) {
  2509         if (pos < _sep) return;
  2510         Key tmp = _array[_sep];
  2511         _array[_sep] = key;
  2512         Parent::set(key, _sep);
  2513         _array[pos] = tmp;
  2514         Parent::set(tmp, pos);
  2515         ++_sep;
  2516       } else {
  2517         if (pos >= _sep) return;
  2518         --_sep;
  2519         Key tmp = _array[_sep];
  2520         _array[_sep] = key;
  2521         Parent::set(key, _sep);
  2522         _array[pos] = tmp;
  2523         Parent::set(tmp, pos);
  2524       }
  2525     }
  2526 
  2527     /// \brief Set all items.
  2528     ///
  2529     /// Set all items in the map.
  2530     /// \note Constant time operation.
  2531     void setAll(bool value) {
  2532       _sep = (value ? _array.size() : 0);
  2533     }
  2534 
  2535     /// \brief Returns the number of the keys mapped to \c true.
  2536     ///
  2537     /// Returns the number of the keys mapped to \c true.
  2538     int trueNum() const {
  2539       return _sep;
  2540     }
  2541 
  2542     /// \brief Returns the number of the keys mapped to \c false.
  2543     ///
  2544     /// Returns the number of the keys mapped to \c false.
  2545     int falseNum() const {
  2546       return _array.size() - _sep;
  2547     }
  2548 
  2549     /// \brief Iterator for the keys mapped to \c true.
  2550     ///
  2551     /// Iterator for the keys mapped to \c true. It works
  2552     /// like a graph item iterator, it can be converted to
  2553     /// the key type of the map, incremented with \c ++ operator, and
  2554     /// if the iterator leaves the last valid key, it will be equal to
  2555     /// \c INVALID.
  2556     class TrueIt : public Key {
  2557     public:
  2558       typedef Key Parent;
  2559 
  2560       /// \brief Creates an iterator.
  2561       ///
  2562       /// Creates an iterator. It iterates on the
  2563       /// keys mapped to \c true.
  2564       /// \param map The IterableBoolMap.
  2565       explicit TrueIt(const IterableBoolMap& map)
  2566         : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
  2567           _map(&map) {}
  2568 
  2569       /// \brief Invalid constructor \& conversion.
  2570       ///
  2571       /// This constructor initializes the iterator to be invalid.
  2572       /// \sa Invalid for more details.
  2573       TrueIt(Invalid) : Parent(INVALID), _map(0) {}
  2574 
  2575       /// \brief Increment operator.
  2576       ///
  2577       /// Increment operator.
  2578       TrueIt& operator++() {
  2579         int pos = _map->position(*this);
  2580         Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
  2581         return *this;
  2582       }
  2583 
  2584     private:
  2585       const IterableBoolMap* _map;
  2586     };
  2587 
  2588     /// \brief STL style iterator for the keys mapped to \c true.
  2589     ///
  2590     /// This is an STL style wrapper for \ref TrueIt.
  2591     /// It can be used in range-based for loops, STL algorithms, etc.
  2592     LemonRangeWrapper1<TrueIt, IterableBoolMap>
  2593     trueKeys() {
  2594       return LemonRangeWrapper1<TrueIt, IterableBoolMap>(*this);
  2595     }
  2596 
  2597 
  2598     /// \brief Iterator for the keys mapped to \c false.
  2599     ///
  2600     /// Iterator for the keys mapped to \c false. It works
  2601     /// like a graph item iterator, it can be converted to
  2602     /// the key type of the map, incremented with \c ++ operator, and
  2603     /// if the iterator leaves the last valid key, it will be equal to
  2604     /// \c INVALID.
  2605     class FalseIt : public Key {
  2606     public:
  2607       typedef Key Parent;
  2608 
  2609       /// \brief Creates an iterator.
  2610       ///
  2611       /// Creates an iterator. It iterates on the
  2612       /// keys mapped to \c false.
  2613       /// \param map The IterableBoolMap.
  2614       explicit FalseIt(const IterableBoolMap& map)
  2615         : Parent(map._sep < int(map._array.size()) ?
  2616                  map._array.back() : INVALID), _map(&map) {}
  2617 
  2618       /// \brief Invalid constructor \& conversion.
  2619       ///
  2620       /// This constructor initializes the iterator to be invalid.
  2621       /// \sa Invalid for more details.
  2622       FalseIt(Invalid) : Parent(INVALID), _map(0) {}
  2623 
  2624       /// \brief Increment operator.
  2625       ///
  2626       /// Increment operator.
  2627       FalseIt& operator++() {
  2628         int pos = _map->position(*this);
  2629         Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
  2630         return *this;
  2631       }
  2632 
  2633     private:
  2634       const IterableBoolMap* _map;
  2635     };
  2636 
  2637     /// \brief STL style iterator for the keys mapped to \c false.
  2638     ///
  2639     /// This is an STL style wrapper for \ref FalseIt.
  2640     /// It can be used in range-based for loops, STL algorithms, etc.
  2641     LemonRangeWrapper1<FalseIt, IterableBoolMap>
  2642     falseKeys() {
  2643       return LemonRangeWrapper1<FalseIt, IterableBoolMap>(*this);
  2644     }
  2645 
  2646 
  2647     /// \brief Iterator for the keys mapped to a given value.
  2648     ///
  2649     /// Iterator for the keys mapped to a given value. It works
  2650     /// like a graph item iterator, it can be converted to
  2651     /// the key type of the map, incremented with \c ++ operator, and
  2652     /// if the iterator leaves the last valid key, it will be equal to
  2653     /// \c INVALID.
  2654     class ItemIt : public Key {
  2655     public:
  2656       typedef Key Parent;
  2657 
  2658       /// \brief Creates an iterator with a value.
  2659       ///
  2660       /// Creates an iterator with a value. It iterates on the
  2661       /// keys mapped to the given value.
  2662       /// \param map The IterableBoolMap.
  2663       /// \param value The value.
  2664       ItemIt(const IterableBoolMap& map, bool value)
  2665         : Parent(value ?
  2666                  (map._sep > 0 ?
  2667                   map._array[map._sep - 1] : INVALID) :
  2668                  (map._sep < int(map._array.size()) ?
  2669                   map._array.back() : INVALID)), _map(&map) {}
  2670 
  2671       /// \brief Invalid constructor \& conversion.
  2672       ///
  2673       /// This constructor initializes the iterator to be invalid.
  2674       /// \sa Invalid for more details.
  2675       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
  2676 
  2677       /// \brief Increment operator.
  2678       ///
  2679       /// Increment operator.
  2680       ItemIt& operator++() {
  2681         int pos = _map->position(*this);
  2682         int _sep = pos >= _map->_sep ? _map->_sep : 0;
  2683         Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
  2684         return *this;
  2685       }
  2686 
  2687     private:
  2688       const IterableBoolMap* _map;
  2689     };
  2690 
  2691     /// \brief STL style iterator for the keys mapped to a given value.
  2692     ///
  2693     /// This is an STL style wrapper for \ref ItemIt.
  2694     /// It can be used in range-based for loops, STL algorithms, etc.
  2695     LemonRangeWrapper2<ItemIt, IterableBoolMap, bool>
  2696     items(bool value) {
  2697       return LemonRangeWrapper2<ItemIt, IterableBoolMap, bool>(*this, value);
  2698     }
  2699 
  2700   protected:
  2701 
  2702     virtual void add(const Key& key) {
  2703       Parent::add(key);
  2704       Parent::set(key, _array.size());
  2705       _array.push_back(key);
  2706     }
  2707 
  2708     virtual void add(const std::vector<Key>& keys) {
  2709       Parent::add(keys);
  2710       for (int i = 0; i < int(keys.size()); ++i) {
  2711         Parent::set(keys[i], _array.size());
  2712         _array.push_back(keys[i]);
  2713       }
  2714     }
  2715 
  2716     virtual void erase(const Key& key) {
  2717       int pos = position(key);
  2718       if (pos < _sep) {
  2719         --_sep;
  2720         Parent::set(_array[_sep], pos);
  2721         _array[pos] = _array[_sep];
  2722         Parent::set(_array.back(), _sep);
  2723         _array[_sep] = _array.back();
  2724         _array.pop_back();
  2725       } else {
  2726         Parent::set(_array.back(), pos);
  2727         _array[pos] = _array.back();
  2728         _array.pop_back();
  2729       }
  2730       Parent::erase(key);
  2731     }
  2732 
  2733     virtual void erase(const std::vector<Key>& keys) {
  2734       for (int i = 0; i < int(keys.size()); ++i) {
  2735         int pos = position(keys[i]);
  2736         if (pos < _sep) {
  2737           --_sep;
  2738           Parent::set(_array[_sep], pos);
  2739           _array[pos] = _array[_sep];
  2740           Parent::set(_array.back(), _sep);
  2741           _array[_sep] = _array.back();
  2742           _array.pop_back();
  2743         } else {
  2744           Parent::set(_array.back(), pos);
  2745           _array[pos] = _array.back();
  2746           _array.pop_back();
  2747         }
  2748       }
  2749       Parent::erase(keys);
  2750     }
  2751 
  2752     virtual void build() {
  2753       Parent::build();
  2754       typename Parent::Notifier* nf = Parent::notifier();
  2755       Key it;
  2756       for (nf->first(it); it != INVALID; nf->next(it)) {
  2757         Parent::set(it, _array.size());
  2758         _array.push_back(it);
  2759       }
  2760       _sep = 0;
  2761     }
  2762 
  2763     virtual void clear() {
  2764       _array.clear();
  2765       _sep = 0;
  2766       Parent::clear();
  2767     }
  2768 
  2769   };
  2770 
  2771 
  2772   namespace _maps_bits {
  2773     template <typename Item>
  2774     struct IterableIntMapNode {
  2775       IterableIntMapNode() : value(-1) {}
  2776       IterableIntMapNode(int _value) : value(_value) {}
  2777       Item prev, next;
  2778       int value;
  2779     };
  2780   }
  2781 
  2782   /// \brief Dynamic iterable integer map.
  2783   ///
  2784   /// This class provides a special graph map type which can store an
  2785   /// integer value for graph items (\c Node, \c Arc or \c Edge).
  2786   /// For each non-negative value it is possible to iterate on the keys
  2787   /// mapped to the value.
  2788   ///
  2789   /// This map is intended to be used with small integer values, for which
  2790   /// it is efficient, and supports iteration only for non-negative values.
  2791   /// If you need large values and/or iteration for negative integers,
  2792   /// consider to use \ref IterableValueMap instead.
  2793   ///
  2794   /// This type is a reference map, so it can be modified with the
  2795   /// subscript operator.
  2796   ///
  2797   /// \note The size of the data structure depends on the largest
  2798   /// value in the map.
  2799   ///
  2800   /// \tparam GR The graph type.
  2801   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  2802   /// \c GR::Edge).
  2803   ///
  2804   /// \see IterableBoolMap, IterableValueMap
  2805   /// \see CrossRefMap
  2806   template <typename GR, typename K>
  2807   class IterableIntMap
  2808     : protected ItemSetTraits<GR, K>::
  2809         template Map<_maps_bits::IterableIntMapNode<K> >::Type {
  2810   public:
  2811     typedef typename ItemSetTraits<GR, K>::
  2812       template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
  2813 
  2814     /// The key type
  2815     typedef K Key;
  2816     /// The value type
  2817     typedef int Value;
  2818     /// The graph type
  2819     typedef GR Graph;
  2820 
  2821     /// \brief Constructor of the map.
  2822     ///
  2823     /// Constructor of the map. It sets all values to -1.
  2824     explicit IterableIntMap(const Graph& graph)
  2825       : Parent(graph) {}
  2826 
  2827     /// \brief Constructor of the map with a given value.
  2828     ///
  2829     /// Constructor of the map with a given value.
  2830     explicit IterableIntMap(const Graph& graph, int value)
  2831       : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
  2832       if (value >= 0) {
  2833         for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
  2834           lace(it);
  2835         }
  2836       }
  2837     }
  2838 
  2839   private:
  2840 
  2841     void unlace(const Key& key) {
  2842       typename Parent::Value& node = Parent::operator[](key);
  2843       if (node.value < 0) return;
  2844       if (node.prev != INVALID) {
  2845         Parent::operator[](node.prev).next = node.next;
  2846       } else {
  2847         _first[node.value] = node.next;
  2848       }
  2849       if (node.next != INVALID) {
  2850         Parent::operator[](node.next).prev = node.prev;
  2851       }
  2852       while (!_first.empty() && _first.back() == INVALID) {
  2853         _first.pop_back();
  2854       }
  2855     }
  2856 
  2857     void lace(const Key& key) {
  2858       typename Parent::Value& node = Parent::operator[](key);
  2859       if (node.value < 0) return;
  2860       if (node.value >= int(_first.size())) {
  2861         _first.resize(node.value + 1, INVALID);
  2862       }
  2863       node.prev = INVALID;
  2864       node.next = _first[node.value];
  2865       if (node.next != INVALID) {
  2866         Parent::operator[](node.next).prev = key;
  2867       }
  2868       _first[node.value] = key;
  2869     }
  2870 
  2871   public:
  2872 
  2873     /// Indicates that the map is reference map.
  2874     typedef True ReferenceMapTag;
  2875 
  2876     /// \brief Reference to the value of the map.
  2877     ///
  2878     /// This class is similar to the \c int type. It can
  2879     /// be converted to \c int and it has the same operators.
  2880     class Reference {
  2881       friend class IterableIntMap;
  2882     private:
  2883       Reference(IterableIntMap& map, const Key& key)
  2884         : _key(key), _map(map) {}
  2885     public:
  2886 
  2887       Reference& operator=(const Reference& value) {
  2888         _map.set(_key, static_cast<const int&>(value));
  2889          return *this;
  2890       }
  2891 
  2892       operator const int&() const {
  2893         return static_cast<const IterableIntMap&>(_map)[_key];
  2894       }
  2895 
  2896       Reference& operator=(int value) {
  2897         _map.set(_key, value);
  2898         return *this;
  2899       }
  2900       Reference& operator++() {
  2901         _map.set(_key, _map[_key] + 1);
  2902         return *this;
  2903       }
  2904       int operator++(int) {
  2905         int value = _map[_key];
  2906         _map.set(_key, value + 1);
  2907         return value;
  2908       }
  2909       Reference& operator--() {
  2910         _map.set(_key, _map[_key] - 1);
  2911         return *this;
  2912       }
  2913       int operator--(int) {
  2914         int value = _map[_key];
  2915         _map.set(_key, value - 1);
  2916         return value;
  2917       }
  2918       Reference& operator+=(int value) {
  2919         _map.set(_key, _map[_key] + value);
  2920         return *this;
  2921       }
  2922       Reference& operator-=(int value) {
  2923         _map.set(_key, _map[_key] - value);
  2924         return *this;
  2925       }
  2926       Reference& operator*=(int value) {
  2927         _map.set(_key, _map[_key] * value);
  2928         return *this;
  2929       }
  2930       Reference& operator/=(int value) {
  2931         _map.set(_key, _map[_key] / value);
  2932         return *this;
  2933       }
  2934       Reference& operator%=(int value) {
  2935         _map.set(_key, _map[_key] % value);
  2936         return *this;
  2937       }
  2938       Reference& operator&=(int value) {
  2939         _map.set(_key, _map[_key] & value);
  2940         return *this;
  2941       }
  2942       Reference& operator|=(int value) {
  2943         _map.set(_key, _map[_key] | value);
  2944         return *this;
  2945       }
  2946       Reference& operator^=(int value) {
  2947         _map.set(_key, _map[_key] ^ value);
  2948         return *this;
  2949       }
  2950       Reference& operator<<=(int value) {
  2951         _map.set(_key, _map[_key] << value);
  2952         return *this;
  2953       }
  2954       Reference& operator>>=(int value) {
  2955         _map.set(_key, _map[_key] >> value);
  2956         return *this;
  2957       }
  2958 
  2959     private:
  2960       Key _key;
  2961       IterableIntMap& _map;
  2962     };
  2963 
  2964     /// The const reference type.
  2965     typedef const Value& ConstReference;
  2966 
  2967     /// \brief Gives back the maximal value plus one.
  2968     ///
  2969     /// Gives back the maximal value plus one.
  2970     int size() const {
  2971       return _first.size();
  2972     }
  2973 
  2974     /// \brief Set operation of the map.
  2975     ///
  2976     /// Set operation of the map.
  2977     void set(const Key& key, const Value& value) {
  2978       unlace(key);
  2979       Parent::operator[](key).value = value;
  2980       lace(key);
  2981     }
  2982 
  2983     /// \brief Const subscript operator of the map.
  2984     ///
  2985     /// Const subscript operator of the map.
  2986     const Value& operator[](const Key& key) const {
  2987       return Parent::operator[](key).value;
  2988     }
  2989 
  2990     /// \brief Subscript operator of the map.
  2991     ///
  2992     /// Subscript operator of the map.
  2993     Reference operator[](const Key& key) {
  2994       return Reference(*this, key);
  2995     }
  2996 
  2997     /// \brief Iterator for the keys with the same value.
  2998     ///
  2999     /// Iterator for the keys with the same value. It works
  3000     /// like a graph item iterator, it can be converted to
  3001     /// the item type of the map, incremented with \c ++ operator, and
  3002     /// if the iterator leaves the last valid item, it will be equal to
  3003     /// \c INVALID.
  3004     class ItemIt : public Key {
  3005     public:
  3006       typedef Key Parent;
  3007 
  3008       /// \brief Invalid constructor \& conversion.
  3009       ///
  3010       /// This constructor initializes the iterator to be invalid.
  3011       /// \sa Invalid for more details.
  3012       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
  3013 
  3014       /// \brief Creates an iterator with a value.
  3015       ///
  3016       /// Creates an iterator with a value. It iterates on the
  3017       /// keys mapped to the given value.
  3018       /// \param map The IterableIntMap.
  3019       /// \param value The value.
  3020       ItemIt(const IterableIntMap& map, int value) : _map(&map) {
  3021         if (value < 0 || value >= int(_map->_first.size())) {
  3022           Parent::operator=(INVALID);
  3023         } else {
  3024           Parent::operator=(_map->_first[value]);
  3025         }
  3026       }
  3027 
  3028       /// \brief Increment operator.
  3029       ///
  3030       /// Increment operator.
  3031       ItemIt& operator++() {
  3032         Parent::operator=(_map->IterableIntMap::Parent::
  3033                           operator[](static_cast<Parent&>(*this)).next);
  3034         return *this;
  3035       }
  3036 
  3037     private:
  3038       const IterableIntMap* _map;
  3039     };
  3040 
  3041     /// \brief STL style iterator for the keys with the same value.
  3042     ///
  3043     /// This is an STL style wrapper for \ref ItemIt.
  3044     /// It can be used in range-based for loops, STL algorithms, etc.
  3045     LemonRangeWrapper2<ItemIt, IterableIntMap, int>
  3046     items(int value) {
  3047       return LemonRangeWrapper2<ItemIt, IterableIntMap, int>(*this, value);
  3048     }
  3049 
  3050 
  3051   protected:
  3052 
  3053     virtual void erase(const Key& key) {
  3054       unlace(key);
  3055       Parent::erase(key);
  3056     }
  3057 
  3058     virtual void erase(const std::vector<Key>& keys) {
  3059       for (int i = 0; i < int(keys.size()); ++i) {
  3060         unlace(keys[i]);
  3061       }
  3062       Parent::erase(keys);
  3063     }
  3064 
  3065     virtual void clear() {
  3066       _first.clear();
  3067       Parent::clear();
  3068     }
  3069 
  3070   private:
  3071     std::vector<Key> _first;
  3072   };
  3073 
  3074   namespace _maps_bits {
  3075     template <typename Item, typename Value>
  3076     struct IterableValueMapNode {
  3077       IterableValueMapNode(Value _value = Value()) : value(_value) {}
  3078       Item prev, next;
  3079       Value value;
  3080     };
  3081   }
  3082 
  3083   /// \brief Dynamic iterable map for comparable values.
  3084   ///
  3085   /// This class provides a special graph map type which can store a
  3086   /// comparable value for graph items (\c Node, \c Arc or \c Edge).
  3087   /// For each value it is possible to iterate on the keys mapped to
  3088   /// the value (\c ItemIt), and the values of the map can be accessed
  3089   /// with an STL compatible forward iterator (\c ValueIt).
  3090   /// The map stores a linked list for each value, which contains
  3091   /// the items mapped to the value, and the used values are stored
  3092   /// in balanced binary tree (\c std::map).
  3093   ///
  3094   /// \ref IterableBoolMap and \ref IterableIntMap are similar classes
  3095   /// specialized for \c bool and \c int values, respectively.
  3096   ///
  3097   /// This type is not reference map, so it cannot be modified with
  3098   /// the subscript operator.
  3099   ///
  3100   /// \tparam GR The graph type.
  3101   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  3102   /// \c GR::Edge).
  3103   /// \tparam V The value type of the map. It can be any comparable
  3104   /// value type.
  3105   ///
  3106   /// \see IterableBoolMap, IterableIntMap
  3107   /// \see CrossRefMap
  3108   template <typename GR, typename K, typename V>
  3109   class IterableValueMap
  3110     : protected ItemSetTraits<GR, K>::
  3111         template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
  3112   public:
  3113     typedef typename ItemSetTraits<GR, K>::
  3114       template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
  3115 
  3116     /// The key type
  3117     typedef K Key;
  3118     /// The value type
  3119     typedef V Value;
  3120     /// The graph type
  3121     typedef GR Graph;
  3122 
  3123   public:
  3124 
  3125     /// \brief Constructor of the map with a given value.
  3126     ///
  3127     /// Constructor of the map with a given value.
  3128     explicit IterableValueMap(const Graph& graph,
  3129                               const Value& value = Value())
  3130       : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
  3131       for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
  3132         lace(it);
  3133       }
  3134     }
  3135 
  3136   protected:
  3137 
  3138     void unlace(const Key& key) {
  3139       typename Parent::Value& node = Parent::operator[](key);
  3140       if (node.prev != INVALID) {
  3141         Parent::operator[](node.prev).next = node.next;
  3142       } else {
  3143         if (node.next != INVALID) {
  3144           _first[node.value] = node.next;
  3145         } else {
  3146           _first.erase(node.value);
  3147         }
  3148       }
  3149       if (node.next != INVALID) {
  3150         Parent::operator[](node.next).prev = node.prev;
  3151       }
  3152     }
  3153 
  3154     void lace(const Key& key) {
  3155       typename Parent::Value& node = Parent::operator[](key);
  3156       typename std::map<Value, Key>::iterator it = _first.find(node.value);
  3157       if (it == _first.end()) {
  3158         node.prev = node.next = INVALID;
  3159         _first.insert(std::make_pair(node.value, key));
  3160       } else {
  3161         node.prev = INVALID;
  3162         node.next = it->second;
  3163         if (node.next != INVALID) {
  3164           Parent::operator[](node.next).prev = key;
  3165         }
  3166         it->second = key;
  3167       }
  3168     }
  3169 
  3170   public:
  3171 
  3172     /// \brief Forward iterator for values.
  3173     ///
  3174     /// This iterator is an STL compatible forward
  3175     /// iterator on the values of the map. The values can
  3176     /// be accessed in the <tt>[beginValue, endValue)</tt> range.
  3177     class ValueIt
  3178       : public std::iterator<std::forward_iterator_tag, Value> {
  3179       friend class IterableValueMap;
  3180     private:
  3181       ValueIt(typename std::map<Value, Key>::const_iterator _it)
  3182         : it(_it) {}
  3183     public:
  3184 
  3185       /// Constructor
  3186       ValueIt() {}
  3187 
  3188       /// \e
  3189       ValueIt& operator++() { ++it; return *this; }
  3190       /// \e
  3191       ValueIt operator++(int) {
  3192         ValueIt tmp(*this);
  3193         operator++();
  3194         return tmp;
  3195       }
  3196 
  3197       /// \e
  3198       const Value& operator*() const { return it->first; }
  3199       /// \e
  3200       const Value* operator->() const { return &(it->first); }
  3201 
  3202       /// \e
  3203       bool operator==(ValueIt jt) const { return it == jt.it; }
  3204       /// \e
  3205       bool operator!=(ValueIt jt) const { return it != jt.it; }
  3206 
  3207     private:
  3208       typename std::map<Value, Key>::const_iterator it;
  3209     };
  3210 
  3211     /// \brief Returns an iterator to the first value.
  3212     ///
  3213     /// Returns an STL compatible iterator to the
  3214     /// first value of the map. The values of the
  3215     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
  3216     /// range.
  3217     ValueIt beginValue() const {
  3218       return ValueIt(_first.begin());
  3219     }
  3220 
  3221     /// \brief Returns an iterator after the last value.
  3222     ///
  3223     /// Returns an STL compatible iterator after the
  3224     /// last value of the map. The values of the
  3225     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
  3226     /// range.
  3227     ValueIt endValue() const {
  3228       return ValueIt(_first.end());
  3229     }
  3230 
  3231     /// \brief Set operation of the map.
  3232     ///
  3233     /// Set operation of the map.
  3234     void set(const Key& key, const Value& value) {
  3235       unlace(key);
  3236       Parent::operator[](key).value = value;
  3237       lace(key);
  3238     }
  3239 
  3240     /// \brief Const subscript operator of the map.
  3241     ///
  3242     /// Const subscript operator of the map.
  3243     const Value& operator[](const Key& key) const {
  3244       return Parent::operator[](key).value;
  3245     }
  3246 
  3247     /// \brief Iterator for the keys with the same value.
  3248     ///
  3249     /// Iterator for the keys with the same value. It works
  3250     /// like a graph item iterator, it can be converted to
  3251     /// the item type of the map, incremented with \c ++ operator, and
  3252     /// if the iterator leaves the last valid item, it will be equal to
  3253     /// \c INVALID.
  3254     class ItemIt : public Key {
  3255     public:
  3256       typedef Key Parent;
  3257 
  3258       /// \brief Invalid constructor \& conversion.
  3259       ///
  3260       /// This constructor initializes the iterator to be invalid.
  3261       /// \sa Invalid for more details.
  3262       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
  3263 
  3264       /// \brief Creates an iterator with a value.
  3265       ///
  3266       /// Creates an iterator with a value. It iterates on the
  3267       /// keys which have the given value.
  3268       /// \param map The IterableValueMap
  3269       /// \param value The value
  3270       ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
  3271         typename std::map<Value, Key>::const_iterator it =
  3272           map._first.find(value);
  3273         if (it == map._first.end()) {
  3274           Parent::operator=(INVALID);
  3275         } else {
  3276           Parent::operator=(it->second);
  3277         }
  3278       }
  3279 
  3280       /// \brief Increment operator.
  3281       ///
  3282       /// Increment Operator.
  3283       ItemIt& operator++() {
  3284         Parent::operator=(_map->IterableValueMap::Parent::
  3285                           operator[](static_cast<Parent&>(*this)).next);
  3286         return *this;
  3287       }
  3288 
  3289 
  3290     private:
  3291       const IterableValueMap* _map;
  3292     };
  3293 
  3294     /// \brief STL style iterator for the keys with the same value.
  3295     ///
  3296     /// This is an STL style wrapper for \ref ItemIt.
  3297     /// It can be used in range-based for loops, STL algorithms, etc.
  3298     LemonRangeWrapper2<ItemIt, IterableValueMap, V>
  3299     items(const V& value) {
  3300       return LemonRangeWrapper2<ItemIt, IterableValueMap, V>(*this, value);
  3301     }
  3302 
  3303 
  3304   protected:
  3305 
  3306     virtual void add(const Key& key) {
  3307       Parent::add(key);
  3308       lace(key);
  3309     }
  3310 
  3311     virtual void add(const std::vector<Key>& keys) {
  3312       Parent::add(keys);
  3313       for (int i = 0; i < int(keys.size()); ++i) {
  3314         lace(keys[i]);
  3315       }
  3316     }
  3317 
  3318     virtual void erase(const Key& key) {
  3319       unlace(key);
  3320       Parent::erase(key);
  3321     }
  3322 
  3323     virtual void erase(const std::vector<Key>& keys) {
  3324       for (int i = 0; i < int(keys.size()); ++i) {
  3325         unlace(keys[i]);
  3326       }
  3327       Parent::erase(keys);
  3328     }
  3329 
  3330     virtual void build() {
  3331       Parent::build();
  3332       for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
  3333         lace(it);
  3334       }
  3335     }
  3336 
  3337     virtual void clear() {
  3338       _first.clear();
  3339       Parent::clear();
  3340     }
  3341 
  3342   private:
  3343     std::map<Value, Key> _first;
  3344   };
  3345 
  3346   /// \brief Map of the source nodes of arcs in a digraph.
  3347   ///
  3348   /// SourceMap provides access for the source node of each arc in a digraph,
  3349   /// which is returned by the \c source() function of the digraph.
  3350   /// \tparam GR The digraph type.
  3351   /// \see TargetMap
  3352   template <typename GR>
  3353   class SourceMap {
  3354   public:
  3355 
  3356     /// The key type (the \c Arc type of the digraph).
  3357     typedef typename GR::Arc Key;
  3358     /// The value type (the \c Node type of the digraph).
  3359     typedef typename GR::Node Value;
  3360 
  3361     /// \brief Constructor
  3362     ///
  3363     /// Constructor.
  3364     /// \param digraph The digraph that the map belongs to.
  3365     explicit SourceMap(const GR& digraph) : _graph(digraph) {}
  3366 
  3367     /// \brief Returns the source node of the given arc.
  3368     ///
  3369     /// Returns the source node of the given arc.
  3370     Value operator[](const Key& arc) const {
  3371       return _graph.source(arc);
  3372     }
  3373 
  3374   private:
  3375     const GR& _graph;
  3376   };
  3377 
  3378   /// \brief Returns a \c SourceMap class.
  3379   ///
  3380   /// This function just returns an \c SourceMap class.
  3381   /// \relates SourceMap
  3382   template <typename GR>
  3383   inline SourceMap<GR> sourceMap(const GR& graph) {
  3384     return SourceMap<GR>(graph);
  3385   }
  3386 
  3387   /// \brief Map of the target nodes of arcs in a digraph.
  3388   ///
  3389   /// TargetMap provides access for the target node of each arc in a digraph,
  3390   /// which is returned by the \c target() function of the digraph.
  3391   /// \tparam GR The digraph type.
  3392   /// \see SourceMap
  3393   template <typename GR>
  3394   class TargetMap {
  3395   public:
  3396 
  3397     /// The key type (the \c Arc type of the digraph).
  3398     typedef typename GR::Arc Key;
  3399     /// The value type (the \c Node type of the digraph).
  3400     typedef typename GR::Node Value;
  3401 
  3402     /// \brief Constructor
  3403     ///
  3404     /// Constructor.
  3405     /// \param digraph The digraph that the map belongs to.
  3406     explicit TargetMap(const GR& digraph) : _graph(digraph) {}
  3407 
  3408     /// \brief Returns the target node of the given arc.
  3409     ///
  3410     /// Returns the target node of the given arc.
  3411     Value operator[](const Key& e) const {
  3412       return _graph.target(e);
  3413     }
  3414 
  3415   private:
  3416     const GR& _graph;
  3417   };
  3418 
  3419   /// \brief Returns a \c TargetMap class.
  3420   ///
  3421   /// This function just returns a \c TargetMap class.
  3422   /// \relates TargetMap
  3423   template <typename GR>
  3424   inline TargetMap<GR> targetMap(const GR& graph) {
  3425     return TargetMap<GR>(graph);
  3426   }
  3427 
  3428   /// \brief Map of the "forward" directed arc view of edges in a graph.
  3429   ///
  3430   /// ForwardMap provides access for the "forward" directed arc view of
  3431   /// each edge in a graph, which is returned by the \c direct() function
  3432   /// of the graph with \c true parameter.
  3433   /// \tparam GR The graph type.
  3434   /// \see BackwardMap
  3435   template <typename GR>
  3436   class ForwardMap {
  3437   public:
  3438 
  3439     /// The key type (the \c Edge type of the digraph).
  3440     typedef typename GR::Edge Key;
  3441     /// The value type (the \c Arc type of the digraph).
  3442     typedef typename GR::Arc Value;
  3443 
  3444     /// \brief Constructor
  3445     ///
  3446     /// Constructor.
  3447     /// \param graph The graph that the map belongs to.
  3448     explicit ForwardMap(const GR& graph) : _graph(graph) {}
  3449 
  3450     /// \brief Returns the "forward" directed arc view of the given edge.
  3451     ///
  3452     /// Returns the "forward" directed arc view of the given edge.
  3453     Value operator[](const Key& key) const {
  3454       return _graph.direct(key, true);
  3455     }
  3456 
  3457   private:
  3458     const GR& _graph;
  3459   };
  3460 
  3461   /// \brief Returns a \c ForwardMap class.
  3462   ///
  3463   /// This function just returns an \c ForwardMap class.
  3464   /// \relates ForwardMap
  3465   template <typename GR>
  3466   inline ForwardMap<GR> forwardMap(const GR& graph) {
  3467     return ForwardMap<GR>(graph);
  3468   }
  3469 
  3470   /// \brief Map of the "backward" directed arc view of edges in a graph.
  3471   ///
  3472   /// BackwardMap provides access for the "backward" directed arc view of
  3473   /// each edge in a graph, which is returned by the \c direct() function
  3474   /// of the graph with \c false parameter.
  3475   /// \tparam GR The graph type.
  3476   /// \see ForwardMap
  3477   template <typename GR>
  3478   class BackwardMap {
  3479   public:
  3480 
  3481     /// The key type (the \c Edge type of the digraph).
  3482     typedef typename GR::Edge Key;
  3483     /// The value type (the \c Arc type of the digraph).
  3484     typedef typename GR::Arc Value;
  3485 
  3486     /// \brief Constructor
  3487     ///
  3488     /// Constructor.
  3489     /// \param graph The graph that the map belongs to.
  3490     explicit BackwardMap(const GR& graph) : _graph(graph) {}
  3491 
  3492     /// \brief Returns the "backward" directed arc view of the given edge.
  3493     ///
  3494     /// Returns the "backward" directed arc view of the given edge.
  3495     Value operator[](const Key& key) const {
  3496       return _graph.direct(key, false);
  3497     }
  3498 
  3499   private:
  3500     const GR& _graph;
  3501   };
  3502 
  3503   /// \brief Returns a \c BackwardMap class
  3504 
  3505   /// This function just returns a \c BackwardMap class.
  3506   /// \relates BackwardMap
  3507   template <typename GR>
  3508   inline BackwardMap<GR> backwardMap(const GR& graph) {
  3509     return BackwardMap<GR>(graph);
  3510   }
  3511 
  3512   /// \brief Map of the in-degrees of nodes in a digraph.
  3513   ///
  3514   /// This map returns the in-degree of a node. Once it is constructed,
  3515   /// the degrees are stored in a standard \c NodeMap, so each query is done
  3516   /// in constant time. On the other hand, the values are updated automatically
  3517   /// whenever the digraph changes.
  3518   ///
  3519   /// \warning Besides \c addNode() and \c addArc(), a digraph structure
  3520   /// may provide alternative ways to modify the digraph.
  3521   /// The correct behavior of InDegMap is not guarantied if these additional
  3522   /// features are used. For example, the functions
  3523   /// \ref ListDigraph::changeSource() "changeSource()",
  3524   /// \ref ListDigraph::changeTarget() "changeTarget()" and
  3525   /// \ref ListDigraph::reverseArc() "reverseArc()"
  3526   /// of \ref ListDigraph will \e not update the degree values correctly.
  3527   ///
  3528   /// \sa OutDegMap
  3529   template <typename GR>
  3530   class InDegMap
  3531     : protected ItemSetTraits<GR, typename GR::Arc>
  3532       ::ItemNotifier::ObserverBase {
  3533 
  3534   public:
  3535 
  3536     /// The graph type of InDegMap
  3537     typedef GR Graph;
  3538     typedef GR Digraph;
  3539     /// The key type
  3540     typedef typename Digraph::Node Key;
  3541     /// The value type
  3542     typedef int Value;
  3543 
  3544     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
  3545     ::ItemNotifier::ObserverBase Parent;
  3546 
  3547   private:
  3548 
  3549     class AutoNodeMap
  3550       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
  3551     public:
  3552 
  3553       typedef typename ItemSetTraits<Digraph, Key>::
  3554       template Map<int>::Type Parent;
  3555 
  3556       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
  3557 
  3558       virtual void add(const Key& key) {
  3559         Parent::add(key);
  3560         Parent::set(key, 0);
  3561       }
  3562 
  3563       virtual void add(const std::vector<Key>& keys) {
  3564         Parent::add(keys);
  3565         for (int i = 0; i < int(keys.size()); ++i) {
  3566           Parent::set(keys[i], 0);
  3567         }
  3568       }
  3569 
  3570       virtual void build() {
  3571         Parent::build();
  3572         Key it;
  3573         typename Parent::Notifier* nf = Parent::notifier();
  3574         for (nf->first(it); it != INVALID; nf->next(it)) {
  3575           Parent::set(it, 0);
  3576         }
  3577       }
  3578     };
  3579 
  3580   public:
  3581 
  3582     /// \brief Constructor.
  3583     ///
  3584     /// Constructor for creating an in-degree map.
  3585     explicit InDegMap(const Digraph& graph)
  3586       : _digraph(graph), _deg(graph) {
  3587       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
  3588 
  3589       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3590         _deg[it] = countInArcs(_digraph, it);
  3591       }
  3592     }
  3593 
  3594     /// \brief Gives back the in-degree of a Node.
  3595     ///
  3596     /// Gives back the in-degree of a Node.
  3597     int operator[](const Key& key) const {
  3598       return _deg[key];
  3599     }
  3600 
  3601   protected:
  3602 
  3603     typedef typename Digraph::Arc Arc;
  3604 
  3605     virtual void add(const Arc& arc) {
  3606       ++_deg[_digraph.target(arc)];
  3607     }
  3608 
  3609     virtual void add(const std::vector<Arc>& arcs) {
  3610       for (int i = 0; i < int(arcs.size()); ++i) {
  3611         ++_deg[_digraph.target(arcs[i])];
  3612       }
  3613     }
  3614 
  3615     virtual void erase(const Arc& arc) {
  3616       --_deg[_digraph.target(arc)];
  3617     }
  3618 
  3619     virtual void erase(const std::vector<Arc>& arcs) {
  3620       for (int i = 0; i < int(arcs.size()); ++i) {
  3621         --_deg[_digraph.target(arcs[i])];
  3622       }
  3623     }
  3624 
  3625     virtual void build() {
  3626       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3627         _deg[it] = countInArcs(_digraph, it);
  3628       }
  3629     }
  3630 
  3631     virtual void clear() {
  3632       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3633         _deg[it] = 0;
  3634       }
  3635     }
  3636   private:
  3637 
  3638     const Digraph& _digraph;
  3639     AutoNodeMap _deg;
  3640   };
  3641 
  3642   /// \brief Map of the out-degrees of nodes in a digraph.
  3643   ///
  3644   /// This map returns the out-degree of a node. Once it is constructed,
  3645   /// the degrees are stored in a standard \c NodeMap, so each query is done
  3646   /// in constant time. On the other hand, the values are updated automatically
  3647   /// whenever the digraph changes.
  3648   ///
  3649   /// \warning Besides \c addNode() and \c addArc(), a digraph structure
  3650   /// may provide alternative ways to modify the digraph.
  3651   /// The correct behavior of OutDegMap is not guarantied if these additional
  3652   /// features are used. For example, the functions
  3653   /// \ref ListDigraph::changeSource() "changeSource()",
  3654   /// \ref ListDigraph::changeTarget() "changeTarget()" and
  3655   /// \ref ListDigraph::reverseArc() "reverseArc()"
  3656   /// of \ref ListDigraph will \e not update the degree values correctly.
  3657   ///
  3658   /// \sa InDegMap
  3659   template <typename GR>
  3660   class OutDegMap
  3661     : protected ItemSetTraits<GR, typename GR::Arc>
  3662       ::ItemNotifier::ObserverBase {
  3663 
  3664   public:
  3665 
  3666     /// The graph type of OutDegMap
  3667     typedef GR Graph;
  3668     typedef GR Digraph;
  3669     /// The key type
  3670     typedef typename Digraph::Node Key;
  3671     /// The value type
  3672     typedef int Value;
  3673 
  3674     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
  3675     ::ItemNotifier::ObserverBase Parent;
  3676 
  3677   private:
  3678 
  3679     class AutoNodeMap
  3680       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
  3681     public:
  3682 
  3683       typedef typename ItemSetTraits<Digraph, Key>::
  3684       template Map<int>::Type Parent;
  3685 
  3686       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
  3687 
  3688       virtual void add(const Key& key) {
  3689         Parent::add(key);
  3690         Parent::set(key, 0);
  3691       }
  3692       virtual void add(const std::vector<Key>& keys) {
  3693         Parent::add(keys);
  3694         for (int i = 0; i < int(keys.size()); ++i) {
  3695           Parent::set(keys[i], 0);
  3696         }
  3697       }
  3698       virtual void build() {
  3699         Parent::build();
  3700         Key it;
  3701         typename Parent::Notifier* nf = Parent::notifier();
  3702         for (nf->first(it); it != INVALID; nf->next(it)) {
  3703           Parent::set(it, 0);
  3704         }
  3705       }
  3706     };
  3707 
  3708   public:
  3709 
  3710     /// \brief Constructor.
  3711     ///
  3712     /// Constructor for creating an out-degree map.
  3713     explicit OutDegMap(const Digraph& graph)
  3714       : _digraph(graph), _deg(graph) {
  3715       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
  3716 
  3717       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3718         _deg[it] = countOutArcs(_digraph, it);
  3719       }
  3720     }
  3721 
  3722     /// \brief Gives back the out-degree of a Node.
  3723     ///
  3724     /// Gives back the out-degree of a Node.
  3725     int operator[](const Key& key) const {
  3726       return _deg[key];
  3727     }
  3728 
  3729   protected:
  3730 
  3731     typedef typename Digraph::Arc Arc;
  3732 
  3733     virtual void add(const Arc& arc) {
  3734       ++_deg[_digraph.source(arc)];
  3735     }
  3736 
  3737     virtual void add(const std::vector<Arc>& arcs) {
  3738       for (int i = 0; i < int(arcs.size()); ++i) {
  3739         ++_deg[_digraph.source(arcs[i])];
  3740       }
  3741     }
  3742 
  3743     virtual void erase(const Arc& arc) {
  3744       --_deg[_digraph.source(arc)];
  3745     }
  3746 
  3747     virtual void erase(const std::vector<Arc>& arcs) {
  3748       for (int i = 0; i < int(arcs.size()); ++i) {
  3749         --_deg[_digraph.source(arcs[i])];
  3750       }
  3751     }
  3752 
  3753     virtual void build() {
  3754       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3755         _deg[it] = countOutArcs(_digraph, it);
  3756       }
  3757     }
  3758 
  3759     virtual void clear() {
  3760       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3761         _deg[it] = 0;
  3762       }
  3763     }
  3764   private:
  3765 
  3766     const Digraph& _digraph;
  3767     AutoNodeMap _deg;
  3768   };
  3769 
  3770   /// \brief Potential difference map
  3771   ///
  3772   /// PotentialDifferenceMap returns the difference between the potentials of
  3773   /// the source and target nodes of each arc in a digraph, i.e. it returns
  3774   /// \code
  3775   ///   potential[gr.target(arc)] - potential[gr.source(arc)].
  3776   /// \endcode
  3777   /// \tparam GR The digraph type.
  3778   /// \tparam POT A node map storing the potentials.
  3779   template <typename GR, typename POT>
  3780   class PotentialDifferenceMap {
  3781   public:
  3782     /// Key type
  3783     typedef typename GR::Arc Key;
  3784     /// Value type
  3785     typedef typename POT::Value Value;
  3786 
  3787     /// \brief Constructor
  3788     ///
  3789     /// Contructor of the map.
  3790     explicit PotentialDifferenceMap(const GR& gr,
  3791                                     const POT& potential)
  3792       : _digraph(gr), _potential(potential) {}
  3793 
  3794     /// \brief Returns the potential difference for the given arc.
  3795     ///
  3796     /// Returns the potential difference for the given arc, i.e.
  3797     /// \code
  3798     ///   potential[gr.target(arc)] - potential[gr.source(arc)].
  3799     /// \endcode
  3800     Value operator[](const Key& arc) const {
  3801       return _potential[_digraph.target(arc)] -
  3802         _potential[_digraph.source(arc)];
  3803     }
  3804 
  3805   private:
  3806     const GR& _digraph;
  3807     const POT& _potential;
  3808   };
  3809 
  3810   /// \brief Returns a PotentialDifferenceMap.
  3811   ///
  3812   /// This function just returns a PotentialDifferenceMap.
  3813   /// \relates PotentialDifferenceMap
  3814   template <typename GR, typename POT>
  3815   PotentialDifferenceMap<GR, POT>
  3816   potentialDifferenceMap(const GR& gr, const POT& potential) {
  3817     return PotentialDifferenceMap<GR, POT>(gr, potential);
  3818   }
  3819 
  3820 
  3821   /// \brief Copy the values of a graph map to another map.
  3822   ///
  3823   /// This function copies the values of a graph map to another graph map.
  3824   /// \c To::Key must be equal or convertible to \c From::Key and
  3825   /// \c From::Value must be equal or convertible to \c To::Value.
  3826   ///
  3827   /// For example, an edge map of \c int value type can be copied to
  3828   /// an arc map of \c double value type in an undirected graph, but
  3829   /// an arc map cannot be copied to an edge map.
  3830   /// Note that even a \ref ConstMap can be copied to a standard graph map,
  3831   /// but \ref mapFill() can also be used for this purpose.
  3832   ///
  3833   /// \param gr The graph for which the maps are defined.
  3834   /// \param from The map from which the values have to be copied.
  3835   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
  3836   /// \param to The map to which the values have to be copied.
  3837   /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
  3838   template <typename GR, typename From, typename To>
  3839   void mapCopy(const GR& gr, const From& from, To& to) {
  3840     typedef typename To::Key Item;
  3841     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
  3842 
  3843     for (ItemIt it(gr); it != INVALID; ++it) {
  3844       to.set(it, from[it]);
  3845     }
  3846   }
  3847 
  3848   /// \brief Compare two graph maps.
  3849   ///
  3850   /// This function compares the values of two graph maps. It returns
  3851   /// \c true if the maps assign the same value for all items in the graph.
  3852   /// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal
  3853   /// and their \c Value types must be comparable using \c %operator==().
  3854   ///
  3855   /// \param gr The graph for which the maps are defined.
  3856   /// \param map1 The first map.
  3857   /// \param map2 The second map.
  3858   template <typename GR, typename Map1, typename Map2>
  3859   bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
  3860     typedef typename Map2::Key Item;
  3861     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
  3862 
  3863     for (ItemIt it(gr); it != INVALID; ++it) {
  3864       if (!(map1[it] == map2[it])) return false;
  3865     }
  3866     return true;
  3867   }
  3868 
  3869   /// \brief Return an item having minimum value of a graph map.
  3870   ///
  3871   /// This function returns an item (\c Node, \c Arc or \c Edge) having
  3872   /// minimum value of the given graph map.
  3873   /// If the item set is empty, it returns \c INVALID.
  3874   ///
  3875   /// \param gr The graph for which the map is defined.
  3876   /// \param map The graph map.
  3877   template <typename GR, typename Map>
  3878   typename Map::Key mapMin(const GR& gr, const Map& map) {
  3879     return mapMin(gr, map, std::less<typename Map::Value>());
  3880   }
  3881 
  3882   /// \brief Return an item having minimum value of a graph map.
  3883   ///
  3884   /// This function returns an item (\c Node, \c Arc or \c Edge) having
  3885   /// minimum value of the given graph map.
  3886   /// If the item set is empty, it returns \c INVALID.
  3887   ///
  3888   /// \param gr The graph for which the map is defined.
  3889   /// \param map The graph map.
  3890   /// \param comp Comparison function object.
  3891   template <typename GR, typename Map, typename Comp>
  3892   typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) {
  3893     typedef typename Map::Key Item;
  3894     typedef typename Map::Value Value;
  3895     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
  3896 
  3897     ItemIt min_item(gr);
  3898     if (min_item == INVALID) return INVALID;
  3899     Value min = map[min_item];
  3900     for (ItemIt it(gr); it != INVALID; ++it) {
  3901       if (comp(map[it], min)) {
  3902         min = map[it];
  3903         min_item = it;
  3904       }
  3905     }
  3906     return min_item;
  3907   }
  3908 
  3909   /// \brief Return an item having maximum value of a graph map.
  3910   ///
  3911   /// This function returns an item (\c Node, \c Arc or \c Edge) having
  3912   /// maximum value of the given graph map.
  3913   /// If the item set is empty, it returns \c INVALID.
  3914   ///
  3915   /// \param gr The graph for which the map is defined.
  3916   /// \param map The graph map.
  3917   template <typename GR, typename Map>
  3918   typename Map::Key mapMax(const GR& gr, const Map& map) {
  3919     return mapMax(gr, map, std::less<typename Map::Value>());
  3920   }
  3921 
  3922   /// \brief Return an item having maximum value of a graph map.
  3923   ///
  3924   /// This function returns an item (\c Node, \c Arc or \c Edge) having
  3925   /// maximum value of the given graph map.
  3926   /// If the item set is empty, it returns \c INVALID.
  3927   ///
  3928   /// \param gr The graph for which the map is defined.
  3929   /// \param map The graph map.
  3930   /// \param comp Comparison function object.
  3931   template <typename GR, typename Map, typename Comp>
  3932   typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) {
  3933     typedef typename Map::Key Item;
  3934     typedef typename Map::Value Value;
  3935     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
  3936 
  3937     ItemIt max_item(gr);
  3938     if (max_item == INVALID) return INVALID;
  3939     Value max = map[max_item];
  3940     for (ItemIt it(gr); it != INVALID; ++it) {
  3941       if (comp(max, map[it])) {
  3942         max = map[it];
  3943         max_item = it;
  3944       }
  3945     }
  3946     return max_item;
  3947   }
  3948 
  3949   /// \brief Return the minimum value of a graph map.
  3950   ///
  3951   /// This function returns the minimum value of the given graph map.
  3952   /// The corresponding item set of the graph must not be empty.
  3953   ///
  3954   /// \param gr The graph for which the map is defined.
  3955   /// \param map The graph map.
  3956   template <typename GR, typename Map>
  3957   typename Map::Value mapMinValue(const GR& gr, const Map& map) {
  3958     return map[mapMin(gr, map, std::less<typename Map::Value>())];
  3959   }
  3960 
  3961   /// \brief Return the minimum value of a graph map.
  3962   ///
  3963   /// This function returns the minimum value of the given graph map.
  3964   /// The corresponding item set of the graph must not be empty.
  3965   ///
  3966   /// \param gr The graph for which the map is defined.
  3967   /// \param map The graph map.
  3968   /// \param comp Comparison function object.
  3969   template <typename GR, typename Map, typename Comp>
  3970   typename Map::Value
  3971   mapMinValue(const GR& gr, const Map& map, const Comp& comp) {
  3972     return map[mapMin(gr, map, comp)];
  3973   }
  3974 
  3975   /// \brief Return the maximum value of a graph map.
  3976   ///
  3977   /// This function returns the maximum value of the given graph map.
  3978   /// The corresponding item set of the graph must not be empty.
  3979   ///
  3980   /// \param gr The graph for which the map is defined.
  3981   /// \param map The graph map.
  3982   template <typename GR, typename Map>
  3983   typename Map::Value mapMaxValue(const GR& gr, const Map& map) {
  3984     return map[mapMax(gr, map, std::less<typename Map::Value>())];
  3985   }
  3986 
  3987   /// \brief Return the maximum value of a graph map.
  3988   ///
  3989   /// This function returns the maximum value of the given graph map.
  3990   /// The corresponding item set of the graph must not be empty.
  3991   ///
  3992   /// \param gr The graph for which the map is defined.
  3993   /// \param map The graph map.
  3994   /// \param comp Comparison function object.
  3995   template <typename GR, typename Map, typename Comp>
  3996   typename Map::Value
  3997   mapMaxValue(const GR& gr, const Map& map, const Comp& comp) {
  3998     return map[mapMax(gr, map, comp)];
  3999   }
  4000 
  4001   /// \brief Return an item having a specified value in a graph map.
  4002   ///
  4003   /// This function returns an item (\c Node, \c Arc or \c Edge) having
  4004   /// the specified assigned value in the given graph map.
  4005   /// If no such item exists, it returns \c INVALID.
  4006   ///
  4007   /// \param gr The graph for which the map is defined.
  4008   /// \param map The graph map.
  4009   /// \param val The value that have to be found.
  4010   template <typename GR, typename Map>
  4011   typename Map::Key
  4012   mapFind(const GR& gr, const Map& map, const typename Map::Value& val) {
  4013     typedef typename Map::Key Item;
  4014     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
  4015 
  4016     for (ItemIt it(gr); it != INVALID; ++it) {
  4017       if (map[it] == val) return it;
  4018     }
  4019     return INVALID;
  4020   }
  4021 
  4022   /// \brief Return an item having value for which a certain predicate is
  4023   /// true in a graph map.
  4024   ///
  4025   /// This function returns an item (\c Node, \c Arc or \c Edge) having
  4026   /// such assigned value for which the specified predicate is true
  4027   /// in the given graph map.
  4028   /// If no such item exists, it returns \c INVALID.
  4029   ///
  4030   /// \param gr The graph for which the map is defined.
  4031   /// \param map The graph map.
  4032   /// \param pred The predicate function object.
  4033   template <typename GR, typename Map, typename Pred>
  4034   typename Map::Key
  4035   mapFindIf(const GR& gr, const Map& map, const Pred& pred) {
  4036     typedef typename Map::Key Item;
  4037     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
  4038 
  4039     for (ItemIt it(gr); it != INVALID; ++it) {
  4040       if (pred(map[it])) return it;
  4041     }
  4042     return INVALID;
  4043   }
  4044 
  4045   /// \brief Return the number of items having a specified value in a
  4046   /// graph map.
  4047   ///
  4048   /// This function returns the number of items (\c Node, \c Arc or \c Edge)
  4049   /// having the specified assigned value in the given graph map.
  4050   ///
  4051   /// \param gr The graph for which the map is defined.
  4052   /// \param map The graph map.
  4053   /// \param val The value that have to be counted.
  4054   template <typename GR, typename Map>
  4055   int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) {
  4056     typedef typename Map::Key Item;
  4057     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
  4058 
  4059     int cnt = 0;
  4060     for (ItemIt it(gr); it != INVALID; ++it) {
  4061       if (map[it] == val) ++cnt;
  4062     }
  4063     return cnt;
  4064   }
  4065 
  4066   /// \brief Return the number of items having values for which a certain
  4067   /// predicate is true in a graph map.
  4068   ///
  4069   /// This function returns the number of items (\c Node, \c Arc or \c Edge)
  4070   /// having such assigned values for which the specified predicate is true
  4071   /// in the given graph map.
  4072   ///
  4073   /// \param gr The graph for which the map is defined.
  4074   /// \param map The graph map.
  4075   /// \param pred The predicate function object.
  4076   template <typename GR, typename Map, typename Pred>
  4077   int mapCountIf(const GR& gr, const Map& map, const Pred& pred) {
  4078     typedef typename Map::Key Item;
  4079     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
  4080 
  4081     int cnt = 0;
  4082     for (ItemIt it(gr); it != INVALID; ++it) {
  4083       if (pred(map[it])) ++cnt;
  4084     }
  4085     return cnt;
  4086   }
  4087 
  4088   /// \brief Fill a graph map with a certain value.
  4089   ///
  4090   /// This function sets the specified value for all items (\c Node,
  4091   /// \c Arc or \c Edge) in the given graph map.
  4092   ///
  4093   /// \param gr The graph for which the map is defined.
  4094   /// \param map The graph map. It must conform to the
  4095   /// \ref concepts::WriteMap "WriteMap" concept.
  4096   /// \param val The value.
  4097   template <typename GR, typename Map>
  4098   void mapFill(const GR& gr, Map& map, const typename Map::Value& val) {
  4099     typedef typename Map::Key Item;
  4100     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
  4101 
  4102     for (ItemIt it(gr); it != INVALID; ++it) {
  4103       map.set(it, val);
  4104     }
  4105   }
  4106 
  4107   /// @}
  4108 }
  4109 
  4110 #endif // LEMON_MAPS_H