lemon/vf2.h
changeset 1141 a037254714b3
child 1142 2f479109a71d
equal deleted inserted replaced
-1:000000000000 0:4154321abb8e
       
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library.
       
     4  *
       
     5  * Copyright (C) 2015
       
     6  * EMAXA Kutato-fejleszto Kft. (EMAXA Research Ltd.)
       
     7  *
       
     8  * Permission to use, modify and distribute this software is granted
       
     9  * provided that this copyright notice appears in all copies. For
       
    10  * precise terms see the accompanying LICENSE file.
       
    11  *
       
    12  * This software is provided "AS IS" with no warranty of any kind,
       
    13  * express or implied, and with no claim as to its suitability for any
       
    14  * purpose.
       
    15  *
       
    16  */
       
    17 
       
    18 #ifndef LEMON_VF2_H
       
    19 #define LEMON_VF2_H
       
    20 
       
    21 #include <lemon/core.h>
       
    22 #include <lemon/concepts/graph.h>
       
    23 #include <lemon/dfs.h>
       
    24 #include <lemon/bfs.h>
       
    25 #include <test/test_tools.h>
       
    26 
       
    27 #include <vector>
       
    28 #include <set>
       
    29 
       
    30 namespace lemon
       
    31 {
       
    32   namespace bits
       
    33   {
       
    34     namespace vf2
       
    35     {
       
    36       class AlwaysEq
       
    37       {
       
    38       public:
       
    39         template<class T1, class T2>
       
    40         bool operator()(T1, T2) const
       
    41         {
       
    42           return true;
       
    43         }
       
    44       };
       
    45 
       
    46       template<class M1, class M2>
       
    47       class MapEq
       
    48       {
       
    49         const M1 &_m1;
       
    50         const M2 &_m2;
       
    51       public:
       
    52         MapEq(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
       
    53         bool operator()(typename M1::Key k1, typename M2::Key k2) const
       
    54         {
       
    55           return _m1[k1] == _m2[k2];
       
    56         }
       
    57       };
       
    58 
       
    59       template <class G>
       
    60       class DfsLeaveOrder : public DfsVisitor<G>
       
    61       {
       
    62         const G &_g;
       
    63         std::vector<typename G::Node> &_order;
       
    64         int i;
       
    65       public:
       
    66         DfsLeaveOrder(const G &g, std::vector<typename G::Node> &order)
       
    67           : i(countNodes(g)), _g(g), _order(order)
       
    68         {}
       
    69         void leave(const typename G::Node &node)
       
    70         {
       
    71           _order[--i]=node;
       
    72         }
       
    73       };
       
    74 
       
    75       template <class G>
       
    76       class BfsLeaveOrder : public BfsVisitor<G>
       
    77       {
       
    78         int i;
       
    79         const G &_g;
       
    80         std::vector<typename G::Node> &_order;
       
    81       public:
       
    82         BfsLeaveOrder(const G &g, std::vector<typename G::Node> &order)
       
    83           : i(0), _g(g), _order(order)
       
    84         {}
       
    85         void process(const typename G::Node &node)
       
    86         {
       
    87           _order[i++]=node;
       
    88         }
       
    89       };
       
    90     }
       
    91   }
       
    92 
       
    93   enum MappingType {
       
    94     SUBGRAPH = 0,
       
    95     INDUCED = 1,
       
    96     ISOMORPH = 2
       
    97   };
       
    98 
       
    99   template<class G1, class G2, class I, class NEq = bits::vf2::AlwaysEq >
       
   100   class Vf2
       
   101   {
       
   102     //Current depth in the DFS tree.
       
   103     int _depth;
       
   104     //Functor with bool operator()(G1::Node,G2::Node), which returns 1
       
   105     //if and only if the 2 nodes are equivalent.
       
   106     NEq _nEq;
       
   107 
       
   108     typename G2::template NodeMap<int> _conn;
       
   109     //Current matching. We index it by the nodes of g1, and match[v] is
       
   110     //a node of g2.
       
   111     I &_match;
       
   112     //order[i] is the node of g1, for which we find a pair if depth=i
       
   113     std::vector<typename G1::Node> order;
       
   114     //currEdgeIts[i] is an edge iterator, witch is last used in the ith
       
   115     //depth to find a pair for order[i].
       
   116     std::vector<typename G2::IncEdgeIt> currEdgeIts;
       
   117     //The small graph.
       
   118     const G1 &_g1;
       
   119     //The big graph.
       
   120     const G2 &_g2;
       
   121     //lookup tables for cut the searchtree
       
   122     typename G1::template NodeMap<int> rNew1t,rInOut1t;
       
   123 
       
   124     MappingType _mapping_type;
       
   125 
       
   126     //cut the search tree
       
   127     template<MappingType MT>
       
   128     bool cut(const typename G1::Node n1,const typename G2::Node n2) const
       
   129     {
       
   130       int rNew2=0,rInOut2=0;
       
   131       for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2)
       
   132         {
       
   133           const typename G2::Node currNode=_g2.oppositeNode(n2,e2);
       
   134           if(_conn[currNode]>0)
       
   135             ++rInOut2;
       
   136           else if(MT!=SUBGRAPH&&_conn[currNode]==0)
       
   137             ++rNew2;
       
   138         }
       
   139       switch(MT)
       
   140         {
       
   141         case INDUCED:
       
   142           return rInOut1t[n1]<=rInOut2&&rNew1t[n1]<=rNew2;
       
   143         case SUBGRAPH:
       
   144           return rInOut1t[n1]<=rInOut2;
       
   145         case ISOMORPH:
       
   146           return rInOut1t[n1]==rInOut2&&rNew1t[n1]==rNew2;
       
   147         default:
       
   148           return false;
       
   149         }
       
   150     }
       
   151 
       
   152     template<MappingType MT>
       
   153     bool feas(const typename G1::Node n1,const typename G2::Node n2)
       
   154     {
       
   155       if(!_nEq(n1,n2))
       
   156         return 0;
       
   157 
       
   158       for(typename G1::IncEdgeIt e1(_g1,n1); e1!=INVALID; ++e1)
       
   159         {
       
   160           const typename G1::Node currNode=_g1.oppositeNode(n1,e1);
       
   161           if(_match[currNode]!=INVALID)
       
   162             --_conn[_match[currNode]];
       
   163         }
       
   164       bool isIso=1;
       
   165       for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2)
       
   166         {
       
   167           const typename G2::Node currNode=_g2.oppositeNode(n2,e2);
       
   168           if(_conn[currNode]<-1)
       
   169             ++_conn[currNode];
       
   170           else if(MT!=SUBGRAPH&&_conn[currNode]==-1)
       
   171             {
       
   172               isIso=0;
       
   173               break;
       
   174             }
       
   175         }
       
   176 
       
   177       for(typename G1::IncEdgeIt e1(_g1,n1); e1!=INVALID; ++e1)
       
   178         {
       
   179           const typename G1::Node currNode=_g1.oppositeNode(n1,e1);
       
   180           if(_match[currNode]!=INVALID&&_conn[_match[currNode]]!=-1)
       
   181             {
       
   182               switch(MT)
       
   183                 {
       
   184                 case INDUCED:
       
   185                 case ISOMORPH:
       
   186                   isIso=0;
       
   187                   break;
       
   188                 case SUBGRAPH:
       
   189                   if(_conn[_match[currNode]]<-1)
       
   190                     isIso=0;
       
   191                   break;
       
   192                 }
       
   193               _conn[_match[currNode]]=-1;
       
   194             }
       
   195         }
       
   196       return isIso&&cut<MT>(n1,n2);
       
   197     }
       
   198 
       
   199     void addPair(const typename G1::Node n1,const typename G2::Node n2)
       
   200     {
       
   201       _conn[n2]=-1;
       
   202       _match.set(n1,n2);
       
   203       for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2)
       
   204         if(_conn[_g2.oppositeNode(n2,e2)]!=-1)
       
   205           ++_conn[_g2.oppositeNode(n2,e2)];
       
   206     }
       
   207 
       
   208     void subPair(const typename G1::Node n1,const typename G2::Node n2)
       
   209     {
       
   210       _conn[n2]=0;
       
   211       _match.set(n1,INVALID);
       
   212       for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2)
       
   213         {
       
   214           const typename G2::Node currNode=_g2.oppositeNode(n2,e2);
       
   215           if(_conn[currNode]>0)
       
   216             --_conn[currNode];
       
   217           else if(_conn[currNode]==-1)
       
   218             ++_conn[n2];
       
   219         }
       
   220     }
       
   221 
       
   222     void setOrder()//we will find pairs for the nodes of g1 in this order
       
   223     {
       
   224       // bits::vf2::DfsLeaveOrder<G1> v(_g1,order);
       
   225       //   DfsVisit<G1,bits::vf2::DfsLeaveOrder<G1> >dfs(_g1, v);
       
   226       //   dfs.run();
       
   227 
       
   228       //it is more efficient in practice than DFS
       
   229       bits::vf2::BfsLeaveOrder<G1> v(_g1,order);
       
   230       BfsVisit<G1,bits::vf2::BfsLeaveOrder<G1> >bfs(_g1, v);
       
   231       bfs.run();
       
   232     }
       
   233 
       
   234   public:
       
   235 
       
   236     template<MappingType MT>
       
   237     bool extMatch()
       
   238     {
       
   239       while(_depth>=0)
       
   240         {
       
   241           //there are not nodes in g1, which has not pair in g2.
       
   242           if(_depth==static_cast<int>(order.size()))
       
   243             {
       
   244               --_depth;
       
   245               return true;
       
   246             }
       
   247           //the node of g2, which neighbours are the candidates for
       
   248           //the pair of order[_depth]
       
   249           typename G2::Node currPNode;
       
   250           if(currEdgeIts[_depth]==INVALID)
       
   251             {
       
   252               typename G1::IncEdgeIt fstMatchedE(_g1,order[_depth]);
       
   253               //if _match[order[_depth]]!=INVALID, we dont use
       
   254               //fstMatchedE
       
   255               if(_match[order[_depth]]==INVALID)
       
   256                 for(; fstMatchedE!=INVALID &&
       
   257                       _match[_g1.oppositeNode(order[_depth],
       
   258                                               fstMatchedE)]==INVALID;
       
   259                     ++fstMatchedE) ; //find fstMatchedE
       
   260               if(fstMatchedE==INVALID||_match[order[_depth]]!=INVALID)
       
   261                 {
       
   262                   //We did not find an covered neighbour, this means
       
   263                   //the graph is not connected(or _depth==0).  Every
       
   264                   //uncovered(and there are some other properties due
       
   265                   //to the spec. problem types) node of g2 is
       
   266                   //candidate.  We can read the iterator of the last
       
   267                   //tryed node from the match if it is not the first
       
   268                   //try(match[order[_depth]]!=INVALID)
       
   269                   typename G2::NodeIt n2(_g2);
       
   270                   //if its not the first try
       
   271                   if(_match[order[_depth]]!=INVALID)
       
   272                     {
       
   273                       n2=++typename G2::NodeIt(_g2,_match[order[_depth]]);
       
   274                       subPair(order[_depth],_match[order[_depth]]);
       
   275                     }
       
   276                   for(; n2!=INVALID; ++n2)
       
   277                     if(MT!=SUBGRAPH&&_conn[n2]==0)
       
   278                       {
       
   279                         if(feas<MT>(order[_depth],n2))
       
   280                           break;
       
   281                       }
       
   282                     else if(MT==SUBGRAPH&&_conn[n2]>=0)
       
   283                       if(feas<MT>(order[_depth],n2))
       
   284                         break;
       
   285                   // n2 is the next candidate
       
   286                   if(n2!=INVALID)
       
   287                     {
       
   288                       addPair(order[_depth],n2);
       
   289                       ++_depth;
       
   290                     }
       
   291                   else // there is no more candidate
       
   292                     --_depth;
       
   293                   continue;
       
   294                 }
       
   295               else
       
   296                 {
       
   297                   currPNode=_match[_g1.oppositeNode(order[_depth],fstMatchedE)];
       
   298                   currEdgeIts[_depth]=typename G2::IncEdgeIt(_g2,currPNode);
       
   299                 }
       
   300             }
       
   301           else
       
   302             {
       
   303               currPNode=_g2.oppositeNode(_match[order[_depth]],
       
   304                                          currEdgeIts[_depth]);
       
   305               subPair(order[_depth],_match[order[_depth]]);
       
   306               ++currEdgeIts[_depth];
       
   307             }
       
   308           for(; currEdgeIts[_depth]!=INVALID; ++currEdgeIts[_depth])
       
   309             {
       
   310               const typename G2::Node currNode =
       
   311                 _g2.oppositeNode(currPNode, currEdgeIts[_depth]);
       
   312               //if currNode is uncovered
       
   313               if(_conn[currNode]>0&&feas<MT>(order[_depth],currNode))
       
   314                 {
       
   315                   addPair(order[_depth],currNode);
       
   316                   break;
       
   317                 }
       
   318             }
       
   319           currEdgeIts[_depth]==INVALID?--_depth:++_depth;
       
   320         }
       
   321       return false;
       
   322     }
       
   323 
       
   324     //calc. the lookup table for cut the searchtree
       
   325     void setRNew1tRInOut1t()
       
   326     {
       
   327       typename G1::template NodeMap<int> tmp(_g1,0);
       
   328       for(unsigned int i=0; i<order.size(); ++i)
       
   329         {
       
   330           tmp[order[i]]=-1;
       
   331           for(typename G1::IncEdgeIt e1(_g1,order[i]); e1!=INVALID; ++e1)
       
   332             {
       
   333               const typename G1::Node currNode=_g1.oppositeNode(order[i],e1);
       
   334               if(tmp[currNode]>0)
       
   335                 ++rInOut1t[order[i]];
       
   336               else if(tmp[currNode]==0)
       
   337                 ++rNew1t[order[i]];
       
   338             }
       
   339           for(typename G1::IncEdgeIt e1(_g1,order[i]); e1!=INVALID; ++e1)
       
   340             {
       
   341               const typename G1::Node currNode=_g1.oppositeNode(order[i],e1);
       
   342               if(tmp[currNode]!=-1)
       
   343                 ++tmp[currNode];
       
   344             }
       
   345         }
       
   346     }
       
   347   public:
       
   348     Vf2(const G1 &g1, const G2 &g2,I &i, const NEq &nEq = NEq() ) :
       
   349       _nEq(nEq), _conn(g2,0), _match(i), order(countNodes(g1)),
       
   350       currEdgeIts(countNodes(g1),INVALID), _g1(g1), _g2(g2), rNew1t(g1,0),
       
   351       rInOut1t(g1,0), _mapping_type(SUBGRAPH)
       
   352     {
       
   353       _depth=0;
       
   354       setOrder();
       
   355       setRNew1tRInOut1t();
       
   356     }
       
   357 
       
   358     MappingType mappingType() const { return _mapping_type; }
       
   359     void mappingType(MappingType m_type) { _mapping_type = m_type; }
       
   360 
       
   361     bool find()
       
   362     {
       
   363       switch(_mapping_type)
       
   364         {
       
   365         case SUBGRAPH:
       
   366           return extMatch<SUBGRAPH>();
       
   367         case INDUCED:
       
   368           return extMatch<INDUCED>();
       
   369         case ISOMORPH:
       
   370           return extMatch<ISOMORPH>();
       
   371         default:
       
   372           return false;
       
   373         }
       
   374     }
       
   375   };
       
   376 
       
   377   template<class G1, class G2>
       
   378   class Vf2WizardBase
       
   379   {
       
   380   protected:
       
   381     typedef G1 Graph1;
       
   382     typedef G2 Graph2;
       
   383 
       
   384     const G1 &_g1;
       
   385     const G2 &_g2;
       
   386 
       
   387     MappingType _mapping_type;
       
   388 
       
   389     typedef typename G1::template NodeMap<typename G2::Node> Mapping;
       
   390     bool _local_mapping;
       
   391     void *_mapping;
       
   392     void createMapping()
       
   393     {
       
   394       _mapping = new Mapping(_g1);
       
   395     }
       
   396 
       
   397     typedef bits::vf2::AlwaysEq NodeEq;
       
   398     NodeEq _node_eq;
       
   399 
       
   400     Vf2WizardBase(const G1 &g1,const G2 &g2)
       
   401       : _g1(g1), _g2(g2), _mapping_type(SUBGRAPH), _local_mapping(true) {}
       
   402   };
       
   403 
       
   404   template<class TR>
       
   405   class Vf2Wizard : public TR
       
   406   {
       
   407     typedef TR Base;
       
   408     typedef typename TR::Graph1 Graph1;
       
   409     typedef typename TR::Graph2 Graph2;
       
   410 
       
   411     typedef typename TR::Mapping Mapping;
       
   412     typedef typename TR::NodeEq NodeEq;
       
   413 
       
   414     using TR::_g1;
       
   415     using TR::_g2;
       
   416     using TR::_mapping_type;
       
   417     using TR::_mapping;
       
   418     using TR::_node_eq;
       
   419 
       
   420   public:
       
   421     ///Copy constructor
       
   422     Vf2Wizard(const Graph1 &g1,const Graph2 &g2) : Base(g1,g2) {}
       
   423 
       
   424     ///Copy constructor
       
   425     Vf2Wizard(const Base &b) : Base(b) {}
       
   426 
       
   427 
       
   428     template<class T>
       
   429     struct SetMappingBase : public Base {
       
   430       typedef T Mapping;
       
   431       SetMappingBase(const Base &b) : Base(b) {}
       
   432     };
       
   433 
       
   434     ///\brief \ref named-templ-param "Named parameter" for setting
       
   435     ///the mapping.
       
   436     ///
       
   437     ///\ref named-templ-param "Named parameter" function for setting
       
   438     ///the map that stores the found embedding.
       
   439     template<class T>
       
   440     Vf2Wizard< SetMappingBase<T> > mapping(const T &t)
       
   441     {
       
   442       Base::_mapping=reinterpret_cast<void*>(const_cast<T*>(&t));
       
   443       Base::_local_mapping = false;
       
   444       return Vf2Wizard<SetMappingBase<T> >(*this);
       
   445     }
       
   446 
       
   447     template<class NE>
       
   448     struct SetNodeEqBase : public Base {
       
   449       typedef NE NodeEq;
       
   450       NodeEq _node_eq;
       
   451       SetNodeEqBase(const Base &b, const NE &node_eq)
       
   452         : Base(b), _node_eq(node_eq) {}
       
   453     };
       
   454 
       
   455     ///\brief \ref named-templ-param "Named parameter" for setting
       
   456     ///the node equivalence relation.
       
   457     ///
       
   458     ///\ref named-templ-param "Named parameter" function for setting
       
   459     ///the equivalence relation between the nodes.
       
   460     template<class T>
       
   461     Vf2Wizard< SetNodeEqBase<T> > nodeEq(const T &node_eq)
       
   462     {
       
   463       return Vf2Wizard<SetNodeEqBase<T> >(SetNodeEqBase<T>(*this,node_eq));
       
   464     }
       
   465 
       
   466     ///\brief \ref named-templ-param "Named parameter" for setting
       
   467     ///the node labels.
       
   468     ///
       
   469     ///\ref named-templ-param "Named parameter" function for setting
       
   470     ///the node labels defining equivalence relation between them.
       
   471     template<class M1, class M2>
       
   472     Vf2Wizard< SetNodeEqBase<bits::vf2::MapEq<M1,M2> > >
       
   473     nodeLabels(const M1 &m1,const M2 &m2)
       
   474     {
       
   475       return nodeEq(bits::vf2::MapEq<M1,M2>(m1,m2));
       
   476     }
       
   477 
       
   478     Vf2Wizard<Base> &mappingType(MappingType m_type)
       
   479     {
       
   480       _mapping_type = m_type;
       
   481       return *this;
       
   482     }
       
   483 
       
   484     Vf2Wizard<Base> &induced()
       
   485     {
       
   486       _mapping_type = INDUCED;
       
   487       return *this;
       
   488     }
       
   489 
       
   490     Vf2Wizard<Base> &iso()
       
   491     {
       
   492       _mapping_type = ISOMORPH;
       
   493       return *this;
       
   494     }
       
   495 
       
   496     bool run()
       
   497     {
       
   498       if(Base::_local_mapping)
       
   499         Base::createMapping();
       
   500 
       
   501       Vf2<Graph1, Graph2, Mapping, NodeEq >
       
   502         alg(_g1, _g2, *reinterpret_cast<Mapping*>(_mapping), _node_eq);
       
   503 
       
   504       alg.mappingType(_mapping_type);
       
   505 
       
   506       bool ret = alg.find();
       
   507 
       
   508       if(Base::_local_mapping)
       
   509         delete reinterpret_cast<Mapping*>(_mapping);
       
   510 
       
   511       return ret;
       
   512     }
       
   513   };
       
   514 
       
   515   template<class G1, class G2>
       
   516   Vf2Wizard<Vf2WizardBase<G1,G2> > vf2(const G1 &g1, const G2 &g2)
       
   517   {
       
   518     return Vf2Wizard<Vf2WizardBase<G1,G2> >(g1,g2);
       
   519   }
       
   520 
       
   521 }
       
   522 
       
   523 #endif