lemon/christofides_tsp.h
changeset 1184 3c00344f49c9
parent 1074 97d978243703
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/christofides_tsp.h	Wed Oct 17 19:14:07 2018 +0200
     1.3 @@ -0,0 +1,254 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2013
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_CHRISTOFIDES_TSP_H
    1.23 +#define LEMON_CHRISTOFIDES_TSP_H
    1.24 +
    1.25 +/// \ingroup tsp
    1.26 +/// \file
    1.27 +/// \brief Christofides algorithm for symmetric TSP
    1.28 +
    1.29 +#include <lemon/full_graph.h>
    1.30 +#include <lemon/smart_graph.h>
    1.31 +#include <lemon/kruskal.h>
    1.32 +#include <lemon/matching.h>
    1.33 +#include <lemon/euler.h>
    1.34 +
    1.35 +namespace lemon {
    1.36 +
    1.37 +  /// \ingroup tsp
    1.38 +  ///
    1.39 +  /// \brief Christofides algorithm for symmetric TSP.
    1.40 +  ///
    1.41 +  /// ChristofidesTsp implements Christofides' heuristic for solving
    1.42 +  /// symmetric \ref tsp "TSP".
    1.43 +  ///
    1.44 +  /// This a well-known approximation method for the TSP problem with
    1.45 +  /// metric cost function.
    1.46 +  /// It has a guaranteed approximation factor of 3/2 (i.e. it finds a tour
    1.47 +  /// whose total cost is at most 3/2 of the optimum), but it usually
    1.48 +  /// provides better solutions in practice.
    1.49 +  /// This implementation runs in O(n<sup>3</sup>log(n)) time.
    1.50 +  ///
    1.51 +  /// The algorithm starts with a \ref spantree "minimum cost spanning tree" and
    1.52 +  /// finds a \ref MaxWeightedPerfectMatching "minimum cost perfect matching"
    1.53 +  /// in the subgraph induced by the nodes that have odd degree in the
    1.54 +  /// spanning tree.
    1.55 +  /// Finally, it constructs the tour from the \ref EulerIt "Euler traversal"
    1.56 +  /// of the union of the spanning tree and the matching.
    1.57 +  /// During this last step, the algorithm simply skips the visited nodes
    1.58 +  /// (i.e. creates shortcuts) assuming that the triangle inequality holds
    1.59 +  /// for the cost function.
    1.60 +  ///
    1.61 +  /// \tparam CM Type of the cost map.
    1.62 +  ///
    1.63 +  /// \warning CM::Value must be a signed number type.
    1.64 +  template <typename CM>
    1.65 +  class ChristofidesTsp
    1.66 +  {
    1.67 +    public:
    1.68 +
    1.69 +      /// Type of the cost map
    1.70 +      typedef CM CostMap;
    1.71 +      /// Type of the edge costs
    1.72 +      typedef typename CM::Value Cost;
    1.73 +
    1.74 +    private:
    1.75 +
    1.76 +      GRAPH_TYPEDEFS(FullGraph);
    1.77 +
    1.78 +      const FullGraph &_gr;
    1.79 +      const CostMap &_cost;
    1.80 +      std::vector<Node> _path;
    1.81 +      Cost _sum;
    1.82 +
    1.83 +    public:
    1.84 +
    1.85 +      /// \brief Constructor
    1.86 +      ///
    1.87 +      /// Constructor.
    1.88 +      /// \param gr The \ref FullGraph "full graph" the algorithm runs on.
    1.89 +      /// \param cost The cost map.
    1.90 +      ChristofidesTsp(const FullGraph &gr, const CostMap &cost)
    1.91 +        : _gr(gr), _cost(cost) {}
    1.92 +
    1.93 +      /// \name Execution Control
    1.94 +      /// @{
    1.95 +
    1.96 +      /// \brief Runs the algorithm.
    1.97 +      ///
    1.98 +      /// This function runs the algorithm.
    1.99 +      ///
   1.100 +      /// \return The total cost of the found tour.
   1.101 +      Cost run() {
   1.102 +        _path.clear();
   1.103 +
   1.104 +        if (_gr.nodeNum() == 0) return _sum = 0;
   1.105 +        else if (_gr.nodeNum() == 1) {
   1.106 +          _path.push_back(_gr(0));
   1.107 +          return _sum = 0;
   1.108 +        }
   1.109 +        else if (_gr.nodeNum() == 2) {
   1.110 +          _path.push_back(_gr(0));
   1.111 +          _path.push_back(_gr(1));
   1.112 +          return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
   1.113 +        }
   1.114 +
   1.115 +        // Compute min. cost spanning tree
   1.116 +        std::vector<Edge> tree;
   1.117 +        kruskal(_gr, _cost, std::back_inserter(tree));
   1.118 +
   1.119 +        FullGraph::NodeMap<int> deg(_gr, 0);
   1.120 +        for (int i = 0; i != int(tree.size()); ++i) {
   1.121 +          Edge e = tree[i];
   1.122 +          ++deg[_gr.u(e)];
   1.123 +          ++deg[_gr.v(e)];
   1.124 +        }
   1.125 +
   1.126 +        // Copy the induced subgraph of odd nodes
   1.127 +        std::vector<Node> odd_nodes;
   1.128 +        for (NodeIt u(_gr); u != INVALID; ++u) {
   1.129 +          if (deg[u] % 2 == 1) odd_nodes.push_back(u);
   1.130 +        }
   1.131 +
   1.132 +        SmartGraph sgr;
   1.133 +        SmartGraph::EdgeMap<Cost> scost(sgr);
   1.134 +        for (int i = 0; i != int(odd_nodes.size()); ++i) {
   1.135 +          sgr.addNode();
   1.136 +        }
   1.137 +        for (int i = 0; i != int(odd_nodes.size()); ++i) {
   1.138 +          for (int j = 0; j != int(odd_nodes.size()); ++j) {
   1.139 +            if (j == i) continue;
   1.140 +            SmartGraph::Edge e =
   1.141 +              sgr.addEdge(sgr.nodeFromId(i), sgr.nodeFromId(j));
   1.142 +            scost[e] = -_cost[_gr.edge(odd_nodes[i], odd_nodes[j])];
   1.143 +          }
   1.144 +        }
   1.145 +
   1.146 +        // Compute min. cost perfect matching
   1.147 +        MaxWeightedPerfectMatching<SmartGraph, SmartGraph::EdgeMap<Cost> >
   1.148 +          mwpm(sgr, scost);
   1.149 +        mwpm.run();
   1.150 +
   1.151 +        for (SmartGraph::EdgeIt e(sgr); e != INVALID; ++e) {
   1.152 +          if (mwpm.matching(e)) {
   1.153 +            tree.push_back( _gr.edge(odd_nodes[sgr.id(sgr.u(e))],
   1.154 +                                     odd_nodes[sgr.id(sgr.v(e))]) );
   1.155 +          }
   1.156 +        }
   1.157 +
   1.158 +        // Join the spanning tree and the matching
   1.159 +        sgr.clear();
   1.160 +        for (int i = 0; i != _gr.nodeNum(); ++i) {
   1.161 +          sgr.addNode();
   1.162 +        }
   1.163 +        for (int i = 0; i != int(tree.size()); ++i) {
   1.164 +          int ui = _gr.id(_gr.u(tree[i])),
   1.165 +              vi = _gr.id(_gr.v(tree[i]));
   1.166 +          sgr.addEdge(sgr.nodeFromId(ui), sgr.nodeFromId(vi));
   1.167 +        }
   1.168 +
   1.169 +        // Compute the tour from the Euler traversal
   1.170 +        SmartGraph::NodeMap<bool> visited(sgr, false);
   1.171 +        for (EulerIt<SmartGraph> e(sgr); e != INVALID; ++e) {
   1.172 +          SmartGraph::Node n = sgr.target(e);
   1.173 +          if (!visited[n]) {
   1.174 +            _path.push_back(_gr(sgr.id(n)));
   1.175 +            visited[n] = true;
   1.176 +          }
   1.177 +        }
   1.178 +
   1.179 +        _sum = _cost[_gr.edge(_path.back(), _path.front())];
   1.180 +        for (int i = 0; i < int(_path.size())-1; ++i) {
   1.181 +          _sum += _cost[_gr.edge(_path[i], _path[i+1])];
   1.182 +        }
   1.183 +
   1.184 +        return _sum;
   1.185 +      }
   1.186 +
   1.187 +      /// @}
   1.188 +
   1.189 +      /// \name Query Functions
   1.190 +      /// @{
   1.191 +
   1.192 +      /// \brief The total cost of the found tour.
   1.193 +      ///
   1.194 +      /// This function returns the total cost of the found tour.
   1.195 +      ///
   1.196 +      /// \pre run() must be called before using this function.
   1.197 +      Cost tourCost() const {
   1.198 +        return _sum;
   1.199 +      }
   1.200 +
   1.201 +      /// \brief Returns a const reference to the node sequence of the
   1.202 +      /// found tour.
   1.203 +      ///
   1.204 +      /// This function returns a const reference to a vector
   1.205 +      /// that stores the node sequence of the found tour.
   1.206 +      ///
   1.207 +      /// \pre run() must be called before using this function.
   1.208 +      const std::vector<Node>& tourNodes() const {
   1.209 +        return _path;
   1.210 +      }
   1.211 +
   1.212 +      /// \brief Gives back the node sequence of the found tour.
   1.213 +      ///
   1.214 +      /// This function copies the node sequence of the found tour into
   1.215 +      /// an STL container through the given output iterator. The
   1.216 +      /// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
   1.217 +      /// For example,
   1.218 +      /// \code
   1.219 +      /// std::vector<FullGraph::Node> nodes(countNodes(graph));
   1.220 +      /// tsp.tourNodes(nodes.begin());
   1.221 +      /// \endcode
   1.222 +      /// or
   1.223 +      /// \code
   1.224 +      /// std::list<FullGraph::Node> nodes;
   1.225 +      /// tsp.tourNodes(std::back_inserter(nodes));
   1.226 +      /// \endcode
   1.227 +      ///
   1.228 +      /// \pre run() must be called before using this function.
   1.229 +      template <typename Iterator>
   1.230 +      void tourNodes(Iterator out) const {
   1.231 +        std::copy(_path.begin(), _path.end(), out);
   1.232 +      }
   1.233 +
   1.234 +      /// \brief Gives back the found tour as a path.
   1.235 +      ///
   1.236 +      /// This function copies the found tour as a list of arcs/edges into
   1.237 +      /// the given \ref lemon::concepts::Path "path structure".
   1.238 +      ///
   1.239 +      /// \pre run() must be called before using this function.
   1.240 +      template <typename Path>
   1.241 +      void tour(Path &path) const {
   1.242 +        path.clear();
   1.243 +        for (int i = 0; i < int(_path.size()) - 1; ++i) {
   1.244 +          path.addBack(_gr.arc(_path[i], _path[i+1]));
   1.245 +        }
   1.246 +        if (int(_path.size()) >= 2) {
   1.247 +          path.addBack(_gr.arc(_path.back(), _path.front()));
   1.248 +        }
   1.249 +      }
   1.250 +
   1.251 +      /// @}
   1.252 +
   1.253 +  };
   1.254 +
   1.255 +}; // namespace lemon
   1.256 +
   1.257 +#endif