lemon/maps.h
changeset 25 751cd8f9bb1c
child 26 61bf7f22a6d6
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/maps.h	Sat Dec 22 12:35:00 2007 +0000
     1.3 @@ -0,0 +1,1511 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2007
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_MAPS_H
    1.23 +#define LEMON_MAPS_H
    1.24 +
    1.25 +#include <iterator>
    1.26 +#include <functional>
    1.27 +#include <vector>
    1.28 +
    1.29 +#include <lemon/bits/utility.h>
    1.30 +// #include <lemon/bits/traits.h>
    1.31 +
    1.32 +///\file
    1.33 +///\ingroup maps
    1.34 +///\brief Miscellaneous property maps
    1.35 +///
    1.36 +#include <map>
    1.37 +
    1.38 +namespace lemon {
    1.39 +
    1.40 +  /// \addtogroup maps
    1.41 +  /// @{
    1.42 +
    1.43 +  /// Base class of maps.
    1.44 +
    1.45 +  /// Base class of maps.
    1.46 +  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
    1.47 +  template<typename K, typename T>
    1.48 +  class MapBase {
    1.49 +  public:
    1.50 +    ///\e
    1.51 +    typedef K Key;
    1.52 +    ///\e
    1.53 +    typedef T Value;
    1.54 +  };
    1.55 +
    1.56 +  /// Null map. (a.k.a. DoNothingMap)
    1.57 +
    1.58 +  /// If you have to provide a map only for its type definitions,
    1.59 +  /// or if you have to provide a writable map, but
    1.60 +  /// data written to it will sent to <tt>/dev/null</tt>...
    1.61 +  template<typename K, typename T>
    1.62 +  class NullMap : public MapBase<K, T> {
    1.63 +  public:
    1.64 +    typedef MapBase<K, T> Parent;
    1.65 +    typedef typename Parent::Key Key;
    1.66 +    typedef typename Parent::Value Value;
    1.67 +    
    1.68 +    /// Gives back a default constructed element.
    1.69 +    T operator[](const K&) const { return T(); }
    1.70 +    /// Absorbs the value.
    1.71 +    void set(const K&, const T&) {}
    1.72 +  };
    1.73 +
    1.74 +  template <typename K, typename V> 
    1.75 +  NullMap<K, V> nullMap() {
    1.76 +    return NullMap<K, V>();
    1.77 +  }
    1.78 +
    1.79 +
    1.80 +  /// Constant map.
    1.81 +
    1.82 +  /// This is a readable map which assigns a specified value to each key.
    1.83 +  /// In other aspects it is equivalent to the \c NullMap.
    1.84 +  template<typename K, typename T>
    1.85 +  class ConstMap : public MapBase<K, T> {
    1.86 +  private:
    1.87 +    T v;
    1.88 +  public:
    1.89 +
    1.90 +    typedef MapBase<K, T> Parent;
    1.91 +    typedef typename Parent::Key Key;
    1.92 +    typedef typename Parent::Value Value;
    1.93 +
    1.94 +    /// Default constructor
    1.95 +
    1.96 +    /// The value of the map will be uninitialized. 
    1.97 +    /// (More exactly it will be default constructed.)
    1.98 +    ConstMap() {}
    1.99 +    ///\e
   1.100 +
   1.101 +    /// \param _v The initial value of the map.
   1.102 +    ///
   1.103 +    ConstMap(const T &_v) : v(_v) {}
   1.104 +    
   1.105 +    ///\e
   1.106 +    T operator[](const K&) const { return v; }
   1.107 +
   1.108 +    ///\e
   1.109 +    void setAll(const T &t) {
   1.110 +      v = t;
   1.111 +    }    
   1.112 +
   1.113 +    template<typename T1>
   1.114 +    struct rebind {
   1.115 +      typedef ConstMap<K, T1> other;
   1.116 +    };
   1.117 +
   1.118 +    template<typename T1>
   1.119 +    ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
   1.120 +  };
   1.121 +
   1.122 +  ///Returns a \c ConstMap class
   1.123 +
   1.124 +  ///This function just returns a \c ConstMap class.
   1.125 +  ///\relates ConstMap
   1.126 +  template<typename K, typename V> 
   1.127 +  inline ConstMap<K, V> constMap(const V &v) {
   1.128 +    return ConstMap<K, V>(v);
   1.129 +  }
   1.130 +
   1.131 +
   1.132 +  template<typename T, T v>
   1.133 +  struct Const { };
   1.134 +
   1.135 +  /// Constant map with inlined constant value.
   1.136 +
   1.137 +  /// This is a readable map which assigns a specified value to each key.
   1.138 +  /// In other aspects it is equivalent to the \c NullMap.
   1.139 +  template<typename K, typename V, V v>
   1.140 +  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
   1.141 +  public:
   1.142 +    typedef MapBase<K, V> Parent;
   1.143 +    typedef typename Parent::Key Key;
   1.144 +    typedef typename Parent::Value Value;
   1.145 +
   1.146 +    ConstMap() { }
   1.147 +    ///\e
   1.148 +    V operator[](const K&) const { return v; }
   1.149 +    ///\e
   1.150 +    void set(const K&, const V&) { }
   1.151 +  };
   1.152 +
   1.153 +  ///Returns a \c ConstMap class
   1.154 +
   1.155 +  ///This function just returns a \c ConstMap class with inlined value.
   1.156 +  ///\relates ConstMap
   1.157 +  template<typename K, typename V, V v> 
   1.158 +  inline ConstMap<K, Const<V, v> > constMap() {
   1.159 +    return ConstMap<K, Const<V, v> >();
   1.160 +  }
   1.161 +
   1.162 +  ///Map based on std::map
   1.163 +
   1.164 +  ///This is essentially a wrapper for \c std::map. With addition that
   1.165 +  ///you can specify a default value different from \c Value() .
   1.166 +  template <typename K, typename T, typename Compare = std::less<K> >
   1.167 +  class StdMap {
   1.168 +    template <typename K1, typename T1, typename C1>
   1.169 +    friend class StdMap;
   1.170 +  public:
   1.171 +
   1.172 +    typedef True ReferenceMapTag;
   1.173 +    ///\e
   1.174 +    typedef K Key;
   1.175 +    ///\e
   1.176 +    typedef T Value;
   1.177 +    ///\e
   1.178 +    typedef T& Reference;
   1.179 +    ///\e
   1.180 +    typedef const T& ConstReference;
   1.181 +
   1.182 +  private:
   1.183 +    
   1.184 +    typedef std::map<K, T, Compare> Map;
   1.185 +    Value _value;
   1.186 +    Map _map;
   1.187 +
   1.188 +  public:
   1.189 +
   1.190 +    /// Constructor with specified default value
   1.191 +    StdMap(const T& value = T()) : _value(value) {}
   1.192 +    /// \brief Constructs the map from an appropriate std::map, and explicitly
   1.193 +    /// specifies a default value.
   1.194 +    template <typename T1, typename Comp1>
   1.195 +    StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) 
   1.196 +      : _map(map.begin(), map.end()), _value(value) {}
   1.197 +    
   1.198 +    /// \brief Constructs a map from an other StdMap.
   1.199 +    template<typename T1, typename Comp1>
   1.200 +    StdMap(const StdMap<Key, T1, Comp1> &c) 
   1.201 +      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
   1.202 +
   1.203 +  private:
   1.204 +
   1.205 +    StdMap& operator=(const StdMap&);
   1.206 +
   1.207 +  public:
   1.208 +
   1.209 +    ///\e
   1.210 +    Reference operator[](const Key &k) {
   1.211 +      typename Map::iterator it = _map.lower_bound(k);
   1.212 +      if (it != _map.end() && !_map.key_comp()(k, it->first))
   1.213 +	return it->second;
   1.214 +      else
   1.215 +	return _map.insert(it, std::make_pair(k, _value))->second;
   1.216 +    }
   1.217 +
   1.218 +    /// \e 
   1.219 +    ConstReference operator[](const Key &k) const {
   1.220 +      typename Map::const_iterator it = _map.find(k);
   1.221 +      if (it != _map.end())
   1.222 +	return it->second;
   1.223 +      else
   1.224 +	return _value;
   1.225 +    }
   1.226 +
   1.227 +    /// \e 
   1.228 +    void set(const Key &k, const T &t) {
   1.229 +      typename Map::iterator it = _map.lower_bound(k);
   1.230 +      if (it != _map.end() && !_map.key_comp()(k, it->first))
   1.231 +	it->second = t;
   1.232 +      else
   1.233 +	_map.insert(it, std::make_pair(k, t));
   1.234 +    }
   1.235 +
   1.236 +    /// \e
   1.237 +    void setAll(const T &t) {
   1.238 +      _value = t;
   1.239 +      _map.clear();
   1.240 +    }    
   1.241 +
   1.242 +    template <typename T1, typename C1 = std::less<T1> >
   1.243 +    struct rebind {
   1.244 +      typedef StdMap<Key, T1, C1> other;
   1.245 +    };
   1.246 +  };
   1.247 +
   1.248 +  /// \brief Map for storing values for the range \c [0..size-1] range keys
   1.249 +  ///
   1.250 +  /// The current map has the \c [0..size-1] keyset and the values
   1.251 +  /// are stored in a \c std::vector<T>  container. It can be used with
   1.252 +  /// some data structures, for example \c UnionFind, \c BinHeap, when 
   1.253 +  /// the used items are small integer numbers.
   1.254 +  template <typename T>
   1.255 +  class IntegerMap {
   1.256 +
   1.257 +    template <typename T1>
   1.258 +    friend class IntegerMap;
   1.259 +
   1.260 +  public:
   1.261 +
   1.262 +    typedef True ReferenceMapTag;
   1.263 +    ///\e
   1.264 +    typedef int Key;
   1.265 +    ///\e
   1.266 +    typedef T Value;
   1.267 +    ///\e
   1.268 +    typedef T& Reference;
   1.269 +    ///\e
   1.270 +    typedef const T& ConstReference;
   1.271 +
   1.272 +  private:
   1.273 +    
   1.274 +    typedef std::vector<T> Vector;
   1.275 +    Vector _vector;
   1.276 +
   1.277 +  public:
   1.278 +
   1.279 +    /// Constructor with specified default value
   1.280 +    IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
   1.281 +
   1.282 +    /// \brief Constructs the map from an appropriate std::vector.
   1.283 +    template <typename T1>
   1.284 +    IntegerMap(const std::vector<T1>& vector) 
   1.285 +      : _vector(vector.begin(), vector.end()) {}
   1.286 +    
   1.287 +    /// \brief Constructs a map from an other IntegerMap.
   1.288 +    template <typename T1>
   1.289 +    IntegerMap(const IntegerMap<T1> &c) 
   1.290 +      : _vector(c._vector.begin(), c._vector.end()) {}
   1.291 +
   1.292 +    /// \brief Resize the container
   1.293 +    void resize(int size, const T& value = T()) {
   1.294 +      _vector.resize(size, value);
   1.295 +    }
   1.296 +
   1.297 +  private:
   1.298 +
   1.299 +    IntegerMap& operator=(const IntegerMap&);
   1.300 +
   1.301 +  public:
   1.302 +
   1.303 +    ///\e
   1.304 +    Reference operator[](Key k) {
   1.305 +      return _vector[k];
   1.306 +    }
   1.307 +
   1.308 +    /// \e 
   1.309 +    ConstReference operator[](Key k) const {
   1.310 +      return _vector[k];
   1.311 +    }
   1.312 +
   1.313 +    /// \e 
   1.314 +    void set(const Key &k, const T& t) {
   1.315 +      _vector[k] = t;
   1.316 +    }
   1.317 +
   1.318 +  };
   1.319 +
   1.320 +  /// @}
   1.321 +
   1.322 +  /// \addtogroup map_adaptors
   1.323 +  /// @{
   1.324 +
   1.325 +  /// \brief Identity mapping.
   1.326 +  ///
   1.327 +  /// This mapping gives back the given key as value without any
   1.328 +  /// modification. 
   1.329 +  template <typename T>
   1.330 +  class IdentityMap : public MapBase<T, T> {
   1.331 +  public:
   1.332 +    typedef MapBase<T, T> Parent;
   1.333 +    typedef typename Parent::Key Key;
   1.334 +    typedef typename Parent::Value Value;
   1.335 +
   1.336 +    /// \e
   1.337 +    const T& operator[](const T& t) const {
   1.338 +      return t;
   1.339 +    }
   1.340 +  };
   1.341 +
   1.342 +  ///Returns an \c IdentityMap class
   1.343 +
   1.344 +  ///This function just returns an \c IdentityMap class.
   1.345 +  ///\relates IdentityMap
   1.346 +  template<typename T>
   1.347 +  inline IdentityMap<T> identityMap() {
   1.348 +    return IdentityMap<T>();
   1.349 +  }
   1.350 +  
   1.351 +
   1.352 +  ///Convert the \c Value of a map to another type.
   1.353 +
   1.354 +  ///This \c concepts::ReadMap "read only map"
   1.355 +  ///converts the \c Value of a maps to type \c T.
   1.356 +  ///Its \c Key is inherited from \c M.
   1.357 +  template <typename M, typename T> 
   1.358 +  class ConvertMap : public MapBase<typename M::Key, T> {
   1.359 +    const M& m;
   1.360 +  public:
   1.361 +    typedef MapBase<typename M::Key, T> Parent;
   1.362 +    typedef typename Parent::Key Key;
   1.363 +    typedef typename Parent::Value Value;
   1.364 +
   1.365 +    ///Constructor
   1.366 +
   1.367 +    ///Constructor
   1.368 +    ///\param _m is the underlying map
   1.369 +    ConvertMap(const M &_m) : m(_m) {};
   1.370 +
   1.371 +    /// \brief The subscript operator.
   1.372 +    ///
   1.373 +    /// The subscript operator.
   1.374 +    /// \param k The key
   1.375 +    /// \return The target of the arc 
   1.376 +    Value operator[](const Key& k) const {return m[k];}
   1.377 +  };
   1.378 +  
   1.379 +  ///Returns an \c ConvertMap class
   1.380 +
   1.381 +  ///This function just returns an \c ConvertMap class.
   1.382 +  ///\relates ConvertMap
   1.383 +  template<typename T, typename M>
   1.384 +  inline ConvertMap<M, T> convertMap(const M &m) {
   1.385 +    return ConvertMap<M, T>(m);
   1.386 +  }
   1.387 +
   1.388 +  ///Simple wrapping of the map
   1.389 +
   1.390 +  ///This \c concepts::ReadMap "read only map" returns the simple
   1.391 +  ///wrapping of the given map. Sometimes the reference maps cannot be
   1.392 +  ///combined with simple read maps. This map adaptor wraps the given
   1.393 +  ///map to simple read map.
   1.394 +  template<typename M> 
   1.395 +  class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
   1.396 +    const M& m;
   1.397 +
   1.398 +  public:
   1.399 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
   1.400 +    typedef typename Parent::Key Key;
   1.401 +    typedef typename Parent::Value Value;
   1.402 +
   1.403 +    ///Constructor
   1.404 +    SimpleMap(const M &_m) : m(_m) {};
   1.405 +    ///\e
   1.406 +    Value operator[](Key k) const {return m[k];}
   1.407 +  };
   1.408 +
   1.409 +  ///Simple writeable wrapping of the map
   1.410 +
   1.411 +  ///This \c concepts::ReadMap "read only map" returns the simple
   1.412 +  ///wrapping of the given map. Sometimes the reference maps cannot be
   1.413 +  ///combined with simple read-write maps. This map adaptor wraps the
   1.414 +  ///given map to simple read-write map.
   1.415 +  template<typename M> 
   1.416 +  class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
   1.417 +    M& m;
   1.418 +
   1.419 +  public:
   1.420 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
   1.421 +    typedef typename Parent::Key Key;
   1.422 +    typedef typename Parent::Value Value;
   1.423 +
   1.424 +    ///Constructor
   1.425 +    SimpleWriteMap(M &_m) : m(_m) {};
   1.426 +    ///\e
   1.427 +    Value operator[](Key k) const {return m[k];}
   1.428 +    ///\e
   1.429 +    void set(Key k, const Value& c) { m.set(k, c); }
   1.430 +  };
   1.431 +
   1.432 +  ///Sum of two maps
   1.433 +
   1.434 +  ///This \c concepts::ReadMap "read only map" returns the sum of the two
   1.435 +  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   1.436 +  ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
   1.437 +
   1.438 +  template<typename M1, typename M2> 
   1.439 +  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
   1.440 +    const M1& m1;
   1.441 +    const M2& m2;
   1.442 +
   1.443 +  public:
   1.444 +    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   1.445 +    typedef typename Parent::Key Key;
   1.446 +    typedef typename Parent::Value Value;
   1.447 +
   1.448 +    ///Constructor
   1.449 +    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.450 +    ///\e
   1.451 +    Value operator[](Key k) const {return m1[k]+m2[k];}
   1.452 +  };
   1.453 +  
   1.454 +  ///Returns an \c AddMap class
   1.455 +
   1.456 +  ///This function just returns an \c AddMap class.
   1.457 +  ///\todo How to call these type of functions?
   1.458 +  ///
   1.459 +  ///\relates AddMap
   1.460 +  template<typename M1, typename M2> 
   1.461 +  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
   1.462 +    return AddMap<M1, M2>(m1,m2);
   1.463 +  }
   1.464 +
   1.465 +  ///Shift a map with a constant.
   1.466 +
   1.467 +  ///This \c concepts::ReadMap "read only map" returns the sum of the
   1.468 +  ///given map and a constant value.
   1.469 +  ///Its \c Key and \c Value is inherited from \c M.
   1.470 +  ///
   1.471 +  ///Actually,
   1.472 +  ///\code
   1.473 +  ///  ShiftMap<X> sh(x,v);
   1.474 +  ///\endcode
   1.475 +  ///is equivalent with
   1.476 +  ///\code
   1.477 +  ///  ConstMap<X::Key, X::Value> c_tmp(v);
   1.478 +  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   1.479 +  ///\endcode
   1.480 +  template<typename M, typename C = typename M::Value> 
   1.481 +  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
   1.482 +    const M& m;
   1.483 +    C v;
   1.484 +  public:
   1.485 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
   1.486 +    typedef typename Parent::Key Key;
   1.487 +    typedef typename Parent::Value Value;
   1.488 +
   1.489 +    ///Constructor
   1.490 +
   1.491 +    ///Constructor
   1.492 +    ///\param _m is the undelying map
   1.493 +    ///\param _v is the shift value
   1.494 +    ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   1.495 +    ///\e
   1.496 +    Value operator[](Key k) const {return m[k] + v;}
   1.497 +  };
   1.498 +
   1.499 +  ///Shift a map with a constant.
   1.500 +
   1.501 +  ///This \c concepts::ReadWriteMap "read-write map" returns the sum of the
   1.502 +  ///given map and a constant value. It makes also possible to write the map.
   1.503 +  ///Its \c Key and \c Value is inherited from \c M.
   1.504 +  ///
   1.505 +  ///Actually,
   1.506 +  ///\code
   1.507 +  ///  ShiftMap<X> sh(x,v);
   1.508 +  ///\endcode
   1.509 +  ///is equivalent with
   1.510 +  ///\code
   1.511 +  ///  ConstMap<X::Key, X::Value> c_tmp(v);
   1.512 +  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   1.513 +  ///\endcode
   1.514 +  template<typename M, typename C = typename M::Value> 
   1.515 +  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
   1.516 +    M& m;
   1.517 +    C v;
   1.518 +  public:
   1.519 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
   1.520 +    typedef typename Parent::Key Key;
   1.521 +    typedef typename Parent::Value Value;
   1.522 +
   1.523 +    ///Constructor
   1.524 +
   1.525 +    ///Constructor
   1.526 +    ///\param _m is the undelying map
   1.527 +    ///\param _v is the shift value
   1.528 +    ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
   1.529 +    /// \e
   1.530 +    Value operator[](Key k) const {return m[k] + v;}
   1.531 +    /// \e
   1.532 +    void set(Key k, const Value& c) { m.set(k, c - v); }
   1.533 +  };
   1.534 +  
   1.535 +  ///Returns an \c ShiftMap class
   1.536 +
   1.537 +  ///This function just returns an \c ShiftMap class.
   1.538 +  ///\relates ShiftMap
   1.539 +  template<typename M, typename C> 
   1.540 +  inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
   1.541 +    return ShiftMap<M, C>(m,v);
   1.542 +  }
   1.543 +
   1.544 +  template<typename M, typename C> 
   1.545 +  inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
   1.546 +    return ShiftWriteMap<M, C>(m,v);
   1.547 +  }
   1.548 +
   1.549 +  ///Difference of two maps
   1.550 +
   1.551 +  ///This \c concepts::ReadMap "read only map" returns the difference
   1.552 +  ///of the values of the two
   1.553 +  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   1.554 +  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   1.555 +
   1.556 +  template<typename M1, typename M2> 
   1.557 +  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
   1.558 +    const M1& m1;
   1.559 +    const M2& m2;
   1.560 +  public:
   1.561 +    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   1.562 +    typedef typename Parent::Key Key;
   1.563 +    typedef typename Parent::Value Value;
   1.564 +
   1.565 +    ///Constructor
   1.566 +    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.567 +    /// \e
   1.568 +    Value operator[](Key k) const {return m1[k]-m2[k];}
   1.569 +  };
   1.570 +  
   1.571 +  ///Returns a \c SubMap class
   1.572 +
   1.573 +  ///This function just returns a \c SubMap class.
   1.574 +  ///
   1.575 +  ///\relates SubMap
   1.576 +  template<typename M1, typename M2> 
   1.577 +  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
   1.578 +    return SubMap<M1, M2>(m1, m2);
   1.579 +  }
   1.580 +
   1.581 +  ///Product of two maps
   1.582 +
   1.583 +  ///This \c concepts::ReadMap "read only map" returns the product of the
   1.584 +  ///values of the two
   1.585 +  ///given
   1.586 +  ///maps. Its \c Key and \c Value will be inherited from \c M1.
   1.587 +  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   1.588 +
   1.589 +  template<typename M1, typename M2> 
   1.590 +  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
   1.591 +    const M1& m1;
   1.592 +    const M2& m2;
   1.593 +  public:
   1.594 +    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   1.595 +    typedef typename Parent::Key Key;
   1.596 +    typedef typename Parent::Value Value;
   1.597 +
   1.598 +    ///Constructor
   1.599 +    MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.600 +    /// \e
   1.601 +    Value operator[](Key k) const {return m1[k]*m2[k];}
   1.602 +  };
   1.603 +  
   1.604 +  ///Returns a \c MulMap class
   1.605 +
   1.606 +  ///This function just returns a \c MulMap class.
   1.607 +  ///\relates MulMap
   1.608 +  template<typename M1, typename M2> 
   1.609 +  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
   1.610 +    return MulMap<M1, M2>(m1,m2);
   1.611 +  }
   1.612 + 
   1.613 +  ///Scales a maps with a constant.
   1.614 +
   1.615 +  ///This \c concepts::ReadMap "read only map" returns the value of the
   1.616 +  ///given map multiplied from the left side with a constant value.
   1.617 +  ///Its \c Key and \c Value is inherited from \c M.
   1.618 +  ///
   1.619 +  ///Actually,
   1.620 +  ///\code
   1.621 +  ///  ScaleMap<X> sc(x,v);
   1.622 +  ///\endcode
   1.623 +  ///is equivalent with
   1.624 +  ///\code
   1.625 +  ///  ConstMap<X::Key, X::Value> c_tmp(v);
   1.626 +  ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
   1.627 +  ///\endcode
   1.628 +  template<typename M, typename C = typename M::Value> 
   1.629 +  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
   1.630 +    const M& m;
   1.631 +    C v;
   1.632 +  public:
   1.633 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
   1.634 +    typedef typename Parent::Key Key;
   1.635 +    typedef typename Parent::Value Value;
   1.636 +
   1.637 +    ///Constructor
   1.638 +
   1.639 +    ///Constructor
   1.640 +    ///\param _m is the undelying map
   1.641 +    ///\param _v is the scaling value
   1.642 +    ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   1.643 +    /// \e
   1.644 +    Value operator[](Key k) const {return v * m[k];}
   1.645 +  };
   1.646 +
   1.647 +  ///Scales a maps with a constant.
   1.648 +
   1.649 +  ///This \c concepts::ReadWriteMap "read-write map" returns the value of the
   1.650 +  ///given map multiplied from the left side with a constant value. It can
   1.651 +  ///be used as write map also if the given multiplier is not zero.
   1.652 +  ///Its \c Key and \c Value is inherited from \c M.
   1.653 +  template<typename M, typename C = typename M::Value> 
   1.654 +  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
   1.655 +    M& m;
   1.656 +    C v;
   1.657 +  public:
   1.658 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
   1.659 +    typedef typename Parent::Key Key;
   1.660 +    typedef typename Parent::Value Value;
   1.661 +
   1.662 +    ///Constructor
   1.663 +
   1.664 +    ///Constructor
   1.665 +    ///\param _m is the undelying map
   1.666 +    ///\param _v is the scaling value
   1.667 +    ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
   1.668 +    /// \e
   1.669 +    Value operator[](Key k) const {return v * m[k];}
   1.670 +    /// \e
   1.671 +    void set(Key k, const Value& c) { m.set(k, c / v);}
   1.672 +  };
   1.673 +  
   1.674 +  ///Returns an \c ScaleMap class
   1.675 +
   1.676 +  ///This function just returns an \c ScaleMap class.
   1.677 +  ///\relates ScaleMap
   1.678 +  template<typename M, typename C> 
   1.679 +  inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
   1.680 +    return ScaleMap<M, C>(m,v);
   1.681 +  }
   1.682 +
   1.683 +  template<typename M, typename C> 
   1.684 +  inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
   1.685 +    return ScaleWriteMap<M, C>(m,v);
   1.686 +  }
   1.687 +
   1.688 +  ///Quotient of two maps
   1.689 +
   1.690 +  ///This \c concepts::ReadMap "read only map" returns the quotient of the
   1.691 +  ///values of the two
   1.692 +  ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   1.693 +  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   1.694 +
   1.695 +  template<typename M1, typename M2> 
   1.696 +  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
   1.697 +    const M1& m1;
   1.698 +    const M2& m2;
   1.699 +  public:
   1.700 +    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   1.701 +    typedef typename Parent::Key Key;
   1.702 +    typedef typename Parent::Value Value;
   1.703 +
   1.704 +    ///Constructor
   1.705 +    DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.706 +    /// \e
   1.707 +    Value operator[](Key k) const {return m1[k]/m2[k];}
   1.708 +  };
   1.709 +  
   1.710 +  ///Returns a \c DivMap class
   1.711 +
   1.712 +  ///This function just returns a \c DivMap class.
   1.713 +  ///\relates DivMap
   1.714 +  template<typename M1, typename M2> 
   1.715 +  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
   1.716 +    return DivMap<M1, M2>(m1,m2);
   1.717 +  }
   1.718 +  
   1.719 +  ///Composition of two maps
   1.720 +
   1.721 +  ///This \c concepts::ReadMap "read only map" returns the composition of
   1.722 +  ///two
   1.723 +  ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
   1.724 +  ///of \c M2,
   1.725 +  ///then for
   1.726 +  ///\code
   1.727 +  ///  ComposeMap<M1, M2> cm(m1,m2);
   1.728 +  ///\endcode
   1.729 +  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
   1.730 +  ///
   1.731 +  ///Its \c Key is inherited from \c M2 and its \c Value is from
   1.732 +  ///\c M1.
   1.733 +  ///The \c M2::Value must be convertible to \c M1::Key.
   1.734 +  ///\todo Check the requirements.
   1.735 +  template <typename M1, typename M2> 
   1.736 +  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
   1.737 +    const M1& m1;
   1.738 +    const M2& m2;
   1.739 +  public:
   1.740 +    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
   1.741 +    typedef typename Parent::Key Key;
   1.742 +    typedef typename Parent::Value Value;
   1.743 +
   1.744 +    ///Constructor
   1.745 +    ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   1.746 +    
   1.747 +    /// \e
   1.748 +
   1.749 +
   1.750 +    /// \todo Use the  MapTraits once it is ported.
   1.751 +    ///
   1.752 +
   1.753 +    //typename MapTraits<M1>::ConstReturnValue
   1.754 +    typename M1::Value
   1.755 +    operator[](Key k) const {return m1[m2[k]];}
   1.756 +  };
   1.757 +  ///Returns a \c ComposeMap class
   1.758 +
   1.759 +  ///This function just returns a \c ComposeMap class.
   1.760 +  ///
   1.761 +  ///\relates ComposeMap
   1.762 +  template <typename M1, typename M2> 
   1.763 +  inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
   1.764 +    return ComposeMap<M1, M2>(m1,m2);
   1.765 +  }
   1.766 +  
   1.767 +  ///Combines of two maps using an STL (binary) functor.
   1.768 +
   1.769 +  ///Combines of two maps using an STL (binary) functor.
   1.770 +  ///
   1.771 +  ///
   1.772 +  ///This \c concepts::ReadMap "read only map" takes two maps and a
   1.773 +  ///binary functor and returns the composition of
   1.774 +  ///the two
   1.775 +  ///given maps unsing the functor. 
   1.776 +  ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
   1.777 +  ///and \c f is of \c F,
   1.778 +  ///then for
   1.779 +  ///\code
   1.780 +  ///  CombineMap<M1, M2,F,V> cm(m1,m2,f);
   1.781 +  ///\endcode
   1.782 +  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
   1.783 +  ///
   1.784 +  ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
   1.785 +  ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
   1.786 +  ///input parameter of \c F and the return type of \c F must be convertible
   1.787 +  ///to \c V.
   1.788 +  ///\todo Check the requirements.
   1.789 +  template<typename M1, typename M2, typename F,
   1.790 +	   typename V = typename F::result_type> 
   1.791 +  class CombineMap : public MapBase<typename M1::Key, V> {
   1.792 +    const M1& m1;
   1.793 +    const M2& m2;
   1.794 +    F f;
   1.795 +  public:
   1.796 +    typedef MapBase<typename M1::Key, V> Parent;
   1.797 +    typedef typename Parent::Key Key;
   1.798 +    typedef typename Parent::Value Value;
   1.799 +
   1.800 +    ///Constructor
   1.801 +    CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F())
   1.802 +      : m1(_m1), m2(_m2), f(_f) {};
   1.803 +    /// \e
   1.804 +    Value operator[](Key k) const {return f(m1[k],m2[k]);}
   1.805 +  };
   1.806 +  
   1.807 +  ///Returns a \c CombineMap class
   1.808 +
   1.809 +  ///This function just returns a \c CombineMap class.
   1.810 +  ///
   1.811 +  ///For example if \c m1 and \c m2 are both \c double valued maps, then 
   1.812 +  ///\code
   1.813 +  ///combineMap<double>(m1,m2,std::plus<double>())
   1.814 +  ///\endcode
   1.815 +  ///is equivalent with
   1.816 +  ///\code
   1.817 +  ///addMap(m1,m2)
   1.818 +  ///\endcode
   1.819 +  ///
   1.820 +  ///This function is specialized for adaptable binary function
   1.821 +  ///classes and c++ functions.
   1.822 +  ///
   1.823 +  ///\relates CombineMap
   1.824 +  template<typename M1, typename M2, typename F, typename V> 
   1.825 +  inline CombineMap<M1, M2, F, V> 
   1.826 +  combineMap(const M1& m1,const M2& m2, const F& f) {
   1.827 +    return CombineMap<M1, M2, F, V>(m1,m2,f);
   1.828 +  }
   1.829 +
   1.830 +  template<typename M1, typename M2, typename F> 
   1.831 +  inline CombineMap<M1, M2, F, typename F::result_type> 
   1.832 +  combineMap(const M1& m1, const M2& m2, const F& f) {
   1.833 +    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
   1.834 +  }
   1.835 +
   1.836 +  template<typename M1, typename M2, typename K1, typename K2, typename V> 
   1.837 +  inline CombineMap<M1, M2, V (*)(K1, K2), V> 
   1.838 +  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
   1.839 +    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
   1.840 +  }
   1.841 +
   1.842 +  ///Negative value of a map
   1.843 +
   1.844 +  ///This \c concepts::ReadMap "read only map" returns the negative
   1.845 +  ///value of the
   1.846 +  ///value returned by the
   1.847 +  ///given map. Its \c Key and \c Value will be inherited from \c M.
   1.848 +  ///The unary \c - operator must be defined for \c Value, of course.
   1.849 +
   1.850 +  template<typename M> 
   1.851 +  class NegMap : public MapBase<typename M::Key, typename M::Value> {
   1.852 +    const M& m;
   1.853 +  public:
   1.854 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
   1.855 +    typedef typename Parent::Key Key;
   1.856 +    typedef typename Parent::Value Value;
   1.857 +
   1.858 +    ///Constructor
   1.859 +    NegMap(const M &_m) : m(_m) {};
   1.860 +    /// \e
   1.861 +    Value operator[](Key k) const {return -m[k];}
   1.862 +  };
   1.863 +  
   1.864 +  ///Negative value of a map
   1.865 +
   1.866 +  ///This \c concepts::ReadWriteMap "read-write map" returns the negative
   1.867 +  ///value of the value returned by the
   1.868 +  ///given map. Its \c Key and \c Value will be inherited from \c M.
   1.869 +  ///The unary \c - operator must be defined for \c Value, of course.
   1.870 +
   1.871 +  template<typename M> 
   1.872 +  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
   1.873 +    M& m;
   1.874 +  public:
   1.875 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
   1.876 +    typedef typename Parent::Key Key;
   1.877 +    typedef typename Parent::Value Value;
   1.878 +
   1.879 +    ///Constructor
   1.880 +    NegWriteMap(M &_m) : m(_m) {};
   1.881 +    /// \e
   1.882 +    Value operator[](Key k) const {return -m[k];}
   1.883 +    /// \e
   1.884 +    void set(Key k, const Value& v) { m.set(k, -v); }
   1.885 +  };
   1.886 +
   1.887 +  ///Returns a \c NegMap class
   1.888 +
   1.889 +  ///This function just returns a \c NegMap class.
   1.890 +  ///\relates NegMap
   1.891 +  template <typename M> 
   1.892 +  inline NegMap<M> negMap(const M &m) {
   1.893 +    return NegMap<M>(m);
   1.894 +  }
   1.895 +
   1.896 +  template <typename M> 
   1.897 +  inline NegWriteMap<M> negMap(M &m) {
   1.898 +    return NegWriteMap<M>(m);
   1.899 +  }
   1.900 +
   1.901 +  ///Absolute value of a map
   1.902 +
   1.903 +  ///This \c concepts::ReadMap "read only map" returns the absolute value
   1.904 +  ///of the
   1.905 +  ///value returned by the
   1.906 +  ///given map. Its \c Key and \c Value will be inherited
   1.907 +  ///from <tt>M</tt>. <tt>Value</tt>
   1.908 +  ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
   1.909 +  ///operator must be defined for it, of course.
   1.910 +  ///
   1.911 +  ///\bug We need a unified way to handle the situation below:
   1.912 +  ///\code
   1.913 +  ///  struct _UnConvertible {};
   1.914 +  ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
   1.915 +  ///  template<> inline int t_abs<>(int n) {return abs(n);}
   1.916 +  ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
   1.917 +  ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
   1.918 +  ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
   1.919 +  ///  template<> inline double t_abs<>(double n) {return fabs(n);}
   1.920 +  ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
   1.921 +  ///\endcode
   1.922 +  
   1.923 +
   1.924 +  template<typename M> 
   1.925 +  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
   1.926 +    const M& m;
   1.927 +  public:
   1.928 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
   1.929 +    typedef typename Parent::Key Key;
   1.930 +    typedef typename Parent::Value Value;
   1.931 +
   1.932 +    ///Constructor
   1.933 +    AbsMap(const M &_m) : m(_m) {};
   1.934 +    /// \e
   1.935 +    Value operator[](Key k) const {
   1.936 +      Value tmp = m[k]; 
   1.937 +      return tmp >= 0 ? tmp : -tmp;
   1.938 +    }
   1.939 +
   1.940 +  };
   1.941 +  
   1.942 +  ///Returns a \c AbsMap class
   1.943 +
   1.944 +  ///This function just returns a \c AbsMap class.
   1.945 +  ///\relates AbsMap
   1.946 +  template<typename M> 
   1.947 +  inline AbsMap<M> absMap(const M &m) {
   1.948 +    return AbsMap<M>(m);
   1.949 +  }
   1.950 +
   1.951 +  ///Converts an STL style functor to a map
   1.952 +
   1.953 +  ///This \c concepts::ReadMap "read only map" returns the value
   1.954 +  ///of a
   1.955 +  ///given map.
   1.956 +  ///
   1.957 +  ///Template parameters \c K and \c V will become its
   1.958 +  ///\c Key and \c Value. They must be given explicitely
   1.959 +  ///because a functor does not provide such typedefs.
   1.960 +  ///
   1.961 +  ///Parameter \c F is the type of the used functor.
   1.962 +  template<typename F, 
   1.963 +	   typename K = typename F::argument_type, 
   1.964 +	   typename V = typename F::result_type> 
   1.965 +  class FunctorMap : public MapBase<K, V> {
   1.966 +    F f;
   1.967 +  public:
   1.968 +    typedef MapBase<K, V> Parent;
   1.969 +    typedef typename Parent::Key Key;
   1.970 +    typedef typename Parent::Value Value;
   1.971 +
   1.972 +    ///Constructor
   1.973 +    FunctorMap(const F &_f = F()) : f(_f) {}
   1.974 +    /// \e
   1.975 +    Value operator[](Key k) const { return f(k);}
   1.976 +  };
   1.977 +  
   1.978 +  ///Returns a \c FunctorMap class
   1.979 +
   1.980 +  ///This function just returns a \c FunctorMap class.
   1.981 +  ///
   1.982 +  ///It is specialized for adaptable function classes and
   1.983 +  ///c++ functions.
   1.984 +  ///\relates FunctorMap
   1.985 +  template<typename K, typename V, typename F> inline 
   1.986 +  FunctorMap<F, K, V> functorMap(const F &f) {
   1.987 +    return FunctorMap<F, K, V>(f);
   1.988 +  }
   1.989 +
   1.990 +  template <typename F> inline 
   1.991 +  FunctorMap<F, typename F::argument_type, typename F::result_type> 
   1.992 +  functorMap(const F &f) {
   1.993 +    return FunctorMap<F, typename F::argument_type, 
   1.994 +      typename F::result_type>(f);
   1.995 +  }
   1.996 +
   1.997 +  template <typename K, typename V> inline 
   1.998 +  FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
   1.999 +    return FunctorMap<V (*)(K), K, V>(f);
  1.1000 +  }
  1.1001 +
  1.1002 +
  1.1003 +  ///Converts a map to an STL style (unary) functor
  1.1004 +
  1.1005 +  ///This class Converts a map to an STL style (unary) functor.
  1.1006 +  ///that is it provides an <tt>operator()</tt> to read its values.
  1.1007 +  ///
  1.1008 +  ///For the sake of convenience it also works as
  1.1009 +  ///a ususal \c concepts::ReadMap "readable map",
  1.1010 +  ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
  1.1011 +  template <typename M> 
  1.1012 +  class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
  1.1013 +    const M& m;
  1.1014 +  public:
  1.1015 +    typedef MapBase<typename M::Key, typename M::Value> Parent;
  1.1016 +    typedef typename Parent::Key Key;
  1.1017 +    typedef typename Parent::Value Value;
  1.1018 +
  1.1019 +    typedef typename M::Key argument_type;
  1.1020 +    typedef typename M::Value result_type;
  1.1021 +
  1.1022 +    ///Constructor
  1.1023 +    MapFunctor(const M &_m) : m(_m) {};
  1.1024 +    ///\e
  1.1025 +    Value operator()(Key k) const {return m[k];}
  1.1026 +    ///\e
  1.1027 +    Value operator[](Key k) const {return m[k];}
  1.1028 +  };
  1.1029 +  
  1.1030 +  ///Returns a \c MapFunctor class
  1.1031 +
  1.1032 +  ///This function just returns a \c MapFunctor class.
  1.1033 +  ///\relates MapFunctor
  1.1034 +  template<typename M> 
  1.1035 +  inline MapFunctor<M> mapFunctor(const M &m) {
  1.1036 +    return MapFunctor<M>(m);
  1.1037 +  }
  1.1038 +
  1.1039 +  ///Applies all map setting operations to two maps
  1.1040 +
  1.1041 +  ///This map has two \c concepts::ReadMap "readable map"
  1.1042 +  ///parameters and each read request will be passed just to the
  1.1043 +  ///first map. This class is the just readable map type of the ForkWriteMap.
  1.1044 +  ///
  1.1045 +  ///The \c Key and \c Value will be inherited from \c M1.
  1.1046 +  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
  1.1047 +  template<typename  M1, typename M2> 
  1.1048 +  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
  1.1049 +    const M1& m1;
  1.1050 +    const M2& m2;
  1.1051 +  public:
  1.1052 +    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
  1.1053 +    typedef typename Parent::Key Key;
  1.1054 +    typedef typename Parent::Value Value;
  1.1055 +
  1.1056 +    ///Constructor
  1.1057 +    ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
  1.1058 +    /// \e
  1.1059 +    Value operator[](Key k) const {return m1[k];}
  1.1060 +  };
  1.1061 +
  1.1062 +
  1.1063 +  ///Applies all map setting operations to two maps
  1.1064 +
  1.1065 +  ///This map has two \c concepts::WriteMap "writable map"
  1.1066 +  ///parameters and each write request will be passed to both of them.
  1.1067 +  ///If \c M1 is also \c concepts::ReadMap "readable",
  1.1068 +  ///then the read operations will return the
  1.1069 +  ///corresponding values of \c M1.
  1.1070 +  ///
  1.1071 +  ///The \c Key and \c Value will be inherited from \c M1.
  1.1072 +  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
  1.1073 +  template<typename  M1, typename M2> 
  1.1074 +  class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
  1.1075 +    M1& m1;
  1.1076 +    M2& m2;
  1.1077 +  public:
  1.1078 +    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
  1.1079 +    typedef typename Parent::Key Key;
  1.1080 +    typedef typename Parent::Value Value;
  1.1081 +
  1.1082 +    ///Constructor
  1.1083 +    ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
  1.1084 +    ///\e
  1.1085 +    Value operator[](Key k) const {return m1[k];}
  1.1086 +    ///\e
  1.1087 +    void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
  1.1088 +  };
  1.1089 +  
  1.1090 +  ///Returns an \c ForkMap class
  1.1091 +
  1.1092 +  ///This function just returns an \c ForkMap class.
  1.1093 +  ///
  1.1094 +  ///\relates ForkMap
  1.1095 +  template <typename M1, typename M2> 
  1.1096 +  inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
  1.1097 +    return ForkMap<M1, M2>(m1,m2);
  1.1098 +  }
  1.1099 +
  1.1100 +  template <typename M1, typename M2> 
  1.1101 +  inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
  1.1102 +    return ForkWriteMap<M1, M2>(m1,m2);
  1.1103 +  }
  1.1104 +
  1.1105 +
  1.1106 +  
  1.1107 +  /* ************* BOOL MAPS ******************* */
  1.1108 +  
  1.1109 +  ///Logical 'not' of a map
  1.1110 +  
  1.1111 +  ///This bool \c concepts::ReadMap "read only map" returns the 
  1.1112 +  ///logical negation of
  1.1113 +  ///value returned by the
  1.1114 +  ///given map. Its \c Key and will be inherited from \c M,
  1.1115 +  ///its Value is <tt>bool</tt>.
  1.1116 +  template <typename M> 
  1.1117 +  class NotMap : public MapBase<typename M::Key, bool> {
  1.1118 +    const M& m;
  1.1119 +  public:
  1.1120 +    typedef MapBase<typename M::Key, bool> Parent;
  1.1121 +    typedef typename Parent::Key Key;
  1.1122 +    typedef typename Parent::Value Value;
  1.1123 +
  1.1124 +    /// Constructor
  1.1125 +    NotMap(const M &_m) : m(_m) {};
  1.1126 +    ///\e
  1.1127 +    Value operator[](Key k) const {return !m[k];}
  1.1128 +  };
  1.1129 +
  1.1130 +  ///Logical 'not' of a map with writing possibility
  1.1131 +  
  1.1132 +  ///This bool \c concepts::ReadWriteMap "read-write map" returns the 
  1.1133 +  ///logical negation of value returned by the given map. When it is set,
  1.1134 +  ///the opposite value is set to the original map.
  1.1135 +  ///Its \c Key and will be inherited from \c M,
  1.1136 +  ///its Value is <tt>bool</tt>.
  1.1137 +  template <typename M> 
  1.1138 +  class NotWriteMap : public MapBase<typename M::Key, bool> {
  1.1139 +    M& m;
  1.1140 +  public:
  1.1141 +    typedef MapBase<typename M::Key, bool> Parent;
  1.1142 +    typedef typename Parent::Key Key;
  1.1143 +    typedef typename Parent::Value Value;
  1.1144 +
  1.1145 +    /// Constructor
  1.1146 +    NotWriteMap(M &_m) : m(_m) {};
  1.1147 +    ///\e
  1.1148 +    Value operator[](Key k) const {return !m[k];}
  1.1149 +    ///\e
  1.1150 +    void set(Key k, bool v) { m.set(k, !v); }
  1.1151 +  };
  1.1152 +  
  1.1153 +  ///Returns a \c NotMap class
  1.1154 +  
  1.1155 +  ///This function just returns a \c NotMap class.
  1.1156 +  ///\relates NotMap
  1.1157 +  template <typename M> 
  1.1158 +  inline NotMap<M> notMap(const M &m) {
  1.1159 +    return NotMap<M>(m);
  1.1160 +  }
  1.1161 +  
  1.1162 +  template <typename M> 
  1.1163 +  inline NotWriteMap<M> notMap(M &m) {
  1.1164 +    return NotWriteMap<M>(m);
  1.1165 +  }
  1.1166 +
  1.1167 +  namespace _maps_bits {
  1.1168 +
  1.1169 +    template <typename Value>
  1.1170 +    struct Identity {
  1.1171 +      typedef Value argument_type;
  1.1172 +      typedef Value result_type;
  1.1173 +      Value operator()(const Value& val) const {
  1.1174 +	return val;
  1.1175 +      }
  1.1176 +    };
  1.1177 +
  1.1178 +    template <typename _Iterator, typename Enable = void>
  1.1179 +    struct IteratorTraits {
  1.1180 +      typedef typename std::iterator_traits<_Iterator>::value_type Value;
  1.1181 +    };
  1.1182 +
  1.1183 +    template <typename _Iterator>
  1.1184 +    struct IteratorTraits<_Iterator,
  1.1185 +      typename exists<typename _Iterator::container_type>::type> 
  1.1186 +    {
  1.1187 +      typedef typename _Iterator::container_type::value_type Value;
  1.1188 +    };
  1.1189 +
  1.1190 +  }
  1.1191 +  
  1.1192 +
  1.1193 +  /// \brief Writable bool map for store each true assigned elements.
  1.1194 +  ///
  1.1195 +  /// Writable bool map to store each true assigned elements. It will
  1.1196 +  /// copies all the keys set to true to the given iterator.
  1.1197 +  ///
  1.1198 +  /// \note The container of the iterator should contain space 
  1.1199 +  /// for each element.
  1.1200 +  ///
  1.1201 +  /// The next example shows how can you write the nodes directly
  1.1202 +  /// to the standard output.
  1.1203 +  ///\code
  1.1204 +  /// typedef IdMap<Graph, Edge> EdgeIdMap;
  1.1205 +  /// EdgeIdMap edgeId(graph);
  1.1206 +  ///
  1.1207 +  /// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor;
  1.1208 +  /// EdgeIdFunctor edgeIdFunctor(edgeId);
  1.1209 +  ///
  1.1210 +  /// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> 
  1.1211 +  ///   writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
  1.1212 +  ///
  1.1213 +  /// prim(graph, cost, writerMap);
  1.1214 +  ///\endcode
  1.1215 +  template <typename _Iterator, 
  1.1216 +            typename _Functor =
  1.1217 +            _maps_bits::Identity<typename _maps_bits::
  1.1218 +                                 IteratorTraits<_Iterator>::Value> >
  1.1219 +  class StoreBoolMap {
  1.1220 +  public:
  1.1221 +    typedef _Iterator Iterator;
  1.1222 +
  1.1223 +    typedef typename _Functor::argument_type Key;
  1.1224 +    typedef bool Value;
  1.1225 +
  1.1226 +    typedef _Functor Functor;
  1.1227 +
  1.1228 +    /// Constructor
  1.1229 +    StoreBoolMap(Iterator it, const Functor& functor = Functor()) 
  1.1230 +      : _begin(it), _end(it), _functor(functor) {}
  1.1231 +
  1.1232 +    /// Gives back the given iterator set for the first time.
  1.1233 +    Iterator begin() const {
  1.1234 +      return _begin;
  1.1235 +    }
  1.1236 + 
  1.1237 +    /// Gives back the iterator after the last set operation.
  1.1238 +    Iterator end() const {
  1.1239 +      return _end;
  1.1240 +    }
  1.1241 +
  1.1242 +    /// Setter function of the map
  1.1243 +    void set(const Key& key, Value value) const {
  1.1244 +      if (value) {
  1.1245 +	*_end++ = _functor(key);
  1.1246 +      }
  1.1247 +    }
  1.1248 +    
  1.1249 +  private:
  1.1250 +    Iterator _begin;
  1.1251 +    mutable Iterator _end;
  1.1252 +    Functor _functor;
  1.1253 +  };
  1.1254 +
  1.1255 +  /// \brief Writable bool map for store each true assigned elements in 
  1.1256 +  /// a back insertable container.
  1.1257 +  ///
  1.1258 +  /// Writable bool map for store each true assigned elements in a back 
  1.1259 +  /// insertable container. It will push back all the keys set to true into
  1.1260 +  /// the container. It can be used to retrieve the items into a standard
  1.1261 +  /// container. The next example shows how can you store the undirected
  1.1262 +  /// arcs in a vector with prim algorithm.
  1.1263 +  ///
  1.1264 +  ///\code
  1.1265 +  /// vector<Edge> span_tree_edges;
  1.1266 +  /// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges);
  1.1267 +  /// prim(graph, cost, inserter_map);
  1.1268 +  ///\endcode
  1.1269 +  template <typename Container,
  1.1270 +            typename Functor =
  1.1271 +            _maps_bits::Identity<typename Container::value_type> >
  1.1272 +  class BackInserterBoolMap {
  1.1273 +  public:
  1.1274 +    typedef typename Container::value_type Key;
  1.1275 +    typedef bool Value;
  1.1276 +
  1.1277 +    /// Constructor
  1.1278 +    BackInserterBoolMap(Container& _container, 
  1.1279 +                        const Functor& _functor = Functor()) 
  1.1280 +      : container(_container), functor(_functor) {}
  1.1281 +
  1.1282 +    /// Setter function of the map
  1.1283 +    void set(const Key& key, Value value) {
  1.1284 +      if (value) {
  1.1285 +	container.push_back(functor(key));
  1.1286 +      }
  1.1287 +    }
  1.1288 +    
  1.1289 +  private:
  1.1290 +    Container& container;
  1.1291 +    Functor functor;
  1.1292 +  };
  1.1293 +
  1.1294 +  /// \brief Writable bool map for store each true assigned elements in 
  1.1295 +  /// a front insertable container.
  1.1296 +  ///
  1.1297 +  /// Writable bool map for store each true assigned elements in a front 
  1.1298 +  /// insertable container. It will push front all the keys set to \c true into
  1.1299 +  /// the container. For example see the BackInserterBoolMap.
  1.1300 +  template <typename Container,
  1.1301 +            typename Functor =
  1.1302 +            _maps_bits::Identity<typename Container::value_type> >
  1.1303 +  class FrontInserterBoolMap {
  1.1304 +  public:
  1.1305 +    typedef typename Container::value_type Key;
  1.1306 +    typedef bool Value;
  1.1307 +
  1.1308 +    /// Constructor
  1.1309 +    FrontInserterBoolMap(Container& _container,
  1.1310 +                         const Functor& _functor = Functor()) 
  1.1311 +      : container(_container), functor(_functor) {}
  1.1312 +
  1.1313 +    /// Setter function of the map
  1.1314 +    void set(const Key& key, Value value) {
  1.1315 +      if (value) {
  1.1316 +	container.push_front(key);
  1.1317 +      }
  1.1318 +    }
  1.1319 +    
  1.1320 +  private:
  1.1321 +    Container& container;    
  1.1322 +    Functor functor;
  1.1323 +  };
  1.1324 +
  1.1325 +  /// \brief Writable bool map for store each true assigned elements in 
  1.1326 +  /// an insertable container.
  1.1327 +  ///
  1.1328 +  /// Writable bool map for store each true assigned elements in an 
  1.1329 +  /// insertable container. It will insert all the keys set to \c true into
  1.1330 +  /// the container. If you want to store the cut arcs of the strongly
  1.1331 +  /// connected components in a set you can use the next code:
  1.1332 +  ///
  1.1333 +  ///\code
  1.1334 +  /// set<Arc> cut_arcs;
  1.1335 +  /// InserterBoolMap<set<Arc> > inserter_map(cut_arcs);
  1.1336 +  /// stronglyConnectedCutArcs(digraph, cost, inserter_map);
  1.1337 +  ///\endcode
  1.1338 +  template <typename Container,
  1.1339 +            typename Functor =
  1.1340 +            _maps_bits::Identity<typename Container::value_type> >
  1.1341 +  class InserterBoolMap {
  1.1342 +  public:
  1.1343 +    typedef typename Container::value_type Key;
  1.1344 +    typedef bool Value;
  1.1345 +
  1.1346 +    /// Constructor
  1.1347 +    InserterBoolMap(Container& _container, typename Container::iterator _it,
  1.1348 +                    const Functor& _functor = Functor()) 
  1.1349 +      : container(_container), it(_it), functor(_functor) {}
  1.1350 +
  1.1351 +    /// Constructor
  1.1352 +    InserterBoolMap(Container& _container, const Functor& _functor = Functor())
  1.1353 +      : container(_container), it(_container.end()), functor(_functor) {}
  1.1354 +
  1.1355 +    /// Setter function of the map
  1.1356 +    void set(const Key& key, Value value) {
  1.1357 +      if (value) {
  1.1358 +	it = container.insert(it, key);
  1.1359 +        ++it;
  1.1360 +      }
  1.1361 +    }
  1.1362 +    
  1.1363 +  private:
  1.1364 +    Container& container;
  1.1365 +    typename Container::iterator it;
  1.1366 +    Functor functor;
  1.1367 +  };
  1.1368 +
  1.1369 +  /// \brief Fill the true set elements with a given value.
  1.1370 +  ///
  1.1371 +  /// Writable bool map to fill the elements set to \c true with a given value.
  1.1372 +  /// The value can set 
  1.1373 +  /// the container.
  1.1374 +  ///
  1.1375 +  /// The next code finds the connected components of the undirected digraph
  1.1376 +  /// and stores it in the \c comp map:
  1.1377 +  ///\code
  1.1378 +  /// typedef Graph::NodeMap<int> ComponentMap;
  1.1379 +  /// ComponentMap comp(graph);
  1.1380 +  /// typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap;
  1.1381 +  /// ComponentFillerMap filler(comp, 0);
  1.1382 +  ///
  1.1383 +  /// Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph);
  1.1384 +  /// dfs.processedMap(filler);
  1.1385 +  /// dfs.init();
  1.1386 +  /// for (NodeIt it(graph); it != INVALID; ++it) {
  1.1387 +  ///   if (!dfs.reached(it)) {
  1.1388 +  ///     dfs.addSource(it);
  1.1389 +  ///     dfs.start();
  1.1390 +  ///     ++filler.fillValue();
  1.1391 +  ///   }
  1.1392 +  /// }
  1.1393 +  ///\endcode
  1.1394 +  template <typename Map>
  1.1395 +  class FillBoolMap {
  1.1396 +  public:
  1.1397 +    typedef typename Map::Key Key;
  1.1398 +    typedef bool Value;
  1.1399 +
  1.1400 +    /// Constructor
  1.1401 +    FillBoolMap(Map& _map, const typename Map::Value& _fill) 
  1.1402 +      : map(_map), fill(_fill) {}
  1.1403 +
  1.1404 +    /// Constructor
  1.1405 +    FillBoolMap(Map& _map) 
  1.1406 +      : map(_map), fill() {}
  1.1407 +
  1.1408 +    /// Gives back the current fill value
  1.1409 +    const typename Map::Value& fillValue() const {
  1.1410 +      return fill;
  1.1411 +    } 
  1.1412 +
  1.1413 +    /// Gives back the current fill value
  1.1414 +    typename Map::Value& fillValue() {
  1.1415 +      return fill;
  1.1416 +    } 
  1.1417 +
  1.1418 +    /// Sets the current fill value
  1.1419 +    void fillValue(const typename Map::Value& _fill) {
  1.1420 +      fill = _fill;
  1.1421 +    } 
  1.1422 +
  1.1423 +    /// Setter function of the map
  1.1424 +    void set(const Key& key, Value value) {
  1.1425 +      if (value) {
  1.1426 +	map.set(key, fill);
  1.1427 +      }
  1.1428 +    }
  1.1429 +    
  1.1430 +  private:
  1.1431 +    Map& map;
  1.1432 +    typename Map::Value fill;
  1.1433 +  };
  1.1434 +
  1.1435 +
  1.1436 +  /// \brief Writable bool map which stores for each true assigned elements  
  1.1437 +  /// the setting order number.
  1.1438 +  ///
  1.1439 +  /// Writable bool map which stores for each true assigned elements  
  1.1440 +  /// the setting order number. It make easy to calculate the leaving
  1.1441 +  /// order of the nodes in the \c Dfs algorithm.
  1.1442 +  ///
  1.1443 +  ///\code
  1.1444 +  /// typedef Digraph::NodeMap<int> OrderMap;
  1.1445 +  /// OrderMap order(digraph);
  1.1446 +  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
  1.1447 +  /// OrderSetterMap setter(order);
  1.1448 +  /// Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph);
  1.1449 +  /// dfs.processedMap(setter);
  1.1450 +  /// dfs.init();
  1.1451 +  /// for (NodeIt it(digraph); it != INVALID; ++it) {
  1.1452 +  ///   if (!dfs.reached(it)) {
  1.1453 +  ///     dfs.addSource(it);
  1.1454 +  ///     dfs.start();
  1.1455 +  ///   }
  1.1456 +  /// }
  1.1457 +  ///\endcode
  1.1458 +  ///
  1.1459 +  /// The discovering order can be stored a little harder because the
  1.1460 +  /// ReachedMap should be readable in the dfs algorithm but the setting
  1.1461 +  /// order map is not readable. Now we should use the fork map:
  1.1462 +  ///
  1.1463 +  ///\code
  1.1464 +  /// typedef Digraph::NodeMap<int> OrderMap;
  1.1465 +  /// OrderMap order(digraph);
  1.1466 +  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
  1.1467 +  /// OrderSetterMap setter(order);
  1.1468 +  /// typedef Digraph::NodeMap<bool> StoreMap;
  1.1469 +  /// StoreMap store(digraph);
  1.1470 +  ///
  1.1471 +  /// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
  1.1472 +  /// ReachedMap reached(store, setter);
  1.1473 +  ///
  1.1474 +  /// Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph);
  1.1475 +  /// dfs.reachedMap(reached);
  1.1476 +  /// dfs.init();
  1.1477 +  /// for (NodeIt it(digraph); it != INVALID; ++it) {
  1.1478 +  ///   if (!dfs.reached(it)) {
  1.1479 +  ///     dfs.addSource(it);
  1.1480 +  ///     dfs.start();
  1.1481 +  ///   }
  1.1482 +  /// }
  1.1483 +  ///\endcode
  1.1484 +  template <typename Map>
  1.1485 +  class SettingOrderBoolMap {
  1.1486 +  public:
  1.1487 +    typedef typename Map::Key Key;
  1.1488 +    typedef bool Value;
  1.1489 +
  1.1490 +    /// Constructor
  1.1491 +    SettingOrderBoolMap(Map& _map) 
  1.1492 +      : map(_map), counter(0) {}
  1.1493 +
  1.1494 +    /// Number of set operations.
  1.1495 +    int num() const {
  1.1496 +      return counter;
  1.1497 +    }
  1.1498 +
  1.1499 +    /// Setter function of the map
  1.1500 +    void set(const Key& key, Value value) {
  1.1501 +      if (value) {
  1.1502 +	map.set(key, counter++);
  1.1503 +      }
  1.1504 +    }
  1.1505 +    
  1.1506 +  private:
  1.1507 +    Map& map;
  1.1508 +    int counter;
  1.1509 +  };
  1.1510 +
  1.1511 +  /// @}
  1.1512 +}
  1.1513 +
  1.1514 +#endif // LEMON_MAPS_H