1.1 --- a/lemon/maps.h Wed Sep 30 08:36:43 2009 +0200
1.2 +++ b/lemon/maps.h Wed Sep 30 08:41:06 2009 +0200
1.3 @@ -22,6 +22,7 @@
1.4 #include <iterator>
1.5 #include <functional>
1.6 #include <vector>
1.7 +#include <map>
1.8
1.9 #include <lemon/core.h>
1.10
1.11 @@ -29,8 +30,6 @@
1.12 ///\ingroup maps
1.13 ///\brief Miscellaneous property maps
1.14
1.15 -#include <map>
1.16 -
1.17 namespace lemon {
1.18
1.19 /// \addtogroup maps
1.20 @@ -57,7 +56,7 @@
1.21 /// its type definitions, or if you have to provide a writable map,
1.22 /// but data written to it is not required (i.e. it will be sent to
1.23 /// <tt>/dev/null</tt>).
1.24 - /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1.25 + /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1.26 ///
1.27 /// \sa ConstMap
1.28 template<typename K, typename V>
1.29 @@ -90,7 +89,7 @@
1.30 /// value to each key.
1.31 ///
1.32 /// In other aspects it is equivalent to \c NullMap.
1.33 - /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
1.34 + /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
1.35 /// concept, but it absorbs the data written to it.
1.36 ///
1.37 /// The simplest way of using this map is through the constMap()
1.38 @@ -159,7 +158,7 @@
1.39 /// value to each key.
1.40 ///
1.41 /// In other aspects it is equivalent to \c NullMap.
1.42 - /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
1.43 + /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
1.44 /// concept, but it absorbs the data written to it.
1.45 ///
1.46 /// The simplest way of using this map is through the constMap()
1.47 @@ -233,7 +232,7 @@
1.48 /// values to integer keys from the range <tt>[0..size-1]</tt>.
1.49 /// It can be used with some data structures, for example
1.50 /// \c UnionFind, \c BinHeap, when the used items are small
1.51 - /// integers. This map conforms the \ref concepts::ReferenceMap
1.52 + /// integers. This map conforms to the \ref concepts::ReferenceMap
1.53 /// "ReferenceMap" concept.
1.54 ///
1.55 /// The simplest way of using this map is through the rangeMap()
1.56 @@ -341,7 +340,7 @@
1.57 /// that you can specify a default value for the keys that are not
1.58 /// stored actually. This value can be different from the default
1.59 /// contructed value (i.e. \c %Value()).
1.60 - /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
1.61 + /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
1.62 /// concept.
1.63 ///
1.64 /// This map is useful if a default value should be assigned to most of
1.65 @@ -707,7 +706,7 @@
1.66 /// "readable map" to another type using the default conversion.
1.67 /// The \c Key type of it is inherited from \c M and the \c Value
1.68 /// type is \c V.
1.69 - /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
1.70 + /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1.71 ///
1.72 /// The simplest way of using this map is through the convertMap()
1.73 /// function.
1.74 @@ -1790,11 +1789,11 @@
1.75 /// order of Dfs algorithm, as the following examples show.
1.76 /// \code
1.77 /// std::vector<Node> v;
1.78 - /// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
1.79 + /// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
1.80 /// \endcode
1.81 /// \code
1.82 /// std::vector<Node> v(countNodes(g));
1.83 - /// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
1.84 + /// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
1.85 /// \endcode
1.86 ///
1.87 /// \note The container of the iterator must contain enough space
1.88 @@ -1818,7 +1817,7 @@
1.89 /// \brief Provides an immutable and unique id for each item in a graph.
1.90 ///
1.91 /// IdMap provides a unique and immutable id for each item of the
1.92 - /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
1.93 + /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
1.94 /// - \b unique: different items get different ids,
1.95 /// - \b immutable: the id of an item does not change (even if you
1.96 /// delete other nodes).
1.97 @@ -1826,7 +1825,7 @@
1.98 /// Using this map you get access (i.e. can read) the inner id values of
1.99 /// the items stored in the graph, which is returned by the \c id()
1.100 /// function of the graph. This map can be inverted with its member
1.101 - /// class \c InverseMap or with the \c operator() member.
1.102 + /// class \c InverseMap or with the \c operator()() member.
1.103 ///
1.104 /// \tparam GR The graph type.
1.105 /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.106 @@ -1866,9 +1865,11 @@
1.107
1.108 public:
1.109
1.110 - /// \brief This class represents the inverse of its owner (IdMap).
1.111 + /// \brief The inverse map type of IdMap.
1.112 ///
1.113 - /// This class represents the inverse of its owner (IdMap).
1.114 + /// The inverse map type of IdMap. The subscript operator gives back
1.115 + /// an item by its id.
1.116 + /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1.117 /// \see inverse()
1.118 class InverseMap {
1.119 public:
1.120 @@ -1883,9 +1884,9 @@
1.121 /// Constructor for creating an id-to-item map.
1.122 explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
1.123
1.124 - /// \brief Gives back the given item from its id.
1.125 + /// \brief Gives back an item by its id.
1.126 ///
1.127 - /// Gives back the given item from its id.
1.128 + /// Gives back an item by its id.
1.129 Item operator[](int id) const { return _graph->fromId(id, Item());}
1.130
1.131 private:
1.132 @@ -1898,14 +1899,31 @@
1.133 InverseMap inverse() const { return InverseMap(*_graph);}
1.134 };
1.135
1.136 + /// \brief Returns an \c IdMap class.
1.137 + ///
1.138 + /// This function just returns an \c IdMap class.
1.139 + /// \relates IdMap
1.140 + template <typename K, typename GR>
1.141 + inline IdMap<GR, K> idMap(const GR& graph) {
1.142 + return IdMap<GR, K>(graph);
1.143 + }
1.144
1.145 /// \brief General cross reference graph map type.
1.146
1.147 /// This class provides simple invertable graph maps.
1.148 /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
1.149 /// and if a key is set to a new value, then stores it in the inverse map.
1.150 - /// The values of the map can be accessed
1.151 - /// with stl compatible forward iterator.
1.152 + /// The graph items can be accessed by their values either using
1.153 + /// \c InverseMap or \c operator()(), and the values of the map can be
1.154 + /// accessed with an STL compatible forward iterator (\c ValueIt).
1.155 + ///
1.156 + /// This map is intended to be used when all associated values are
1.157 + /// different (the map is actually invertable) or there are only a few
1.158 + /// items with the same value.
1.159 + /// Otherwise consider to use \c IterableValueMap, which is more
1.160 + /// suitable and more efficient for such cases. It provides iterators
1.161 + /// to traverse the items with the same associated value, however
1.162 + /// it does not have \c InverseMap.
1.163 ///
1.164 /// This type is not reference map, so it cannot be modified with
1.165 /// the subscript operator.
1.166 @@ -1946,56 +1964,66 @@
1.167
1.168 /// \brief Forward iterator for values.
1.169 ///
1.170 - /// This iterator is an stl compatible forward
1.171 + /// This iterator is an STL compatible forward
1.172 /// iterator on the values of the map. The values can
1.173 /// be accessed in the <tt>[beginValue, endValue)</tt> range.
1.174 /// They are considered with multiplicity, so each value is
1.175 /// traversed for each item it is assigned to.
1.176 - class ValueIterator
1.177 + class ValueIt
1.178 : public std::iterator<std::forward_iterator_tag, Value> {
1.179 friend class CrossRefMap;
1.180 private:
1.181 - ValueIterator(typename Container::const_iterator _it)
1.182 + ValueIt(typename Container::const_iterator _it)
1.183 : it(_it) {}
1.184 public:
1.185
1.186 - ValueIterator() {}
1.187 -
1.188 - ValueIterator& operator++() { ++it; return *this; }
1.189 - ValueIterator operator++(int) {
1.190 - ValueIterator tmp(*this);
1.191 + /// Constructor
1.192 + ValueIt() {}
1.193 +
1.194 + /// \e
1.195 + ValueIt& operator++() { ++it; return *this; }
1.196 + /// \e
1.197 + ValueIt operator++(int) {
1.198 + ValueIt tmp(*this);
1.199 operator++();
1.200 return tmp;
1.201 }
1.202
1.203 + /// \e
1.204 const Value& operator*() const { return it->first; }
1.205 + /// \e
1.206 const Value* operator->() const { return &(it->first); }
1.207
1.208 - bool operator==(ValueIterator jt) const { return it == jt.it; }
1.209 - bool operator!=(ValueIterator jt) const { return it != jt.it; }
1.210 + /// \e
1.211 + bool operator==(ValueIt jt) const { return it == jt.it; }
1.212 + /// \e
1.213 + bool operator!=(ValueIt jt) const { return it != jt.it; }
1.214
1.215 private:
1.216 typename Container::const_iterator it;
1.217 };
1.218 +
1.219 + /// Alias for \c ValueIt
1.220 + typedef ValueIt ValueIterator;
1.221
1.222 /// \brief Returns an iterator to the first value.
1.223 ///
1.224 - /// Returns an stl compatible iterator to the
1.225 + /// Returns an STL compatible iterator to the
1.226 /// first value of the map. The values of the
1.227 /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1.228 /// range.
1.229 - ValueIterator beginValue() const {
1.230 - return ValueIterator(_inv_map.begin());
1.231 + ValueIt beginValue() const {
1.232 + return ValueIt(_inv_map.begin());
1.233 }
1.234
1.235 /// \brief Returns an iterator after the last value.
1.236 ///
1.237 - /// Returns an stl compatible iterator after the
1.238 + /// Returns an STL compatible iterator after the
1.239 /// last value of the map. The values of the
1.240 /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1.241 /// range.
1.242 - ValueIterator endValue() const {
1.243 - return ValueIterator(_inv_map.end());
1.244 + ValueIt endValue() const {
1.245 + return ValueIt(_inv_map.end());
1.246 }
1.247
1.248 /// \brief Sets the value associated with the given key.
1.249 @@ -2033,6 +2061,14 @@
1.250 typename Container::const_iterator it = _inv_map.find(val);
1.251 return it != _inv_map.end() ? it->second : INVALID;
1.252 }
1.253 +
1.254 + /// \brief Returns the number of items with the given value.
1.255 + ///
1.256 + /// This function returns the number of items with the given value
1.257 + /// associated with it.
1.258 + int count(const Value &val) const {
1.259 + return _inv_map.count(val);
1.260 + }
1.261
1.262 protected:
1.263
1.264 @@ -2083,10 +2119,12 @@
1.265
1.266 public:
1.267
1.268 - /// \brief The inverse map type.
1.269 + /// \brief The inverse map type of CrossRefMap.
1.270 ///
1.271 - /// The inverse of this map. The subscript operator of the map
1.272 - /// gives back the item that was last assigned to the value.
1.273 + /// The inverse map type of CrossRefMap. The subscript operator gives
1.274 + /// back an item by its value.
1.275 + /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1.276 + /// \see inverse()
1.277 class InverseMap {
1.278 public:
1.279 /// \brief Constructor
1.280 @@ -2113,20 +2151,20 @@
1.281 const CrossRefMap& _inverted;
1.282 };
1.283
1.284 - /// \brief It gives back the read-only inverse map.
1.285 + /// \brief Gives back the inverse of the map.
1.286 ///
1.287 - /// It gives back the read-only inverse map.
1.288 + /// Gives back the inverse of the CrossRefMap.
1.289 InverseMap inverse() const {
1.290 return InverseMap(*this);
1.291 }
1.292
1.293 };
1.294
1.295 - /// \brief Provides continuous and unique ID for the
1.296 + /// \brief Provides continuous and unique id for the
1.297 /// items of a graph.
1.298 ///
1.299 /// RangeIdMap provides a unique and continuous
1.300 - /// ID for each item of a given type (\c Node, \c Arc or
1.301 + /// id for each item of a given type (\c Node, \c Arc or
1.302 /// \c Edge) in a graph. This id is
1.303 /// - \b unique: different items get different ids,
1.304 /// - \b continuous: the range of the ids is the set of integers
1.305 @@ -2137,7 +2175,7 @@
1.306 /// Thus this id is not (necessarily) the same as what can get using
1.307 /// the \c id() function of the graph or \ref IdMap.
1.308 /// This map can be inverted with its member class \c InverseMap,
1.309 - /// or with the \c operator() member.
1.310 + /// or with the \c operator()() member.
1.311 ///
1.312 /// \tparam GR The graph type.
1.313 /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.314 @@ -2265,16 +2303,16 @@
1.315 _inv_map[pi] = q;
1.316 }
1.317
1.318 - /// \brief Gives back the \e RangeId of the item
1.319 + /// \brief Gives back the \e range \e id of the item
1.320 ///
1.321 - /// Gives back the \e RangeId of the item.
1.322 + /// Gives back the \e range \e id of the item.
1.323 int operator[](const Item& item) const {
1.324 return Map::operator[](item);
1.325 }
1.326
1.327 - /// \brief Gives back the item belonging to a \e RangeId
1.328 - ///
1.329 - /// Gives back the item belonging to a \e RangeId.
1.330 + /// \brief Gives back the item belonging to a \e range \e id
1.331 + ///
1.332 + /// Gives back the item belonging to the given \e range \e id.
1.333 Item operator()(int id) const {
1.334 return _inv_map[id];
1.335 }
1.336 @@ -2288,7 +2326,9 @@
1.337
1.338 /// \brief The inverse map type of RangeIdMap.
1.339 ///
1.340 - /// The inverse map type of RangeIdMap.
1.341 + /// The inverse map type of RangeIdMap. The subscript operator gives
1.342 + /// back an item by its \e range \e id.
1.343 + /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1.344 class InverseMap {
1.345 public:
1.346 /// \brief Constructor
1.347 @@ -2306,7 +2346,7 @@
1.348 /// \brief Subscript operator.
1.349 ///
1.350 /// Subscript operator. It gives back the item
1.351 - /// that the descriptor currently belongs to.
1.352 + /// that the given \e range \e id currently belongs to.
1.353 Value operator[](const Key& key) const {
1.354 return _inverted(key);
1.355 }
1.356 @@ -2324,12 +2364,932 @@
1.357
1.358 /// \brief Gives back the inverse of the map.
1.359 ///
1.360 - /// Gives back the inverse of the map.
1.361 + /// Gives back the inverse of the RangeIdMap.
1.362 const InverseMap inverse() const {
1.363 return InverseMap(*this);
1.364 }
1.365 };
1.366
1.367 + /// \brief Returns a \c RangeIdMap class.
1.368 + ///
1.369 + /// This function just returns an \c RangeIdMap class.
1.370 + /// \relates RangeIdMap
1.371 + template <typename K, typename GR>
1.372 + inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
1.373 + return RangeIdMap<GR, K>(graph);
1.374 + }
1.375 +
1.376 + /// \brief Dynamic iterable \c bool map.
1.377 + ///
1.378 + /// This class provides a special graph map type which can store a
1.379 + /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
1.380 + /// For both \c true and \c false values it is possible to iterate on
1.381 + /// the keys mapped to the value.
1.382 + ///
1.383 + /// This type is a reference map, so it can be modified with the
1.384 + /// subscript operator.
1.385 + ///
1.386 + /// \tparam GR The graph type.
1.387 + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.388 + /// \c GR::Edge).
1.389 + ///
1.390 + /// \see IterableIntMap, IterableValueMap
1.391 + /// \see CrossRefMap
1.392 + template <typename GR, typename K>
1.393 + class IterableBoolMap
1.394 + : protected ItemSetTraits<GR, K>::template Map<int>::Type {
1.395 + private:
1.396 + typedef GR Graph;
1.397 +
1.398 + typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
1.399 + typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
1.400 +
1.401 + std::vector<K> _array;
1.402 + int _sep;
1.403 +
1.404 + public:
1.405 +
1.406 + /// Indicates that the map is reference map.
1.407 + typedef True ReferenceMapTag;
1.408 +
1.409 + /// The key type
1.410 + typedef K Key;
1.411 + /// The value type
1.412 + typedef bool Value;
1.413 + /// The const reference type.
1.414 + typedef const Value& ConstReference;
1.415 +
1.416 + private:
1.417 +
1.418 + int position(const Key& key) const {
1.419 + return Parent::operator[](key);
1.420 + }
1.421 +
1.422 + public:
1.423 +
1.424 + /// \brief Reference to the value of the map.
1.425 + ///
1.426 + /// This class is similar to the \c bool type. It can be converted to
1.427 + /// \c bool and it provides the same operators.
1.428 + class Reference {
1.429 + friend class IterableBoolMap;
1.430 + private:
1.431 + Reference(IterableBoolMap& map, const Key& key)
1.432 + : _key(key), _map(map) {}
1.433 + public:
1.434 +
1.435 + Reference& operator=(const Reference& value) {
1.436 + _map.set(_key, static_cast<bool>(value));
1.437 + return *this;
1.438 + }
1.439 +
1.440 + operator bool() const {
1.441 + return static_cast<const IterableBoolMap&>(_map)[_key];
1.442 + }
1.443 +
1.444 + Reference& operator=(bool value) {
1.445 + _map.set(_key, value);
1.446 + return *this;
1.447 + }
1.448 + Reference& operator&=(bool value) {
1.449 + _map.set(_key, _map[_key] & value);
1.450 + return *this;
1.451 + }
1.452 + Reference& operator|=(bool value) {
1.453 + _map.set(_key, _map[_key] | value);
1.454 + return *this;
1.455 + }
1.456 + Reference& operator^=(bool value) {
1.457 + _map.set(_key, _map[_key] ^ value);
1.458 + return *this;
1.459 + }
1.460 + private:
1.461 + Key _key;
1.462 + IterableBoolMap& _map;
1.463 + };
1.464 +
1.465 + /// \brief Constructor of the map with a default value.
1.466 + ///
1.467 + /// Constructor of the map with a default value.
1.468 + explicit IterableBoolMap(const Graph& graph, bool def = false)
1.469 + : Parent(graph) {
1.470 + typename Parent::Notifier* nf = Parent::notifier();
1.471 + Key it;
1.472 + for (nf->first(it); it != INVALID; nf->next(it)) {
1.473 + Parent::set(it, _array.size());
1.474 + _array.push_back(it);
1.475 + }
1.476 + _sep = (def ? _array.size() : 0);
1.477 + }
1.478 +
1.479 + /// \brief Const subscript operator of the map.
1.480 + ///
1.481 + /// Const subscript operator of the map.
1.482 + bool operator[](const Key& key) const {
1.483 + return position(key) < _sep;
1.484 + }
1.485 +
1.486 + /// \brief Subscript operator of the map.
1.487 + ///
1.488 + /// Subscript operator of the map.
1.489 + Reference operator[](const Key& key) {
1.490 + return Reference(*this, key);
1.491 + }
1.492 +
1.493 + /// \brief Set operation of the map.
1.494 + ///
1.495 + /// Set operation of the map.
1.496 + void set(const Key& key, bool value) {
1.497 + int pos = position(key);
1.498 + if (value) {
1.499 + if (pos < _sep) return;
1.500 + Key tmp = _array[_sep];
1.501 + _array[_sep] = key;
1.502 + Parent::set(key, _sep);
1.503 + _array[pos] = tmp;
1.504 + Parent::set(tmp, pos);
1.505 + ++_sep;
1.506 + } else {
1.507 + if (pos >= _sep) return;
1.508 + --_sep;
1.509 + Key tmp = _array[_sep];
1.510 + _array[_sep] = key;
1.511 + Parent::set(key, _sep);
1.512 + _array[pos] = tmp;
1.513 + Parent::set(tmp, pos);
1.514 + }
1.515 + }
1.516 +
1.517 + /// \brief Set all items.
1.518 + ///
1.519 + /// Set all items in the map.
1.520 + /// \note Constant time operation.
1.521 + void setAll(bool value) {
1.522 + _sep = (value ? _array.size() : 0);
1.523 + }
1.524 +
1.525 + /// \brief Returns the number of the keys mapped to \c true.
1.526 + ///
1.527 + /// Returns the number of the keys mapped to \c true.
1.528 + int trueNum() const {
1.529 + return _sep;
1.530 + }
1.531 +
1.532 + /// \brief Returns the number of the keys mapped to \c false.
1.533 + ///
1.534 + /// Returns the number of the keys mapped to \c false.
1.535 + int falseNum() const {
1.536 + return _array.size() - _sep;
1.537 + }
1.538 +
1.539 + /// \brief Iterator for the keys mapped to \c true.
1.540 + ///
1.541 + /// Iterator for the keys mapped to \c true. It works
1.542 + /// like a graph item iterator, it can be converted to
1.543 + /// the key type of the map, incremented with \c ++ operator, and
1.544 + /// if the iterator leaves the last valid key, it will be equal to
1.545 + /// \c INVALID.
1.546 + class TrueIt : public Key {
1.547 + public:
1.548 + typedef Key Parent;
1.549 +
1.550 + /// \brief Creates an iterator.
1.551 + ///
1.552 + /// Creates an iterator. It iterates on the
1.553 + /// keys mapped to \c true.
1.554 + /// \param map The IterableBoolMap.
1.555 + explicit TrueIt(const IterableBoolMap& map)
1.556 + : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
1.557 + _map(&map) {}
1.558 +
1.559 + /// \brief Invalid constructor \& conversion.
1.560 + ///
1.561 + /// This constructor initializes the iterator to be invalid.
1.562 + /// \sa Invalid for more details.
1.563 + TrueIt(Invalid) : Parent(INVALID), _map(0) {}
1.564 +
1.565 + /// \brief Increment operator.
1.566 + ///
1.567 + /// Increment operator.
1.568 + TrueIt& operator++() {
1.569 + int pos = _map->position(*this);
1.570 + Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
1.571 + return *this;
1.572 + }
1.573 +
1.574 + private:
1.575 + const IterableBoolMap* _map;
1.576 + };
1.577 +
1.578 + /// \brief Iterator for the keys mapped to \c false.
1.579 + ///
1.580 + /// Iterator for the keys mapped to \c false. It works
1.581 + /// like a graph item iterator, it can be converted to
1.582 + /// the key type of the map, incremented with \c ++ operator, and
1.583 + /// if the iterator leaves the last valid key, it will be equal to
1.584 + /// \c INVALID.
1.585 + class FalseIt : public Key {
1.586 + public:
1.587 + typedef Key Parent;
1.588 +
1.589 + /// \brief Creates an iterator.
1.590 + ///
1.591 + /// Creates an iterator. It iterates on the
1.592 + /// keys mapped to \c false.
1.593 + /// \param map The IterableBoolMap.
1.594 + explicit FalseIt(const IterableBoolMap& map)
1.595 + : Parent(map._sep < int(map._array.size()) ?
1.596 + map._array.back() : INVALID), _map(&map) {}
1.597 +
1.598 + /// \brief Invalid constructor \& conversion.
1.599 + ///
1.600 + /// This constructor initializes the iterator to be invalid.
1.601 + /// \sa Invalid for more details.
1.602 + FalseIt(Invalid) : Parent(INVALID), _map(0) {}
1.603 +
1.604 + /// \brief Increment operator.
1.605 + ///
1.606 + /// Increment operator.
1.607 + FalseIt& operator++() {
1.608 + int pos = _map->position(*this);
1.609 + Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
1.610 + return *this;
1.611 + }
1.612 +
1.613 + private:
1.614 + const IterableBoolMap* _map;
1.615 + };
1.616 +
1.617 + /// \brief Iterator for the keys mapped to a given value.
1.618 + ///
1.619 + /// Iterator for the keys mapped to a given value. It works
1.620 + /// like a graph item iterator, it can be converted to
1.621 + /// the key type of the map, incremented with \c ++ operator, and
1.622 + /// if the iterator leaves the last valid key, it will be equal to
1.623 + /// \c INVALID.
1.624 + class ItemIt : public Key {
1.625 + public:
1.626 + typedef Key Parent;
1.627 +
1.628 + /// \brief Creates an iterator with a value.
1.629 + ///
1.630 + /// Creates an iterator with a value. It iterates on the
1.631 + /// keys mapped to the given value.
1.632 + /// \param map The IterableBoolMap.
1.633 + /// \param value The value.
1.634 + ItemIt(const IterableBoolMap& map, bool value)
1.635 + : Parent(value ?
1.636 + (map._sep > 0 ?
1.637 + map._array[map._sep - 1] : INVALID) :
1.638 + (map._sep < int(map._array.size()) ?
1.639 + map._array.back() : INVALID)), _map(&map) {}
1.640 +
1.641 + /// \brief Invalid constructor \& conversion.
1.642 + ///
1.643 + /// This constructor initializes the iterator to be invalid.
1.644 + /// \sa Invalid for more details.
1.645 + ItemIt(Invalid) : Parent(INVALID), _map(0) {}
1.646 +
1.647 + /// \brief Increment operator.
1.648 + ///
1.649 + /// Increment operator.
1.650 + ItemIt& operator++() {
1.651 + int pos = _map->position(*this);
1.652 + int _sep = pos >= _map->_sep ? _map->_sep : 0;
1.653 + Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
1.654 + return *this;
1.655 + }
1.656 +
1.657 + private:
1.658 + const IterableBoolMap* _map;
1.659 + };
1.660 +
1.661 + protected:
1.662 +
1.663 + virtual void add(const Key& key) {
1.664 + Parent::add(key);
1.665 + Parent::set(key, _array.size());
1.666 + _array.push_back(key);
1.667 + }
1.668 +
1.669 + virtual void add(const std::vector<Key>& keys) {
1.670 + Parent::add(keys);
1.671 + for (int i = 0; i < int(keys.size()); ++i) {
1.672 + Parent::set(keys[i], _array.size());
1.673 + _array.push_back(keys[i]);
1.674 + }
1.675 + }
1.676 +
1.677 + virtual void erase(const Key& key) {
1.678 + int pos = position(key);
1.679 + if (pos < _sep) {
1.680 + --_sep;
1.681 + Parent::set(_array[_sep], pos);
1.682 + _array[pos] = _array[_sep];
1.683 + Parent::set(_array.back(), _sep);
1.684 + _array[_sep] = _array.back();
1.685 + _array.pop_back();
1.686 + } else {
1.687 + Parent::set(_array.back(), pos);
1.688 + _array[pos] = _array.back();
1.689 + _array.pop_back();
1.690 + }
1.691 + Parent::erase(key);
1.692 + }
1.693 +
1.694 + virtual void erase(const std::vector<Key>& keys) {
1.695 + for (int i = 0; i < int(keys.size()); ++i) {
1.696 + int pos = position(keys[i]);
1.697 + if (pos < _sep) {
1.698 + --_sep;
1.699 + Parent::set(_array[_sep], pos);
1.700 + _array[pos] = _array[_sep];
1.701 + Parent::set(_array.back(), _sep);
1.702 + _array[_sep] = _array.back();
1.703 + _array.pop_back();
1.704 + } else {
1.705 + Parent::set(_array.back(), pos);
1.706 + _array[pos] = _array.back();
1.707 + _array.pop_back();
1.708 + }
1.709 + }
1.710 + Parent::erase(keys);
1.711 + }
1.712 +
1.713 + virtual void build() {
1.714 + Parent::build();
1.715 + typename Parent::Notifier* nf = Parent::notifier();
1.716 + Key it;
1.717 + for (nf->first(it); it != INVALID; nf->next(it)) {
1.718 + Parent::set(it, _array.size());
1.719 + _array.push_back(it);
1.720 + }
1.721 + _sep = 0;
1.722 + }
1.723 +
1.724 + virtual void clear() {
1.725 + _array.clear();
1.726 + _sep = 0;
1.727 + Parent::clear();
1.728 + }
1.729 +
1.730 + };
1.731 +
1.732 +
1.733 + namespace _maps_bits {
1.734 + template <typename Item>
1.735 + struct IterableIntMapNode {
1.736 + IterableIntMapNode() : value(-1) {}
1.737 + IterableIntMapNode(int _value) : value(_value) {}
1.738 + Item prev, next;
1.739 + int value;
1.740 + };
1.741 + }
1.742 +
1.743 + /// \brief Dynamic iterable integer map.
1.744 + ///
1.745 + /// This class provides a special graph map type which can store an
1.746 + /// integer value for graph items (\c Node, \c Arc or \c Edge).
1.747 + /// For each non-negative value it is possible to iterate on the keys
1.748 + /// mapped to the value.
1.749 + ///
1.750 + /// This map is intended to be used with small integer values, for which
1.751 + /// it is efficient, and supports iteration only for non-negative values.
1.752 + /// If you need large values and/or iteration for negative integers,
1.753 + /// consider to use \ref IterableValueMap instead.
1.754 + ///
1.755 + /// This type is a reference map, so it can be modified with the
1.756 + /// subscript operator.
1.757 + ///
1.758 + /// \note The size of the data structure depends on the largest
1.759 + /// value in the map.
1.760 + ///
1.761 + /// \tparam GR The graph type.
1.762 + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.763 + /// \c GR::Edge).
1.764 + ///
1.765 + /// \see IterableBoolMap, IterableValueMap
1.766 + /// \see CrossRefMap
1.767 + template <typename GR, typename K>
1.768 + class IterableIntMap
1.769 + : protected ItemSetTraits<GR, K>::
1.770 + template Map<_maps_bits::IterableIntMapNode<K> >::Type {
1.771 + public:
1.772 + typedef typename ItemSetTraits<GR, K>::
1.773 + template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
1.774 +
1.775 + /// The key type
1.776 + typedef K Key;
1.777 + /// The value type
1.778 + typedef int Value;
1.779 + /// The graph type
1.780 + typedef GR Graph;
1.781 +
1.782 + /// \brief Constructor of the map.
1.783 + ///
1.784 + /// Constructor of the map. It sets all values to -1.
1.785 + explicit IterableIntMap(const Graph& graph)
1.786 + : Parent(graph) {}
1.787 +
1.788 + /// \brief Constructor of the map with a given value.
1.789 + ///
1.790 + /// Constructor of the map with a given value.
1.791 + explicit IterableIntMap(const Graph& graph, int value)
1.792 + : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
1.793 + if (value >= 0) {
1.794 + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
1.795 + lace(it);
1.796 + }
1.797 + }
1.798 + }
1.799 +
1.800 + private:
1.801 +
1.802 + void unlace(const Key& key) {
1.803 + typename Parent::Value& node = Parent::operator[](key);
1.804 + if (node.value < 0) return;
1.805 + if (node.prev != INVALID) {
1.806 + Parent::operator[](node.prev).next = node.next;
1.807 + } else {
1.808 + _first[node.value] = node.next;
1.809 + }
1.810 + if (node.next != INVALID) {
1.811 + Parent::operator[](node.next).prev = node.prev;
1.812 + }
1.813 + while (!_first.empty() && _first.back() == INVALID) {
1.814 + _first.pop_back();
1.815 + }
1.816 + }
1.817 +
1.818 + void lace(const Key& key) {
1.819 + typename Parent::Value& node = Parent::operator[](key);
1.820 + if (node.value < 0) return;
1.821 + if (node.value >= int(_first.size())) {
1.822 + _first.resize(node.value + 1, INVALID);
1.823 + }
1.824 + node.prev = INVALID;
1.825 + node.next = _first[node.value];
1.826 + if (node.next != INVALID) {
1.827 + Parent::operator[](node.next).prev = key;
1.828 + }
1.829 + _first[node.value] = key;
1.830 + }
1.831 +
1.832 + public:
1.833 +
1.834 + /// Indicates that the map is reference map.
1.835 + typedef True ReferenceMapTag;
1.836 +
1.837 + /// \brief Reference to the value of the map.
1.838 + ///
1.839 + /// This class is similar to the \c int type. It can
1.840 + /// be converted to \c int and it has the same operators.
1.841 + class Reference {
1.842 + friend class IterableIntMap;
1.843 + private:
1.844 + Reference(IterableIntMap& map, const Key& key)
1.845 + : _key(key), _map(map) {}
1.846 + public:
1.847 +
1.848 + Reference& operator=(const Reference& value) {
1.849 + _map.set(_key, static_cast<const int&>(value));
1.850 + return *this;
1.851 + }
1.852 +
1.853 + operator const int&() const {
1.854 + return static_cast<const IterableIntMap&>(_map)[_key];
1.855 + }
1.856 +
1.857 + Reference& operator=(int value) {
1.858 + _map.set(_key, value);
1.859 + return *this;
1.860 + }
1.861 + Reference& operator++() {
1.862 + _map.set(_key, _map[_key] + 1);
1.863 + return *this;
1.864 + }
1.865 + int operator++(int) {
1.866 + int value = _map[_key];
1.867 + _map.set(_key, value + 1);
1.868 + return value;
1.869 + }
1.870 + Reference& operator--() {
1.871 + _map.set(_key, _map[_key] - 1);
1.872 + return *this;
1.873 + }
1.874 + int operator--(int) {
1.875 + int value = _map[_key];
1.876 + _map.set(_key, value - 1);
1.877 + return value;
1.878 + }
1.879 + Reference& operator+=(int value) {
1.880 + _map.set(_key, _map[_key] + value);
1.881 + return *this;
1.882 + }
1.883 + Reference& operator-=(int value) {
1.884 + _map.set(_key, _map[_key] - value);
1.885 + return *this;
1.886 + }
1.887 + Reference& operator*=(int value) {
1.888 + _map.set(_key, _map[_key] * value);
1.889 + return *this;
1.890 + }
1.891 + Reference& operator/=(int value) {
1.892 + _map.set(_key, _map[_key] / value);
1.893 + return *this;
1.894 + }
1.895 + Reference& operator%=(int value) {
1.896 + _map.set(_key, _map[_key] % value);
1.897 + return *this;
1.898 + }
1.899 + Reference& operator&=(int value) {
1.900 + _map.set(_key, _map[_key] & value);
1.901 + return *this;
1.902 + }
1.903 + Reference& operator|=(int value) {
1.904 + _map.set(_key, _map[_key] | value);
1.905 + return *this;
1.906 + }
1.907 + Reference& operator^=(int value) {
1.908 + _map.set(_key, _map[_key] ^ value);
1.909 + return *this;
1.910 + }
1.911 + Reference& operator<<=(int value) {
1.912 + _map.set(_key, _map[_key] << value);
1.913 + return *this;
1.914 + }
1.915 + Reference& operator>>=(int value) {
1.916 + _map.set(_key, _map[_key] >> value);
1.917 + return *this;
1.918 + }
1.919 +
1.920 + private:
1.921 + Key _key;
1.922 + IterableIntMap& _map;
1.923 + };
1.924 +
1.925 + /// The const reference type.
1.926 + typedef const Value& ConstReference;
1.927 +
1.928 + /// \brief Gives back the maximal value plus one.
1.929 + ///
1.930 + /// Gives back the maximal value plus one.
1.931 + int size() const {
1.932 + return _first.size();
1.933 + }
1.934 +
1.935 + /// \brief Set operation of the map.
1.936 + ///
1.937 + /// Set operation of the map.
1.938 + void set(const Key& key, const Value& value) {
1.939 + unlace(key);
1.940 + Parent::operator[](key).value = value;
1.941 + lace(key);
1.942 + }
1.943 +
1.944 + /// \brief Const subscript operator of the map.
1.945 + ///
1.946 + /// Const subscript operator of the map.
1.947 + const Value& operator[](const Key& key) const {
1.948 + return Parent::operator[](key).value;
1.949 + }
1.950 +
1.951 + /// \brief Subscript operator of the map.
1.952 + ///
1.953 + /// Subscript operator of the map.
1.954 + Reference operator[](const Key& key) {
1.955 + return Reference(*this, key);
1.956 + }
1.957 +
1.958 + /// \brief Iterator for the keys with the same value.
1.959 + ///
1.960 + /// Iterator for the keys with the same value. It works
1.961 + /// like a graph item iterator, it can be converted to
1.962 + /// the item type of the map, incremented with \c ++ operator, and
1.963 + /// if the iterator leaves the last valid item, it will be equal to
1.964 + /// \c INVALID.
1.965 + class ItemIt : public Key {
1.966 + public:
1.967 + typedef Key Parent;
1.968 +
1.969 + /// \brief Invalid constructor \& conversion.
1.970 + ///
1.971 + /// This constructor initializes the iterator to be invalid.
1.972 + /// \sa Invalid for more details.
1.973 + ItemIt(Invalid) : Parent(INVALID), _map(0) {}
1.974 +
1.975 + /// \brief Creates an iterator with a value.
1.976 + ///
1.977 + /// Creates an iterator with a value. It iterates on the
1.978 + /// keys mapped to the given value.
1.979 + /// \param map The IterableIntMap.
1.980 + /// \param value The value.
1.981 + ItemIt(const IterableIntMap& map, int value) : _map(&map) {
1.982 + if (value < 0 || value >= int(_map->_first.size())) {
1.983 + Parent::operator=(INVALID);
1.984 + } else {
1.985 + Parent::operator=(_map->_first[value]);
1.986 + }
1.987 + }
1.988 +
1.989 + /// \brief Increment operator.
1.990 + ///
1.991 + /// Increment operator.
1.992 + ItemIt& operator++() {
1.993 + Parent::operator=(_map->IterableIntMap::Parent::
1.994 + operator[](static_cast<Parent&>(*this)).next);
1.995 + return *this;
1.996 + }
1.997 +
1.998 + private:
1.999 + const IterableIntMap* _map;
1.1000 + };
1.1001 +
1.1002 + protected:
1.1003 +
1.1004 + virtual void erase(const Key& key) {
1.1005 + unlace(key);
1.1006 + Parent::erase(key);
1.1007 + }
1.1008 +
1.1009 + virtual void erase(const std::vector<Key>& keys) {
1.1010 + for (int i = 0; i < int(keys.size()); ++i) {
1.1011 + unlace(keys[i]);
1.1012 + }
1.1013 + Parent::erase(keys);
1.1014 + }
1.1015 +
1.1016 + virtual void clear() {
1.1017 + _first.clear();
1.1018 + Parent::clear();
1.1019 + }
1.1020 +
1.1021 + private:
1.1022 + std::vector<Key> _first;
1.1023 + };
1.1024 +
1.1025 + namespace _maps_bits {
1.1026 + template <typename Item, typename Value>
1.1027 + struct IterableValueMapNode {
1.1028 + IterableValueMapNode(Value _value = Value()) : value(_value) {}
1.1029 + Item prev, next;
1.1030 + Value value;
1.1031 + };
1.1032 + }
1.1033 +
1.1034 + /// \brief Dynamic iterable map for comparable values.
1.1035 + ///
1.1036 + /// This class provides a special graph map type which can store a
1.1037 + /// comparable value for graph items (\c Node, \c Arc or \c Edge).
1.1038 + /// For each value it is possible to iterate on the keys mapped to
1.1039 + /// the value (\c ItemIt), and the values of the map can be accessed
1.1040 + /// with an STL compatible forward iterator (\c ValueIt).
1.1041 + /// The map stores a linked list for each value, which contains
1.1042 + /// the items mapped to the value, and the used values are stored
1.1043 + /// in balanced binary tree (\c std::map).
1.1044 + ///
1.1045 + /// \ref IterableBoolMap and \ref IterableIntMap are similar classes
1.1046 + /// specialized for \c bool and \c int values, respectively.
1.1047 + ///
1.1048 + /// This type is not reference map, so it cannot be modified with
1.1049 + /// the subscript operator.
1.1050 + ///
1.1051 + /// \tparam GR The graph type.
1.1052 + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.1053 + /// \c GR::Edge).
1.1054 + /// \tparam V The value type of the map. It can be any comparable
1.1055 + /// value type.
1.1056 + ///
1.1057 + /// \see IterableBoolMap, IterableIntMap
1.1058 + /// \see CrossRefMap
1.1059 + template <typename GR, typename K, typename V>
1.1060 + class IterableValueMap
1.1061 + : protected ItemSetTraits<GR, K>::
1.1062 + template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
1.1063 + public:
1.1064 + typedef typename ItemSetTraits<GR, K>::
1.1065 + template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
1.1066 +
1.1067 + /// The key type
1.1068 + typedef K Key;
1.1069 + /// The value type
1.1070 + typedef V Value;
1.1071 + /// The graph type
1.1072 + typedef GR Graph;
1.1073 +
1.1074 + public:
1.1075 +
1.1076 + /// \brief Constructor of the map with a given value.
1.1077 + ///
1.1078 + /// Constructor of the map with a given value.
1.1079 + explicit IterableValueMap(const Graph& graph,
1.1080 + const Value& value = Value())
1.1081 + : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
1.1082 + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
1.1083 + lace(it);
1.1084 + }
1.1085 + }
1.1086 +
1.1087 + protected:
1.1088 +
1.1089 + void unlace(const Key& key) {
1.1090 + typename Parent::Value& node = Parent::operator[](key);
1.1091 + if (node.prev != INVALID) {
1.1092 + Parent::operator[](node.prev).next = node.next;
1.1093 + } else {
1.1094 + if (node.next != INVALID) {
1.1095 + _first[node.value] = node.next;
1.1096 + } else {
1.1097 + _first.erase(node.value);
1.1098 + }
1.1099 + }
1.1100 + if (node.next != INVALID) {
1.1101 + Parent::operator[](node.next).prev = node.prev;
1.1102 + }
1.1103 + }
1.1104 +
1.1105 + void lace(const Key& key) {
1.1106 + typename Parent::Value& node = Parent::operator[](key);
1.1107 + typename std::map<Value, Key>::iterator it = _first.find(node.value);
1.1108 + if (it == _first.end()) {
1.1109 + node.prev = node.next = INVALID;
1.1110 + _first.insert(std::make_pair(node.value, key));
1.1111 + } else {
1.1112 + node.prev = INVALID;
1.1113 + node.next = it->second;
1.1114 + if (node.next != INVALID) {
1.1115 + Parent::operator[](node.next).prev = key;
1.1116 + }
1.1117 + it->second = key;
1.1118 + }
1.1119 + }
1.1120 +
1.1121 + public:
1.1122 +
1.1123 + /// \brief Forward iterator for values.
1.1124 + ///
1.1125 + /// This iterator is an STL compatible forward
1.1126 + /// iterator on the values of the map. The values can
1.1127 + /// be accessed in the <tt>[beginValue, endValue)</tt> range.
1.1128 + class ValueIt
1.1129 + : public std::iterator<std::forward_iterator_tag, Value> {
1.1130 + friend class IterableValueMap;
1.1131 + private:
1.1132 + ValueIt(typename std::map<Value, Key>::const_iterator _it)
1.1133 + : it(_it) {}
1.1134 + public:
1.1135 +
1.1136 + /// Constructor
1.1137 + ValueIt() {}
1.1138 +
1.1139 + /// \e
1.1140 + ValueIt& operator++() { ++it; return *this; }
1.1141 + /// \e
1.1142 + ValueIt operator++(int) {
1.1143 + ValueIt tmp(*this);
1.1144 + operator++();
1.1145 + return tmp;
1.1146 + }
1.1147 +
1.1148 + /// \e
1.1149 + const Value& operator*() const { return it->first; }
1.1150 + /// \e
1.1151 + const Value* operator->() const { return &(it->first); }
1.1152 +
1.1153 + /// \e
1.1154 + bool operator==(ValueIt jt) const { return it == jt.it; }
1.1155 + /// \e
1.1156 + bool operator!=(ValueIt jt) const { return it != jt.it; }
1.1157 +
1.1158 + private:
1.1159 + typename std::map<Value, Key>::const_iterator it;
1.1160 + };
1.1161 +
1.1162 + /// \brief Returns an iterator to the first value.
1.1163 + ///
1.1164 + /// Returns an STL compatible iterator to the
1.1165 + /// first value of the map. The values of the
1.1166 + /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1.1167 + /// range.
1.1168 + ValueIt beginValue() const {
1.1169 + return ValueIt(_first.begin());
1.1170 + }
1.1171 +
1.1172 + /// \brief Returns an iterator after the last value.
1.1173 + ///
1.1174 + /// Returns an STL compatible iterator after the
1.1175 + /// last value of the map. The values of the
1.1176 + /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1.1177 + /// range.
1.1178 + ValueIt endValue() const {
1.1179 + return ValueIt(_first.end());
1.1180 + }
1.1181 +
1.1182 + /// \brief Set operation of the map.
1.1183 + ///
1.1184 + /// Set operation of the map.
1.1185 + void set(const Key& key, const Value& value) {
1.1186 + unlace(key);
1.1187 + Parent::operator[](key).value = value;
1.1188 + lace(key);
1.1189 + }
1.1190 +
1.1191 + /// \brief Const subscript operator of the map.
1.1192 + ///
1.1193 + /// Const subscript operator of the map.
1.1194 + const Value& operator[](const Key& key) const {
1.1195 + return Parent::operator[](key).value;
1.1196 + }
1.1197 +
1.1198 + /// \brief Iterator for the keys with the same value.
1.1199 + ///
1.1200 + /// Iterator for the keys with the same value. It works
1.1201 + /// like a graph item iterator, it can be converted to
1.1202 + /// the item type of the map, incremented with \c ++ operator, and
1.1203 + /// if the iterator leaves the last valid item, it will be equal to
1.1204 + /// \c INVALID.
1.1205 + class ItemIt : public Key {
1.1206 + public:
1.1207 + typedef Key Parent;
1.1208 +
1.1209 + /// \brief Invalid constructor \& conversion.
1.1210 + ///
1.1211 + /// This constructor initializes the iterator to be invalid.
1.1212 + /// \sa Invalid for more details.
1.1213 + ItemIt(Invalid) : Parent(INVALID), _map(0) {}
1.1214 +
1.1215 + /// \brief Creates an iterator with a value.
1.1216 + ///
1.1217 + /// Creates an iterator with a value. It iterates on the
1.1218 + /// keys which have the given value.
1.1219 + /// \param map The IterableValueMap
1.1220 + /// \param value The value
1.1221 + ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
1.1222 + typename std::map<Value, Key>::const_iterator it =
1.1223 + map._first.find(value);
1.1224 + if (it == map._first.end()) {
1.1225 + Parent::operator=(INVALID);
1.1226 + } else {
1.1227 + Parent::operator=(it->second);
1.1228 + }
1.1229 + }
1.1230 +
1.1231 + /// \brief Increment operator.
1.1232 + ///
1.1233 + /// Increment Operator.
1.1234 + ItemIt& operator++() {
1.1235 + Parent::operator=(_map->IterableValueMap::Parent::
1.1236 + operator[](static_cast<Parent&>(*this)).next);
1.1237 + return *this;
1.1238 + }
1.1239 +
1.1240 +
1.1241 + private:
1.1242 + const IterableValueMap* _map;
1.1243 + };
1.1244 +
1.1245 + protected:
1.1246 +
1.1247 + virtual void add(const Key& key) {
1.1248 + Parent::add(key);
1.1249 + unlace(key);
1.1250 + }
1.1251 +
1.1252 + virtual void add(const std::vector<Key>& keys) {
1.1253 + Parent::add(keys);
1.1254 + for (int i = 0; i < int(keys.size()); ++i) {
1.1255 + lace(keys[i]);
1.1256 + }
1.1257 + }
1.1258 +
1.1259 + virtual void erase(const Key& key) {
1.1260 + unlace(key);
1.1261 + Parent::erase(key);
1.1262 + }
1.1263 +
1.1264 + virtual void erase(const std::vector<Key>& keys) {
1.1265 + for (int i = 0; i < int(keys.size()); ++i) {
1.1266 + unlace(keys[i]);
1.1267 + }
1.1268 + Parent::erase(keys);
1.1269 + }
1.1270 +
1.1271 + virtual void build() {
1.1272 + Parent::build();
1.1273 + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
1.1274 + lace(it);
1.1275 + }
1.1276 + }
1.1277 +
1.1278 + virtual void clear() {
1.1279 + _first.clear();
1.1280 + Parent::clear();
1.1281 + }
1.1282 +
1.1283 + private:
1.1284 + std::map<Value, Key> _first;
1.1285 + };
1.1286 +
1.1287 /// \brief Map of the source nodes of arcs in a digraph.
1.1288 ///
1.1289 /// SourceMap provides access for the source node of each arc in a digraph,
1.1290 @@ -2340,9 +3300,9 @@
1.1291 class SourceMap {
1.1292 public:
1.1293
1.1294 - ///\e
1.1295 + /// The key type (the \c Arc type of the digraph).
1.1296 typedef typename GR::Arc Key;
1.1297 - ///\e
1.1298 + /// The value type (the \c Node type of the digraph).
1.1299 typedef typename GR::Node Value;
1.1300
1.1301 /// \brief Constructor
1.1302 @@ -2381,9 +3341,9 @@
1.1303 class TargetMap {
1.1304 public:
1.1305
1.1306 - ///\e
1.1307 + /// The key type (the \c Arc type of the digraph).
1.1308 typedef typename GR::Arc Key;
1.1309 - ///\e
1.1310 + /// The value type (the \c Node type of the digraph).
1.1311 typedef typename GR::Node Value;
1.1312
1.1313 /// \brief Constructor
1.1314 @@ -2423,8 +3383,10 @@
1.1315 class ForwardMap {
1.1316 public:
1.1317
1.1318 + /// The key type (the \c Edge type of the digraph).
1.1319 + typedef typename GR::Edge Key;
1.1320 + /// The value type (the \c Arc type of the digraph).
1.1321 typedef typename GR::Arc Value;
1.1322 - typedef typename GR::Edge Key;
1.1323
1.1324 /// \brief Constructor
1.1325 ///
1.1326 @@ -2463,8 +3425,10 @@
1.1327 class BackwardMap {
1.1328 public:
1.1329
1.1330 + /// The key type (the \c Edge type of the digraph).
1.1331 + typedef typename GR::Edge Key;
1.1332 + /// The value type (the \c Arc type of the digraph).
1.1333 typedef typename GR::Arc Value;
1.1334 - typedef typename GR::Edge Key;
1.1335
1.1336 /// \brief Constructor
1.1337 ///
1.1338 @@ -2499,7 +3463,7 @@
1.1339 /// in constant time. On the other hand, the values are updated automatically
1.1340 /// whenever the digraph changes.
1.1341 ///
1.1342 - /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.1343 + /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.1344 /// may provide alternative ways to modify the digraph.
1.1345 /// The correct behavior of InDegMap is not guarantied if these additional
1.1346 /// features are used. For example the functions
1.1347 @@ -2515,7 +3479,7 @@
1.1348 ::ItemNotifier::ObserverBase {
1.1349
1.1350 public:
1.1351 -
1.1352 +
1.1353 /// The graph type of InDegMap
1.1354 typedef GR Graph;
1.1355 typedef GR Digraph;
1.1356 @@ -2629,7 +3593,7 @@
1.1357 /// in constant time. On the other hand, the values are updated automatically
1.1358 /// whenever the digraph changes.
1.1359 ///
1.1360 - /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.1361 + /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.1362 /// may provide alternative ways to modify the digraph.
1.1363 /// The correct behavior of OutDegMap is not guarantied if these additional
1.1364 /// features are used. For example the functions