1.1 --- a/lemon/maps.h Mon Jan 12 23:11:39 2009 +0100
1.2 +++ b/lemon/maps.h Thu Nov 05 15:48:01 2009 +0100
1.3 @@ -22,6 +22,7 @@
1.4 #include <iterator>
1.5 #include <functional>
1.6 #include <vector>
1.7 +#include <map>
1.8
1.9 #include <lemon/core.h>
1.10
1.11 @@ -29,8 +30,6 @@
1.12 ///\ingroup maps
1.13 ///\brief Miscellaneous property maps
1.14
1.15 -#include <map>
1.16 -
1.17 namespace lemon {
1.18
1.19 /// \addtogroup maps
1.20 @@ -57,15 +56,16 @@
1.21 /// its type definitions, or if you have to provide a writable map,
1.22 /// but data written to it is not required (i.e. it will be sent to
1.23 /// <tt>/dev/null</tt>).
1.24 - /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1.25 + /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1.26 ///
1.27 /// \sa ConstMap
1.28 template<typename K, typename V>
1.29 class NullMap : public MapBase<K, V> {
1.30 public:
1.31 - typedef MapBase<K, V> Parent;
1.32 - typedef typename Parent::Key Key;
1.33 - typedef typename Parent::Value Value;
1.34 + ///\e
1.35 + typedef K Key;
1.36 + ///\e
1.37 + typedef V Value;
1.38
1.39 /// Gives back a default constructed element.
1.40 Value operator[](const Key&) const { return Value(); }
1.41 @@ -89,7 +89,7 @@
1.42 /// value to each key.
1.43 ///
1.44 /// In other aspects it is equivalent to \c NullMap.
1.45 - /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
1.46 + /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
1.47 /// concept, but it absorbs the data written to it.
1.48 ///
1.49 /// The simplest way of using this map is through the constMap()
1.50 @@ -102,9 +102,10 @@
1.51 private:
1.52 V _value;
1.53 public:
1.54 - typedef MapBase<K, V> Parent;
1.55 - typedef typename Parent::Key Key;
1.56 - typedef typename Parent::Value Value;
1.57 + ///\e
1.58 + typedef K Key;
1.59 + ///\e
1.60 + typedef V Value;
1.61
1.62 /// Default constructor
1.63
1.64 @@ -157,7 +158,7 @@
1.65 /// value to each key.
1.66 ///
1.67 /// In other aspects it is equivalent to \c NullMap.
1.68 - /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
1.69 + /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
1.70 /// concept, but it absorbs the data written to it.
1.71 ///
1.72 /// The simplest way of using this map is through the constMap()
1.73 @@ -168,9 +169,10 @@
1.74 template<typename K, typename V, V v>
1.75 class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
1.76 public:
1.77 - typedef MapBase<K, V> Parent;
1.78 - typedef typename Parent::Key Key;
1.79 - typedef typename Parent::Value Value;
1.80 + ///\e
1.81 + typedef K Key;
1.82 + ///\e
1.83 + typedef V Value;
1.84
1.85 /// Constructor.
1.86 ConstMap() {}
1.87 @@ -202,9 +204,10 @@
1.88 template <typename T>
1.89 class IdentityMap : public MapBase<T, T> {
1.90 public:
1.91 - typedef MapBase<T, T> Parent;
1.92 - typedef typename Parent::Key Key;
1.93 - typedef typename Parent::Value Value;
1.94 + ///\e
1.95 + typedef T Key;
1.96 + ///\e
1.97 + typedef T Value;
1.98
1.99 /// Gives back the given value without any modification.
1.100 Value operator[](const Key &k) const {
1.101 @@ -229,7 +232,7 @@
1.102 /// values to integer keys from the range <tt>[0..size-1]</tt>.
1.103 /// It can be used with some data structures, for example
1.104 /// \c UnionFind, \c BinHeap, when the used items are small
1.105 - /// integers. This map conforms the \ref concepts::ReferenceMap
1.106 + /// integers. This map conforms to the \ref concepts::ReferenceMap
1.107 /// "ReferenceMap" concept.
1.108 ///
1.109 /// The simplest way of using this map is through the rangeMap()
1.110 @@ -245,11 +248,10 @@
1.111
1.112 public:
1.113
1.114 - typedef MapBase<int, V> Parent;
1.115 /// Key type
1.116 - typedef typename Parent::Key Key;
1.117 + typedef int Key;
1.118 /// Value type
1.119 - typedef typename Parent::Value Value;
1.120 + typedef V Value;
1.121 /// Reference type
1.122 typedef typename Vector::reference Reference;
1.123 /// Const reference type
1.124 @@ -338,7 +340,7 @@
1.125 /// that you can specify a default value for the keys that are not
1.126 /// stored actually. This value can be different from the default
1.127 /// contructed value (i.e. \c %Value()).
1.128 - /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
1.129 + /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
1.130 /// concept.
1.131 ///
1.132 /// This map is useful if a default value should be assigned to most of
1.133 @@ -353,17 +355,16 @@
1.134 ///
1.135 /// The simplest way of using this map is through the sparseMap()
1.136 /// function.
1.137 - template <typename K, typename V, typename Compare = std::less<K> >
1.138 + template <typename K, typename V, typename Comp = std::less<K> >
1.139 class SparseMap : public MapBase<K, V> {
1.140 template <typename K1, typename V1, typename C1>
1.141 friend class SparseMap;
1.142 public:
1.143
1.144 - typedef MapBase<K, V> Parent;
1.145 /// Key type
1.146 - typedef typename Parent::Key Key;
1.147 + typedef K Key;
1.148 /// Value type
1.149 - typedef typename Parent::Value Value;
1.150 + typedef V Value;
1.151 /// Reference type
1.152 typedef Value& Reference;
1.153 /// Const reference type
1.154 @@ -373,7 +374,7 @@
1.155
1.156 private:
1.157
1.158 - typedef std::map<K, V, Compare> Map;
1.159 + typedef std::map<K, V, Comp> Map;
1.160 Map _map;
1.161 Value _value;
1.162
1.163 @@ -489,14 +490,15 @@
1.164 const M1 &_m1;
1.165 const M2 &_m2;
1.166 public:
1.167 - typedef MapBase<typename M2::Key, typename M1::Value> Parent;
1.168 - typedef typename Parent::Key Key;
1.169 - typedef typename Parent::Value Value;
1.170 + ///\e
1.171 + typedef typename M2::Key Key;
1.172 + ///\e
1.173 + typedef typename M1::Value Value;
1.174
1.175 /// Constructor
1.176 ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1.177
1.178 - /// \e
1.179 + ///\e
1.180 typename MapTraits<M1>::ConstReturnValue
1.181 operator[](const Key &k) const { return _m1[_m2[k]]; }
1.182 };
1.183 @@ -545,14 +547,15 @@
1.184 const M2 &_m2;
1.185 F _f;
1.186 public:
1.187 - typedef MapBase<typename M1::Key, V> Parent;
1.188 - typedef typename Parent::Key Key;
1.189 - typedef typename Parent::Value Value;
1.190 + ///\e
1.191 + typedef typename M1::Key Key;
1.192 + ///\e
1.193 + typedef V Value;
1.194
1.195 /// Constructor
1.196 CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
1.197 : _m1(m1), _m2(m2), _f(f) {}
1.198 - /// \e
1.199 + ///\e
1.200 Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
1.201 };
1.202
1.203 @@ -615,13 +618,14 @@
1.204 class FunctorToMap : public MapBase<K, V> {
1.205 F _f;
1.206 public:
1.207 - typedef MapBase<K, V> Parent;
1.208 - typedef typename Parent::Key Key;
1.209 - typedef typename Parent::Value Value;
1.210 + ///\e
1.211 + typedef K Key;
1.212 + ///\e
1.213 + typedef V Value;
1.214
1.215 /// Constructor
1.216 FunctorToMap(const F &f = F()) : _f(f) {}
1.217 - /// \e
1.218 + ///\e
1.219 Value operator[](const Key &k) const { return _f(k); }
1.220 };
1.221
1.222 @@ -669,18 +673,19 @@
1.223 class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
1.224 const M &_m;
1.225 public:
1.226 - typedef MapBase<typename M::Key, typename M::Value> Parent;
1.227 - typedef typename Parent::Key Key;
1.228 - typedef typename Parent::Value Value;
1.229 -
1.230 - typedef typename Parent::Key argument_type;
1.231 - typedef typename Parent::Value result_type;
1.232 + ///\e
1.233 + typedef typename M::Key Key;
1.234 + ///\e
1.235 + typedef typename M::Value Value;
1.236 +
1.237 + typedef typename M::Key argument_type;
1.238 + typedef typename M::Value result_type;
1.239
1.240 /// Constructor
1.241 MapToFunctor(const M &m) : _m(m) {}
1.242 - /// \e
1.243 + ///\e
1.244 Value operator()(const Key &k) const { return _m[k]; }
1.245 - /// \e
1.246 + ///\e
1.247 Value operator[](const Key &k) const { return _m[k]; }
1.248 };
1.249
1.250 @@ -701,7 +706,7 @@
1.251 /// "readable map" to another type using the default conversion.
1.252 /// The \c Key type of it is inherited from \c M and the \c Value
1.253 /// type is \c V.
1.254 - /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
1.255 + /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1.256 ///
1.257 /// The simplest way of using this map is through the convertMap()
1.258 /// function.
1.259 @@ -709,9 +714,10 @@
1.260 class ConvertMap : public MapBase<typename M::Key, V> {
1.261 const M &_m;
1.262 public:
1.263 - typedef MapBase<typename M::Key, V> Parent;
1.264 - typedef typename Parent::Key Key;
1.265 - typedef typename Parent::Value Value;
1.266 + ///\e
1.267 + typedef typename M::Key Key;
1.268 + ///\e
1.269 + typedef V Value;
1.270
1.271 /// Constructor
1.272
1.273 @@ -719,7 +725,7 @@
1.274 /// \param m The underlying map.
1.275 ConvertMap(const M &m) : _m(m) {}
1.276
1.277 - /// \e
1.278 + ///\e
1.279 Value operator[](const Key &k) const { return _m[k]; }
1.280 };
1.281
1.282 @@ -751,9 +757,10 @@
1.283 M1 &_m1;
1.284 M2 &_m2;
1.285 public:
1.286 - typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1.287 - typedef typename Parent::Key Key;
1.288 - typedef typename Parent::Value Value;
1.289 + ///\e
1.290 + typedef typename M1::Key Key;
1.291 + ///\e
1.292 + typedef typename M1::Value Value;
1.293
1.294 /// Constructor
1.295 ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
1.296 @@ -797,13 +804,14 @@
1.297 const M1 &_m1;
1.298 const M2 &_m2;
1.299 public:
1.300 - typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1.301 - typedef typename Parent::Key Key;
1.302 - typedef typename Parent::Value Value;
1.303 + ///\e
1.304 + typedef typename M1::Key Key;
1.305 + ///\e
1.306 + typedef typename M1::Value Value;
1.307
1.308 /// Constructor
1.309 AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1.310 - /// \e
1.311 + ///\e
1.312 Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
1.313 };
1.314
1.315 @@ -845,13 +853,14 @@
1.316 const M1 &_m1;
1.317 const M2 &_m2;
1.318 public:
1.319 - typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1.320 - typedef typename Parent::Key Key;
1.321 - typedef typename Parent::Value Value;
1.322 + ///\e
1.323 + typedef typename M1::Key Key;
1.324 + ///\e
1.325 + typedef typename M1::Value Value;
1.326
1.327 /// Constructor
1.328 SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1.329 - /// \e
1.330 + ///\e
1.331 Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
1.332 };
1.333
1.334 @@ -894,13 +903,14 @@
1.335 const M1 &_m1;
1.336 const M2 &_m2;
1.337 public:
1.338 - typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1.339 - typedef typename Parent::Key Key;
1.340 - typedef typename Parent::Value Value;
1.341 + ///\e
1.342 + typedef typename M1::Key Key;
1.343 + ///\e
1.344 + typedef typename M1::Value Value;
1.345
1.346 /// Constructor
1.347 MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
1.348 - /// \e
1.349 + ///\e
1.350 Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
1.351 };
1.352
1.353 @@ -942,13 +952,14 @@
1.354 const M1 &_m1;
1.355 const M2 &_m2;
1.356 public:
1.357 - typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1.358 - typedef typename Parent::Key Key;
1.359 - typedef typename Parent::Value Value;
1.360 + ///\e
1.361 + typedef typename M1::Key Key;
1.362 + ///\e
1.363 + typedef typename M1::Value Value;
1.364
1.365 /// Constructor
1.366 DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
1.367 - /// \e
1.368 + ///\e
1.369 Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
1.370 };
1.371
1.372 @@ -992,9 +1003,10 @@
1.373 const M &_m;
1.374 C _v;
1.375 public:
1.376 - typedef MapBase<typename M::Key, typename M::Value> Parent;
1.377 - typedef typename Parent::Key Key;
1.378 - typedef typename Parent::Value Value;
1.379 + ///\e
1.380 + typedef typename M::Key Key;
1.381 + ///\e
1.382 + typedef typename M::Value Value;
1.383
1.384 /// Constructor
1.385
1.386 @@ -1002,7 +1014,7 @@
1.387 /// \param m The undelying map.
1.388 /// \param v The constant value.
1.389 ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
1.390 - /// \e
1.391 + ///\e
1.392 Value operator[](const Key &k) const { return _m[k]+_v; }
1.393 };
1.394
1.395 @@ -1022,9 +1034,10 @@
1.396 M &_m;
1.397 C _v;
1.398 public:
1.399 - typedef MapBase<typename M::Key, typename M::Value> Parent;
1.400 - typedef typename Parent::Key Key;
1.401 - typedef typename Parent::Value Value;
1.402 + ///\e
1.403 + typedef typename M::Key Key;
1.404 + ///\e
1.405 + typedef typename M::Value Value;
1.406
1.407 /// Constructor
1.408
1.409 @@ -1032,9 +1045,9 @@
1.410 /// \param m The undelying map.
1.411 /// \param v The constant value.
1.412 ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1.413 - /// \e
1.414 + ///\e
1.415 Value operator[](const Key &k) const { return _m[k]+_v; }
1.416 - /// \e
1.417 + ///\e
1.418 void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
1.419 };
1.420
1.421 @@ -1093,9 +1106,10 @@
1.422 const M &_m;
1.423 C _v;
1.424 public:
1.425 - typedef MapBase<typename M::Key, typename M::Value> Parent;
1.426 - typedef typename Parent::Key Key;
1.427 - typedef typename Parent::Value Value;
1.428 + ///\e
1.429 + typedef typename M::Key Key;
1.430 + ///\e
1.431 + typedef typename M::Value Value;
1.432
1.433 /// Constructor
1.434
1.435 @@ -1103,7 +1117,7 @@
1.436 /// \param m The undelying map.
1.437 /// \param v The constant value.
1.438 ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
1.439 - /// \e
1.440 + ///\e
1.441 Value operator[](const Key &k) const { return _v*_m[k]; }
1.442 };
1.443
1.444 @@ -1124,9 +1138,10 @@
1.445 M &_m;
1.446 C _v;
1.447 public:
1.448 - typedef MapBase<typename M::Key, typename M::Value> Parent;
1.449 - typedef typename Parent::Key Key;
1.450 - typedef typename Parent::Value Value;
1.451 + ///\e
1.452 + typedef typename M::Key Key;
1.453 + ///\e
1.454 + typedef typename M::Value Value;
1.455
1.456 /// Constructor
1.457
1.458 @@ -1134,9 +1149,9 @@
1.459 /// \param m The undelying map.
1.460 /// \param v The constant value.
1.461 ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1.462 - /// \e
1.463 + ///\e
1.464 Value operator[](const Key &k) const { return _v*_m[k]; }
1.465 - /// \e
1.466 + ///\e
1.467 void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
1.468 };
1.469
1.470 @@ -1193,13 +1208,14 @@
1.471 class NegMap : public MapBase<typename M::Key, typename M::Value> {
1.472 const M& _m;
1.473 public:
1.474 - typedef MapBase<typename M::Key, typename M::Value> Parent;
1.475 - typedef typename Parent::Key Key;
1.476 - typedef typename Parent::Value Value;
1.477 + ///\e
1.478 + typedef typename M::Key Key;
1.479 + ///\e
1.480 + typedef typename M::Value Value;
1.481
1.482 /// Constructor
1.483 NegMap(const M &m) : _m(m) {}
1.484 - /// \e
1.485 + ///\e
1.486 Value operator[](const Key &k) const { return -_m[k]; }
1.487 };
1.488
1.489 @@ -1228,15 +1244,16 @@
1.490 class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
1.491 M &_m;
1.492 public:
1.493 - typedef MapBase<typename M::Key, typename M::Value> Parent;
1.494 - typedef typename Parent::Key Key;
1.495 - typedef typename Parent::Value Value;
1.496 + ///\e
1.497 + typedef typename M::Key Key;
1.498 + ///\e
1.499 + typedef typename M::Value Value;
1.500
1.501 /// Constructor
1.502 NegWriteMap(M &m) : _m(m) {}
1.503 - /// \e
1.504 + ///\e
1.505 Value operator[](const Key &k) const { return -_m[k]; }
1.506 - /// \e
1.507 + ///\e
1.508 void set(const Key &k, const Value &v) { _m.set(k, -v); }
1.509 };
1.510
1.511 @@ -1282,13 +1299,14 @@
1.512 class AbsMap : public MapBase<typename M::Key, typename M::Value> {
1.513 const M &_m;
1.514 public:
1.515 - typedef MapBase<typename M::Key, typename M::Value> Parent;
1.516 - typedef typename Parent::Key Key;
1.517 - typedef typename Parent::Value Value;
1.518 + ///\e
1.519 + typedef typename M::Key Key;
1.520 + ///\e
1.521 + typedef typename M::Value Value;
1.522
1.523 /// Constructor
1.524 AbsMap(const M &m) : _m(m) {}
1.525 - /// \e
1.526 + ///\e
1.527 Value operator[](const Key &k) const {
1.528 Value tmp = _m[k];
1.529 return tmp >= 0 ? tmp : -tmp;
1.530 @@ -1337,9 +1355,10 @@
1.531 template <typename K>
1.532 class TrueMap : public MapBase<K, bool> {
1.533 public:
1.534 - typedef MapBase<K, bool> Parent;
1.535 - typedef typename Parent::Key Key;
1.536 - typedef typename Parent::Value Value;
1.537 + ///\e
1.538 + typedef K Key;
1.539 + ///\e
1.540 + typedef bool Value;
1.541
1.542 /// Gives back \c true.
1.543 Value operator[](const Key&) const { return true; }
1.544 @@ -1374,9 +1393,10 @@
1.545 template <typename K>
1.546 class FalseMap : public MapBase<K, bool> {
1.547 public:
1.548 - typedef MapBase<K, bool> Parent;
1.549 - typedef typename Parent::Key Key;
1.550 - typedef typename Parent::Value Value;
1.551 + ///\e
1.552 + typedef K Key;
1.553 + ///\e
1.554 + typedef bool Value;
1.555
1.556 /// Gives back \c false.
1.557 Value operator[](const Key&) const { return false; }
1.558 @@ -1419,13 +1439,14 @@
1.559 const M1 &_m1;
1.560 const M2 &_m2;
1.561 public:
1.562 - typedef MapBase<typename M1::Key, bool> Parent;
1.563 - typedef typename Parent::Key Key;
1.564 - typedef typename Parent::Value Value;
1.565 + ///\e
1.566 + typedef typename M1::Key Key;
1.567 + ///\e
1.568 + typedef bool Value;
1.569
1.570 /// Constructor
1.571 AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1.572 - /// \e
1.573 + ///\e
1.574 Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1.575 };
1.576
1.577 @@ -1467,13 +1488,14 @@
1.578 const M1 &_m1;
1.579 const M2 &_m2;
1.580 public:
1.581 - typedef MapBase<typename M1::Key, bool> Parent;
1.582 - typedef typename Parent::Key Key;
1.583 - typedef typename Parent::Value Value;
1.584 + ///\e
1.585 + typedef typename M1::Key Key;
1.586 + ///\e
1.587 + typedef bool Value;
1.588
1.589 /// Constructor
1.590 OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1.591 - /// \e
1.592 + ///\e
1.593 Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1.594 };
1.595
1.596 @@ -1506,13 +1528,14 @@
1.597 class NotMap : public MapBase<typename M::Key, bool> {
1.598 const M &_m;
1.599 public:
1.600 - typedef MapBase<typename M::Key, bool> Parent;
1.601 - typedef typename Parent::Key Key;
1.602 - typedef typename Parent::Value Value;
1.603 + ///\e
1.604 + typedef typename M::Key Key;
1.605 + ///\e
1.606 + typedef bool Value;
1.607
1.608 /// Constructor
1.609 NotMap(const M &m) : _m(m) {}
1.610 - /// \e
1.611 + ///\e
1.612 Value operator[](const Key &k) const { return !_m[k]; }
1.613 };
1.614
1.615 @@ -1532,15 +1555,16 @@
1.616 class NotWriteMap : public MapBase<typename M::Key, bool> {
1.617 M &_m;
1.618 public:
1.619 - typedef MapBase<typename M::Key, bool> Parent;
1.620 - typedef typename Parent::Key Key;
1.621 - typedef typename Parent::Value Value;
1.622 + ///\e
1.623 + typedef typename M::Key Key;
1.624 + ///\e
1.625 + typedef bool Value;
1.626
1.627 /// Constructor
1.628 NotWriteMap(M &m) : _m(m) {}
1.629 - /// \e
1.630 + ///\e
1.631 Value operator[](const Key &k) const { return !_m[k]; }
1.632 - /// \e
1.633 + ///\e
1.634 void set(const Key &k, bool v) { _m.set(k, !v); }
1.635 };
1.636
1.637 @@ -1595,13 +1619,14 @@
1.638 const M1 &_m1;
1.639 const M2 &_m2;
1.640 public:
1.641 - typedef MapBase<typename M1::Key, bool> Parent;
1.642 - typedef typename Parent::Key Key;
1.643 - typedef typename Parent::Value Value;
1.644 + ///\e
1.645 + typedef typename M1::Key Key;
1.646 + ///\e
1.647 + typedef bool Value;
1.648
1.649 /// Constructor
1.650 EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1.651 - /// \e
1.652 + ///\e
1.653 Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1.654 };
1.655
1.656 @@ -1643,13 +1668,14 @@
1.657 const M1 &_m1;
1.658 const M2 &_m2;
1.659 public:
1.660 - typedef MapBase<typename M1::Key, bool> Parent;
1.661 - typedef typename Parent::Key Key;
1.662 - typedef typename Parent::Value Value;
1.663 + ///\e
1.664 + typedef typename M1::Key Key;
1.665 + ///\e
1.666 + typedef bool Value;
1.667
1.668 /// Constructor
1.669 LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1.670 - /// \e
1.671 + ///\e
1.672 Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1.673 };
1.674
1.675 @@ -1705,24 +1731,27 @@
1.676 /// The simplest way of using this map is through the loggerBoolMap()
1.677 /// function.
1.678 ///
1.679 - /// \tparam It The type of the iterator.
1.680 - /// \tparam Ke The key type of the map. The default value set
1.681 + /// \tparam IT The type of the iterator.
1.682 + /// \tparam KEY The key type of the map. The default value set
1.683 /// according to the iterator type should work in most cases.
1.684 ///
1.685 /// \note The container of the iterator must contain enough space
1.686 /// for the elements or the iterator should be an inserter iterator.
1.687 #ifdef DOXYGEN
1.688 - template <typename It, typename Ke>
1.689 + template <typename IT, typename KEY>
1.690 #else
1.691 - template <typename It,
1.692 - typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
1.693 + template <typename IT,
1.694 + typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
1.695 #endif
1.696 - class LoggerBoolMap {
1.697 + class LoggerBoolMap : public MapBase<KEY, bool> {
1.698 public:
1.699 - typedef It Iterator;
1.700 -
1.701 - typedef Ke Key;
1.702 +
1.703 + ///\e
1.704 + typedef KEY Key;
1.705 + ///\e
1.706 typedef bool Value;
1.707 + ///\e
1.708 + typedef IT Iterator;
1.709
1.710 /// Constructor
1.711 LoggerBoolMap(Iterator it)
1.712 @@ -1760,11 +1789,11 @@
1.713 /// order of Dfs algorithm, as the following examples show.
1.714 /// \code
1.715 /// std::vector<Node> v;
1.716 - /// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
1.717 + /// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
1.718 /// \endcode
1.719 /// \code
1.720 /// std::vector<Node> v(countNodes(g));
1.721 - /// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
1.722 + /// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
1.723 /// \endcode
1.724 ///
1.725 /// \note The container of the iterator must contain enough space
1.726 @@ -1785,23 +1814,36 @@
1.727 /// \addtogroup graph_maps
1.728 /// @{
1.729
1.730 - /// Provides an immutable and unique id for each item in the graph.
1.731 -
1.732 - /// The IdMap class provides a unique and immutable id for each item of the
1.733 - /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
1.734 - /// different items (nodes) get different ids <li>\b immutable: the id of an
1.735 - /// item (node) does not change (even if you delete other nodes). </ul>
1.736 - /// Through this map you get access (i.e. can read) the inner id values of
1.737 - /// the items stored in the graph. This map can be inverted with its member
1.738 - /// class \c InverseMap or with the \c operator() member.
1.739 + /// \brief Provides an immutable and unique id for each item in a graph.
1.740 ///
1.741 - template <typename _Graph, typename _Item>
1.742 - class IdMap {
1.743 + /// IdMap provides a unique and immutable id for each item of the
1.744 + /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
1.745 + /// - \b unique: different items get different ids,
1.746 + /// - \b immutable: the id of an item does not change (even if you
1.747 + /// delete other nodes).
1.748 + ///
1.749 + /// Using this map you get access (i.e. can read) the inner id values of
1.750 + /// the items stored in the graph, which is returned by the \c id()
1.751 + /// function of the graph. This map can be inverted with its member
1.752 + /// class \c InverseMap or with the \c operator()() member.
1.753 + ///
1.754 + /// \tparam GR The graph type.
1.755 + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.756 + /// \c GR::Edge).
1.757 + ///
1.758 + /// \see RangeIdMap
1.759 + template <typename GR, typename K>
1.760 + class IdMap : public MapBase<K, int> {
1.761 public:
1.762 - typedef _Graph Graph;
1.763 + /// The graph type of IdMap.
1.764 + typedef GR Graph;
1.765 + typedef GR Digraph;
1.766 + /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1.767 + typedef K Item;
1.768 + /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1.769 + typedef K Key;
1.770 + /// The value type of IdMap.
1.771 typedef int Value;
1.772 - typedef _Item Item;
1.773 - typedef _Item Key;
1.774
1.775 /// \brief Constructor.
1.776 ///
1.777 @@ -1813,9 +1855,9 @@
1.778 /// Gives back the immutable and unique \e id of the item.
1.779 int operator[](const Item& item) const { return _graph->id(item);}
1.780
1.781 - /// \brief Gives back the item by its id.
1.782 + /// \brief Gives back the \e item by its id.
1.783 ///
1.784 - /// Gives back the item by its id.
1.785 + /// Gives back the \e item by its id.
1.786 Item operator()(int id) { return _graph->fromId(id, Item()); }
1.787
1.788 private:
1.789 @@ -1823,9 +1865,11 @@
1.790
1.791 public:
1.792
1.793 - /// \brief The class represents the inverse of its owner (IdMap).
1.794 + /// \brief The inverse map type of IdMap.
1.795 ///
1.796 - /// The class represents the inverse of its owner (IdMap).
1.797 + /// The inverse map type of IdMap. The subscript operator gives back
1.798 + /// an item by its id.
1.799 + /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1.800 /// \see inverse()
1.801 class InverseMap {
1.802 public:
1.803 @@ -1840,10 +1884,9 @@
1.804 /// Constructor for creating an id-to-item map.
1.805 explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
1.806
1.807 - /// \brief Gives back the given item from its id.
1.808 + /// \brief Gives back an item by its id.
1.809 ///
1.810 - /// Gives back the given item from its id.
1.811 - ///
1.812 + /// Gives back an item by its id.
1.813 Item operator[](int id) const { return _graph->fromId(id, Item());}
1.814
1.815 private:
1.816 @@ -1854,165 +1897,220 @@
1.817 ///
1.818 /// Gives back the inverse of the IdMap.
1.819 InverseMap inverse() const { return InverseMap(*_graph);}
1.820 -
1.821 };
1.822
1.823 -
1.824 - /// \brief General invertable graph-map type.
1.825 -
1.826 - /// This type provides simple invertable graph-maps.
1.827 - /// The InvertableMap wraps an arbitrary ReadWriteMap
1.828 - /// and if a key is set to a new value then store it
1.829 - /// in the inverse map.
1.830 + /// \brief Returns an \c IdMap class.
1.831 ///
1.832 - /// The values of the map can be accessed
1.833 - /// with stl compatible forward iterator.
1.834 + /// This function just returns an \c IdMap class.
1.835 + /// \relates IdMap
1.836 + template <typename K, typename GR>
1.837 + inline IdMap<GR, K> idMap(const GR& graph) {
1.838 + return IdMap<GR, K>(graph);
1.839 + }
1.840 +
1.841 + /// \brief General cross reference graph map type.
1.842 +
1.843 + /// This class provides simple invertable graph maps.
1.844 + /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
1.845 + /// and if a key is set to a new value, then stores it in the inverse map.
1.846 + /// The graph items can be accessed by their values either using
1.847 + /// \c InverseMap or \c operator()(), and the values of the map can be
1.848 + /// accessed with an STL compatible forward iterator (\c ValueIt).
1.849 + ///
1.850 + /// This map is intended to be used when all associated values are
1.851 + /// different (the map is actually invertable) or there are only a few
1.852 + /// items with the same value.
1.853 + /// Otherwise consider to use \c IterableValueMap, which is more
1.854 + /// suitable and more efficient for such cases. It provides iterators
1.855 + /// to traverse the items with the same associated value, however
1.856 + /// it does not have \c InverseMap.
1.857 ///
1.858 - /// \tparam _Graph The graph type.
1.859 - /// \tparam _Item The item type of the graph.
1.860 - /// \tparam _Value The value type of the map.
1.861 + /// This type is not reference map, so it cannot be modified with
1.862 + /// the subscript operator.
1.863 + ///
1.864 + /// \tparam GR The graph type.
1.865 + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.866 + /// \c GR::Edge).
1.867 + /// \tparam V The value type of the map.
1.868 ///
1.869 /// \see IterableValueMap
1.870 - template <typename _Graph, typename _Item, typename _Value>
1.871 - class InvertableMap
1.872 - : protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type {
1.873 + template <typename GR, typename K, typename V>
1.874 + class CrossRefMap
1.875 + : protected ItemSetTraits<GR, K>::template Map<V>::Type {
1.876 private:
1.877
1.878 - typedef typename ItemSetTraits<_Graph, _Item>::
1.879 - template Map<_Value>::Type Map;
1.880 - typedef _Graph Graph;
1.881 -
1.882 - typedef std::map<_Value, _Item> Container;
1.883 + typedef typename ItemSetTraits<GR, K>::
1.884 + template Map<V>::Type Map;
1.885 +
1.886 + typedef std::multimap<V, K> Container;
1.887 Container _inv_map;
1.888
1.889 public:
1.890
1.891 - /// The key type of InvertableMap (Node, Arc, Edge).
1.892 - typedef typename Map::Key Key;
1.893 - /// The value type of the InvertableMap.
1.894 - typedef typename Map::Value Value;
1.895 + /// The graph type of CrossRefMap.
1.896 + typedef GR Graph;
1.897 + typedef GR Digraph;
1.898 + /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1.899 + typedef K Item;
1.900 + /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1.901 + typedef K Key;
1.902 + /// The value type of CrossRefMap.
1.903 + typedef V Value;
1.904
1.905 /// \brief Constructor.
1.906 ///
1.907 - /// Construct a new InvertableMap for the graph.
1.908 - ///
1.909 - explicit InvertableMap(const Graph& graph) : Map(graph) {}
1.910 + /// Construct a new CrossRefMap for the given graph.
1.911 + explicit CrossRefMap(const Graph& graph) : Map(graph) {}
1.912
1.913 /// \brief Forward iterator for values.
1.914 ///
1.915 - /// This iterator is an stl compatible forward
1.916 + /// This iterator is an STL compatible forward
1.917 /// iterator on the values of the map. The values can
1.918 - /// be accessed in the [beginValue, endValue) range.
1.919 - ///
1.920 - class ValueIterator
1.921 + /// be accessed in the <tt>[beginValue, endValue)</tt> range.
1.922 + /// They are considered with multiplicity, so each value is
1.923 + /// traversed for each item it is assigned to.
1.924 + class ValueIt
1.925 : public std::iterator<std::forward_iterator_tag, Value> {
1.926 - friend class InvertableMap;
1.927 + friend class CrossRefMap;
1.928 private:
1.929 - ValueIterator(typename Container::const_iterator _it)
1.930 + ValueIt(typename Container::const_iterator _it)
1.931 : it(_it) {}
1.932 public:
1.933
1.934 - ValueIterator() {}
1.935 -
1.936 - ValueIterator& operator++() { ++it; return *this; }
1.937 - ValueIterator operator++(int) {
1.938 - ValueIterator tmp(*this);
1.939 + /// Constructor
1.940 + ValueIt() {}
1.941 +
1.942 + /// \e
1.943 + ValueIt& operator++() { ++it; return *this; }
1.944 + /// \e
1.945 + ValueIt operator++(int) {
1.946 + ValueIt tmp(*this);
1.947 operator++();
1.948 return tmp;
1.949 }
1.950
1.951 + /// \e
1.952 const Value& operator*() const { return it->first; }
1.953 + /// \e
1.954 const Value* operator->() const { return &(it->first); }
1.955
1.956 - bool operator==(ValueIterator jt) const { return it == jt.it; }
1.957 - bool operator!=(ValueIterator jt) const { return it != jt.it; }
1.958 + /// \e
1.959 + bool operator==(ValueIt jt) const { return it == jt.it; }
1.960 + /// \e
1.961 + bool operator!=(ValueIt jt) const { return it != jt.it; }
1.962
1.963 private:
1.964 typename Container::const_iterator it;
1.965 };
1.966 +
1.967 + /// Alias for \c ValueIt
1.968 + typedef ValueIt ValueIterator;
1.969
1.970 /// \brief Returns an iterator to the first value.
1.971 ///
1.972 - /// Returns an stl compatible iterator to the
1.973 + /// Returns an STL compatible iterator to the
1.974 /// first value of the map. The values of the
1.975 - /// map can be accessed in the [beginValue, endValue)
1.976 + /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1.977 /// range.
1.978 - ValueIterator beginValue() const {
1.979 - return ValueIterator(_inv_map.begin());
1.980 + ValueIt beginValue() const {
1.981 + return ValueIt(_inv_map.begin());
1.982 }
1.983
1.984 /// \brief Returns an iterator after the last value.
1.985 ///
1.986 - /// Returns an stl compatible iterator after the
1.987 + /// Returns an STL compatible iterator after the
1.988 /// last value of the map. The values of the
1.989 - /// map can be accessed in the [beginValue, endValue)
1.990 + /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1.991 /// range.
1.992 - ValueIterator endValue() const {
1.993 - return ValueIterator(_inv_map.end());
1.994 + ValueIt endValue() const {
1.995 + return ValueIt(_inv_map.end());
1.996 }
1.997
1.998 - /// \brief The setter function of the map.
1.999 + /// \brief Sets the value associated with the given key.
1.1000 ///
1.1001 - /// Sets the mapped value.
1.1002 + /// Sets the value associated with the given key.
1.1003 void set(const Key& key, const Value& val) {
1.1004 Value oldval = Map::operator[](key);
1.1005 - typename Container::iterator it = _inv_map.find(oldval);
1.1006 - if (it != _inv_map.end() && it->second == key) {
1.1007 - _inv_map.erase(it);
1.1008 + typename Container::iterator it;
1.1009 + for (it = _inv_map.equal_range(oldval).first;
1.1010 + it != _inv_map.equal_range(oldval).second; ++it) {
1.1011 + if (it->second == key) {
1.1012 + _inv_map.erase(it);
1.1013 + break;
1.1014 + }
1.1015 }
1.1016 - _inv_map.insert(make_pair(val, key));
1.1017 + _inv_map.insert(std::make_pair(val, key));
1.1018 Map::set(key, val);
1.1019 }
1.1020
1.1021 - /// \brief The getter function of the map.
1.1022 + /// \brief Returns the value associated with the given key.
1.1023 ///
1.1024 - /// It gives back the value associated with the key.
1.1025 + /// Returns the value associated with the given key.
1.1026 typename MapTraits<Map>::ConstReturnValue
1.1027 operator[](const Key& key) const {
1.1028 return Map::operator[](key);
1.1029 }
1.1030
1.1031 - /// \brief Gives back the item by its value.
1.1032 + /// \brief Gives back an item by its value.
1.1033 ///
1.1034 - /// Gives back the item by its value.
1.1035 - Key operator()(const Value& key) const {
1.1036 - typename Container::const_iterator it = _inv_map.find(key);
1.1037 + /// This function gives back an item that is assigned to
1.1038 + /// the given value or \c INVALID if no such item exists.
1.1039 + /// If there are more items with the same associated value,
1.1040 + /// only one of them is returned.
1.1041 + Key operator()(const Value& val) const {
1.1042 + typename Container::const_iterator it = _inv_map.find(val);
1.1043 return it != _inv_map.end() ? it->second : INVALID;
1.1044 }
1.1045 +
1.1046 + /// \brief Returns the number of items with the given value.
1.1047 + ///
1.1048 + /// This function returns the number of items with the given value
1.1049 + /// associated with it.
1.1050 + int count(const Value &val) const {
1.1051 + return _inv_map.count(val);
1.1052 + }
1.1053
1.1054 protected:
1.1055
1.1056 - /// \brief Erase the key from the map.
1.1057 + /// \brief Erase the key from the map and the inverse map.
1.1058 ///
1.1059 - /// Erase the key to the map. It is called by the
1.1060 + /// Erase the key from the map and the inverse map. It is called by the
1.1061 /// \c AlterationNotifier.
1.1062 virtual void erase(const Key& key) {
1.1063 Value val = Map::operator[](key);
1.1064 - typename Container::iterator it = _inv_map.find(val);
1.1065 - if (it != _inv_map.end() && it->second == key) {
1.1066 - _inv_map.erase(it);
1.1067 + typename Container::iterator it;
1.1068 + for (it = _inv_map.equal_range(val).first;
1.1069 + it != _inv_map.equal_range(val).second; ++it) {
1.1070 + if (it->second == key) {
1.1071 + _inv_map.erase(it);
1.1072 + break;
1.1073 + }
1.1074 }
1.1075 Map::erase(key);
1.1076 }
1.1077
1.1078 - /// \brief Erase more keys from the map.
1.1079 + /// \brief Erase more keys from the map and the inverse map.
1.1080 ///
1.1081 - /// Erase more keys from the map. It is called by the
1.1082 + /// Erase more keys from the map and the inverse map. It is called by the
1.1083 /// \c AlterationNotifier.
1.1084 virtual void erase(const std::vector<Key>& keys) {
1.1085 for (int i = 0; i < int(keys.size()); ++i) {
1.1086 Value val = Map::operator[](keys[i]);
1.1087 - typename Container::iterator it = _inv_map.find(val);
1.1088 - if (it != _inv_map.end() && it->second == keys[i]) {
1.1089 - _inv_map.erase(it);
1.1090 + typename Container::iterator it;
1.1091 + for (it = _inv_map.equal_range(val).first;
1.1092 + it != _inv_map.equal_range(val).second; ++it) {
1.1093 + if (it->second == keys[i]) {
1.1094 + _inv_map.erase(it);
1.1095 + break;
1.1096 + }
1.1097 }
1.1098 }
1.1099 Map::erase(keys);
1.1100 }
1.1101
1.1102 - /// \brief Clear the keys from the map and inverse map.
1.1103 + /// \brief Clear the keys from the map and the inverse map.
1.1104 ///
1.1105 - /// Clear the keys from the map and inverse map. It is called by the
1.1106 + /// Clear the keys from the map and the inverse map. It is called by the
1.1107 /// \c AlterationNotifier.
1.1108 virtual void clear() {
1.1109 _inv_map.clear();
1.1110 @@ -2021,79 +2119,90 @@
1.1111
1.1112 public:
1.1113
1.1114 - /// \brief The inverse map type.
1.1115 + /// \brief The inverse map type of CrossRefMap.
1.1116 ///
1.1117 - /// The inverse of this map. The subscript operator of the map
1.1118 - /// gives back always the item what was last assigned to the value.
1.1119 + /// The inverse map type of CrossRefMap. The subscript operator gives
1.1120 + /// back an item by its value.
1.1121 + /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1.1122 + /// \see inverse()
1.1123 class InverseMap {
1.1124 public:
1.1125 - /// \brief Constructor of the InverseMap.
1.1126 + /// \brief Constructor
1.1127 ///
1.1128 /// Constructor of the InverseMap.
1.1129 - explicit InverseMap(const InvertableMap& inverted)
1.1130 + explicit InverseMap(const CrossRefMap& inverted)
1.1131 : _inverted(inverted) {}
1.1132
1.1133 /// The value type of the InverseMap.
1.1134 - typedef typename InvertableMap::Key Value;
1.1135 + typedef typename CrossRefMap::Key Value;
1.1136 /// The key type of the InverseMap.
1.1137 - typedef typename InvertableMap::Value Key;
1.1138 + typedef typename CrossRefMap::Value Key;
1.1139
1.1140 /// \brief Subscript operator.
1.1141 ///
1.1142 - /// Subscript operator. It gives back always the item
1.1143 - /// what was last assigned to the value.
1.1144 + /// Subscript operator. It gives back an item
1.1145 + /// that is assigned to the given value or \c INVALID
1.1146 + /// if no such item exists.
1.1147 Value operator[](const Key& key) const {
1.1148 return _inverted(key);
1.1149 }
1.1150
1.1151 private:
1.1152 - const InvertableMap& _inverted;
1.1153 + const CrossRefMap& _inverted;
1.1154 };
1.1155
1.1156 - /// \brief It gives back the just readable inverse map.
1.1157 + /// \brief Gives back the inverse of the map.
1.1158 ///
1.1159 - /// It gives back the just readable inverse map.
1.1160 + /// Gives back the inverse of the CrossRefMap.
1.1161 InverseMap inverse() const {
1.1162 return InverseMap(*this);
1.1163 }
1.1164
1.1165 };
1.1166
1.1167 - /// \brief Provides a mutable, continuous and unique descriptor for each
1.1168 - /// item in the graph.
1.1169 + /// \brief Provides continuous and unique id for the
1.1170 + /// items of a graph.
1.1171 ///
1.1172 - /// The DescriptorMap class provides a unique and continuous (but mutable)
1.1173 - /// descriptor (id) for each item of the same type (e.g. node) in the
1.1174 - /// graph. This id is <ul><li>\b unique: different items (nodes) get
1.1175 - /// different ids <li>\b continuous: the range of the ids is the set of
1.1176 - /// integers between 0 and \c n-1, where \c n is the number of the items of
1.1177 - /// this type (e.g. nodes) (so the id of a node can change if you delete an
1.1178 - /// other node, i.e. this id is mutable). </ul> This map can be inverted
1.1179 - /// with its member class \c InverseMap, or with the \c operator() member.
1.1180 + /// RangeIdMap provides a unique and continuous
1.1181 + /// id for each item of a given type (\c Node, \c Arc or
1.1182 + /// \c Edge) in a graph. This id is
1.1183 + /// - \b unique: different items get different ids,
1.1184 + /// - \b continuous: the range of the ids is the set of integers
1.1185 + /// between 0 and \c n-1, where \c n is the number of the items of
1.1186 + /// this type (\c Node, \c Arc or \c Edge).
1.1187 + /// - So, the ids can change when deleting an item of the same type.
1.1188 ///
1.1189 - /// \tparam _Graph The graph class the \c DescriptorMap belongs to.
1.1190 - /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or
1.1191 - /// Edge.
1.1192 - template <typename _Graph, typename _Item>
1.1193 - class DescriptorMap
1.1194 - : protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type {
1.1195 -
1.1196 - typedef _Item Item;
1.1197 - typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map;
1.1198 + /// Thus this id is not (necessarily) the same as what can get using
1.1199 + /// the \c id() function of the graph or \ref IdMap.
1.1200 + /// This map can be inverted with its member class \c InverseMap,
1.1201 + /// or with the \c operator()() member.
1.1202 + ///
1.1203 + /// \tparam GR The graph type.
1.1204 + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.1205 + /// \c GR::Edge).
1.1206 + ///
1.1207 + /// \see IdMap
1.1208 + template <typename GR, typename K>
1.1209 + class RangeIdMap
1.1210 + : protected ItemSetTraits<GR, K>::template Map<int>::Type {
1.1211 +
1.1212 + typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
1.1213
1.1214 public:
1.1215 - /// The graph class of DescriptorMap.
1.1216 - typedef _Graph Graph;
1.1217 -
1.1218 - /// The key type of DescriptorMap (Node, Arc, Edge).
1.1219 - typedef typename Map::Key Key;
1.1220 - /// The value type of DescriptorMap.
1.1221 - typedef typename Map::Value Value;
1.1222 + /// The graph type of RangeIdMap.
1.1223 + typedef GR Graph;
1.1224 + typedef GR Digraph;
1.1225 + /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
1.1226 + typedef K Item;
1.1227 + /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
1.1228 + typedef K Key;
1.1229 + /// The value type of RangeIdMap.
1.1230 + typedef int Value;
1.1231
1.1232 /// \brief Constructor.
1.1233 ///
1.1234 - /// Constructor for descriptor map.
1.1235 - explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
1.1236 + /// Constructor.
1.1237 + explicit RangeIdMap(const Graph& gr) : Map(gr) {
1.1238 Item it;
1.1239 const typename Map::Notifier* nf = Map::notifier();
1.1240 for (nf->first(it); it != INVALID; nf->next(it)) {
1.1241 @@ -2104,7 +2213,7 @@
1.1242
1.1243 protected:
1.1244
1.1245 - /// \brief Add a new key to the map.
1.1246 + /// \brief Adds a new key to the map.
1.1247 ///
1.1248 /// Add a new key to the map. It is called by the
1.1249 /// \c AlterationNotifier.
1.1250 @@ -2194,16 +2303,16 @@
1.1251 _inv_map[pi] = q;
1.1252 }
1.1253
1.1254 - /// \brief Gives back the \e descriptor of the item.
1.1255 + /// \brief Gives back the \e range \e id of the item
1.1256 ///
1.1257 - /// Gives back the mutable and unique \e descriptor of the map.
1.1258 + /// Gives back the \e range \e id of the item.
1.1259 int operator[](const Item& item) const {
1.1260 return Map::operator[](item);
1.1261 }
1.1262
1.1263 - /// \brief Gives back the item by its descriptor.
1.1264 + /// \brief Gives back the item belonging to a \e range \e id
1.1265 ///
1.1266 - /// Gives back th item by its descriptor.
1.1267 + /// Gives back the item belonging to the given \e range \e id.
1.1268 Item operator()(int id) const {
1.1269 return _inv_map[id];
1.1270 }
1.1271 @@ -2214,27 +2323,30 @@
1.1272 Container _inv_map;
1.1273
1.1274 public:
1.1275 - /// \brief The inverse map type of DescriptorMap.
1.1276 +
1.1277 + /// \brief The inverse map type of RangeIdMap.
1.1278 ///
1.1279 - /// The inverse map type of DescriptorMap.
1.1280 + /// The inverse map type of RangeIdMap. The subscript operator gives
1.1281 + /// back an item by its \e range \e id.
1.1282 + /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1.1283 class InverseMap {
1.1284 public:
1.1285 - /// \brief Constructor of the InverseMap.
1.1286 + /// \brief Constructor
1.1287 ///
1.1288 /// Constructor of the InverseMap.
1.1289 - explicit InverseMap(const DescriptorMap& inverted)
1.1290 + explicit InverseMap(const RangeIdMap& inverted)
1.1291 : _inverted(inverted) {}
1.1292
1.1293
1.1294 /// The value type of the InverseMap.
1.1295 - typedef typename DescriptorMap::Key Value;
1.1296 + typedef typename RangeIdMap::Key Value;
1.1297 /// The key type of the InverseMap.
1.1298 - typedef typename DescriptorMap::Value Key;
1.1299 + typedef typename RangeIdMap::Value Key;
1.1300
1.1301 /// \brief Subscript operator.
1.1302 ///
1.1303 /// Subscript operator. It gives back the item
1.1304 - /// that the descriptor belongs to currently.
1.1305 + /// that the given \e range \e id currently belongs to.
1.1306 Value operator[](const Key& key) const {
1.1307 return _inverted(key);
1.1308 }
1.1309 @@ -2247,241 +2359,1134 @@
1.1310 }
1.1311
1.1312 private:
1.1313 - const DescriptorMap& _inverted;
1.1314 + const RangeIdMap& _inverted;
1.1315 };
1.1316
1.1317 /// \brief Gives back the inverse of the map.
1.1318 ///
1.1319 - /// Gives back the inverse of the map.
1.1320 + /// Gives back the inverse of the RangeIdMap.
1.1321 const InverseMap inverse() const {
1.1322 return InverseMap(*this);
1.1323 }
1.1324 };
1.1325
1.1326 - /// \brief Returns the source of the given arc.
1.1327 + /// \brief Returns a \c RangeIdMap class.
1.1328 ///
1.1329 - /// The SourceMap gives back the source Node of the given arc.
1.1330 + /// This function just returns an \c RangeIdMap class.
1.1331 + /// \relates RangeIdMap
1.1332 + template <typename K, typename GR>
1.1333 + inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
1.1334 + return RangeIdMap<GR, K>(graph);
1.1335 + }
1.1336 +
1.1337 + /// \brief Dynamic iterable \c bool map.
1.1338 + ///
1.1339 + /// This class provides a special graph map type which can store a
1.1340 + /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
1.1341 + /// For both \c true and \c false values it is possible to iterate on
1.1342 + /// the keys mapped to the value.
1.1343 + ///
1.1344 + /// This type is a reference map, so it can be modified with the
1.1345 + /// subscript operator.
1.1346 + ///
1.1347 + /// \tparam GR The graph type.
1.1348 + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.1349 + /// \c GR::Edge).
1.1350 + ///
1.1351 + /// \see IterableIntMap, IterableValueMap
1.1352 + /// \see CrossRefMap
1.1353 + template <typename GR, typename K>
1.1354 + class IterableBoolMap
1.1355 + : protected ItemSetTraits<GR, K>::template Map<int>::Type {
1.1356 + private:
1.1357 + typedef GR Graph;
1.1358 +
1.1359 + typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
1.1360 + typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
1.1361 +
1.1362 + std::vector<K> _array;
1.1363 + int _sep;
1.1364 +
1.1365 + public:
1.1366 +
1.1367 + /// Indicates that the map is reference map.
1.1368 + typedef True ReferenceMapTag;
1.1369 +
1.1370 + /// The key type
1.1371 + typedef K Key;
1.1372 + /// The value type
1.1373 + typedef bool Value;
1.1374 + /// The const reference type.
1.1375 + typedef const Value& ConstReference;
1.1376 +
1.1377 + private:
1.1378 +
1.1379 + int position(const Key& key) const {
1.1380 + return Parent::operator[](key);
1.1381 + }
1.1382 +
1.1383 + public:
1.1384 +
1.1385 + /// \brief Reference to the value of the map.
1.1386 + ///
1.1387 + /// This class is similar to the \c bool type. It can be converted to
1.1388 + /// \c bool and it provides the same operators.
1.1389 + class Reference {
1.1390 + friend class IterableBoolMap;
1.1391 + private:
1.1392 + Reference(IterableBoolMap& map, const Key& key)
1.1393 + : _key(key), _map(map) {}
1.1394 + public:
1.1395 +
1.1396 + Reference& operator=(const Reference& value) {
1.1397 + _map.set(_key, static_cast<bool>(value));
1.1398 + return *this;
1.1399 + }
1.1400 +
1.1401 + operator bool() const {
1.1402 + return static_cast<const IterableBoolMap&>(_map)[_key];
1.1403 + }
1.1404 +
1.1405 + Reference& operator=(bool value) {
1.1406 + _map.set(_key, value);
1.1407 + return *this;
1.1408 + }
1.1409 + Reference& operator&=(bool value) {
1.1410 + _map.set(_key, _map[_key] & value);
1.1411 + return *this;
1.1412 + }
1.1413 + Reference& operator|=(bool value) {
1.1414 + _map.set(_key, _map[_key] | value);
1.1415 + return *this;
1.1416 + }
1.1417 + Reference& operator^=(bool value) {
1.1418 + _map.set(_key, _map[_key] ^ value);
1.1419 + return *this;
1.1420 + }
1.1421 + private:
1.1422 + Key _key;
1.1423 + IterableBoolMap& _map;
1.1424 + };
1.1425 +
1.1426 + /// \brief Constructor of the map with a default value.
1.1427 + ///
1.1428 + /// Constructor of the map with a default value.
1.1429 + explicit IterableBoolMap(const Graph& graph, bool def = false)
1.1430 + : Parent(graph) {
1.1431 + typename Parent::Notifier* nf = Parent::notifier();
1.1432 + Key it;
1.1433 + for (nf->first(it); it != INVALID; nf->next(it)) {
1.1434 + Parent::set(it, _array.size());
1.1435 + _array.push_back(it);
1.1436 + }
1.1437 + _sep = (def ? _array.size() : 0);
1.1438 + }
1.1439 +
1.1440 + /// \brief Const subscript operator of the map.
1.1441 + ///
1.1442 + /// Const subscript operator of the map.
1.1443 + bool operator[](const Key& key) const {
1.1444 + return position(key) < _sep;
1.1445 + }
1.1446 +
1.1447 + /// \brief Subscript operator of the map.
1.1448 + ///
1.1449 + /// Subscript operator of the map.
1.1450 + Reference operator[](const Key& key) {
1.1451 + return Reference(*this, key);
1.1452 + }
1.1453 +
1.1454 + /// \brief Set operation of the map.
1.1455 + ///
1.1456 + /// Set operation of the map.
1.1457 + void set(const Key& key, bool value) {
1.1458 + int pos = position(key);
1.1459 + if (value) {
1.1460 + if (pos < _sep) return;
1.1461 + Key tmp = _array[_sep];
1.1462 + _array[_sep] = key;
1.1463 + Parent::set(key, _sep);
1.1464 + _array[pos] = tmp;
1.1465 + Parent::set(tmp, pos);
1.1466 + ++_sep;
1.1467 + } else {
1.1468 + if (pos >= _sep) return;
1.1469 + --_sep;
1.1470 + Key tmp = _array[_sep];
1.1471 + _array[_sep] = key;
1.1472 + Parent::set(key, _sep);
1.1473 + _array[pos] = tmp;
1.1474 + Parent::set(tmp, pos);
1.1475 + }
1.1476 + }
1.1477 +
1.1478 + /// \brief Set all items.
1.1479 + ///
1.1480 + /// Set all items in the map.
1.1481 + /// \note Constant time operation.
1.1482 + void setAll(bool value) {
1.1483 + _sep = (value ? _array.size() : 0);
1.1484 + }
1.1485 +
1.1486 + /// \brief Returns the number of the keys mapped to \c true.
1.1487 + ///
1.1488 + /// Returns the number of the keys mapped to \c true.
1.1489 + int trueNum() const {
1.1490 + return _sep;
1.1491 + }
1.1492 +
1.1493 + /// \brief Returns the number of the keys mapped to \c false.
1.1494 + ///
1.1495 + /// Returns the number of the keys mapped to \c false.
1.1496 + int falseNum() const {
1.1497 + return _array.size() - _sep;
1.1498 + }
1.1499 +
1.1500 + /// \brief Iterator for the keys mapped to \c true.
1.1501 + ///
1.1502 + /// Iterator for the keys mapped to \c true. It works
1.1503 + /// like a graph item iterator, it can be converted to
1.1504 + /// the key type of the map, incremented with \c ++ operator, and
1.1505 + /// if the iterator leaves the last valid key, it will be equal to
1.1506 + /// \c INVALID.
1.1507 + class TrueIt : public Key {
1.1508 + public:
1.1509 + typedef Key Parent;
1.1510 +
1.1511 + /// \brief Creates an iterator.
1.1512 + ///
1.1513 + /// Creates an iterator. It iterates on the
1.1514 + /// keys mapped to \c true.
1.1515 + /// \param map The IterableBoolMap.
1.1516 + explicit TrueIt(const IterableBoolMap& map)
1.1517 + : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
1.1518 + _map(&map) {}
1.1519 +
1.1520 + /// \brief Invalid constructor \& conversion.
1.1521 + ///
1.1522 + /// This constructor initializes the iterator to be invalid.
1.1523 + /// \sa Invalid for more details.
1.1524 + TrueIt(Invalid) : Parent(INVALID), _map(0) {}
1.1525 +
1.1526 + /// \brief Increment operator.
1.1527 + ///
1.1528 + /// Increment operator.
1.1529 + TrueIt& operator++() {
1.1530 + int pos = _map->position(*this);
1.1531 + Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
1.1532 + return *this;
1.1533 + }
1.1534 +
1.1535 + private:
1.1536 + const IterableBoolMap* _map;
1.1537 + };
1.1538 +
1.1539 + /// \brief Iterator for the keys mapped to \c false.
1.1540 + ///
1.1541 + /// Iterator for the keys mapped to \c false. It works
1.1542 + /// like a graph item iterator, it can be converted to
1.1543 + /// the key type of the map, incremented with \c ++ operator, and
1.1544 + /// if the iterator leaves the last valid key, it will be equal to
1.1545 + /// \c INVALID.
1.1546 + class FalseIt : public Key {
1.1547 + public:
1.1548 + typedef Key Parent;
1.1549 +
1.1550 + /// \brief Creates an iterator.
1.1551 + ///
1.1552 + /// Creates an iterator. It iterates on the
1.1553 + /// keys mapped to \c false.
1.1554 + /// \param map The IterableBoolMap.
1.1555 + explicit FalseIt(const IterableBoolMap& map)
1.1556 + : Parent(map._sep < int(map._array.size()) ?
1.1557 + map._array.back() : INVALID), _map(&map) {}
1.1558 +
1.1559 + /// \brief Invalid constructor \& conversion.
1.1560 + ///
1.1561 + /// This constructor initializes the iterator to be invalid.
1.1562 + /// \sa Invalid for more details.
1.1563 + FalseIt(Invalid) : Parent(INVALID), _map(0) {}
1.1564 +
1.1565 + /// \brief Increment operator.
1.1566 + ///
1.1567 + /// Increment operator.
1.1568 + FalseIt& operator++() {
1.1569 + int pos = _map->position(*this);
1.1570 + Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
1.1571 + return *this;
1.1572 + }
1.1573 +
1.1574 + private:
1.1575 + const IterableBoolMap* _map;
1.1576 + };
1.1577 +
1.1578 + /// \brief Iterator for the keys mapped to a given value.
1.1579 + ///
1.1580 + /// Iterator for the keys mapped to a given value. It works
1.1581 + /// like a graph item iterator, it can be converted to
1.1582 + /// the key type of the map, incremented with \c ++ operator, and
1.1583 + /// if the iterator leaves the last valid key, it will be equal to
1.1584 + /// \c INVALID.
1.1585 + class ItemIt : public Key {
1.1586 + public:
1.1587 + typedef Key Parent;
1.1588 +
1.1589 + /// \brief Creates an iterator with a value.
1.1590 + ///
1.1591 + /// Creates an iterator with a value. It iterates on the
1.1592 + /// keys mapped to the given value.
1.1593 + /// \param map The IterableBoolMap.
1.1594 + /// \param value The value.
1.1595 + ItemIt(const IterableBoolMap& map, bool value)
1.1596 + : Parent(value ?
1.1597 + (map._sep > 0 ?
1.1598 + map._array[map._sep - 1] : INVALID) :
1.1599 + (map._sep < int(map._array.size()) ?
1.1600 + map._array.back() : INVALID)), _map(&map) {}
1.1601 +
1.1602 + /// \brief Invalid constructor \& conversion.
1.1603 + ///
1.1604 + /// This constructor initializes the iterator to be invalid.
1.1605 + /// \sa Invalid for more details.
1.1606 + ItemIt(Invalid) : Parent(INVALID), _map(0) {}
1.1607 +
1.1608 + /// \brief Increment operator.
1.1609 + ///
1.1610 + /// Increment operator.
1.1611 + ItemIt& operator++() {
1.1612 + int pos = _map->position(*this);
1.1613 + int _sep = pos >= _map->_sep ? _map->_sep : 0;
1.1614 + Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
1.1615 + return *this;
1.1616 + }
1.1617 +
1.1618 + private:
1.1619 + const IterableBoolMap* _map;
1.1620 + };
1.1621 +
1.1622 + protected:
1.1623 +
1.1624 + virtual void add(const Key& key) {
1.1625 + Parent::add(key);
1.1626 + Parent::set(key, _array.size());
1.1627 + _array.push_back(key);
1.1628 + }
1.1629 +
1.1630 + virtual void add(const std::vector<Key>& keys) {
1.1631 + Parent::add(keys);
1.1632 + for (int i = 0; i < int(keys.size()); ++i) {
1.1633 + Parent::set(keys[i], _array.size());
1.1634 + _array.push_back(keys[i]);
1.1635 + }
1.1636 + }
1.1637 +
1.1638 + virtual void erase(const Key& key) {
1.1639 + int pos = position(key);
1.1640 + if (pos < _sep) {
1.1641 + --_sep;
1.1642 + Parent::set(_array[_sep], pos);
1.1643 + _array[pos] = _array[_sep];
1.1644 + Parent::set(_array.back(), _sep);
1.1645 + _array[_sep] = _array.back();
1.1646 + _array.pop_back();
1.1647 + } else {
1.1648 + Parent::set(_array.back(), pos);
1.1649 + _array[pos] = _array.back();
1.1650 + _array.pop_back();
1.1651 + }
1.1652 + Parent::erase(key);
1.1653 + }
1.1654 +
1.1655 + virtual void erase(const std::vector<Key>& keys) {
1.1656 + for (int i = 0; i < int(keys.size()); ++i) {
1.1657 + int pos = position(keys[i]);
1.1658 + if (pos < _sep) {
1.1659 + --_sep;
1.1660 + Parent::set(_array[_sep], pos);
1.1661 + _array[pos] = _array[_sep];
1.1662 + Parent::set(_array.back(), _sep);
1.1663 + _array[_sep] = _array.back();
1.1664 + _array.pop_back();
1.1665 + } else {
1.1666 + Parent::set(_array.back(), pos);
1.1667 + _array[pos] = _array.back();
1.1668 + _array.pop_back();
1.1669 + }
1.1670 + }
1.1671 + Parent::erase(keys);
1.1672 + }
1.1673 +
1.1674 + virtual void build() {
1.1675 + Parent::build();
1.1676 + typename Parent::Notifier* nf = Parent::notifier();
1.1677 + Key it;
1.1678 + for (nf->first(it); it != INVALID; nf->next(it)) {
1.1679 + Parent::set(it, _array.size());
1.1680 + _array.push_back(it);
1.1681 + }
1.1682 + _sep = 0;
1.1683 + }
1.1684 +
1.1685 + virtual void clear() {
1.1686 + _array.clear();
1.1687 + _sep = 0;
1.1688 + Parent::clear();
1.1689 + }
1.1690 +
1.1691 + };
1.1692 +
1.1693 +
1.1694 + namespace _maps_bits {
1.1695 + template <typename Item>
1.1696 + struct IterableIntMapNode {
1.1697 + IterableIntMapNode() : value(-1) {}
1.1698 + IterableIntMapNode(int _value) : value(_value) {}
1.1699 + Item prev, next;
1.1700 + int value;
1.1701 + };
1.1702 + }
1.1703 +
1.1704 + /// \brief Dynamic iterable integer map.
1.1705 + ///
1.1706 + /// This class provides a special graph map type which can store an
1.1707 + /// integer value for graph items (\c Node, \c Arc or \c Edge).
1.1708 + /// For each non-negative value it is possible to iterate on the keys
1.1709 + /// mapped to the value.
1.1710 + ///
1.1711 + /// This map is intended to be used with small integer values, for which
1.1712 + /// it is efficient, and supports iteration only for non-negative values.
1.1713 + /// If you need large values and/or iteration for negative integers,
1.1714 + /// consider to use \ref IterableValueMap instead.
1.1715 + ///
1.1716 + /// This type is a reference map, so it can be modified with the
1.1717 + /// subscript operator.
1.1718 + ///
1.1719 + /// \note The size of the data structure depends on the largest
1.1720 + /// value in the map.
1.1721 + ///
1.1722 + /// \tparam GR The graph type.
1.1723 + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.1724 + /// \c GR::Edge).
1.1725 + ///
1.1726 + /// \see IterableBoolMap, IterableValueMap
1.1727 + /// \see CrossRefMap
1.1728 + template <typename GR, typename K>
1.1729 + class IterableIntMap
1.1730 + : protected ItemSetTraits<GR, K>::
1.1731 + template Map<_maps_bits::IterableIntMapNode<K> >::Type {
1.1732 + public:
1.1733 + typedef typename ItemSetTraits<GR, K>::
1.1734 + template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
1.1735 +
1.1736 + /// The key type
1.1737 + typedef K Key;
1.1738 + /// The value type
1.1739 + typedef int Value;
1.1740 + /// The graph type
1.1741 + typedef GR Graph;
1.1742 +
1.1743 + /// \brief Constructor of the map.
1.1744 + ///
1.1745 + /// Constructor of the map. It sets all values to -1.
1.1746 + explicit IterableIntMap(const Graph& graph)
1.1747 + : Parent(graph) {}
1.1748 +
1.1749 + /// \brief Constructor of the map with a given value.
1.1750 + ///
1.1751 + /// Constructor of the map with a given value.
1.1752 + explicit IterableIntMap(const Graph& graph, int value)
1.1753 + : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
1.1754 + if (value >= 0) {
1.1755 + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
1.1756 + lace(it);
1.1757 + }
1.1758 + }
1.1759 + }
1.1760 +
1.1761 + private:
1.1762 +
1.1763 + void unlace(const Key& key) {
1.1764 + typename Parent::Value& node = Parent::operator[](key);
1.1765 + if (node.value < 0) return;
1.1766 + if (node.prev != INVALID) {
1.1767 + Parent::operator[](node.prev).next = node.next;
1.1768 + } else {
1.1769 + _first[node.value] = node.next;
1.1770 + }
1.1771 + if (node.next != INVALID) {
1.1772 + Parent::operator[](node.next).prev = node.prev;
1.1773 + }
1.1774 + while (!_first.empty() && _first.back() == INVALID) {
1.1775 + _first.pop_back();
1.1776 + }
1.1777 + }
1.1778 +
1.1779 + void lace(const Key& key) {
1.1780 + typename Parent::Value& node = Parent::operator[](key);
1.1781 + if (node.value < 0) return;
1.1782 + if (node.value >= int(_first.size())) {
1.1783 + _first.resize(node.value + 1, INVALID);
1.1784 + }
1.1785 + node.prev = INVALID;
1.1786 + node.next = _first[node.value];
1.1787 + if (node.next != INVALID) {
1.1788 + Parent::operator[](node.next).prev = key;
1.1789 + }
1.1790 + _first[node.value] = key;
1.1791 + }
1.1792 +
1.1793 + public:
1.1794 +
1.1795 + /// Indicates that the map is reference map.
1.1796 + typedef True ReferenceMapTag;
1.1797 +
1.1798 + /// \brief Reference to the value of the map.
1.1799 + ///
1.1800 + /// This class is similar to the \c int type. It can
1.1801 + /// be converted to \c int and it has the same operators.
1.1802 + class Reference {
1.1803 + friend class IterableIntMap;
1.1804 + private:
1.1805 + Reference(IterableIntMap& map, const Key& key)
1.1806 + : _key(key), _map(map) {}
1.1807 + public:
1.1808 +
1.1809 + Reference& operator=(const Reference& value) {
1.1810 + _map.set(_key, static_cast<const int&>(value));
1.1811 + return *this;
1.1812 + }
1.1813 +
1.1814 + operator const int&() const {
1.1815 + return static_cast<const IterableIntMap&>(_map)[_key];
1.1816 + }
1.1817 +
1.1818 + Reference& operator=(int value) {
1.1819 + _map.set(_key, value);
1.1820 + return *this;
1.1821 + }
1.1822 + Reference& operator++() {
1.1823 + _map.set(_key, _map[_key] + 1);
1.1824 + return *this;
1.1825 + }
1.1826 + int operator++(int) {
1.1827 + int value = _map[_key];
1.1828 + _map.set(_key, value + 1);
1.1829 + return value;
1.1830 + }
1.1831 + Reference& operator--() {
1.1832 + _map.set(_key, _map[_key] - 1);
1.1833 + return *this;
1.1834 + }
1.1835 + int operator--(int) {
1.1836 + int value = _map[_key];
1.1837 + _map.set(_key, value - 1);
1.1838 + return value;
1.1839 + }
1.1840 + Reference& operator+=(int value) {
1.1841 + _map.set(_key, _map[_key] + value);
1.1842 + return *this;
1.1843 + }
1.1844 + Reference& operator-=(int value) {
1.1845 + _map.set(_key, _map[_key] - value);
1.1846 + return *this;
1.1847 + }
1.1848 + Reference& operator*=(int value) {
1.1849 + _map.set(_key, _map[_key] * value);
1.1850 + return *this;
1.1851 + }
1.1852 + Reference& operator/=(int value) {
1.1853 + _map.set(_key, _map[_key] / value);
1.1854 + return *this;
1.1855 + }
1.1856 + Reference& operator%=(int value) {
1.1857 + _map.set(_key, _map[_key] % value);
1.1858 + return *this;
1.1859 + }
1.1860 + Reference& operator&=(int value) {
1.1861 + _map.set(_key, _map[_key] & value);
1.1862 + return *this;
1.1863 + }
1.1864 + Reference& operator|=(int value) {
1.1865 + _map.set(_key, _map[_key] | value);
1.1866 + return *this;
1.1867 + }
1.1868 + Reference& operator^=(int value) {
1.1869 + _map.set(_key, _map[_key] ^ value);
1.1870 + return *this;
1.1871 + }
1.1872 + Reference& operator<<=(int value) {
1.1873 + _map.set(_key, _map[_key] << value);
1.1874 + return *this;
1.1875 + }
1.1876 + Reference& operator>>=(int value) {
1.1877 + _map.set(_key, _map[_key] >> value);
1.1878 + return *this;
1.1879 + }
1.1880 +
1.1881 + private:
1.1882 + Key _key;
1.1883 + IterableIntMap& _map;
1.1884 + };
1.1885 +
1.1886 + /// The const reference type.
1.1887 + typedef const Value& ConstReference;
1.1888 +
1.1889 + /// \brief Gives back the maximal value plus one.
1.1890 + ///
1.1891 + /// Gives back the maximal value plus one.
1.1892 + int size() const {
1.1893 + return _first.size();
1.1894 + }
1.1895 +
1.1896 + /// \brief Set operation of the map.
1.1897 + ///
1.1898 + /// Set operation of the map.
1.1899 + void set(const Key& key, const Value& value) {
1.1900 + unlace(key);
1.1901 + Parent::operator[](key).value = value;
1.1902 + lace(key);
1.1903 + }
1.1904 +
1.1905 + /// \brief Const subscript operator of the map.
1.1906 + ///
1.1907 + /// Const subscript operator of the map.
1.1908 + const Value& operator[](const Key& key) const {
1.1909 + return Parent::operator[](key).value;
1.1910 + }
1.1911 +
1.1912 + /// \brief Subscript operator of the map.
1.1913 + ///
1.1914 + /// Subscript operator of the map.
1.1915 + Reference operator[](const Key& key) {
1.1916 + return Reference(*this, key);
1.1917 + }
1.1918 +
1.1919 + /// \brief Iterator for the keys with the same value.
1.1920 + ///
1.1921 + /// Iterator for the keys with the same value. It works
1.1922 + /// like a graph item iterator, it can be converted to
1.1923 + /// the item type of the map, incremented with \c ++ operator, and
1.1924 + /// if the iterator leaves the last valid item, it will be equal to
1.1925 + /// \c INVALID.
1.1926 + class ItemIt : public Key {
1.1927 + public:
1.1928 + typedef Key Parent;
1.1929 +
1.1930 + /// \brief Invalid constructor \& conversion.
1.1931 + ///
1.1932 + /// This constructor initializes the iterator to be invalid.
1.1933 + /// \sa Invalid for more details.
1.1934 + ItemIt(Invalid) : Parent(INVALID), _map(0) {}
1.1935 +
1.1936 + /// \brief Creates an iterator with a value.
1.1937 + ///
1.1938 + /// Creates an iterator with a value. It iterates on the
1.1939 + /// keys mapped to the given value.
1.1940 + /// \param map The IterableIntMap.
1.1941 + /// \param value The value.
1.1942 + ItemIt(const IterableIntMap& map, int value) : _map(&map) {
1.1943 + if (value < 0 || value >= int(_map->_first.size())) {
1.1944 + Parent::operator=(INVALID);
1.1945 + } else {
1.1946 + Parent::operator=(_map->_first[value]);
1.1947 + }
1.1948 + }
1.1949 +
1.1950 + /// \brief Increment operator.
1.1951 + ///
1.1952 + /// Increment operator.
1.1953 + ItemIt& operator++() {
1.1954 + Parent::operator=(_map->IterableIntMap::Parent::
1.1955 + operator[](static_cast<Parent&>(*this)).next);
1.1956 + return *this;
1.1957 + }
1.1958 +
1.1959 + private:
1.1960 + const IterableIntMap* _map;
1.1961 + };
1.1962 +
1.1963 + protected:
1.1964 +
1.1965 + virtual void erase(const Key& key) {
1.1966 + unlace(key);
1.1967 + Parent::erase(key);
1.1968 + }
1.1969 +
1.1970 + virtual void erase(const std::vector<Key>& keys) {
1.1971 + for (int i = 0; i < int(keys.size()); ++i) {
1.1972 + unlace(keys[i]);
1.1973 + }
1.1974 + Parent::erase(keys);
1.1975 + }
1.1976 +
1.1977 + virtual void clear() {
1.1978 + _first.clear();
1.1979 + Parent::clear();
1.1980 + }
1.1981 +
1.1982 + private:
1.1983 + std::vector<Key> _first;
1.1984 + };
1.1985 +
1.1986 + namespace _maps_bits {
1.1987 + template <typename Item, typename Value>
1.1988 + struct IterableValueMapNode {
1.1989 + IterableValueMapNode(Value _value = Value()) : value(_value) {}
1.1990 + Item prev, next;
1.1991 + Value value;
1.1992 + };
1.1993 + }
1.1994 +
1.1995 + /// \brief Dynamic iterable map for comparable values.
1.1996 + ///
1.1997 + /// This class provides a special graph map type which can store a
1.1998 + /// comparable value for graph items (\c Node, \c Arc or \c Edge).
1.1999 + /// For each value it is possible to iterate on the keys mapped to
1.2000 + /// the value (\c ItemIt), and the values of the map can be accessed
1.2001 + /// with an STL compatible forward iterator (\c ValueIt).
1.2002 + /// The map stores a linked list for each value, which contains
1.2003 + /// the items mapped to the value, and the used values are stored
1.2004 + /// in balanced binary tree (\c std::map).
1.2005 + ///
1.2006 + /// \ref IterableBoolMap and \ref IterableIntMap are similar classes
1.2007 + /// specialized for \c bool and \c int values, respectively.
1.2008 + ///
1.2009 + /// This type is not reference map, so it cannot be modified with
1.2010 + /// the subscript operator.
1.2011 + ///
1.2012 + /// \tparam GR The graph type.
1.2013 + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1.2014 + /// \c GR::Edge).
1.2015 + /// \tparam V The value type of the map. It can be any comparable
1.2016 + /// value type.
1.2017 + ///
1.2018 + /// \see IterableBoolMap, IterableIntMap
1.2019 + /// \see CrossRefMap
1.2020 + template <typename GR, typename K, typename V>
1.2021 + class IterableValueMap
1.2022 + : protected ItemSetTraits<GR, K>::
1.2023 + template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
1.2024 + public:
1.2025 + typedef typename ItemSetTraits<GR, K>::
1.2026 + template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
1.2027 +
1.2028 + /// The key type
1.2029 + typedef K Key;
1.2030 + /// The value type
1.2031 + typedef V Value;
1.2032 + /// The graph type
1.2033 + typedef GR Graph;
1.2034 +
1.2035 + public:
1.2036 +
1.2037 + /// \brief Constructor of the map with a given value.
1.2038 + ///
1.2039 + /// Constructor of the map with a given value.
1.2040 + explicit IterableValueMap(const Graph& graph,
1.2041 + const Value& value = Value())
1.2042 + : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
1.2043 + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
1.2044 + lace(it);
1.2045 + }
1.2046 + }
1.2047 +
1.2048 + protected:
1.2049 +
1.2050 + void unlace(const Key& key) {
1.2051 + typename Parent::Value& node = Parent::operator[](key);
1.2052 + if (node.prev != INVALID) {
1.2053 + Parent::operator[](node.prev).next = node.next;
1.2054 + } else {
1.2055 + if (node.next != INVALID) {
1.2056 + _first[node.value] = node.next;
1.2057 + } else {
1.2058 + _first.erase(node.value);
1.2059 + }
1.2060 + }
1.2061 + if (node.next != INVALID) {
1.2062 + Parent::operator[](node.next).prev = node.prev;
1.2063 + }
1.2064 + }
1.2065 +
1.2066 + void lace(const Key& key) {
1.2067 + typename Parent::Value& node = Parent::operator[](key);
1.2068 + typename std::map<Value, Key>::iterator it = _first.find(node.value);
1.2069 + if (it == _first.end()) {
1.2070 + node.prev = node.next = INVALID;
1.2071 + _first.insert(std::make_pair(node.value, key));
1.2072 + } else {
1.2073 + node.prev = INVALID;
1.2074 + node.next = it->second;
1.2075 + if (node.next != INVALID) {
1.2076 + Parent::operator[](node.next).prev = key;
1.2077 + }
1.2078 + it->second = key;
1.2079 + }
1.2080 + }
1.2081 +
1.2082 + public:
1.2083 +
1.2084 + /// \brief Forward iterator for values.
1.2085 + ///
1.2086 + /// This iterator is an STL compatible forward
1.2087 + /// iterator on the values of the map. The values can
1.2088 + /// be accessed in the <tt>[beginValue, endValue)</tt> range.
1.2089 + class ValueIt
1.2090 + : public std::iterator<std::forward_iterator_tag, Value> {
1.2091 + friend class IterableValueMap;
1.2092 + private:
1.2093 + ValueIt(typename std::map<Value, Key>::const_iterator _it)
1.2094 + : it(_it) {}
1.2095 + public:
1.2096 +
1.2097 + /// Constructor
1.2098 + ValueIt() {}
1.2099 +
1.2100 + /// \e
1.2101 + ValueIt& operator++() { ++it; return *this; }
1.2102 + /// \e
1.2103 + ValueIt operator++(int) {
1.2104 + ValueIt tmp(*this);
1.2105 + operator++();
1.2106 + return tmp;
1.2107 + }
1.2108 +
1.2109 + /// \e
1.2110 + const Value& operator*() const { return it->first; }
1.2111 + /// \e
1.2112 + const Value* operator->() const { return &(it->first); }
1.2113 +
1.2114 + /// \e
1.2115 + bool operator==(ValueIt jt) const { return it == jt.it; }
1.2116 + /// \e
1.2117 + bool operator!=(ValueIt jt) const { return it != jt.it; }
1.2118 +
1.2119 + private:
1.2120 + typename std::map<Value, Key>::const_iterator it;
1.2121 + };
1.2122 +
1.2123 + /// \brief Returns an iterator to the first value.
1.2124 + ///
1.2125 + /// Returns an STL compatible iterator to the
1.2126 + /// first value of the map. The values of the
1.2127 + /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1.2128 + /// range.
1.2129 + ValueIt beginValue() const {
1.2130 + return ValueIt(_first.begin());
1.2131 + }
1.2132 +
1.2133 + /// \brief Returns an iterator after the last value.
1.2134 + ///
1.2135 + /// Returns an STL compatible iterator after the
1.2136 + /// last value of the map. The values of the
1.2137 + /// map can be accessed in the <tt>[beginValue, endValue)</tt>
1.2138 + /// range.
1.2139 + ValueIt endValue() const {
1.2140 + return ValueIt(_first.end());
1.2141 + }
1.2142 +
1.2143 + /// \brief Set operation of the map.
1.2144 + ///
1.2145 + /// Set operation of the map.
1.2146 + void set(const Key& key, const Value& value) {
1.2147 + unlace(key);
1.2148 + Parent::operator[](key).value = value;
1.2149 + lace(key);
1.2150 + }
1.2151 +
1.2152 + /// \brief Const subscript operator of the map.
1.2153 + ///
1.2154 + /// Const subscript operator of the map.
1.2155 + const Value& operator[](const Key& key) const {
1.2156 + return Parent::operator[](key).value;
1.2157 + }
1.2158 +
1.2159 + /// \brief Iterator for the keys with the same value.
1.2160 + ///
1.2161 + /// Iterator for the keys with the same value. It works
1.2162 + /// like a graph item iterator, it can be converted to
1.2163 + /// the item type of the map, incremented with \c ++ operator, and
1.2164 + /// if the iterator leaves the last valid item, it will be equal to
1.2165 + /// \c INVALID.
1.2166 + class ItemIt : public Key {
1.2167 + public:
1.2168 + typedef Key Parent;
1.2169 +
1.2170 + /// \brief Invalid constructor \& conversion.
1.2171 + ///
1.2172 + /// This constructor initializes the iterator to be invalid.
1.2173 + /// \sa Invalid for more details.
1.2174 + ItemIt(Invalid) : Parent(INVALID), _map(0) {}
1.2175 +
1.2176 + /// \brief Creates an iterator with a value.
1.2177 + ///
1.2178 + /// Creates an iterator with a value. It iterates on the
1.2179 + /// keys which have the given value.
1.2180 + /// \param map The IterableValueMap
1.2181 + /// \param value The value
1.2182 + ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
1.2183 + typename std::map<Value, Key>::const_iterator it =
1.2184 + map._first.find(value);
1.2185 + if (it == map._first.end()) {
1.2186 + Parent::operator=(INVALID);
1.2187 + } else {
1.2188 + Parent::operator=(it->second);
1.2189 + }
1.2190 + }
1.2191 +
1.2192 + /// \brief Increment operator.
1.2193 + ///
1.2194 + /// Increment Operator.
1.2195 + ItemIt& operator++() {
1.2196 + Parent::operator=(_map->IterableValueMap::Parent::
1.2197 + operator[](static_cast<Parent&>(*this)).next);
1.2198 + return *this;
1.2199 + }
1.2200 +
1.2201 +
1.2202 + private:
1.2203 + const IterableValueMap* _map;
1.2204 + };
1.2205 +
1.2206 + protected:
1.2207 +
1.2208 + virtual void add(const Key& key) {
1.2209 + Parent::add(key);
1.2210 + unlace(key);
1.2211 + }
1.2212 +
1.2213 + virtual void add(const std::vector<Key>& keys) {
1.2214 + Parent::add(keys);
1.2215 + for (int i = 0; i < int(keys.size()); ++i) {
1.2216 + lace(keys[i]);
1.2217 + }
1.2218 + }
1.2219 +
1.2220 + virtual void erase(const Key& key) {
1.2221 + unlace(key);
1.2222 + Parent::erase(key);
1.2223 + }
1.2224 +
1.2225 + virtual void erase(const std::vector<Key>& keys) {
1.2226 + for (int i = 0; i < int(keys.size()); ++i) {
1.2227 + unlace(keys[i]);
1.2228 + }
1.2229 + Parent::erase(keys);
1.2230 + }
1.2231 +
1.2232 + virtual void build() {
1.2233 + Parent::build();
1.2234 + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
1.2235 + lace(it);
1.2236 + }
1.2237 + }
1.2238 +
1.2239 + virtual void clear() {
1.2240 + _first.clear();
1.2241 + Parent::clear();
1.2242 + }
1.2243 +
1.2244 + private:
1.2245 + std::map<Value, Key> _first;
1.2246 + };
1.2247 +
1.2248 + /// \brief Map of the source nodes of arcs in a digraph.
1.2249 + ///
1.2250 + /// SourceMap provides access for the source node of each arc in a digraph,
1.2251 + /// which is returned by the \c source() function of the digraph.
1.2252 + /// \tparam GR The digraph type.
1.2253 /// \see TargetMap
1.2254 - template <typename Digraph>
1.2255 + template <typename GR>
1.2256 class SourceMap {
1.2257 public:
1.2258
1.2259 - typedef typename Digraph::Node Value;
1.2260 - typedef typename Digraph::Arc Key;
1.2261 + /// The key type (the \c Arc type of the digraph).
1.2262 + typedef typename GR::Arc Key;
1.2263 + /// The value type (the \c Node type of the digraph).
1.2264 + typedef typename GR::Node Value;
1.2265
1.2266 /// \brief Constructor
1.2267 ///
1.2268 - /// Constructor
1.2269 + /// Constructor.
1.2270 /// \param digraph The digraph that the map belongs to.
1.2271 - explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
1.2272 -
1.2273 - /// \brief The subscript operator.
1.2274 + explicit SourceMap(const GR& digraph) : _graph(digraph) {}
1.2275 +
1.2276 + /// \brief Returns the source node of the given arc.
1.2277 ///
1.2278 - /// The subscript operator.
1.2279 - /// \param arc The arc
1.2280 - /// \return The source of the arc
1.2281 + /// Returns the source node of the given arc.
1.2282 Value operator[](const Key& arc) const {
1.2283 - return _digraph.source(arc);
1.2284 + return _graph.source(arc);
1.2285 }
1.2286
1.2287 private:
1.2288 - const Digraph& _digraph;
1.2289 + const GR& _graph;
1.2290 };
1.2291
1.2292 /// \brief Returns a \c SourceMap class.
1.2293 ///
1.2294 /// This function just returns an \c SourceMap class.
1.2295 /// \relates SourceMap
1.2296 - template <typename Digraph>
1.2297 - inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
1.2298 - return SourceMap<Digraph>(digraph);
1.2299 + template <typename GR>
1.2300 + inline SourceMap<GR> sourceMap(const GR& graph) {
1.2301 + return SourceMap<GR>(graph);
1.2302 }
1.2303
1.2304 - /// \brief Returns the target of the given arc.
1.2305 + /// \brief Map of the target nodes of arcs in a digraph.
1.2306 ///
1.2307 - /// The TargetMap gives back the target Node of the given arc.
1.2308 + /// TargetMap provides access for the target node of each arc in a digraph,
1.2309 + /// which is returned by the \c target() function of the digraph.
1.2310 + /// \tparam GR The digraph type.
1.2311 /// \see SourceMap
1.2312 - template <typename Digraph>
1.2313 + template <typename GR>
1.2314 class TargetMap {
1.2315 public:
1.2316
1.2317 - typedef typename Digraph::Node Value;
1.2318 - typedef typename Digraph::Arc Key;
1.2319 + /// The key type (the \c Arc type of the digraph).
1.2320 + typedef typename GR::Arc Key;
1.2321 + /// The value type (the \c Node type of the digraph).
1.2322 + typedef typename GR::Node Value;
1.2323
1.2324 /// \brief Constructor
1.2325 ///
1.2326 - /// Constructor
1.2327 + /// Constructor.
1.2328 /// \param digraph The digraph that the map belongs to.
1.2329 - explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
1.2330 -
1.2331 - /// \brief The subscript operator.
1.2332 + explicit TargetMap(const GR& digraph) : _graph(digraph) {}
1.2333 +
1.2334 + /// \brief Returns the target node of the given arc.
1.2335 ///
1.2336 - /// The subscript operator.
1.2337 - /// \param e The arc
1.2338 - /// \return The target of the arc
1.2339 + /// Returns the target node of the given arc.
1.2340 Value operator[](const Key& e) const {
1.2341 - return _digraph.target(e);
1.2342 + return _graph.target(e);
1.2343 }
1.2344
1.2345 private:
1.2346 - const Digraph& _digraph;
1.2347 + const GR& _graph;
1.2348 };
1.2349
1.2350 /// \brief Returns a \c TargetMap class.
1.2351 ///
1.2352 /// This function just returns a \c TargetMap class.
1.2353 /// \relates TargetMap
1.2354 - template <typename Digraph>
1.2355 - inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
1.2356 - return TargetMap<Digraph>(digraph);
1.2357 + template <typename GR>
1.2358 + inline TargetMap<GR> targetMap(const GR& graph) {
1.2359 + return TargetMap<GR>(graph);
1.2360 }
1.2361
1.2362 - /// \brief Returns the "forward" directed arc view of an edge.
1.2363 + /// \brief Map of the "forward" directed arc view of edges in a graph.
1.2364 ///
1.2365 - /// Returns the "forward" directed arc view of an edge.
1.2366 + /// ForwardMap provides access for the "forward" directed arc view of
1.2367 + /// each edge in a graph, which is returned by the \c direct() function
1.2368 + /// of the graph with \c true parameter.
1.2369 + /// \tparam GR The graph type.
1.2370 /// \see BackwardMap
1.2371 - template <typename Graph>
1.2372 + template <typename GR>
1.2373 class ForwardMap {
1.2374 public:
1.2375
1.2376 - typedef typename Graph::Arc Value;
1.2377 - typedef typename Graph::Edge Key;
1.2378 + /// The key type (the \c Edge type of the digraph).
1.2379 + typedef typename GR::Edge Key;
1.2380 + /// The value type (the \c Arc type of the digraph).
1.2381 + typedef typename GR::Arc Value;
1.2382
1.2383 /// \brief Constructor
1.2384 ///
1.2385 - /// Constructor
1.2386 + /// Constructor.
1.2387 /// \param graph The graph that the map belongs to.
1.2388 - explicit ForwardMap(const Graph& graph) : _graph(graph) {}
1.2389 -
1.2390 - /// \brief The subscript operator.
1.2391 + explicit ForwardMap(const GR& graph) : _graph(graph) {}
1.2392 +
1.2393 + /// \brief Returns the "forward" directed arc view of the given edge.
1.2394 ///
1.2395 - /// The subscript operator.
1.2396 - /// \param key An edge
1.2397 - /// \return The "forward" directed arc view of edge
1.2398 + /// Returns the "forward" directed arc view of the given edge.
1.2399 Value operator[](const Key& key) const {
1.2400 return _graph.direct(key, true);
1.2401 }
1.2402
1.2403 private:
1.2404 - const Graph& _graph;
1.2405 + const GR& _graph;
1.2406 };
1.2407
1.2408 /// \brief Returns a \c ForwardMap class.
1.2409 ///
1.2410 /// This function just returns an \c ForwardMap class.
1.2411 /// \relates ForwardMap
1.2412 - template <typename Graph>
1.2413 - inline ForwardMap<Graph> forwardMap(const Graph& graph) {
1.2414 - return ForwardMap<Graph>(graph);
1.2415 + template <typename GR>
1.2416 + inline ForwardMap<GR> forwardMap(const GR& graph) {
1.2417 + return ForwardMap<GR>(graph);
1.2418 }
1.2419
1.2420 - /// \brief Returns the "backward" directed arc view of an edge.
1.2421 + /// \brief Map of the "backward" directed arc view of edges in a graph.
1.2422 ///
1.2423 - /// Returns the "backward" directed arc view of an edge.
1.2424 + /// BackwardMap provides access for the "backward" directed arc view of
1.2425 + /// each edge in a graph, which is returned by the \c direct() function
1.2426 + /// of the graph with \c false parameter.
1.2427 + /// \tparam GR The graph type.
1.2428 /// \see ForwardMap
1.2429 - template <typename Graph>
1.2430 + template <typename GR>
1.2431 class BackwardMap {
1.2432 public:
1.2433
1.2434 - typedef typename Graph::Arc Value;
1.2435 - typedef typename Graph::Edge Key;
1.2436 + /// The key type (the \c Edge type of the digraph).
1.2437 + typedef typename GR::Edge Key;
1.2438 + /// The value type (the \c Arc type of the digraph).
1.2439 + typedef typename GR::Arc Value;
1.2440
1.2441 /// \brief Constructor
1.2442 ///
1.2443 - /// Constructor
1.2444 + /// Constructor.
1.2445 /// \param graph The graph that the map belongs to.
1.2446 - explicit BackwardMap(const Graph& graph) : _graph(graph) {}
1.2447 -
1.2448 - /// \brief The subscript operator.
1.2449 + explicit BackwardMap(const GR& graph) : _graph(graph) {}
1.2450 +
1.2451 + /// \brief Returns the "backward" directed arc view of the given edge.
1.2452 ///
1.2453 - /// The subscript operator.
1.2454 - /// \param key An edge
1.2455 - /// \return The "backward" directed arc view of edge
1.2456 + /// Returns the "backward" directed arc view of the given edge.
1.2457 Value operator[](const Key& key) const {
1.2458 return _graph.direct(key, false);
1.2459 }
1.2460
1.2461 private:
1.2462 - const Graph& _graph;
1.2463 + const GR& _graph;
1.2464 };
1.2465
1.2466 /// \brief Returns a \c BackwardMap class
1.2467
1.2468 /// This function just returns a \c BackwardMap class.
1.2469 /// \relates BackwardMap
1.2470 - template <typename Graph>
1.2471 - inline BackwardMap<Graph> backwardMap(const Graph& graph) {
1.2472 - return BackwardMap<Graph>(graph);
1.2473 + template <typename GR>
1.2474 + inline BackwardMap<GR> backwardMap(const GR& graph) {
1.2475 + return BackwardMap<GR>(graph);
1.2476 }
1.2477
1.2478 - /// \brief Potential difference map
1.2479 - ///
1.2480 - /// If there is an potential map on the nodes then we
1.2481 - /// can get an arc map as we get the substraction of the
1.2482 - /// values of the target and source.
1.2483 - template <typename Digraph, typename NodeMap>
1.2484 - class PotentialDifferenceMap {
1.2485 - public:
1.2486 - typedef typename Digraph::Arc Key;
1.2487 - typedef typename NodeMap::Value Value;
1.2488 -
1.2489 - /// \brief Constructor
1.2490 - ///
1.2491 - /// Contructor of the map
1.2492 - explicit PotentialDifferenceMap(const Digraph& digraph,
1.2493 - const NodeMap& potential)
1.2494 - : _digraph(digraph), _potential(potential) {}
1.2495 -
1.2496 - /// \brief Const subscription operator
1.2497 - ///
1.2498 - /// Const subscription operator
1.2499 - Value operator[](const Key& arc) const {
1.2500 - return _potential[_digraph.target(arc)] -
1.2501 - _potential[_digraph.source(arc)];
1.2502 - }
1.2503 -
1.2504 - private:
1.2505 - const Digraph& _digraph;
1.2506 - const NodeMap& _potential;
1.2507 - };
1.2508 -
1.2509 - /// \brief Returns a PotentialDifferenceMap.
1.2510 - ///
1.2511 - /// This function just returns a PotentialDifferenceMap.
1.2512 - /// \relates PotentialDifferenceMap
1.2513 - template <typename Digraph, typename NodeMap>
1.2514 - PotentialDifferenceMap<Digraph, NodeMap>
1.2515 - potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
1.2516 - return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
1.2517 - }
1.2518 -
1.2519 - /// \brief Map of the node in-degrees.
1.2520 + /// \brief Map of the in-degrees of nodes in a digraph.
1.2521 ///
1.2522 /// This map returns the in-degree of a node. Once it is constructed,
1.2523 - /// the degrees are stored in a standard NodeMap, so each query is done
1.2524 + /// the degrees are stored in a standard \c NodeMap, so each query is done
1.2525 /// in constant time. On the other hand, the values are updated automatically
1.2526 /// whenever the digraph changes.
1.2527 ///
1.2528 - /// \warning Besides addNode() and addArc(), a digraph structure may provide
1.2529 - /// alternative ways to modify the digraph. The correct behavior of InDegMap
1.2530 - /// is not guarantied if these additional features are used. For example
1.2531 - /// the functions \ref ListDigraph::changeSource() "changeSource()",
1.2532 + /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.2533 + /// may provide alternative ways to modify the digraph.
1.2534 + /// The correct behavior of InDegMap is not guarantied if these additional
1.2535 + /// features are used. For example the functions
1.2536 + /// \ref ListDigraph::changeSource() "changeSource()",
1.2537 /// \ref ListDigraph::changeTarget() "changeTarget()" and
1.2538 /// \ref ListDigraph::reverseArc() "reverseArc()"
1.2539 /// of \ref ListDigraph will \e not update the degree values correctly.
1.2540 ///
1.2541 /// \sa OutDegMap
1.2542 -
1.2543 - template <typename _Digraph>
1.2544 + template <typename GR>
1.2545 class InDegMap
1.2546 - : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
1.2547 + : protected ItemSetTraits<GR, typename GR::Arc>
1.2548 ::ItemNotifier::ObserverBase {
1.2549
1.2550 public:
1.2551
1.2552 - typedef _Digraph Digraph;
1.2553 + /// The graph type of InDegMap
1.2554 + typedef GR Graph;
1.2555 + typedef GR Digraph;
1.2556 + /// The key type
1.2557 + typedef typename Digraph::Node Key;
1.2558 + /// The value type
1.2559 typedef int Value;
1.2560 - typedef typename Digraph::Node Key;
1.2561
1.2562 typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
1.2563 ::ItemNotifier::ObserverBase Parent;
1.2564 @@ -2523,9 +3528,9 @@
1.2565
1.2566 /// \brief Constructor.
1.2567 ///
1.2568 - /// Constructor for creating in-degree map.
1.2569 - explicit InDegMap(const Digraph& digraph)
1.2570 - : _digraph(digraph), _deg(digraph) {
1.2571 + /// Constructor for creating an in-degree map.
1.2572 + explicit InDegMap(const Digraph& graph)
1.2573 + : _digraph(graph), _deg(graph) {
1.2574 Parent::attach(_digraph.notifier(typename Digraph::Arc()));
1.2575
1.2576 for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
1.2577 @@ -2533,6 +3538,8 @@
1.2578 }
1.2579 }
1.2580
1.2581 + /// \brief Gives back the in-degree of a Node.
1.2582 + ///
1.2583 /// Gives back the in-degree of a Node.
1.2584 int operator[](const Key& key) const {
1.2585 return _deg[key];
1.2586 @@ -2579,33 +3586,37 @@
1.2587 AutoNodeMap _deg;
1.2588 };
1.2589
1.2590 - /// \brief Map of the node out-degrees.
1.2591 + /// \brief Map of the out-degrees of nodes in a digraph.
1.2592 ///
1.2593 /// This map returns the out-degree of a node. Once it is constructed,
1.2594 - /// the degrees are stored in a standard NodeMap, so each query is done
1.2595 + /// the degrees are stored in a standard \c NodeMap, so each query is done
1.2596 /// in constant time. On the other hand, the values are updated automatically
1.2597 /// whenever the digraph changes.
1.2598 ///
1.2599 - /// \warning Besides addNode() and addArc(), a digraph structure may provide
1.2600 - /// alternative ways to modify the digraph. The correct behavior of OutDegMap
1.2601 - /// is not guarantied if these additional features are used. For example
1.2602 - /// the functions \ref ListDigraph::changeSource() "changeSource()",
1.2603 + /// \warning Besides \c addNode() and \c addArc(), a digraph structure
1.2604 + /// may provide alternative ways to modify the digraph.
1.2605 + /// The correct behavior of OutDegMap is not guarantied if these additional
1.2606 + /// features are used. For example the functions
1.2607 + /// \ref ListDigraph::changeSource() "changeSource()",
1.2608 /// \ref ListDigraph::changeTarget() "changeTarget()" and
1.2609 /// \ref ListDigraph::reverseArc() "reverseArc()"
1.2610 /// of \ref ListDigraph will \e not update the degree values correctly.
1.2611 ///
1.2612 /// \sa InDegMap
1.2613 -
1.2614 - template <typename _Digraph>
1.2615 + template <typename GR>
1.2616 class OutDegMap
1.2617 - : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
1.2618 + : protected ItemSetTraits<GR, typename GR::Arc>
1.2619 ::ItemNotifier::ObserverBase {
1.2620
1.2621 public:
1.2622
1.2623 - typedef _Digraph Digraph;
1.2624 + /// The graph type of OutDegMap
1.2625 + typedef GR Graph;
1.2626 + typedef GR Digraph;
1.2627 + /// The key type
1.2628 + typedef typename Digraph::Node Key;
1.2629 + /// The value type
1.2630 typedef int Value;
1.2631 - typedef typename Digraph::Node Key;
1.2632
1.2633 typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
1.2634 ::ItemNotifier::ObserverBase Parent;
1.2635 @@ -2645,9 +3656,9 @@
1.2636
1.2637 /// \brief Constructor.
1.2638 ///
1.2639 - /// Constructor for creating out-degree map.
1.2640 - explicit OutDegMap(const Digraph& digraph)
1.2641 - : _digraph(digraph), _deg(digraph) {
1.2642 + /// Constructor for creating an out-degree map.
1.2643 + explicit OutDegMap(const Digraph& graph)
1.2644 + : _digraph(graph), _deg(graph) {
1.2645 Parent::attach(_digraph.notifier(typename Digraph::Arc()));
1.2646
1.2647 for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
1.2648 @@ -2655,6 +3666,8 @@
1.2649 }
1.2650 }
1.2651
1.2652 + /// \brief Gives back the out-degree of a Node.
1.2653 + ///
1.2654 /// Gives back the out-degree of a Node.
1.2655 int operator[](const Key& key) const {
1.2656 return _deg[key];
1.2657 @@ -2701,6 +3714,56 @@
1.2658 AutoNodeMap _deg;
1.2659 };
1.2660
1.2661 + /// \brief Potential difference map
1.2662 + ///
1.2663 + /// PotentialDifferenceMap returns the difference between the potentials of
1.2664 + /// the source and target nodes of each arc in a digraph, i.e. it returns
1.2665 + /// \code
1.2666 + /// potential[gr.target(arc)] - potential[gr.source(arc)].
1.2667 + /// \endcode
1.2668 + /// \tparam GR The digraph type.
1.2669 + /// \tparam POT A node map storing the potentials.
1.2670 + template <typename GR, typename POT>
1.2671 + class PotentialDifferenceMap {
1.2672 + public:
1.2673 + /// Key type
1.2674 + typedef typename GR::Arc Key;
1.2675 + /// Value type
1.2676 + typedef typename POT::Value Value;
1.2677 +
1.2678 + /// \brief Constructor
1.2679 + ///
1.2680 + /// Contructor of the map.
1.2681 + explicit PotentialDifferenceMap(const GR& gr,
1.2682 + const POT& potential)
1.2683 + : _digraph(gr), _potential(potential) {}
1.2684 +
1.2685 + /// \brief Returns the potential difference for the given arc.
1.2686 + ///
1.2687 + /// Returns the potential difference for the given arc, i.e.
1.2688 + /// \code
1.2689 + /// potential[gr.target(arc)] - potential[gr.source(arc)].
1.2690 + /// \endcode
1.2691 + Value operator[](const Key& arc) const {
1.2692 + return _potential[_digraph.target(arc)] -
1.2693 + _potential[_digraph.source(arc)];
1.2694 + }
1.2695 +
1.2696 + private:
1.2697 + const GR& _digraph;
1.2698 + const POT& _potential;
1.2699 + };
1.2700 +
1.2701 + /// \brief Returns a PotentialDifferenceMap.
1.2702 + ///
1.2703 + /// This function just returns a PotentialDifferenceMap.
1.2704 + /// \relates PotentialDifferenceMap
1.2705 + template <typename GR, typename POT>
1.2706 + PotentialDifferenceMap<GR, POT>
1.2707 + potentialDifferenceMap(const GR& gr, const POT& potential) {
1.2708 + return PotentialDifferenceMap<GR, POT>(gr, potential);
1.2709 + }
1.2710 +
1.2711 /// @}
1.2712 }
1.2713