1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
 
     3  * This file is a part of LEMON, a generic C++ optimization library.
 
     5  * Copyright (C) 2003-2009
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    27 #include <lemon/core.h>
 
    31 ///\brief Miscellaneous property maps
 
    38   /// Base class of maps.
 
    40   /// Base class of maps. It provides the necessary type definitions
 
    41   /// required by the map %concepts.
 
    42   template<typename K, typename V>
 
    45     /// \brief The key type of the map.
 
    47     /// \brief The value type of the map.
 
    48     /// (The type of objects associated with the keys).
 
    53   /// Null map. (a.k.a. DoNothingMap)
 
    55   /// This map can be used if you have to provide a map only for
 
    56   /// its type definitions, or if you have to provide a writable map,
 
    57   /// but data written to it is not required (i.e. it will be sent to
 
    58   /// <tt>/dev/null</tt>).
 
    59   /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
 
    62   template<typename K, typename V>
 
    63   class NullMap : public MapBase<K, V> {
 
    70     /// Gives back a default constructed element.
 
    71     Value operator[](const Key&) const { return Value(); }
 
    72     /// Absorbs the value.
 
    73     void set(const Key&, const Value&) {}
 
    76   /// Returns a \c NullMap class
 
    78   /// This function just returns a \c NullMap class.
 
    80   template <typename K, typename V>
 
    81   NullMap<K, V> nullMap() {
 
    82     return NullMap<K, V>();
 
    88   /// This \ref concepts::ReadMap "readable map" assigns a specified
 
    89   /// value to each key.
 
    91   /// In other aspects it is equivalent to \c NullMap.
 
    92   /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
 
    93   /// concept, but it absorbs the data written to it.
 
    95   /// The simplest way of using this map is through the constMap()
 
   100   template<typename K, typename V>
 
   101   class ConstMap : public MapBase<K, V> {
 
   110     /// Default constructor
 
   112     /// Default constructor.
 
   113     /// The value of the map will be default constructed.
 
   116     /// Constructor with specified initial value
 
   118     /// Constructor with specified initial value.
 
   119     /// \param v The initial value of the map.
 
   120     ConstMap(const Value &v) : _value(v) {}
 
   122     /// Gives back the specified value.
 
   123     Value operator[](const Key&) const { return _value; }
 
   125     /// Absorbs the value.
 
   126     void set(const Key&, const Value&) {}
 
   128     /// Sets the value that is assigned to each key.
 
   129     void setAll(const Value &v) {
 
   133     template<typename V1>
 
   134     ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
 
   137   /// Returns a \c ConstMap class
 
   139   /// This function just returns a \c ConstMap class.
 
   140   /// \relates ConstMap
 
   141   template<typename K, typename V>
 
   142   inline ConstMap<K, V> constMap(const V &v) {
 
   143     return ConstMap<K, V>(v);
 
   146   template<typename K, typename V>
 
   147   inline ConstMap<K, V> constMap() {
 
   148     return ConstMap<K, V>();
 
   152   template<typename T, T v>
 
   155   /// Constant map with inlined constant value.
 
   157   /// This \ref concepts::ReadMap "readable map" assigns a specified
 
   158   /// value to each key.
 
   160   /// In other aspects it is equivalent to \c NullMap.
 
   161   /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
 
   162   /// concept, but it absorbs the data written to it.
 
   164   /// The simplest way of using this map is through the constMap()
 
   169   template<typename K, typename V, V v>
 
   170   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
 
   180     /// Gives back the specified value.
 
   181     Value operator[](const Key&) const { return v; }
 
   183     /// Absorbs the value.
 
   184     void set(const Key&, const Value&) {}
 
   187   /// Returns a \c ConstMap class with inlined constant value
 
   189   /// This function just returns a \c ConstMap class with inlined
 
   191   /// \relates ConstMap
 
   192   template<typename K, typename V, V v>
 
   193   inline ConstMap<K, Const<V, v> > constMap() {
 
   194     return ConstMap<K, Const<V, v> >();
 
   200   /// This \ref concepts::ReadMap "read-only map" gives back the given
 
   201   /// key as value without any modification.
 
   204   template <typename T>
 
   205   class IdentityMap : public MapBase<T, T> {
 
   212     /// Gives back the given value without any modification.
 
   213     Value operator[](const Key &k) const {
 
   218   /// Returns an \c IdentityMap class
 
   220   /// This function just returns an \c IdentityMap class.
 
   221   /// \relates IdentityMap
 
   223   inline IdentityMap<T> identityMap() {
 
   224     return IdentityMap<T>();
 
   228   /// \brief Map for storing values for integer keys from the range
 
   229   /// <tt>[0..size-1]</tt>.
 
   231   /// This map is essentially a wrapper for \c std::vector. It assigns
 
   232   /// values to integer keys from the range <tt>[0..size-1]</tt>.
 
   233   /// It can be used together with some data structures, e.g.
 
   234   /// heap types and \c UnionFind, when the used items are small
 
   235   /// integers. This map conforms to the \ref concepts::ReferenceMap
 
   236   /// "ReferenceMap" concept. 
 
   238   /// The simplest way of using this map is through the rangeMap()
 
   240   template <typename V>
 
   241   class RangeMap : public MapBase<int, V> {
 
   242     template <typename V1>
 
   243     friend class RangeMap;
 
   246     typedef std::vector<V> Vector;
 
   256     typedef typename Vector::reference Reference;
 
   257     /// Const reference type
 
   258     typedef typename Vector::const_reference ConstReference;
 
   260     typedef True ReferenceMapTag;
 
   264     /// Constructor with specified default value.
 
   265     RangeMap(int size = 0, const Value &value = Value())
 
   266       : _vector(size, value) {}
 
   268     /// Constructs the map from an appropriate \c std::vector.
 
   269     template <typename V1>
 
   270     RangeMap(const std::vector<V1>& vector)
 
   271       : _vector(vector.begin(), vector.end()) {}
 
   273     /// Constructs the map from another \c RangeMap.
 
   274     template <typename V1>
 
   275     RangeMap(const RangeMap<V1> &c)
 
   276       : _vector(c._vector.begin(), c._vector.end()) {}
 
   278     /// Returns the size of the map.
 
   280       return _vector.size();
 
   285     /// Resizes the underlying \c std::vector container, so changes the
 
   286     /// keyset of the map.
 
   287     /// \param size The new size of the map. The new keyset will be the
 
   288     /// range <tt>[0..size-1]</tt>.
 
   289     /// \param value The default value to assign to the new keys.
 
   290     void resize(int size, const Value &value = Value()) {
 
   291       _vector.resize(size, value);
 
   296     RangeMap& operator=(const RangeMap&);
 
   301     Reference operator[](const Key &k) {
 
   306     ConstReference operator[](const Key &k) const {
 
   311     void set(const Key &k, const Value &v) {
 
   316   /// Returns a \c RangeMap class
 
   318   /// This function just returns a \c RangeMap class.
 
   319   /// \relates RangeMap
 
   321   inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
 
   322     return RangeMap<V>(size, value);
 
   325   /// \brief Returns a \c RangeMap class created from an appropriate
 
   328   /// This function just returns a \c RangeMap class created from an
 
   329   /// appropriate \c std::vector.
 
   330   /// \relates RangeMap
 
   332   inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
 
   333     return RangeMap<V>(vector);
 
   337   /// Map type based on \c std::map
 
   339   /// This map is essentially a wrapper for \c std::map with addition
 
   340   /// that you can specify a default value for the keys that are not
 
   341   /// stored actually. This value can be different from the default
 
   342   /// contructed value (i.e. \c %Value()).
 
   343   /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
 
   346   /// This map is useful if a default value should be assigned to most of
 
   347   /// the keys and different values should be assigned only to a few
 
   348   /// keys (i.e. the map is "sparse").
 
   349   /// The name of this type also refers to this important usage.
 
   351   /// Apart form that, this map can be used in many other cases since it
 
   352   /// is based on \c std::map, which is a general associative container.
 
   353   /// However, keep in mind that it is usually not as efficient as other
 
   356   /// The simplest way of using this map is through the sparseMap()
 
   358   template <typename K, typename V, typename Comp = std::less<K> >
 
   359   class SparseMap : public MapBase<K, V> {
 
   360     template <typename K1, typename V1, typename C1>
 
   361     friend class SparseMap;
 
   369     typedef Value& Reference;
 
   370     /// Const reference type
 
   371     typedef const Value& ConstReference;
 
   373     typedef True ReferenceMapTag;
 
   377     typedef std::map<K, V, Comp> Map;
 
   383     /// \brief Constructor with specified default value.
 
   384     SparseMap(const Value &value = Value()) : _value(value) {}
 
   385     /// \brief Constructs the map from an appropriate \c std::map, and
 
   386     /// explicitly specifies a default value.
 
   387     template <typename V1, typename Comp1>
 
   388     SparseMap(const std::map<Key, V1, Comp1> &map,
 
   389               const Value &value = Value())
 
   390       : _map(map.begin(), map.end()), _value(value) {}
 
   392     /// \brief Constructs the map from another \c SparseMap.
 
   393     template<typename V1, typename Comp1>
 
   394     SparseMap(const SparseMap<Key, V1, Comp1> &c)
 
   395       : _map(c._map.begin(), c._map.end()), _value(c._value) {}
 
   399     SparseMap& operator=(const SparseMap&);
 
   404     Reference operator[](const Key &k) {
 
   405       typename Map::iterator it = _map.lower_bound(k);
 
   406       if (it != _map.end() && !_map.key_comp()(k, it->first))
 
   409         return _map.insert(it, std::make_pair(k, _value))->second;
 
   413     ConstReference operator[](const Key &k) const {
 
   414       typename Map::const_iterator it = _map.find(k);
 
   415       if (it != _map.end())
 
   422     void set(const Key &k, const Value &v) {
 
   423       typename Map::iterator it = _map.lower_bound(k);
 
   424       if (it != _map.end() && !_map.key_comp()(k, it->first))
 
   427         _map.insert(it, std::make_pair(k, v));
 
   431     void setAll(const Value &v) {
 
   437   /// Returns a \c SparseMap class
 
   439   /// This function just returns a \c SparseMap class with specified
 
   441   /// \relates SparseMap
 
   442   template<typename K, typename V, typename Compare>
 
   443   inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
 
   444     return SparseMap<K, V, Compare>(value);
 
   447   template<typename K, typename V>
 
   448   inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
 
   449     return SparseMap<K, V, std::less<K> >(value);
 
   452   /// \brief Returns a \c SparseMap class created from an appropriate
 
   455   /// This function just returns a \c SparseMap class created from an
 
   456   /// appropriate \c std::map.
 
   457   /// \relates SparseMap
 
   458   template<typename K, typename V, typename Compare>
 
   459   inline SparseMap<K, V, Compare>
 
   460     sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
 
   462     return SparseMap<K, V, Compare>(map, value);
 
   467   /// \addtogroup map_adaptors
 
   470   /// Composition of two maps
 
   472   /// This \ref concepts::ReadMap "read-only map" returns the
 
   473   /// composition of two given maps. That is to say, if \c m1 is of
 
   474   /// type \c M1 and \c m2 is of \c M2, then for
 
   476   ///   ComposeMap<M1, M2> cm(m1,m2);
 
   478   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
 
   480   /// The \c Key type of the map is inherited from \c M2 and the
 
   481   /// \c Value type is from \c M1.
 
   482   /// \c M2::Value must be convertible to \c M1::Key.
 
   484   /// The simplest way of using this map is through the composeMap()
 
   488   template <typename M1, typename M2>
 
   489   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
 
   494     typedef typename M2::Key Key;
 
   496     typedef typename M1::Value Value;
 
   499     ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 
   502     typename MapTraits<M1>::ConstReturnValue
 
   503     operator[](const Key &k) const { return _m1[_m2[k]]; }
 
   506   /// Returns a \c ComposeMap class
 
   508   /// This function just returns a \c ComposeMap class.
 
   510   /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
 
   511   /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
 
   512   /// will be equal to <tt>m1[m2[x]]</tt>.
 
   514   /// \relates ComposeMap
 
   515   template <typename M1, typename M2>
 
   516   inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
 
   517     return ComposeMap<M1, M2>(m1, m2);
 
   521   /// Combination of two maps using an STL (binary) functor.
 
   523   /// This \ref concepts::ReadMap "read-only map" takes two maps and a
 
   524   /// binary functor and returns the combination of the two given maps
 
   525   /// using the functor.
 
   526   /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
 
   527   /// and \c f is of \c F, then for
 
   529   ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
 
   531   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
 
   533   /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
 
   534   /// must be convertible to \c M2::Key) and the \c Value type is \c V.
 
   535   /// \c M2::Value and \c M1::Value must be convertible to the
 
   536   /// corresponding input parameter of \c F and the return type of \c F
 
   537   /// must be convertible to \c V.
 
   539   /// The simplest way of using this map is through the combineMap()
 
   543   template<typename M1, typename M2, typename F,
 
   544            typename V = typename F::result_type>
 
   545   class CombineMap : public MapBase<typename M1::Key, V> {
 
   551     typedef typename M1::Key Key;
 
   556     CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
 
   557       : _m1(m1), _m2(m2), _f(f) {}
 
   559     Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
 
   562   /// Returns a \c CombineMap class
 
   564   /// This function just returns a \c CombineMap class.
 
   566   /// For example, if \c m1 and \c m2 are both maps with \c double
 
   569   ///   combineMap(m1,m2,std::plus<double>())
 
   576   /// This function is specialized for adaptable binary function
 
   577   /// classes and C++ functions.
 
   579   /// \relates CombineMap
 
   580   template<typename M1, typename M2, typename F, typename V>
 
   581   inline CombineMap<M1, M2, F, V>
 
   582   combineMap(const M1 &m1, const M2 &m2, const F &f) {
 
   583     return CombineMap<M1, M2, F, V>(m1,m2,f);
 
   586   template<typename M1, typename M2, typename F>
 
   587   inline CombineMap<M1, M2, F, typename F::result_type>
 
   588   combineMap(const M1 &m1, const M2 &m2, const F &f) {
 
   589     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
 
   592   template<typename M1, typename M2, typename K1, typename K2, typename V>
 
   593   inline CombineMap<M1, M2, V (*)(K1, K2), V>
 
   594   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
 
   595     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
 
   599   /// Converts an STL style (unary) functor to a map
 
   601   /// This \ref concepts::ReadMap "read-only map" returns the value
 
   602   /// of a given functor. Actually, it just wraps the functor and
 
   603   /// provides the \c Key and \c Value typedefs.
 
   605   /// Template parameters \c K and \c V will become its \c Key and
 
   606   /// \c Value. In most cases they have to be given explicitly because
 
   607   /// a functor typically does not provide \c argument_type and
 
   608   /// \c result_type typedefs.
 
   609   /// Parameter \c F is the type of the used functor.
 
   611   /// The simplest way of using this map is through the functorToMap()
 
   616            typename K = typename F::argument_type,
 
   617            typename V = typename F::result_type>
 
   618   class FunctorToMap : public MapBase<K, V> {
 
   627     FunctorToMap(const F &f = F()) : _f(f) {}
 
   629     Value operator[](const Key &k) const { return _f(k); }
 
   632   /// Returns a \c FunctorToMap class
 
   634   /// This function just returns a \c FunctorToMap class.
 
   636   /// This function is specialized for adaptable binary function
 
   637   /// classes and C++ functions.
 
   639   /// \relates FunctorToMap
 
   640   template<typename K, typename V, typename F>
 
   641   inline FunctorToMap<F, K, V> functorToMap(const F &f) {
 
   642     return FunctorToMap<F, K, V>(f);
 
   645   template <typename F>
 
   646   inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
 
   647     functorToMap(const F &f)
 
   649     return FunctorToMap<F, typename F::argument_type,
 
   650       typename F::result_type>(f);
 
   653   template <typename K, typename V>
 
   654   inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
 
   655     return FunctorToMap<V (*)(K), K, V>(f);
 
   659   /// Converts a map to an STL style (unary) functor
 
   661   /// This class converts a map to an STL style (unary) functor.
 
   662   /// That is it provides an <tt>operator()</tt> to read its values.
 
   664   /// For the sake of convenience it also works as a usual
 
   665   /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
 
   666   /// and the \c Key and \c Value typedefs also exist.
 
   668   /// The simplest way of using this map is through the mapToFunctor()
 
   672   template <typename M>
 
   673   class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
 
   677     typedef typename M::Key Key;
 
   679     typedef typename M::Value Value;
 
   681     typedef typename M::Key argument_type;
 
   682     typedef typename M::Value result_type;
 
   685     MapToFunctor(const M &m) : _m(m) {}
 
   687     Value operator()(const Key &k) const { return _m[k]; }
 
   689     Value operator[](const Key &k) const { return _m[k]; }
 
   692   /// Returns a \c MapToFunctor class
 
   694   /// This function just returns a \c MapToFunctor class.
 
   695   /// \relates MapToFunctor
 
   697   inline MapToFunctor<M> mapToFunctor(const M &m) {
 
   698     return MapToFunctor<M>(m);
 
   702   /// \brief Map adaptor to convert the \c Value type of a map to
 
   703   /// another type using the default conversion.
 
   705   /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
 
   706   /// "readable map" to another type using the default conversion.
 
   707   /// The \c Key type of it is inherited from \c M and the \c Value
 
   709   /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
 
   711   /// The simplest way of using this map is through the convertMap()
 
   713   template <typename M, typename V>
 
   714   class ConvertMap : public MapBase<typename M::Key, V> {
 
   718     typedef typename M::Key Key;
 
   725     /// \param m The underlying map.
 
   726     ConvertMap(const M &m) : _m(m) {}
 
   729     Value operator[](const Key &k) const { return _m[k]; }
 
   732   /// Returns a \c ConvertMap class
 
   734   /// This function just returns a \c ConvertMap class.
 
   735   /// \relates ConvertMap
 
   736   template<typename V, typename M>
 
   737   inline ConvertMap<M, V> convertMap(const M &map) {
 
   738     return ConvertMap<M, V>(map);
 
   742   /// Applies all map setting operations to two maps
 
   744   /// This map has two \ref concepts::WriteMap "writable map" parameters
 
   745   /// and each write request will be passed to both of them.
 
   746   /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
 
   747   /// operations will return the corresponding values of \c M1.
 
   749   /// The \c Key and \c Value types are inherited from \c M1.
 
   750   /// The \c Key and \c Value of \c M2 must be convertible from those
 
   753   /// The simplest way of using this map is through the forkMap()
 
   755   template<typename  M1, typename M2>
 
   756   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
 
   761     typedef typename M1::Key Key;
 
   763     typedef typename M1::Value Value;
 
   766     ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
 
   767     /// Returns the value associated with the given key in the first map.
 
   768     Value operator[](const Key &k) const { return _m1[k]; }
 
   769     /// Sets the value associated with the given key in both maps.
 
   770     void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
 
   773   /// Returns a \c ForkMap class
 
   775   /// This function just returns a \c ForkMap class.
 
   777   template <typename M1, typename M2>
 
   778   inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
 
   779     return ForkMap<M1,M2>(m1,m2);
 
   785   /// This \ref concepts::ReadMap "read-only map" returns the sum
 
   786   /// of the values of the two given maps.
 
   787   /// Its \c Key and \c Value types are inherited from \c M1.
 
   788   /// The \c Key and \c Value of \c M2 must be convertible to those of
 
   791   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
   793   ///   AddMap<M1,M2> am(m1,m2);
 
   795   /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
 
   797   /// The simplest way of using this map is through the addMap()
 
   800   /// \sa SubMap, MulMap, DivMap
 
   801   /// \sa ShiftMap, ShiftWriteMap
 
   802   template<typename M1, typename M2>
 
   803   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
 
   808     typedef typename M1::Key Key;
 
   810     typedef typename M1::Value Value;
 
   813     AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 
   815     Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
 
   818   /// Returns an \c AddMap class
 
   820   /// This function just returns an \c AddMap class.
 
   822   /// For example, if \c m1 and \c m2 are both maps with \c double
 
   823   /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
 
   824   /// <tt>m1[x]+m2[x]</tt>.
 
   827   template<typename M1, typename M2>
 
   828   inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
 
   829     return AddMap<M1, M2>(m1,m2);
 
   833   /// Difference of two maps
 
   835   /// This \ref concepts::ReadMap "read-only map" returns the difference
 
   836   /// of the values of the two given maps.
 
   837   /// Its \c Key and \c Value types are inherited from \c M1.
 
   838   /// The \c Key and \c Value of \c M2 must be convertible to those of
 
   841   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
   843   ///   SubMap<M1,M2> sm(m1,m2);
 
   845   /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
 
   847   /// The simplest way of using this map is through the subMap()
 
   850   /// \sa AddMap, MulMap, DivMap
 
   851   template<typename M1, typename M2>
 
   852   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
 
   857     typedef typename M1::Key Key;
 
   859     typedef typename M1::Value Value;
 
   862     SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 
   864     Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
 
   867   /// Returns a \c SubMap class
 
   869   /// This function just returns a \c SubMap class.
 
   871   /// For example, if \c m1 and \c m2 are both maps with \c double
 
   872   /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
 
   873   /// <tt>m1[x]-m2[x]</tt>.
 
   876   template<typename M1, typename M2>
 
   877   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
 
   878     return SubMap<M1, M2>(m1,m2);
 
   882   /// Product of two maps
 
   884   /// This \ref concepts::ReadMap "read-only map" returns the product
 
   885   /// of the values of the two given maps.
 
   886   /// Its \c Key and \c Value types are inherited from \c M1.
 
   887   /// The \c Key and \c Value of \c M2 must be convertible to those of
 
   890   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
   892   ///   MulMap<M1,M2> mm(m1,m2);
 
   894   /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
 
   896   /// The simplest way of using this map is through the mulMap()
 
   899   /// \sa AddMap, SubMap, DivMap
 
   900   /// \sa ScaleMap, ScaleWriteMap
 
   901   template<typename M1, typename M2>
 
   902   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
 
   907     typedef typename M1::Key Key;
 
   909     typedef typename M1::Value Value;
 
   912     MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
 
   914     Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
 
   917   /// Returns a \c MulMap class
 
   919   /// This function just returns a \c MulMap class.
 
   921   /// For example, if \c m1 and \c m2 are both maps with \c double
 
   922   /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
 
   923   /// <tt>m1[x]*m2[x]</tt>.
 
   926   template<typename M1, typename M2>
 
   927   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
 
   928     return MulMap<M1, M2>(m1,m2);
 
   932   /// Quotient of two maps
 
   934   /// This \ref concepts::ReadMap "read-only map" returns the quotient
 
   935   /// of the values of the two given maps.
 
   936   /// Its \c Key and \c Value types are inherited from \c M1.
 
   937   /// The \c Key and \c Value of \c M2 must be convertible to those of
 
   940   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
   942   ///   DivMap<M1,M2> dm(m1,m2);
 
   944   /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
 
   946   /// The simplest way of using this map is through the divMap()
 
   949   /// \sa AddMap, SubMap, MulMap
 
   950   template<typename M1, typename M2>
 
   951   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
 
   956     typedef typename M1::Key Key;
 
   958     typedef typename M1::Value Value;
 
   961     DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
 
   963     Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
 
   966   /// Returns a \c DivMap class
 
   968   /// This function just returns a \c DivMap class.
 
   970   /// For example, if \c m1 and \c m2 are both maps with \c double
 
   971   /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
 
   972   /// <tt>m1[x]/m2[x]</tt>.
 
   975   template<typename M1, typename M2>
 
   976   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
 
   977     return DivMap<M1, M2>(m1,m2);
 
   981   /// Shifts a map with a constant.
 
   983   /// This \ref concepts::ReadMap "read-only map" returns the sum of
 
   984   /// the given map and a constant value (i.e. it shifts the map with
 
   985   /// the constant). Its \c Key and \c Value are inherited from \c M.
 
   989   ///   ShiftMap<M> sh(m,v);
 
   993   ///   ConstMap<M::Key, M::Value> cm(v);
 
   994   ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
 
   997   /// The simplest way of using this map is through the shiftMap()
 
  1000   /// \sa ShiftWriteMap
 
  1001   template<typename M, typename C = typename M::Value>
 
  1002   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
 
  1007     typedef typename M::Key Key;
 
  1009     typedef typename M::Value Value;
 
  1014     /// \param m The undelying map.
 
  1015     /// \param v The constant value.
 
  1016     ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
 
  1018     Value operator[](const Key &k) const { return _m[k]+_v; }
 
  1021   /// Shifts a map with a constant (read-write version).
 
  1023   /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
 
  1024   /// of the given map and a constant value (i.e. it shifts the map with
 
  1025   /// the constant). Its \c Key and \c Value are inherited from \c M.
 
  1026   /// It makes also possible to write the map.
 
  1028   /// The simplest way of using this map is through the shiftWriteMap()
 
  1032   template<typename M, typename C = typename M::Value>
 
  1033   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
 
  1038     typedef typename M::Key Key;
 
  1040     typedef typename M::Value Value;
 
  1045     /// \param m The undelying map.
 
  1046     /// \param v The constant value.
 
  1047     ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
 
  1049     Value operator[](const Key &k) const { return _m[k]+_v; }
 
  1051     void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
 
  1054   /// Returns a \c ShiftMap class
 
  1056   /// This function just returns a \c ShiftMap class.
 
  1058   /// For example, if \c m is a map with \c double values and \c v is
 
  1059   /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
 
  1060   /// <tt>m[x]+v</tt>.
 
  1062   /// \relates ShiftMap
 
  1063   template<typename M, typename C>
 
  1064   inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
 
  1065     return ShiftMap<M, C>(m,v);
 
  1068   /// Returns a \c ShiftWriteMap class
 
  1070   /// This function just returns a \c ShiftWriteMap class.
 
  1072   /// For example, if \c m is a map with \c double values and \c v is
 
  1073   /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
 
  1074   /// <tt>m[x]+v</tt>.
 
  1075   /// Moreover it makes also possible to write the map.
 
  1077   /// \relates ShiftWriteMap
 
  1078   template<typename M, typename C>
 
  1079   inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
 
  1080     return ShiftWriteMap<M, C>(m,v);
 
  1084   /// Scales a map with a constant.
 
  1086   /// This \ref concepts::ReadMap "read-only map" returns the value of
 
  1087   /// the given map multiplied from the left side with a constant value.
 
  1088   /// Its \c Key and \c Value are inherited from \c M.
 
  1092   ///   ScaleMap<M> sc(m,v);
 
  1094   /// is equivalent to
 
  1096   ///   ConstMap<M::Key, M::Value> cm(v);
 
  1097   ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
 
  1100   /// The simplest way of using this map is through the scaleMap()
 
  1103   /// \sa ScaleWriteMap
 
  1104   template<typename M, typename C = typename M::Value>
 
  1105   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
 
  1110     typedef typename M::Key Key;
 
  1112     typedef typename M::Value Value;
 
  1117     /// \param m The undelying map.
 
  1118     /// \param v The constant value.
 
  1119     ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
 
  1121     Value operator[](const Key &k) const { return _v*_m[k]; }
 
  1124   /// Scales a map with a constant (read-write version).
 
  1126   /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
 
  1127   /// the given map multiplied from the left side with a constant value.
 
  1128   /// Its \c Key and \c Value are inherited from \c M.
 
  1129   /// It can also be used as write map if the \c / operator is defined
 
  1130   /// between \c Value and \c C and the given multiplier is not zero.
 
  1132   /// The simplest way of using this map is through the scaleWriteMap()
 
  1136   template<typename M, typename C = typename M::Value>
 
  1137   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
 
  1142     typedef typename M::Key Key;
 
  1144     typedef typename M::Value Value;
 
  1149     /// \param m The undelying map.
 
  1150     /// \param v The constant value.
 
  1151     ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
 
  1153     Value operator[](const Key &k) const { return _v*_m[k]; }
 
  1155     void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
 
  1158   /// Returns a \c ScaleMap class
 
  1160   /// This function just returns a \c ScaleMap class.
 
  1162   /// For example, if \c m is a map with \c double values and \c v is
 
  1163   /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
 
  1164   /// <tt>v*m[x]</tt>.
 
  1166   /// \relates ScaleMap
 
  1167   template<typename M, typename C>
 
  1168   inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
 
  1169     return ScaleMap<M, C>(m,v);
 
  1172   /// Returns a \c ScaleWriteMap class
 
  1174   /// This function just returns a \c ScaleWriteMap class.
 
  1176   /// For example, if \c m is a map with \c double values and \c v is
 
  1177   /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
 
  1178   /// <tt>v*m[x]</tt>.
 
  1179   /// Moreover it makes also possible to write the map.
 
  1181   /// \relates ScaleWriteMap
 
  1182   template<typename M, typename C>
 
  1183   inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
 
  1184     return ScaleWriteMap<M, C>(m,v);
 
  1188   /// Negative of a map
 
  1190   /// This \ref concepts::ReadMap "read-only map" returns the negative
 
  1191   /// of the values of the given map (using the unary \c - operator).
 
  1192   /// Its \c Key and \c Value are inherited from \c M.
 
  1194   /// If M::Value is \c int, \c double etc., then
 
  1196   ///   NegMap<M> neg(m);
 
  1198   /// is equivalent to
 
  1200   ///   ScaleMap<M> neg(m,-1);
 
  1203   /// The simplest way of using this map is through the negMap()
 
  1207   template<typename M>
 
  1208   class NegMap : public MapBase<typename M::Key, typename M::Value> {
 
  1212     typedef typename M::Key Key;
 
  1214     typedef typename M::Value Value;
 
  1217     NegMap(const M &m) : _m(m) {}
 
  1219     Value operator[](const Key &k) const { return -_m[k]; }
 
  1222   /// Negative of a map (read-write version)
 
  1224   /// This \ref concepts::ReadWriteMap "read-write map" returns the
 
  1225   /// negative of the values of the given map (using the unary \c -
 
  1227   /// Its \c Key and \c Value are inherited from \c M.
 
  1228   /// It makes also possible to write the map.
 
  1230   /// If M::Value is \c int, \c double etc., then
 
  1232   ///   NegWriteMap<M> neg(m);
 
  1234   /// is equivalent to
 
  1236   ///   ScaleWriteMap<M> neg(m,-1);
 
  1239   /// The simplest way of using this map is through the negWriteMap()
 
  1243   template<typename M>
 
  1244   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
 
  1248     typedef typename M::Key Key;
 
  1250     typedef typename M::Value Value;
 
  1253     NegWriteMap(M &m) : _m(m) {}
 
  1255     Value operator[](const Key &k) const { return -_m[k]; }
 
  1257     void set(const Key &k, const Value &v) { _m.set(k, -v); }
 
  1260   /// Returns a \c NegMap class
 
  1262   /// This function just returns a \c NegMap class.
 
  1264   /// For example, if \c m is a map with \c double values, then
 
  1265   /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
 
  1268   template <typename M>
 
  1269   inline NegMap<M> negMap(const M &m) {
 
  1270     return NegMap<M>(m);
 
  1273   /// Returns a \c NegWriteMap class
 
  1275   /// This function just returns a \c NegWriteMap class.
 
  1277   /// For example, if \c m is a map with \c double values, then
 
  1278   /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
 
  1279   /// Moreover it makes also possible to write the map.
 
  1281   /// \relates NegWriteMap
 
  1282   template <typename M>
 
  1283   inline NegWriteMap<M> negWriteMap(M &m) {
 
  1284     return NegWriteMap<M>(m);
 
  1288   /// Absolute value of a map
 
  1290   /// This \ref concepts::ReadMap "read-only map" returns the absolute
 
  1291   /// value of the values of the given map.
 
  1292   /// Its \c Key and \c Value are inherited from \c M.
 
  1293   /// \c Value must be comparable to \c 0 and the unary \c -
 
  1294   /// operator must be defined for it, of course.
 
  1296   /// The simplest way of using this map is through the absMap()
 
  1298   template<typename M>
 
  1299   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
 
  1303     typedef typename M::Key Key;
 
  1305     typedef typename M::Value Value;
 
  1308     AbsMap(const M &m) : _m(m) {}
 
  1310     Value operator[](const Key &k) const {
 
  1312       return tmp >= 0 ? tmp : -tmp;
 
  1317   /// Returns an \c AbsMap class
 
  1319   /// This function just returns an \c AbsMap class.
 
  1321   /// For example, if \c m is a map with \c double values, then
 
  1322   /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
 
  1323   /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
 
  1327   template<typename M>
 
  1328   inline AbsMap<M> absMap(const M &m) {
 
  1329     return AbsMap<M>(m);
 
  1334   // Logical maps and map adaptors:
 
  1336   /// \addtogroup maps
 
  1339   /// Constant \c true map.
 
  1341   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
 
  1348   /// is equivalent to
 
  1350   ///   ConstMap<K,bool> tm(true);
 
  1355   template <typename K>
 
  1356   class TrueMap : public MapBase<K, bool> {
 
  1363     /// Gives back \c true.
 
  1364     Value operator[](const Key&) const { return true; }
 
  1367   /// Returns a \c TrueMap class
 
  1369   /// This function just returns a \c TrueMap class.
 
  1370   /// \relates TrueMap
 
  1371   template<typename K>
 
  1372   inline TrueMap<K> trueMap() {
 
  1373     return TrueMap<K>();
 
  1377   /// Constant \c false map.
 
  1379   /// This \ref concepts::ReadMap "read-only map" assigns \c false to
 
  1386   /// is equivalent to
 
  1388   ///   ConstMap<K,bool> fm(false);
 
  1393   template <typename K>
 
  1394   class FalseMap : public MapBase<K, bool> {
 
  1401     /// Gives back \c false.
 
  1402     Value operator[](const Key&) const { return false; }
 
  1405   /// Returns a \c FalseMap class
 
  1407   /// This function just returns a \c FalseMap class.
 
  1408   /// \relates FalseMap
 
  1409   template<typename K>
 
  1410   inline FalseMap<K> falseMap() {
 
  1411     return FalseMap<K>();
 
  1416   /// \addtogroup map_adaptors
 
  1419   /// Logical 'and' of two maps
 
  1421   /// This \ref concepts::ReadMap "read-only map" returns the logical
 
  1422   /// 'and' of the values of the two given maps.
 
  1423   /// Its \c Key type is inherited from \c M1 and its \c Value type is
 
  1424   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 
  1426   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
  1428   ///   AndMap<M1,M2> am(m1,m2);
 
  1430   /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
 
  1432   /// The simplest way of using this map is through the andMap()
 
  1436   /// \sa NotMap, NotWriteMap
 
  1437   template<typename M1, typename M2>
 
  1438   class AndMap : public MapBase<typename M1::Key, bool> {
 
  1443     typedef typename M1::Key Key;
 
  1448     AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 
  1450     Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
 
  1453   /// Returns an \c AndMap class
 
  1455   /// This function just returns an \c AndMap class.
 
  1457   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
 
  1458   /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
 
  1459   /// <tt>m1[x]&&m2[x]</tt>.
 
  1462   template<typename M1, typename M2>
 
  1463   inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
 
  1464     return AndMap<M1, M2>(m1,m2);
 
  1468   /// Logical 'or' of two maps
 
  1470   /// This \ref concepts::ReadMap "read-only map" returns the logical
 
  1471   /// 'or' of the values of the two given maps.
 
  1472   /// Its \c Key type is inherited from \c M1 and its \c Value type is
 
  1473   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 
  1475   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
  1477   ///   OrMap<M1,M2> om(m1,m2);
 
  1479   /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
 
  1481   /// The simplest way of using this map is through the orMap()
 
  1485   /// \sa NotMap, NotWriteMap
 
  1486   template<typename M1, typename M2>
 
  1487   class OrMap : public MapBase<typename M1::Key, bool> {
 
  1492     typedef typename M1::Key Key;
 
  1497     OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 
  1499     Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
 
  1502   /// Returns an \c OrMap class
 
  1504   /// This function just returns an \c OrMap class.
 
  1506   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
 
  1507   /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
 
  1508   /// <tt>m1[x]||m2[x]</tt>.
 
  1511   template<typename M1, typename M2>
 
  1512   inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
 
  1513     return OrMap<M1, M2>(m1,m2);
 
  1517   /// Logical 'not' of a map
 
  1519   /// This \ref concepts::ReadMap "read-only map" returns the logical
 
  1520   /// negation of the values of the given map.
 
  1521   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
 
  1523   /// The simplest way of using this map is through the notMap()
 
  1527   template <typename M>
 
  1528   class NotMap : public MapBase<typename M::Key, bool> {
 
  1532     typedef typename M::Key Key;
 
  1537     NotMap(const M &m) : _m(m) {}
 
  1539     Value operator[](const Key &k) const { return !_m[k]; }
 
  1542   /// Logical 'not' of a map (read-write version)
 
  1544   /// This \ref concepts::ReadWriteMap "read-write map" returns the
 
  1545   /// logical negation of the values of the given map.
 
  1546   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
 
  1547   /// It makes also possible to write the map. When a value is set,
 
  1548   /// the opposite value is set to the original map.
 
  1550   /// The simplest way of using this map is through the notWriteMap()
 
  1554   template <typename M>
 
  1555   class NotWriteMap : public MapBase<typename M::Key, bool> {
 
  1559     typedef typename M::Key Key;
 
  1564     NotWriteMap(M &m) : _m(m) {}
 
  1566     Value operator[](const Key &k) const { return !_m[k]; }
 
  1568     void set(const Key &k, bool v) { _m.set(k, !v); }
 
  1571   /// Returns a \c NotMap class
 
  1573   /// This function just returns a \c NotMap class.
 
  1575   /// For example, if \c m is a map with \c bool values, then
 
  1576   /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
 
  1579   template <typename M>
 
  1580   inline NotMap<M> notMap(const M &m) {
 
  1581     return NotMap<M>(m);
 
  1584   /// Returns a \c NotWriteMap class
 
  1586   /// This function just returns a \c NotWriteMap class.
 
  1588   /// For example, if \c m is a map with \c bool values, then
 
  1589   /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
 
  1590   /// Moreover it makes also possible to write the map.
 
  1592   /// \relates NotWriteMap
 
  1593   template <typename M>
 
  1594   inline NotWriteMap<M> notWriteMap(M &m) {
 
  1595     return NotWriteMap<M>(m);
 
  1599   /// Combination of two maps using the \c == operator
 
  1601   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
 
  1602   /// the keys for which the corresponding values of the two maps are
 
  1604   /// Its \c Key type is inherited from \c M1 and its \c Value type is
 
  1605   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 
  1607   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
  1609   ///   EqualMap<M1,M2> em(m1,m2);
 
  1611   /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
 
  1613   /// The simplest way of using this map is through the equalMap()
 
  1617   template<typename M1, typename M2>
 
  1618   class EqualMap : public MapBase<typename M1::Key, bool> {
 
  1623     typedef typename M1::Key Key;
 
  1628     EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 
  1630     Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
 
  1633   /// Returns an \c EqualMap class
 
  1635   /// This function just returns an \c EqualMap class.
 
  1637   /// For example, if \c m1 and \c m2 are maps with keys and values of
 
  1638   /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
 
  1639   /// <tt>m1[x]==m2[x]</tt>.
 
  1641   /// \relates EqualMap
 
  1642   template<typename M1, typename M2>
 
  1643   inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
 
  1644     return EqualMap<M1, M2>(m1,m2);
 
  1648   /// Combination of two maps using the \c < operator
 
  1650   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
 
  1651   /// the keys for which the corresponding value of the first map is
 
  1652   /// less then the value of the second map.
 
  1653   /// Its \c Key type is inherited from \c M1 and its \c Value type is
 
  1654   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
 
  1656   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
 
  1658   ///   LessMap<M1,M2> lm(m1,m2);
 
  1660   /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
 
  1662   /// The simplest way of using this map is through the lessMap()
 
  1666   template<typename M1, typename M2>
 
  1667   class LessMap : public MapBase<typename M1::Key, bool> {
 
  1672     typedef typename M1::Key Key;
 
  1677     LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
 
  1679     Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
 
  1682   /// Returns an \c LessMap class
 
  1684   /// This function just returns an \c LessMap class.
 
  1686   /// For example, if \c m1 and \c m2 are maps with keys and values of
 
  1687   /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
 
  1688   /// <tt>m1[x]<m2[x]</tt>.
 
  1690   /// \relates LessMap
 
  1691   template<typename M1, typename M2>
 
  1692   inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
 
  1693     return LessMap<M1, M2>(m1,m2);
 
  1696   namespace _maps_bits {
 
  1698     template <typename _Iterator, typename Enable = void>
 
  1699     struct IteratorTraits {
 
  1700       typedef typename std::iterator_traits<_Iterator>::value_type Value;
 
  1703     template <typename _Iterator>
 
  1704     struct IteratorTraits<_Iterator,
 
  1705       typename exists<typename _Iterator::container_type>::type>
 
  1707       typedef typename _Iterator::container_type::value_type Value;
 
  1714   /// \addtogroup maps
 
  1717   /// \brief Writable bool map for logging each \c true assigned element
 
  1719   /// A \ref concepts::WriteMap "writable" bool map for logging
 
  1720   /// each \c true assigned element, i.e it copies subsequently each
 
  1721   /// keys set to \c true to the given iterator.
 
  1722   /// The most important usage of it is storing certain nodes or arcs
 
  1723   /// that were marked \c true by an algorithm.
 
  1725   /// There are several algorithms that provide solutions through bool
 
  1726   /// maps and most of them assign \c true at most once for each key.
 
  1727   /// In these cases it is a natural request to store each \c true
 
  1728   /// assigned elements (in order of the assignment), which can be
 
  1729   /// easily done with LoggerBoolMap.
 
  1731   /// The simplest way of using this map is through the loggerBoolMap()
 
  1734   /// \tparam IT The type of the iterator.
 
  1735   /// \tparam KEY The key type of the map. The default value set
 
  1736   /// according to the iterator type should work in most cases.
 
  1738   /// \note The container of the iterator must contain enough space
 
  1739   /// for the elements or the iterator should be an inserter iterator.
 
  1741   template <typename IT, typename KEY>
 
  1743   template <typename IT,
 
  1744             typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
 
  1746   class LoggerBoolMap : public MapBase<KEY, bool> {
 
  1754     typedef IT Iterator;
 
  1757     LoggerBoolMap(Iterator it)
 
  1758       : _begin(it), _end(it) {}
 
  1760     /// Gives back the given iterator set for the first key
 
  1761     Iterator begin() const {
 
  1765     /// Gives back the the 'after the last' iterator
 
  1766     Iterator end() const {
 
  1770     /// The set function of the map
 
  1771     void set(const Key& key, Value value) {
 
  1782   /// Returns a \c LoggerBoolMap class
 
  1784   /// This function just returns a \c LoggerBoolMap class.
 
  1786   /// The most important usage of it is storing certain nodes or arcs
 
  1787   /// that were marked \c true by an algorithm.
 
  1788   /// For example, it makes easier to store the nodes in the processing
 
  1789   /// order of Dfs algorithm, as the following examples show.
 
  1791   ///   std::vector<Node> v;
 
  1792   ///   dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
 
  1795   ///   std::vector<Node> v(countNodes(g));
 
  1796   ///   dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
 
  1799   /// \note The container of the iterator must contain enough space
 
  1800   /// for the elements or the iterator should be an inserter iterator.
 
  1802   /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
 
  1803   /// it cannot be used when a readable map is needed, for example, as
 
  1804   /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
 
  1806   /// \relates LoggerBoolMap
 
  1807   template<typename Iterator>
 
  1808   inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
 
  1809     return LoggerBoolMap<Iterator>(it);
 
  1814   /// \addtogroup graph_maps
 
  1817   /// \brief Provides an immutable and unique id for each item in a graph.
 
  1819   /// IdMap provides a unique and immutable id for each item of the
 
  1820   /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
 
  1821   ///  - \b unique: different items get different ids,
 
  1822   ///  - \b immutable: the id of an item does not change (even if you
 
  1823   ///    delete other nodes).
 
  1825   /// Using this map you get access (i.e. can read) the inner id values of
 
  1826   /// the items stored in the graph, which is returned by the \c id()
 
  1827   /// function of the graph. This map can be inverted with its member
 
  1828   /// class \c InverseMap or with the \c operator()() member.
 
  1830   /// \tparam GR The graph type.
 
  1831   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 
  1835   template <typename GR, typename K>
 
  1836   class IdMap : public MapBase<K, int> {
 
  1838     /// The graph type of IdMap.
 
  1841     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
 
  1843     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
 
  1845     /// The value type of IdMap.
 
  1848     /// \brief Constructor.
 
  1850     /// Constructor of the map.
 
  1851     explicit IdMap(const Graph& graph) : _graph(&graph) {}
 
  1853     /// \brief Gives back the \e id of the item.
 
  1855     /// Gives back the immutable and unique \e id of the item.
 
  1856     int operator[](const Item& item) const { return _graph->id(item);}
 
  1858     /// \brief Gives back the \e item by its id.
 
  1860     /// Gives back the \e item by its id.
 
  1861     Item operator()(int id) { return _graph->fromId(id, Item()); }
 
  1864     const Graph* _graph;
 
  1868     /// \brief The inverse map type of IdMap.
 
  1870     /// The inverse map type of IdMap. The subscript operator gives back
 
  1871     /// an item by its id.
 
  1872     /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
 
  1877       /// \brief Constructor.
 
  1879       /// Constructor for creating an id-to-item map.
 
  1880       explicit InverseMap(const Graph& graph) : _graph(&graph) {}
 
  1882       /// \brief Constructor.
 
  1884       /// Constructor for creating an id-to-item map.
 
  1885       explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
 
  1887       /// \brief Gives back an item by its id.
 
  1889       /// Gives back an item by its id.
 
  1890       Item operator[](int id) const { return _graph->fromId(id, Item());}
 
  1893       const Graph* _graph;
 
  1896     /// \brief Gives back the inverse of the map.
 
  1898     /// Gives back the inverse of the IdMap.
 
  1899     InverseMap inverse() const { return InverseMap(*_graph);}
 
  1902   /// \brief Returns an \c IdMap class.
 
  1904   /// This function just returns an \c IdMap class.
 
  1906   template <typename K, typename GR>
 
  1907   inline IdMap<GR, K> idMap(const GR& graph) {
 
  1908     return IdMap<GR, K>(graph);
 
  1911   /// \brief General cross reference graph map type.
 
  1913   /// This class provides simple invertable graph maps.
 
  1914   /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
 
  1915   /// and if a key is set to a new value, then stores it in the inverse map.
 
  1916   /// The graph items can be accessed by their values either using
 
  1917   /// \c InverseMap or \c operator()(), and the values of the map can be
 
  1918   /// accessed with an STL compatible forward iterator (\c ValueIt).
 
  1920   /// This map is intended to be used when all associated values are
 
  1921   /// different (the map is actually invertable) or there are only a few
 
  1922   /// items with the same value.
 
  1923   /// Otherwise consider to use \c IterableValueMap, which is more 
 
  1924   /// suitable and more efficient for such cases. It provides iterators
 
  1925   /// to traverse the items with the same associated value, but
 
  1926   /// it does not have \c InverseMap.
 
  1928   /// This type is not reference map, so it cannot be modified with
 
  1929   /// the subscript operator.
 
  1931   /// \tparam GR The graph type.
 
  1932   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 
  1934   /// \tparam V The value type of the map.
 
  1936   /// \see IterableValueMap
 
  1937   template <typename GR, typename K, typename V>
 
  1939     : protected ItemSetTraits<GR, K>::template Map<V>::Type {
 
  1942     typedef typename ItemSetTraits<GR, K>::
 
  1943       template Map<V>::Type Map;
 
  1945     typedef std::multimap<V, K> Container;
 
  1950     /// The graph type of CrossRefMap.
 
  1953     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
 
  1955     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
 
  1957     /// The value type of CrossRefMap.
 
  1960     /// \brief Constructor.
 
  1962     /// Construct a new CrossRefMap for the given graph.
 
  1963     explicit CrossRefMap(const Graph& graph) : Map(graph) {}
 
  1965     /// \brief Forward iterator for values.
 
  1967     /// This iterator is an STL compatible forward
 
  1968     /// iterator on the values of the map. The values can
 
  1969     /// be accessed in the <tt>[beginValue, endValue)</tt> range.
 
  1970     /// They are considered with multiplicity, so each value is
 
  1971     /// traversed for each item it is assigned to.
 
  1973       : public std::iterator<std::forward_iterator_tag, Value> {
 
  1974       friend class CrossRefMap;
 
  1976       ValueIt(typename Container::const_iterator _it)
 
  1984       ValueIt& operator++() { ++it; return *this; }
 
  1986       ValueIt operator++(int) {
 
  1993       const Value& operator*() const { return it->first; }
 
  1995       const Value* operator->() const { return &(it->first); }
 
  1998       bool operator==(ValueIt jt) const { return it == jt.it; }
 
  2000       bool operator!=(ValueIt jt) const { return it != jt.it; }
 
  2003       typename Container::const_iterator it;
 
  2006     /// Alias for \c ValueIt
 
  2007     typedef ValueIt ValueIterator;
 
  2009     /// \brief Returns an iterator to the first value.
 
  2011     /// Returns an STL compatible iterator to the
 
  2012     /// first value of the map. The values of the
 
  2013     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
 
  2015     ValueIt beginValue() const {
 
  2016       return ValueIt(_inv_map.begin());
 
  2019     /// \brief Returns an iterator after the last value.
 
  2021     /// Returns an STL compatible iterator after the
 
  2022     /// last value of the map. The values of the
 
  2023     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
 
  2025     ValueIt endValue() const {
 
  2026       return ValueIt(_inv_map.end());
 
  2029     /// \brief Sets the value associated with the given key.
 
  2031     /// Sets the value associated with the given key.
 
  2032     void set(const Key& key, const Value& val) {
 
  2033       Value oldval = Map::operator[](key);
 
  2034       typename Container::iterator it;
 
  2035       for (it = _inv_map.equal_range(oldval).first;
 
  2036            it != _inv_map.equal_range(oldval).second; ++it) {
 
  2037         if (it->second == key) {
 
  2042       _inv_map.insert(std::make_pair(val, key));
 
  2046     /// \brief Returns the value associated with the given key.
 
  2048     /// Returns the value associated with the given key.
 
  2049     typename MapTraits<Map>::ConstReturnValue
 
  2050     operator[](const Key& key) const {
 
  2051       return Map::operator[](key);
 
  2054     /// \brief Gives back an item by its value.
 
  2056     /// This function gives back an item that is assigned to
 
  2057     /// the given value or \c INVALID if no such item exists.
 
  2058     /// If there are more items with the same associated value,
 
  2059     /// only one of them is returned.
 
  2060     Key operator()(const Value& val) const {
 
  2061       typename Container::const_iterator it = _inv_map.find(val);
 
  2062       return it != _inv_map.end() ? it->second : INVALID;
 
  2065     /// \brief Returns the number of items with the given value.
 
  2067     /// This function returns the number of items with the given value
 
  2068     /// associated with it.
 
  2069     int count(const Value &val) const {
 
  2070       return _inv_map.count(val);
 
  2075     /// \brief Erase the key from the map and the inverse map.
 
  2077     /// Erase the key from the map and the inverse map. It is called by the
 
  2078     /// \c AlterationNotifier.
 
  2079     virtual void erase(const Key& key) {
 
  2080       Value val = Map::operator[](key);
 
  2081       typename Container::iterator it;
 
  2082       for (it = _inv_map.equal_range(val).first;
 
  2083            it != _inv_map.equal_range(val).second; ++it) {
 
  2084         if (it->second == key) {
 
  2092     /// \brief Erase more keys from the map and the inverse map.
 
  2094     /// Erase more keys from the map and the inverse map. It is called by the
 
  2095     /// \c AlterationNotifier.
 
  2096     virtual void erase(const std::vector<Key>& keys) {
 
  2097       for (int i = 0; i < int(keys.size()); ++i) {
 
  2098         Value val = Map::operator[](keys[i]);
 
  2099         typename Container::iterator it;
 
  2100         for (it = _inv_map.equal_range(val).first;
 
  2101              it != _inv_map.equal_range(val).second; ++it) {
 
  2102           if (it->second == keys[i]) {
 
  2111     /// \brief Clear the keys from the map and the inverse map.
 
  2113     /// Clear the keys from the map and the inverse map. It is called by the
 
  2114     /// \c AlterationNotifier.
 
  2115     virtual void clear() {
 
  2122     /// \brief The inverse map type of CrossRefMap.
 
  2124     /// The inverse map type of CrossRefMap. The subscript operator gives
 
  2125     /// back an item by its value.
 
  2126     /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
 
  2130       /// \brief Constructor
 
  2132       /// Constructor of the InverseMap.
 
  2133       explicit InverseMap(const CrossRefMap& inverted)
 
  2134         : _inverted(inverted) {}
 
  2136       /// The value type of the InverseMap.
 
  2137       typedef typename CrossRefMap::Key Value;
 
  2138       /// The key type of the InverseMap.
 
  2139       typedef typename CrossRefMap::Value Key;
 
  2141       /// \brief Subscript operator.
 
  2143       /// Subscript operator. It gives back an item
 
  2144       /// that is assigned to the given value or \c INVALID
 
  2145       /// if no such item exists.
 
  2146       Value operator[](const Key& key) const {
 
  2147         return _inverted(key);
 
  2151       const CrossRefMap& _inverted;
 
  2154     /// \brief Gives back the inverse of the map.
 
  2156     /// Gives back the inverse of the CrossRefMap.
 
  2157     InverseMap inverse() const {
 
  2158       return InverseMap(*this);
 
  2163   /// \brief Provides continuous and unique id for the
 
  2164   /// items of a graph.
 
  2166   /// RangeIdMap provides a unique and continuous
 
  2167   /// id for each item of a given type (\c Node, \c Arc or
 
  2168   /// \c Edge) in a graph. This id is
 
  2169   ///  - \b unique: different items get different ids,
 
  2170   ///  - \b continuous: the range of the ids is the set of integers
 
  2171   ///    between 0 and \c n-1, where \c n is the number of the items of
 
  2172   ///    this type (\c Node, \c Arc or \c Edge).
 
  2173   ///  - So, the ids can change when deleting an item of the same type.
 
  2175   /// Thus this id is not (necessarily) the same as what can get using
 
  2176   /// the \c id() function of the graph or \ref IdMap.
 
  2177   /// This map can be inverted with its member class \c InverseMap,
 
  2178   /// or with the \c operator()() member.
 
  2180   /// \tparam GR The graph type.
 
  2181   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 
  2185   template <typename GR, typename K>
 
  2187     : protected ItemSetTraits<GR, K>::template Map<int>::Type {
 
  2189     typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
 
  2192     /// The graph type of RangeIdMap.
 
  2195     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
 
  2197     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
 
  2199     /// The value type of RangeIdMap.
 
  2202     /// \brief Constructor.
 
  2205     explicit RangeIdMap(const Graph& gr) : Map(gr) {
 
  2207       const typename Map::Notifier* nf = Map::notifier();
 
  2208       for (nf->first(it); it != INVALID; nf->next(it)) {
 
  2209         Map::set(it, _inv_map.size());
 
  2210         _inv_map.push_back(it);
 
  2216     /// \brief Adds a new key to the map.
 
  2218     /// Add a new key to the map. It is called by the
 
  2219     /// \c AlterationNotifier.
 
  2220     virtual void add(const Item& item) {
 
  2222       Map::set(item, _inv_map.size());
 
  2223       _inv_map.push_back(item);
 
  2226     /// \brief Add more new keys to the map.
 
  2228     /// Add more new keys to the map. It is called by the
 
  2229     /// \c AlterationNotifier.
 
  2230     virtual void add(const std::vector<Item>& items) {
 
  2232       for (int i = 0; i < int(items.size()); ++i) {
 
  2233         Map::set(items[i], _inv_map.size());
 
  2234         _inv_map.push_back(items[i]);
 
  2238     /// \brief Erase the key from the map.
 
  2240     /// Erase the key from the map. It is called by the
 
  2241     /// \c AlterationNotifier.
 
  2242     virtual void erase(const Item& item) {
 
  2243       Map::set(_inv_map.back(), Map::operator[](item));
 
  2244       _inv_map[Map::operator[](item)] = _inv_map.back();
 
  2245       _inv_map.pop_back();
 
  2249     /// \brief Erase more keys from the map.
 
  2251     /// Erase more keys from the map. It is called by the
 
  2252     /// \c AlterationNotifier.
 
  2253     virtual void erase(const std::vector<Item>& items) {
 
  2254       for (int i = 0; i < int(items.size()); ++i) {
 
  2255         Map::set(_inv_map.back(), Map::operator[](items[i]));
 
  2256         _inv_map[Map::operator[](items[i])] = _inv_map.back();
 
  2257         _inv_map.pop_back();
 
  2262     /// \brief Build the unique map.
 
  2264     /// Build the unique map. It is called by the
 
  2265     /// \c AlterationNotifier.
 
  2266     virtual void build() {
 
  2269       const typename Map::Notifier* nf = Map::notifier();
 
  2270       for (nf->first(it); it != INVALID; nf->next(it)) {
 
  2271         Map::set(it, _inv_map.size());
 
  2272         _inv_map.push_back(it);
 
  2276     /// \brief Clear the keys from the map.
 
  2278     /// Clear the keys from the map. It is called by the
 
  2279     /// \c AlterationNotifier.
 
  2280     virtual void clear() {
 
  2287     /// \brief Returns the maximal value plus one.
 
  2289     /// Returns the maximal value plus one in the map.
 
  2290     unsigned int size() const {
 
  2291       return _inv_map.size();
 
  2294     /// \brief Swaps the position of the two items in the map.
 
  2296     /// Swaps the position of the two items in the map.
 
  2297     void swap(const Item& p, const Item& q) {
 
  2298       int pi = Map::operator[](p);
 
  2299       int qi = Map::operator[](q);
 
  2306     /// \brief Gives back the \e range \e id of the item
 
  2308     /// Gives back the \e range \e id of the item.
 
  2309     int operator[](const Item& item) const {
 
  2310       return Map::operator[](item);
 
  2313     /// \brief Gives back the item belonging to a \e range \e id
 
  2315     /// Gives back the item belonging to the given \e range \e id.
 
  2316     Item operator()(int id) const {
 
  2317       return _inv_map[id];
 
  2322     typedef std::vector<Item> Container;
 
  2327     /// \brief The inverse map type of RangeIdMap.
 
  2329     /// The inverse map type of RangeIdMap. The subscript operator gives
 
  2330     /// back an item by its \e range \e id.
 
  2331     /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
 
  2334       /// \brief Constructor
 
  2336       /// Constructor of the InverseMap.
 
  2337       explicit InverseMap(const RangeIdMap& inverted)
 
  2338         : _inverted(inverted) {}
 
  2341       /// The value type of the InverseMap.
 
  2342       typedef typename RangeIdMap::Key Value;
 
  2343       /// The key type of the InverseMap.
 
  2344       typedef typename RangeIdMap::Value Key;
 
  2346       /// \brief Subscript operator.
 
  2348       /// Subscript operator. It gives back the item
 
  2349       /// that the given \e range \e id currently belongs to.
 
  2350       Value operator[](const Key& key) const {
 
  2351         return _inverted(key);
 
  2354       /// \brief Size of the map.
 
  2356       /// Returns the size of the map.
 
  2357       unsigned int size() const {
 
  2358         return _inverted.size();
 
  2362       const RangeIdMap& _inverted;
 
  2365     /// \brief Gives back the inverse of the map.
 
  2367     /// Gives back the inverse of the RangeIdMap.
 
  2368     const InverseMap inverse() const {
 
  2369       return InverseMap(*this);
 
  2373   /// \brief Returns a \c RangeIdMap class.
 
  2375   /// This function just returns an \c RangeIdMap class.
 
  2376   /// \relates RangeIdMap
 
  2377   template <typename K, typename GR>
 
  2378   inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
 
  2379     return RangeIdMap<GR, K>(graph);
 
  2382   /// \brief Dynamic iterable \c bool map.
 
  2384   /// This class provides a special graph map type which can store a
 
  2385   /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
 
  2386   /// For both \c true and \c false values it is possible to iterate on
 
  2387   /// the keys mapped to the value.
 
  2389   /// This type is a reference map, so it can be modified with the
 
  2390   /// subscript operator.
 
  2392   /// \tparam GR The graph type.
 
  2393   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 
  2396   /// \see IterableIntMap, IterableValueMap
 
  2397   /// \see CrossRefMap
 
  2398   template <typename GR, typename K>
 
  2399   class IterableBoolMap
 
  2400     : protected ItemSetTraits<GR, K>::template Map<int>::Type {
 
  2404     typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
 
  2405     typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
 
  2407     std::vector<K> _array;
 
  2412     /// Indicates that the map is reference map.
 
  2413     typedef True ReferenceMapTag;
 
  2419     /// The const reference type.
 
  2420     typedef const Value& ConstReference;
 
  2424     int position(const Key& key) const {
 
  2425       return Parent::operator[](key);
 
  2430     /// \brief Reference to the value of the map.
 
  2432     /// This class is similar to the \c bool type. It can be converted to
 
  2433     /// \c bool and it provides the same operators.
 
  2435       friend class IterableBoolMap;
 
  2437       Reference(IterableBoolMap& map, const Key& key)
 
  2438         : _key(key), _map(map) {}
 
  2441       Reference& operator=(const Reference& value) {
 
  2442         _map.set(_key, static_cast<bool>(value));
 
  2446       operator bool() const {
 
  2447         return static_cast<const IterableBoolMap&>(_map)[_key];
 
  2450       Reference& operator=(bool value) {
 
  2451         _map.set(_key, value);
 
  2454       Reference& operator&=(bool value) {
 
  2455         _map.set(_key, _map[_key] & value);
 
  2458       Reference& operator|=(bool value) {
 
  2459         _map.set(_key, _map[_key] | value);
 
  2462       Reference& operator^=(bool value) {
 
  2463         _map.set(_key, _map[_key] ^ value);
 
  2468       IterableBoolMap& _map;
 
  2471     /// \brief Constructor of the map with a default value.
 
  2473     /// Constructor of the map with a default value.
 
  2474     explicit IterableBoolMap(const Graph& graph, bool def = false)
 
  2476       typename Parent::Notifier* nf = Parent::notifier();
 
  2478       for (nf->first(it); it != INVALID; nf->next(it)) {
 
  2479         Parent::set(it, _array.size());
 
  2480         _array.push_back(it);
 
  2482       _sep = (def ? _array.size() : 0);
 
  2485     /// \brief Const subscript operator of the map.
 
  2487     /// Const subscript operator of the map.
 
  2488     bool operator[](const Key& key) const {
 
  2489       return position(key) < _sep;
 
  2492     /// \brief Subscript operator of the map.
 
  2494     /// Subscript operator of the map.
 
  2495     Reference operator[](const Key& key) {
 
  2496       return Reference(*this, key);
 
  2499     /// \brief Set operation of the map.
 
  2501     /// Set operation of the map.
 
  2502     void set(const Key& key, bool value) {
 
  2503       int pos = position(key);
 
  2505         if (pos < _sep) return;
 
  2506         Key tmp = _array[_sep];
 
  2508         Parent::set(key, _sep);
 
  2510         Parent::set(tmp, pos);
 
  2513         if (pos >= _sep) return;
 
  2515         Key tmp = _array[_sep];
 
  2517         Parent::set(key, _sep);
 
  2519         Parent::set(tmp, pos);
 
  2523     /// \brief Set all items.
 
  2525     /// Set all items in the map.
 
  2526     /// \note Constant time operation.
 
  2527     void setAll(bool value) {
 
  2528       _sep = (value ? _array.size() : 0);
 
  2531     /// \brief Returns the number of the keys mapped to \c true.
 
  2533     /// Returns the number of the keys mapped to \c true.
 
  2534     int trueNum() const {
 
  2538     /// \brief Returns the number of the keys mapped to \c false.
 
  2540     /// Returns the number of the keys mapped to \c false.
 
  2541     int falseNum() const {
 
  2542       return _array.size() - _sep;
 
  2545     /// \brief Iterator for the keys mapped to \c true.
 
  2547     /// Iterator for the keys mapped to \c true. It works
 
  2548     /// like a graph item iterator, it can be converted to
 
  2549     /// the key type of the map, incremented with \c ++ operator, and
 
  2550     /// if the iterator leaves the last valid key, it will be equal to
 
  2552     class TrueIt : public Key {
 
  2556       /// \brief Creates an iterator.
 
  2558       /// Creates an iterator. It iterates on the
 
  2559       /// keys mapped to \c true.
 
  2560       /// \param map The IterableBoolMap.
 
  2561       explicit TrueIt(const IterableBoolMap& map)
 
  2562         : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
 
  2565       /// \brief Invalid constructor \& conversion.
 
  2567       /// This constructor initializes the iterator to be invalid.
 
  2568       /// \sa Invalid for more details.
 
  2569       TrueIt(Invalid) : Parent(INVALID), _map(0) {}
 
  2571       /// \brief Increment operator.
 
  2573       /// Increment operator.
 
  2574       TrueIt& operator++() {
 
  2575         int pos = _map->position(*this);
 
  2576         Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
 
  2581       const IterableBoolMap* _map;
 
  2584     /// \brief Iterator for the keys mapped to \c false.
 
  2586     /// Iterator for the keys mapped to \c false. It works
 
  2587     /// like a graph item iterator, it can be converted to
 
  2588     /// the key type of the map, incremented with \c ++ operator, and
 
  2589     /// if the iterator leaves the last valid key, it will be equal to
 
  2591     class FalseIt : public Key {
 
  2595       /// \brief Creates an iterator.
 
  2597       /// Creates an iterator. It iterates on the
 
  2598       /// keys mapped to \c false.
 
  2599       /// \param map The IterableBoolMap.
 
  2600       explicit FalseIt(const IterableBoolMap& map)
 
  2601         : Parent(map._sep < int(map._array.size()) ?
 
  2602                  map._array.back() : INVALID), _map(&map) {}
 
  2604       /// \brief Invalid constructor \& conversion.
 
  2606       /// This constructor initializes the iterator to be invalid.
 
  2607       /// \sa Invalid for more details.
 
  2608       FalseIt(Invalid) : Parent(INVALID), _map(0) {}
 
  2610       /// \brief Increment operator.
 
  2612       /// Increment operator.
 
  2613       FalseIt& operator++() {
 
  2614         int pos = _map->position(*this);
 
  2615         Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
 
  2620       const IterableBoolMap* _map;
 
  2623     /// \brief Iterator for the keys mapped to a given value.
 
  2625     /// Iterator for the keys mapped to a given value. It works
 
  2626     /// like a graph item iterator, it can be converted to
 
  2627     /// the key type of the map, incremented with \c ++ operator, and
 
  2628     /// if the iterator leaves the last valid key, it will be equal to
 
  2630     class ItemIt : public Key {
 
  2634       /// \brief Creates an iterator with a value.
 
  2636       /// Creates an iterator with a value. It iterates on the
 
  2637       /// keys mapped to the given value.
 
  2638       /// \param map The IterableBoolMap.
 
  2639       /// \param value The value.
 
  2640       ItemIt(const IterableBoolMap& map, bool value)
 
  2643                   map._array[map._sep - 1] : INVALID) :
 
  2644                  (map._sep < int(map._array.size()) ?
 
  2645                   map._array.back() : INVALID)), _map(&map) {}
 
  2647       /// \brief Invalid constructor \& conversion.
 
  2649       /// This constructor initializes the iterator to be invalid.
 
  2650       /// \sa Invalid for more details.
 
  2651       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
 
  2653       /// \brief Increment operator.
 
  2655       /// Increment operator.
 
  2656       ItemIt& operator++() {
 
  2657         int pos = _map->position(*this);
 
  2658         int _sep = pos >= _map->_sep ? _map->_sep : 0;
 
  2659         Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
 
  2664       const IterableBoolMap* _map;
 
  2669     virtual void add(const Key& key) {
 
  2671       Parent::set(key, _array.size());
 
  2672       _array.push_back(key);
 
  2675     virtual void add(const std::vector<Key>& keys) {
 
  2677       for (int i = 0; i < int(keys.size()); ++i) {
 
  2678         Parent::set(keys[i], _array.size());
 
  2679         _array.push_back(keys[i]);
 
  2683     virtual void erase(const Key& key) {
 
  2684       int pos = position(key);
 
  2687         Parent::set(_array[_sep], pos);
 
  2688         _array[pos] = _array[_sep];
 
  2689         Parent::set(_array.back(), _sep);
 
  2690         _array[_sep] = _array.back();
 
  2693         Parent::set(_array.back(), pos);
 
  2694         _array[pos] = _array.back();
 
  2700     virtual void erase(const std::vector<Key>& keys) {
 
  2701       for (int i = 0; i < int(keys.size()); ++i) {
 
  2702         int pos = position(keys[i]);
 
  2705           Parent::set(_array[_sep], pos);
 
  2706           _array[pos] = _array[_sep];
 
  2707           Parent::set(_array.back(), _sep);
 
  2708           _array[_sep] = _array.back();
 
  2711           Parent::set(_array.back(), pos);
 
  2712           _array[pos] = _array.back();
 
  2716       Parent::erase(keys);
 
  2719     virtual void build() {
 
  2721       typename Parent::Notifier* nf = Parent::notifier();
 
  2723       for (nf->first(it); it != INVALID; nf->next(it)) {
 
  2724         Parent::set(it, _array.size());
 
  2725         _array.push_back(it);
 
  2730     virtual void clear() {
 
  2739   namespace _maps_bits {
 
  2740     template <typename Item>
 
  2741     struct IterableIntMapNode {
 
  2742       IterableIntMapNode() : value(-1) {}
 
  2743       IterableIntMapNode(int _value) : value(_value) {}
 
  2749   /// \brief Dynamic iterable integer map.
 
  2751   /// This class provides a special graph map type which can store an
 
  2752   /// integer value for graph items (\c Node, \c Arc or \c Edge).
 
  2753   /// For each non-negative value it is possible to iterate on the keys
 
  2754   /// mapped to the value.
 
  2756   /// This map is intended to be used with small integer values, for which
 
  2757   /// it is efficient, and supports iteration only for non-negative values.
 
  2758   /// If you need large values and/or iteration for negative integers,
 
  2759   /// consider to use \ref IterableValueMap instead.
 
  2761   /// This type is a reference map, so it can be modified with the
 
  2762   /// subscript operator.
 
  2764   /// \note The size of the data structure depends on the largest
 
  2765   /// value in the map.
 
  2767   /// \tparam GR The graph type.
 
  2768   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 
  2771   /// \see IterableBoolMap, IterableValueMap
 
  2772   /// \see CrossRefMap
 
  2773   template <typename GR, typename K>
 
  2774   class IterableIntMap
 
  2775     : protected ItemSetTraits<GR, K>::
 
  2776         template Map<_maps_bits::IterableIntMapNode<K> >::Type {
 
  2778     typedef typename ItemSetTraits<GR, K>::
 
  2779       template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
 
  2788     /// \brief Constructor of the map.
 
  2790     /// Constructor of the map. It sets all values to -1.
 
  2791     explicit IterableIntMap(const Graph& graph)
 
  2794     /// \brief Constructor of the map with a given value.
 
  2796     /// Constructor of the map with a given value.
 
  2797     explicit IterableIntMap(const Graph& graph, int value)
 
  2798       : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
 
  2800         for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
 
  2808     void unlace(const Key& key) {
 
  2809       typename Parent::Value& node = Parent::operator[](key);
 
  2810       if (node.value < 0) return;
 
  2811       if (node.prev != INVALID) {
 
  2812         Parent::operator[](node.prev).next = node.next;
 
  2814         _first[node.value] = node.next;
 
  2816       if (node.next != INVALID) {
 
  2817         Parent::operator[](node.next).prev = node.prev;
 
  2819       while (!_first.empty() && _first.back() == INVALID) {
 
  2824     void lace(const Key& key) {
 
  2825       typename Parent::Value& node = Parent::operator[](key);
 
  2826       if (node.value < 0) return;
 
  2827       if (node.value >= int(_first.size())) {
 
  2828         _first.resize(node.value + 1, INVALID);
 
  2830       node.prev = INVALID;
 
  2831       node.next = _first[node.value];
 
  2832       if (node.next != INVALID) {
 
  2833         Parent::operator[](node.next).prev = key;
 
  2835       _first[node.value] = key;
 
  2840     /// Indicates that the map is reference map.
 
  2841     typedef True ReferenceMapTag;
 
  2843     /// \brief Reference to the value of the map.
 
  2845     /// This class is similar to the \c int type. It can
 
  2846     /// be converted to \c int and it has the same operators.
 
  2848       friend class IterableIntMap;
 
  2850       Reference(IterableIntMap& map, const Key& key)
 
  2851         : _key(key), _map(map) {}
 
  2854       Reference& operator=(const Reference& value) {
 
  2855         _map.set(_key, static_cast<const int&>(value));
 
  2859       operator const int&() const {
 
  2860         return static_cast<const IterableIntMap&>(_map)[_key];
 
  2863       Reference& operator=(int value) {
 
  2864         _map.set(_key, value);
 
  2867       Reference& operator++() {
 
  2868         _map.set(_key, _map[_key] + 1);
 
  2871       int operator++(int) {
 
  2872         int value = _map[_key];
 
  2873         _map.set(_key, value + 1);
 
  2876       Reference& operator--() {
 
  2877         _map.set(_key, _map[_key] - 1);
 
  2880       int operator--(int) {
 
  2881         int value = _map[_key];
 
  2882         _map.set(_key, value - 1);
 
  2885       Reference& operator+=(int value) {
 
  2886         _map.set(_key, _map[_key] + value);
 
  2889       Reference& operator-=(int value) {
 
  2890         _map.set(_key, _map[_key] - value);
 
  2893       Reference& operator*=(int value) {
 
  2894         _map.set(_key, _map[_key] * value);
 
  2897       Reference& operator/=(int value) {
 
  2898         _map.set(_key, _map[_key] / value);
 
  2901       Reference& operator%=(int value) {
 
  2902         _map.set(_key, _map[_key] % value);
 
  2905       Reference& operator&=(int value) {
 
  2906         _map.set(_key, _map[_key] & value);
 
  2909       Reference& operator|=(int value) {
 
  2910         _map.set(_key, _map[_key] | value);
 
  2913       Reference& operator^=(int value) {
 
  2914         _map.set(_key, _map[_key] ^ value);
 
  2917       Reference& operator<<=(int value) {
 
  2918         _map.set(_key, _map[_key] << value);
 
  2921       Reference& operator>>=(int value) {
 
  2922         _map.set(_key, _map[_key] >> value);
 
  2928       IterableIntMap& _map;
 
  2931     /// The const reference type.
 
  2932     typedef const Value& ConstReference;
 
  2934     /// \brief Gives back the maximal value plus one.
 
  2936     /// Gives back the maximal value plus one.
 
  2938       return _first.size();
 
  2941     /// \brief Set operation of the map.
 
  2943     /// Set operation of the map.
 
  2944     void set(const Key& key, const Value& value) {
 
  2946       Parent::operator[](key).value = value;
 
  2950     /// \brief Const subscript operator of the map.
 
  2952     /// Const subscript operator of the map.
 
  2953     const Value& operator[](const Key& key) const {
 
  2954       return Parent::operator[](key).value;
 
  2957     /// \brief Subscript operator of the map.
 
  2959     /// Subscript operator of the map.
 
  2960     Reference operator[](const Key& key) {
 
  2961       return Reference(*this, key);
 
  2964     /// \brief Iterator for the keys with the same value.
 
  2966     /// Iterator for the keys with the same value. It works
 
  2967     /// like a graph item iterator, it can be converted to
 
  2968     /// the item type of the map, incremented with \c ++ operator, and
 
  2969     /// if the iterator leaves the last valid item, it will be equal to
 
  2971     class ItemIt : public Key {
 
  2975       /// \brief Invalid constructor \& conversion.
 
  2977       /// This constructor initializes the iterator to be invalid.
 
  2978       /// \sa Invalid for more details.
 
  2979       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
 
  2981       /// \brief Creates an iterator with a value.
 
  2983       /// Creates an iterator with a value. It iterates on the
 
  2984       /// keys mapped to the given value.
 
  2985       /// \param map The IterableIntMap.
 
  2986       /// \param value The value.
 
  2987       ItemIt(const IterableIntMap& map, int value) : _map(&map) {
 
  2988         if (value < 0 || value >= int(_map->_first.size())) {
 
  2989           Parent::operator=(INVALID);
 
  2991           Parent::operator=(_map->_first[value]);
 
  2995       /// \brief Increment operator.
 
  2997       /// Increment operator.
 
  2998       ItemIt& operator++() {
 
  2999         Parent::operator=(_map->IterableIntMap::Parent::
 
  3000                           operator[](static_cast<Parent&>(*this)).next);
 
  3005       const IterableIntMap* _map;
 
  3010     virtual void erase(const Key& key) {
 
  3015     virtual void erase(const std::vector<Key>& keys) {
 
  3016       for (int i = 0; i < int(keys.size()); ++i) {
 
  3019       Parent::erase(keys);
 
  3022     virtual void clear() {
 
  3028     std::vector<Key> _first;
 
  3031   namespace _maps_bits {
 
  3032     template <typename Item, typename Value>
 
  3033     struct IterableValueMapNode {
 
  3034       IterableValueMapNode(Value _value = Value()) : value(_value) {}
 
  3040   /// \brief Dynamic iterable map for comparable values.
 
  3042   /// This class provides a special graph map type which can store a
 
  3043   /// comparable value for graph items (\c Node, \c Arc or \c Edge).
 
  3044   /// For each value it is possible to iterate on the keys mapped to
 
  3045   /// the value (\c ItemIt), and the values of the map can be accessed
 
  3046   /// with an STL compatible forward iterator (\c ValueIt).
 
  3047   /// The map stores a linked list for each value, which contains
 
  3048   /// the items mapped to the value, and the used values are stored
 
  3049   /// in balanced binary tree (\c std::map).
 
  3051   /// \ref IterableBoolMap and \ref IterableIntMap are similar classes
 
  3052   /// specialized for \c bool and \c int values, respectively.
 
  3054   /// This type is not reference map, so it cannot be modified with
 
  3055   /// the subscript operator.
 
  3057   /// \tparam GR The graph type.
 
  3058   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
 
  3060   /// \tparam V The value type of the map. It can be any comparable
 
  3063   /// \see IterableBoolMap, IterableIntMap
 
  3064   /// \see CrossRefMap
 
  3065   template <typename GR, typename K, typename V>
 
  3066   class IterableValueMap
 
  3067     : protected ItemSetTraits<GR, K>::
 
  3068         template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
 
  3070     typedef typename ItemSetTraits<GR, K>::
 
  3071       template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
 
  3082     /// \brief Constructor of the map with a given value.
 
  3084     /// Constructor of the map with a given value.
 
  3085     explicit IterableValueMap(const Graph& graph,
 
  3086                               const Value& value = Value())
 
  3087       : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
 
  3088       for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
 
  3095     void unlace(const Key& key) {
 
  3096       typename Parent::Value& node = Parent::operator[](key);
 
  3097       if (node.prev != INVALID) {
 
  3098         Parent::operator[](node.prev).next = node.next;
 
  3100         if (node.next != INVALID) {
 
  3101           _first[node.value] = node.next;
 
  3103           _first.erase(node.value);
 
  3106       if (node.next != INVALID) {
 
  3107         Parent::operator[](node.next).prev = node.prev;
 
  3111     void lace(const Key& key) {
 
  3112       typename Parent::Value& node = Parent::operator[](key);
 
  3113       typename std::map<Value, Key>::iterator it = _first.find(node.value);
 
  3114       if (it == _first.end()) {
 
  3115         node.prev = node.next = INVALID;
 
  3116         _first.insert(std::make_pair(node.value, key));
 
  3118         node.prev = INVALID;
 
  3119         node.next = it->second;
 
  3120         if (node.next != INVALID) {
 
  3121           Parent::operator[](node.next).prev = key;
 
  3129     /// \brief Forward iterator for values.
 
  3131     /// This iterator is an STL compatible forward
 
  3132     /// iterator on the values of the map. The values can
 
  3133     /// be accessed in the <tt>[beginValue, endValue)</tt> range.
 
  3135       : public std::iterator<std::forward_iterator_tag, Value> {
 
  3136       friend class IterableValueMap;
 
  3138       ValueIt(typename std::map<Value, Key>::const_iterator _it)
 
  3146       ValueIt& operator++() { ++it; return *this; }
 
  3148       ValueIt operator++(int) {
 
  3155       const Value& operator*() const { return it->first; }
 
  3157       const Value* operator->() const { return &(it->first); }
 
  3160       bool operator==(ValueIt jt) const { return it == jt.it; }
 
  3162       bool operator!=(ValueIt jt) const { return it != jt.it; }
 
  3165       typename std::map<Value, Key>::const_iterator it;
 
  3168     /// \brief Returns an iterator to the first value.
 
  3170     /// Returns an STL compatible iterator to the
 
  3171     /// first value of the map. The values of the
 
  3172     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
 
  3174     ValueIt beginValue() const {
 
  3175       return ValueIt(_first.begin());
 
  3178     /// \brief Returns an iterator after the last value.
 
  3180     /// Returns an STL compatible iterator after the
 
  3181     /// last value of the map. The values of the
 
  3182     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
 
  3184     ValueIt endValue() const {
 
  3185       return ValueIt(_first.end());
 
  3188     /// \brief Set operation of the map.
 
  3190     /// Set operation of the map.
 
  3191     void set(const Key& key, const Value& value) {
 
  3193       Parent::operator[](key).value = value;
 
  3197     /// \brief Const subscript operator of the map.
 
  3199     /// Const subscript operator of the map.
 
  3200     const Value& operator[](const Key& key) const {
 
  3201       return Parent::operator[](key).value;
 
  3204     /// \brief Iterator for the keys with the same value.
 
  3206     /// Iterator for the keys with the same value. It works
 
  3207     /// like a graph item iterator, it can be converted to
 
  3208     /// the item type of the map, incremented with \c ++ operator, and
 
  3209     /// if the iterator leaves the last valid item, it will be equal to
 
  3211     class ItemIt : public Key {
 
  3215       /// \brief Invalid constructor \& conversion.
 
  3217       /// This constructor initializes the iterator to be invalid.
 
  3218       /// \sa Invalid for more details.
 
  3219       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
 
  3221       /// \brief Creates an iterator with a value.
 
  3223       /// Creates an iterator with a value. It iterates on the
 
  3224       /// keys which have the given value.
 
  3225       /// \param map The IterableValueMap
 
  3226       /// \param value The value
 
  3227       ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
 
  3228         typename std::map<Value, Key>::const_iterator it =
 
  3229           map._first.find(value);
 
  3230         if (it == map._first.end()) {
 
  3231           Parent::operator=(INVALID);
 
  3233           Parent::operator=(it->second);
 
  3237       /// \brief Increment operator.
 
  3239       /// Increment Operator.
 
  3240       ItemIt& operator++() {
 
  3241         Parent::operator=(_map->IterableValueMap::Parent::
 
  3242                           operator[](static_cast<Parent&>(*this)).next);
 
  3248       const IterableValueMap* _map;
 
  3253     virtual void add(const Key& key) {
 
  3258     virtual void add(const std::vector<Key>& keys) {
 
  3260       for (int i = 0; i < int(keys.size()); ++i) {
 
  3265     virtual void erase(const Key& key) {
 
  3270     virtual void erase(const std::vector<Key>& keys) {
 
  3271       for (int i = 0; i < int(keys.size()); ++i) {
 
  3274       Parent::erase(keys);
 
  3277     virtual void build() {
 
  3279       for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
 
  3284     virtual void clear() {
 
  3290     std::map<Value, Key> _first;
 
  3293   /// \brief Map of the source nodes of arcs in a digraph.
 
  3295   /// SourceMap provides access for the source node of each arc in a digraph,
 
  3296   /// which is returned by the \c source() function of the digraph.
 
  3297   /// \tparam GR The digraph type.
 
  3299   template <typename GR>
 
  3303     /// The key type (the \c Arc type of the digraph).
 
  3304     typedef typename GR::Arc Key;
 
  3305     /// The value type (the \c Node type of the digraph).
 
  3306     typedef typename GR::Node Value;
 
  3308     /// \brief Constructor
 
  3311     /// \param digraph The digraph that the map belongs to.
 
  3312     explicit SourceMap(const GR& digraph) : _graph(digraph) {}
 
  3314     /// \brief Returns the source node of the given arc.
 
  3316     /// Returns the source node of the given arc.
 
  3317     Value operator[](const Key& arc) const {
 
  3318       return _graph.source(arc);
 
  3325   /// \brief Returns a \c SourceMap class.
 
  3327   /// This function just returns an \c SourceMap class.
 
  3328   /// \relates SourceMap
 
  3329   template <typename GR>
 
  3330   inline SourceMap<GR> sourceMap(const GR& graph) {
 
  3331     return SourceMap<GR>(graph);
 
  3334   /// \brief Map of the target nodes of arcs in a digraph.
 
  3336   /// TargetMap provides access for the target node of each arc in a digraph,
 
  3337   /// which is returned by the \c target() function of the digraph.
 
  3338   /// \tparam GR The digraph type.
 
  3340   template <typename GR>
 
  3344     /// The key type (the \c Arc type of the digraph).
 
  3345     typedef typename GR::Arc Key;
 
  3346     /// The value type (the \c Node type of the digraph).
 
  3347     typedef typename GR::Node Value;
 
  3349     /// \brief Constructor
 
  3352     /// \param digraph The digraph that the map belongs to.
 
  3353     explicit TargetMap(const GR& digraph) : _graph(digraph) {}
 
  3355     /// \brief Returns the target node of the given arc.
 
  3357     /// Returns the target node of the given arc.
 
  3358     Value operator[](const Key& e) const {
 
  3359       return _graph.target(e);
 
  3366   /// \brief Returns a \c TargetMap class.
 
  3368   /// This function just returns a \c TargetMap class.
 
  3369   /// \relates TargetMap
 
  3370   template <typename GR>
 
  3371   inline TargetMap<GR> targetMap(const GR& graph) {
 
  3372     return TargetMap<GR>(graph);
 
  3375   /// \brief Map of the "forward" directed arc view of edges in a graph.
 
  3377   /// ForwardMap provides access for the "forward" directed arc view of
 
  3378   /// each edge in a graph, which is returned by the \c direct() function
 
  3379   /// of the graph with \c true parameter.
 
  3380   /// \tparam GR The graph type.
 
  3381   /// \see BackwardMap
 
  3382   template <typename GR>
 
  3386     /// The key type (the \c Edge type of the digraph).
 
  3387     typedef typename GR::Edge Key;
 
  3388     /// The value type (the \c Arc type of the digraph).
 
  3389     typedef typename GR::Arc Value;
 
  3391     /// \brief Constructor
 
  3394     /// \param graph The graph that the map belongs to.
 
  3395     explicit ForwardMap(const GR& graph) : _graph(graph) {}
 
  3397     /// \brief Returns the "forward" directed arc view of the given edge.
 
  3399     /// Returns the "forward" directed arc view of the given edge.
 
  3400     Value operator[](const Key& key) const {
 
  3401       return _graph.direct(key, true);
 
  3408   /// \brief Returns a \c ForwardMap class.
 
  3410   /// This function just returns an \c ForwardMap class.
 
  3411   /// \relates ForwardMap
 
  3412   template <typename GR>
 
  3413   inline ForwardMap<GR> forwardMap(const GR& graph) {
 
  3414     return ForwardMap<GR>(graph);
 
  3417   /// \brief Map of the "backward" directed arc view of edges in a graph.
 
  3419   /// BackwardMap provides access for the "backward" directed arc view of
 
  3420   /// each edge in a graph, which is returned by the \c direct() function
 
  3421   /// of the graph with \c false parameter.
 
  3422   /// \tparam GR The graph type.
 
  3424   template <typename GR>
 
  3428     /// The key type (the \c Edge type of the digraph).
 
  3429     typedef typename GR::Edge Key;
 
  3430     /// The value type (the \c Arc type of the digraph).
 
  3431     typedef typename GR::Arc Value;
 
  3433     /// \brief Constructor
 
  3436     /// \param graph The graph that the map belongs to.
 
  3437     explicit BackwardMap(const GR& graph) : _graph(graph) {}
 
  3439     /// \brief Returns the "backward" directed arc view of the given edge.
 
  3441     /// Returns the "backward" directed arc view of the given edge.
 
  3442     Value operator[](const Key& key) const {
 
  3443       return _graph.direct(key, false);
 
  3450   /// \brief Returns a \c BackwardMap class
 
  3452   /// This function just returns a \c BackwardMap class.
 
  3453   /// \relates BackwardMap
 
  3454   template <typename GR>
 
  3455   inline BackwardMap<GR> backwardMap(const GR& graph) {
 
  3456     return BackwardMap<GR>(graph);
 
  3459   /// \brief Map of the in-degrees of nodes in a digraph.
 
  3461   /// This map returns the in-degree of a node. Once it is constructed,
 
  3462   /// the degrees are stored in a standard \c NodeMap, so each query is done
 
  3463   /// in constant time. On the other hand, the values are updated automatically
 
  3464   /// whenever the digraph changes.
 
  3466   /// \warning Besides \c addNode() and \c addArc(), a digraph structure
 
  3467   /// may provide alternative ways to modify the digraph.
 
  3468   /// The correct behavior of InDegMap is not guarantied if these additional
 
  3469   /// features are used. For example, the functions
 
  3470   /// \ref ListDigraph::changeSource() "changeSource()",
 
  3471   /// \ref ListDigraph::changeTarget() "changeTarget()" and
 
  3472   /// \ref ListDigraph::reverseArc() "reverseArc()"
 
  3473   /// of \ref ListDigraph will \e not update the degree values correctly.
 
  3476   template <typename GR>
 
  3478     : protected ItemSetTraits<GR, typename GR::Arc>
 
  3479       ::ItemNotifier::ObserverBase {
 
  3483     /// The graph type of InDegMap
 
  3487     typedef typename Digraph::Node Key;
 
  3491     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
 
  3492     ::ItemNotifier::ObserverBase Parent;
 
  3497       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
 
  3500       typedef typename ItemSetTraits<Digraph, Key>::
 
  3501       template Map<int>::Type Parent;
 
  3503       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
 
  3505       virtual void add(const Key& key) {
 
  3507         Parent::set(key, 0);
 
  3510       virtual void add(const std::vector<Key>& keys) {
 
  3512         for (int i = 0; i < int(keys.size()); ++i) {
 
  3513           Parent::set(keys[i], 0);
 
  3517       virtual void build() {
 
  3520         typename Parent::Notifier* nf = Parent::notifier();
 
  3521         for (nf->first(it); it != INVALID; nf->next(it)) {
 
  3529     /// \brief Constructor.
 
  3531     /// Constructor for creating an in-degree map.
 
  3532     explicit InDegMap(const Digraph& graph)
 
  3533       : _digraph(graph), _deg(graph) {
 
  3534       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
 
  3536       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 
  3537         _deg[it] = countInArcs(_digraph, it);
 
  3541     /// \brief Gives back the in-degree of a Node.
 
  3543     /// Gives back the in-degree of a Node.
 
  3544     int operator[](const Key& key) const {
 
  3550     typedef typename Digraph::Arc Arc;
 
  3552     virtual void add(const Arc& arc) {
 
  3553       ++_deg[_digraph.target(arc)];
 
  3556     virtual void add(const std::vector<Arc>& arcs) {
 
  3557       for (int i = 0; i < int(arcs.size()); ++i) {
 
  3558         ++_deg[_digraph.target(arcs[i])];
 
  3562     virtual void erase(const Arc& arc) {
 
  3563       --_deg[_digraph.target(arc)];
 
  3566     virtual void erase(const std::vector<Arc>& arcs) {
 
  3567       for (int i = 0; i < int(arcs.size()); ++i) {
 
  3568         --_deg[_digraph.target(arcs[i])];
 
  3572     virtual void build() {
 
  3573       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 
  3574         _deg[it] = countInArcs(_digraph, it);
 
  3578     virtual void clear() {
 
  3579       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 
  3585     const Digraph& _digraph;
 
  3589   /// \brief Map of the out-degrees of nodes in a digraph.
 
  3591   /// This map returns the out-degree of a node. Once it is constructed,
 
  3592   /// the degrees are stored in a standard \c NodeMap, so each query is done
 
  3593   /// in constant time. On the other hand, the values are updated automatically
 
  3594   /// whenever the digraph changes.
 
  3596   /// \warning Besides \c addNode() and \c addArc(), a digraph structure
 
  3597   /// may provide alternative ways to modify the digraph.
 
  3598   /// The correct behavior of OutDegMap is not guarantied if these additional
 
  3599   /// features are used. For example, the functions
 
  3600   /// \ref ListDigraph::changeSource() "changeSource()",
 
  3601   /// \ref ListDigraph::changeTarget() "changeTarget()" and
 
  3602   /// \ref ListDigraph::reverseArc() "reverseArc()"
 
  3603   /// of \ref ListDigraph will \e not update the degree values correctly.
 
  3606   template <typename GR>
 
  3608     : protected ItemSetTraits<GR, typename GR::Arc>
 
  3609       ::ItemNotifier::ObserverBase {
 
  3613     /// The graph type of OutDegMap
 
  3617     typedef typename Digraph::Node Key;
 
  3621     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
 
  3622     ::ItemNotifier::ObserverBase Parent;
 
  3627       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
 
  3630       typedef typename ItemSetTraits<Digraph, Key>::
 
  3631       template Map<int>::Type Parent;
 
  3633       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
 
  3635       virtual void add(const Key& key) {
 
  3637         Parent::set(key, 0);
 
  3639       virtual void add(const std::vector<Key>& keys) {
 
  3641         for (int i = 0; i < int(keys.size()); ++i) {
 
  3642           Parent::set(keys[i], 0);
 
  3645       virtual void build() {
 
  3648         typename Parent::Notifier* nf = Parent::notifier();
 
  3649         for (nf->first(it); it != INVALID; nf->next(it)) {
 
  3657     /// \brief Constructor.
 
  3659     /// Constructor for creating an out-degree map.
 
  3660     explicit OutDegMap(const Digraph& graph)
 
  3661       : _digraph(graph), _deg(graph) {
 
  3662       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
 
  3664       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 
  3665         _deg[it] = countOutArcs(_digraph, it);
 
  3669     /// \brief Gives back the out-degree of a Node.
 
  3671     /// Gives back the out-degree of a Node.
 
  3672     int operator[](const Key& key) const {
 
  3678     typedef typename Digraph::Arc Arc;
 
  3680     virtual void add(const Arc& arc) {
 
  3681       ++_deg[_digraph.source(arc)];
 
  3684     virtual void add(const std::vector<Arc>& arcs) {
 
  3685       for (int i = 0; i < int(arcs.size()); ++i) {
 
  3686         ++_deg[_digraph.source(arcs[i])];
 
  3690     virtual void erase(const Arc& arc) {
 
  3691       --_deg[_digraph.source(arc)];
 
  3694     virtual void erase(const std::vector<Arc>& arcs) {
 
  3695       for (int i = 0; i < int(arcs.size()); ++i) {
 
  3696         --_deg[_digraph.source(arcs[i])];
 
  3700     virtual void build() {
 
  3701       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 
  3702         _deg[it] = countOutArcs(_digraph, it);
 
  3706     virtual void clear() {
 
  3707       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
 
  3713     const Digraph& _digraph;
 
  3717   /// \brief Potential difference map
 
  3719   /// PotentialDifferenceMap returns the difference between the potentials of
 
  3720   /// the source and target nodes of each arc in a digraph, i.e. it returns
 
  3722   ///   potential[gr.target(arc)] - potential[gr.source(arc)].
 
  3724   /// \tparam GR The digraph type.
 
  3725   /// \tparam POT A node map storing the potentials.
 
  3726   template <typename GR, typename POT>
 
  3727   class PotentialDifferenceMap {
 
  3730     typedef typename GR::Arc Key;
 
  3732     typedef typename POT::Value Value;
 
  3734     /// \brief Constructor
 
  3736     /// Contructor of the map.
 
  3737     explicit PotentialDifferenceMap(const GR& gr,
 
  3738                                     const POT& potential)
 
  3739       : _digraph(gr), _potential(potential) {}
 
  3741     /// \brief Returns the potential difference for the given arc.
 
  3743     /// Returns the potential difference for the given arc, i.e.
 
  3745     ///   potential[gr.target(arc)] - potential[gr.source(arc)].
 
  3747     Value operator[](const Key& arc) const {
 
  3748       return _potential[_digraph.target(arc)] -
 
  3749         _potential[_digraph.source(arc)];
 
  3754     const POT& _potential;
 
  3757   /// \brief Returns a PotentialDifferenceMap.
 
  3759   /// This function just returns a PotentialDifferenceMap.
 
  3760   /// \relates PotentialDifferenceMap
 
  3761   template <typename GR, typename POT>
 
  3762   PotentialDifferenceMap<GR, POT>
 
  3763   potentialDifferenceMap(const GR& gr, const POT& potential) {
 
  3764     return PotentialDifferenceMap<GR, POT>(gr, potential);
 
  3768   /// \brief Copy the values of a graph map to another map.
 
  3770   /// This function copies the values of a graph map to another graph map.
 
  3771   /// \c To::Key must be equal or convertible to \c From::Key and
 
  3772   /// \c From::Value must be equal or convertible to \c To::Value.
 
  3774   /// For example, an edge map of \c int value type can be copied to
 
  3775   /// an arc map of \c double value type in an undirected graph, but
 
  3776   /// an arc map cannot be copied to an edge map.
 
  3777   /// Note that even a \ref ConstMap can be copied to a standard graph map,
 
  3778   /// but \ref mapFill() can also be used for this purpose.
 
  3780   /// \param gr The graph for which the maps are defined.
 
  3781   /// \param from The map from which the values have to be copied.
 
  3782   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
 
  3783   /// \param to The map to which the values have to be copied.
 
  3784   /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
 
  3785   template <typename GR, typename From, typename To>
 
  3786   void mapCopy(const GR& gr, const From& from, To& to) {
 
  3787     typedef typename To::Key Item;
 
  3788     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
 
  3790     for (ItemIt it(gr); it != INVALID; ++it) {
 
  3791       to.set(it, from[it]);
 
  3795   /// \brief Compare two graph maps.
 
  3797   /// This function compares the values of two graph maps. It returns 
 
  3798   /// \c true if the maps assign the same value for all items in the graph.
 
  3799   /// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal
 
  3800   /// and their \c Value types must be comparable using \c %operator==().
 
  3802   /// \param gr The graph for which the maps are defined.
 
  3803   /// \param map1 The first map.
 
  3804   /// \param map2 The second map.
 
  3805   template <typename GR, typename Map1, typename Map2>
 
  3806   bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
 
  3807     typedef typename Map2::Key Item;
 
  3808     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
 
  3810     for (ItemIt it(gr); it != INVALID; ++it) {
 
  3811       if (!(map1[it] == map2[it])) return false;
 
  3816   /// \brief Return an item having minimum value of a graph map.
 
  3818   /// This function returns an item (\c Node, \c Arc or \c Edge) having
 
  3819   /// minimum value of the given graph map.
 
  3820   /// If the item set is empty, it returns \c INVALID.
 
  3822   /// \param gr The graph for which the map is defined.
 
  3823   /// \param map The graph map.
 
  3824   template <typename GR, typename Map>
 
  3825   typename Map::Key mapMin(const GR& gr, const Map& map) {
 
  3826     return mapMin(gr, map, std::less<typename Map::Value>());
 
  3829   /// \brief Return an item having minimum value of a graph map.
 
  3831   /// This function returns an item (\c Node, \c Arc or \c Edge) having
 
  3832   /// minimum value of the given graph map.
 
  3833   /// If the item set is empty, it returns \c INVALID.
 
  3835   /// \param gr The graph for which the map is defined.
 
  3836   /// \param map The graph map.
 
  3837   /// \param comp Comparison function object.
 
  3838   template <typename GR, typename Map, typename Comp>
 
  3839   typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) {
 
  3840     typedef typename Map::Key Item;
 
  3841     typedef typename Map::Value Value;
 
  3842     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
 
  3844     ItemIt min_item(gr);
 
  3845     if (min_item == INVALID) return INVALID;
 
  3846     Value min = map[min_item];
 
  3847     for (ItemIt it(gr); it != INVALID; ++it) {
 
  3848       if (comp(map[it], min)) {
 
  3856   /// \brief Return an item having maximum value of a graph map.
 
  3858   /// This function returns an item (\c Node, \c Arc or \c Edge) having
 
  3859   /// maximum value of the given graph map.
 
  3860   /// If the item set is empty, it returns \c INVALID.
 
  3862   /// \param gr The graph for which the map is defined.
 
  3863   /// \param map The graph map.
 
  3864   template <typename GR, typename Map>
 
  3865   typename Map::Key mapMax(const GR& gr, const Map& map) {
 
  3866     return mapMax(gr, map, std::less<typename Map::Value>());
 
  3869   /// \brief Return an item having maximum value of a graph map.
 
  3871   /// This function returns an item (\c Node, \c Arc or \c Edge) having
 
  3872   /// maximum value of the given graph map.
 
  3873   /// If the item set is empty, it returns \c INVALID.
 
  3875   /// \param gr The graph for which the map is defined.
 
  3876   /// \param map The graph map.
 
  3877   /// \param comp Comparison function object.
 
  3878   template <typename GR, typename Map, typename Comp>
 
  3879   typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) {
 
  3880     typedef typename Map::Key Item;
 
  3881     typedef typename Map::Value Value;
 
  3882     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
 
  3884     ItemIt max_item(gr);
 
  3885     if (max_item == INVALID) return INVALID;
 
  3886     Value max = map[max_item];
 
  3887     for (ItemIt it(gr); it != INVALID; ++it) {
 
  3888       if (comp(max, map[it])) {
 
  3896   /// \brief Return the minimum value of a graph map.
 
  3898   /// This function returns the minimum value of the given graph map.
 
  3899   /// The corresponding item set of the graph must not be empty.
 
  3901   /// \param gr The graph for which the map is defined.
 
  3902   /// \param map The graph map.
 
  3903   template <typename GR, typename Map>
 
  3904   typename Map::Value mapMinValue(const GR& gr, const Map& map) {
 
  3905     return map[mapMin(gr, map, std::less<typename Map::Value>())];
 
  3908   /// \brief Return the minimum value of a graph map.
 
  3910   /// This function returns the minimum value of the given graph map.
 
  3911   /// The corresponding item set of the graph must not be empty.
 
  3913   /// \param gr The graph for which the map is defined.
 
  3914   /// \param map The graph map.
 
  3915   /// \param comp Comparison function object.
 
  3916   template <typename GR, typename Map, typename Comp>
 
  3918   mapMinValue(const GR& gr, const Map& map, const Comp& comp) {
 
  3919     return map[mapMin(gr, map, comp)];
 
  3922   /// \brief Return the maximum value of a graph map.
 
  3924   /// This function returns the maximum value of the given graph map.
 
  3925   /// The corresponding item set of the graph must not be empty.
 
  3927   /// \param gr The graph for which the map is defined.
 
  3928   /// \param map The graph map.
 
  3929   template <typename GR, typename Map>
 
  3930   typename Map::Value mapMaxValue(const GR& gr, const Map& map) {
 
  3931     return map[mapMax(gr, map, std::less<typename Map::Value>())];
 
  3934   /// \brief Return the maximum value of a graph map.
 
  3936   /// This function returns the maximum value of the given graph map.
 
  3937   /// The corresponding item set of the graph must not be empty.
 
  3939   /// \param gr The graph for which the map is defined.
 
  3940   /// \param map The graph map.
 
  3941   /// \param comp Comparison function object.
 
  3942   template <typename GR, typename Map, typename Comp>
 
  3944   mapMaxValue(const GR& gr, const Map& map, const Comp& comp) {
 
  3945     return map[mapMax(gr, map, comp)];
 
  3948   /// \brief Return an item having a specified value in a graph map.
 
  3950   /// This function returns an item (\c Node, \c Arc or \c Edge) having
 
  3951   /// the specified assigned value in the given graph map.
 
  3952   /// If no such item exists, it returns \c INVALID.
 
  3954   /// \param gr The graph for which the map is defined.
 
  3955   /// \param map The graph map.
 
  3956   /// \param val The value that have to be found.
 
  3957   template <typename GR, typename Map>
 
  3959   mapFind(const GR& gr, const Map& map, const typename Map::Value& val) {
 
  3960     typedef typename Map::Key Item;
 
  3961     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
 
  3963     for (ItemIt it(gr); it != INVALID; ++it) {
 
  3964       if (map[it] == val) return it;
 
  3969   /// \brief Return an item having value for which a certain predicate is
 
  3970   /// true in a graph map.
 
  3972   /// This function returns an item (\c Node, \c Arc or \c Edge) having
 
  3973   /// such assigned value for which the specified predicate is true
 
  3974   /// in the given graph map.
 
  3975   /// If no such item exists, it returns \c INVALID.
 
  3977   /// \param gr The graph for which the map is defined.
 
  3978   /// \param map The graph map.
 
  3979   /// \param pred The predicate function object.
 
  3980   template <typename GR, typename Map, typename Pred>
 
  3982   mapFindIf(const GR& gr, const Map& map, const Pred& pred) {
 
  3983     typedef typename Map::Key Item;
 
  3984     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
 
  3986     for (ItemIt it(gr); it != INVALID; ++it) {
 
  3987       if (pred(map[it])) return it;
 
  3992   /// \brief Return the number of items having a specified value in a
 
  3995   /// This function returns the number of items (\c Node, \c Arc or \c Edge)
 
  3996   /// having the specified assigned value in the given graph map.
 
  3998   /// \param gr The graph for which the map is defined.
 
  3999   /// \param map The graph map.
 
  4000   /// \param val The value that have to be counted.
 
  4001   template <typename GR, typename Map>
 
  4002   int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) {
 
  4003     typedef typename Map::Key Item;
 
  4004     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
 
  4007     for (ItemIt it(gr); it != INVALID; ++it) {
 
  4008       if (map[it] == val) ++cnt;
 
  4013   /// \brief Return the number of items having values for which a certain
 
  4014   /// predicate is true in a graph map.
 
  4016   /// This function returns the number of items (\c Node, \c Arc or \c Edge)
 
  4017   /// having such assigned values for which the specified predicate is true
 
  4018   /// in the given graph map.
 
  4020   /// \param gr The graph for which the map is defined.
 
  4021   /// \param map The graph map.
 
  4022   /// \param pred The predicate function object.
 
  4023   template <typename GR, typename Map, typename Pred>
 
  4024   int mapCountIf(const GR& gr, const Map& map, const Pred& pred) {
 
  4025     typedef typename Map::Key Item;
 
  4026     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
 
  4029     for (ItemIt it(gr); it != INVALID; ++it) {
 
  4030       if (pred(map[it])) ++cnt;
 
  4035   /// \brief Fill a graph map with a certain value.
 
  4037   /// This function sets the specified value for all items (\c Node,
 
  4038   /// \c Arc or \c Edge) in the given graph map.
 
  4040   /// \param gr The graph for which the map is defined.
 
  4041   /// \param map The graph map. It must conform to the
 
  4042   /// \ref concepts::WriteMap "WriteMap" concept.
 
  4043   /// \param val The value.
 
  4044   template <typename GR, typename Map>
 
  4045   void mapFill(const GR& gr, Map& map, const typename Map::Value& val) {
 
  4046     typedef typename Map::Key Item;
 
  4047     typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
 
  4049     for (ItemIt it(gr); it != INVALID; ++it) {
 
  4057 #endif // LEMON_MAPS_H