lemon/cost_scaling.h
author Balazs Dezso <deba@inf.elte.hu>
Tue, 16 Nov 2010 08:19:11 +0100
changeset 1023 939ee6d1e525
parent 938 a07b6b27fe69
child 1049 7bf489cf624e
child 1070 ee9bac10f58e
permissions -rw-r--r--
Use member variables to store the highest IDs in bipartite partitions (#69)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient.
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
   100   /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
   101   /// implementations available in LEMON for solving this problem.
   102   /// (For more information, see \ref min_cost_flow_algs "the module page".)
   103   ///
   104   /// Most of the parameters of the problem (except for the digraph)
   105   /// can be given using separate functions, and the algorithm can be
   106   /// executed using the \ref run() function. If some parameters are not
   107   /// specified, then default values will be used.
   108   ///
   109   /// \tparam GR The digraph type the algorithm runs on.
   110   /// \tparam V The number type used for flow amounts, capacity bounds
   111   /// and supply values in the algorithm. By default, it is \c int.
   112   /// \tparam C The number type used for costs and potentials in the
   113   /// algorithm. By default, it is the same as \c V.
   114   /// \tparam TR The traits class that defines various types used by the
   115   /// algorithm. By default, it is \ref CostScalingDefaultTraits
   116   /// "CostScalingDefaultTraits<GR, V, C>".
   117   /// In most cases, this parameter should not be set directly,
   118   /// consider to use the named template parameters instead.
   119   ///
   120   /// \warning Both \c V and \c C must be signed number types.
   121   /// \warning All input data (capacities, supply values, and costs) must
   122   /// be integer.
   123   /// \warning This algorithm does not support negative costs for
   124   /// arcs having infinite upper bound.
   125   ///
   126   /// \note %CostScaling provides three different internal methods,
   127   /// from which the most efficient one is used by default.
   128   /// For more information, see \ref Method.
   129 #ifdef DOXYGEN
   130   template <typename GR, typename V, typename C, typename TR>
   131 #else
   132   template < typename GR, typename V = int, typename C = V,
   133              typename TR = CostScalingDefaultTraits<GR, V, C> >
   134 #endif
   135   class CostScaling
   136   {
   137   public:
   138 
   139     /// The type of the digraph
   140     typedef typename TR::Digraph Digraph;
   141     /// The type of the flow amounts, capacity bounds and supply values
   142     typedef typename TR::Value Value;
   143     /// The type of the arc costs
   144     typedef typename TR::Cost Cost;
   145 
   146     /// \brief The large cost type
   147     ///
   148     /// The large cost type used for internal computations.
   149     /// By default, it is \c long \c long if the \c Cost type is integer,
   150     /// otherwise it is \c double.
   151     typedef typename TR::LargeCost LargeCost;
   152 
   153     /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   154     typedef TR Traits;
   155 
   156   public:
   157 
   158     /// \brief Problem type constants for the \c run() function.
   159     ///
   160     /// Enum type containing the problem type constants that can be
   161     /// returned by the \ref run() function of the algorithm.
   162     enum ProblemType {
   163       /// The problem has no feasible solution (flow).
   164       INFEASIBLE,
   165       /// The problem has optimal solution (i.e. it is feasible and
   166       /// bounded), and the algorithm has found optimal flow and node
   167       /// potentials (primal and dual solutions).
   168       OPTIMAL,
   169       /// The digraph contains an arc of negative cost and infinite
   170       /// upper bound. It means that the objective function is unbounded
   171       /// on that arc, however, note that it could actually be bounded
   172       /// over the feasible flows, but this algroithm cannot handle
   173       /// these cases.
   174       UNBOUNDED
   175     };
   176 
   177     /// \brief Constants for selecting the internal method.
   178     ///
   179     /// Enum type containing constants for selecting the internal method
   180     /// for the \ref run() function.
   181     ///
   182     /// \ref CostScaling provides three internal methods that differ mainly
   183     /// in their base operations, which are used in conjunction with the
   184     /// relabel operation.
   185     /// By default, the so called \ref PARTIAL_AUGMENT
   186     /// "Partial Augment-Relabel" method is used, which turned out to be
   187     /// the most efficient and the most robust on various test inputs.
   188     /// However, the other methods can be selected using the \ref run()
   189     /// function with the proper parameter.
   190     enum Method {
   191       /// Local push operations are used, i.e. flow is moved only on one
   192       /// admissible arc at once.
   193       PUSH,
   194       /// Augment operations are used, i.e. flow is moved on admissible
   195       /// paths from a node with excess to a node with deficit.
   196       AUGMENT,
   197       /// Partial augment operations are used, i.e. flow is moved on
   198       /// admissible paths started from a node with excess, but the
   199       /// lengths of these paths are limited. This method can be viewed
   200       /// as a combined version of the previous two operations.
   201       PARTIAL_AUGMENT
   202     };
   203 
   204   private:
   205 
   206     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   207 
   208     typedef std::vector<int> IntVector;
   209     typedef std::vector<Value> ValueVector;
   210     typedef std::vector<Cost> CostVector;
   211     typedef std::vector<LargeCost> LargeCostVector;
   212     typedef std::vector<char> BoolVector;
   213     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   214 
   215   private:
   216 
   217     template <typename KT, typename VT>
   218     class StaticVectorMap {
   219     public:
   220       typedef KT Key;
   221       typedef VT Value;
   222 
   223       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   224 
   225       const Value& operator[](const Key& key) const {
   226         return _v[StaticDigraph::id(key)];
   227       }
   228 
   229       Value& operator[](const Key& key) {
   230         return _v[StaticDigraph::id(key)];
   231       }
   232 
   233       void set(const Key& key, const Value& val) {
   234         _v[StaticDigraph::id(key)] = val;
   235       }
   236 
   237     private:
   238       std::vector<Value>& _v;
   239     };
   240 
   241     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   242 
   243   private:
   244 
   245     // Data related to the underlying digraph
   246     const GR &_graph;
   247     int _node_num;
   248     int _arc_num;
   249     int _res_node_num;
   250     int _res_arc_num;
   251     int _root;
   252 
   253     // Parameters of the problem
   254     bool _have_lower;
   255     Value _sum_supply;
   256     int _sup_node_num;
   257 
   258     // Data structures for storing the digraph
   259     IntNodeMap _node_id;
   260     IntArcMap _arc_idf;
   261     IntArcMap _arc_idb;
   262     IntVector _first_out;
   263     BoolVector _forward;
   264     IntVector _source;
   265     IntVector _target;
   266     IntVector _reverse;
   267 
   268     // Node and arc data
   269     ValueVector _lower;
   270     ValueVector _upper;
   271     CostVector _scost;
   272     ValueVector _supply;
   273 
   274     ValueVector _res_cap;
   275     LargeCostVector _cost;
   276     LargeCostVector _pi;
   277     ValueVector _excess;
   278     IntVector _next_out;
   279     std::deque<int> _active_nodes;
   280 
   281     // Data for scaling
   282     LargeCost _epsilon;
   283     int _alpha;
   284 
   285     IntVector _buckets;
   286     IntVector _bucket_next;
   287     IntVector _bucket_prev;
   288     IntVector _rank;
   289     int _max_rank;
   290 
   291   public:
   292 
   293     /// \brief Constant for infinite upper bounds (capacities).
   294     ///
   295     /// Constant for infinite upper bounds (capacities).
   296     /// It is \c std::numeric_limits<Value>::infinity() if available,
   297     /// \c std::numeric_limits<Value>::max() otherwise.
   298     const Value INF;
   299 
   300   public:
   301 
   302     /// \name Named Template Parameters
   303     /// @{
   304 
   305     template <typename T>
   306     struct SetLargeCostTraits : public Traits {
   307       typedef T LargeCost;
   308     };
   309 
   310     /// \brief \ref named-templ-param "Named parameter" for setting
   311     /// \c LargeCost type.
   312     ///
   313     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   314     /// type, which is used for internal computations in the algorithm.
   315     /// \c Cost must be convertible to \c LargeCost.
   316     template <typename T>
   317     struct SetLargeCost
   318       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   319       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   320     };
   321 
   322     /// @}
   323 
   324   protected:
   325 
   326     CostScaling() {}
   327 
   328   public:
   329 
   330     /// \brief Constructor.
   331     ///
   332     /// The constructor of the class.
   333     ///
   334     /// \param graph The digraph the algorithm runs on.
   335     CostScaling(const GR& graph) :
   336       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   337       INF(std::numeric_limits<Value>::has_infinity ?
   338           std::numeric_limits<Value>::infinity() :
   339           std::numeric_limits<Value>::max())
   340     {
   341       // Check the number types
   342       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   343         "The flow type of CostScaling must be signed");
   344       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   345         "The cost type of CostScaling must be signed");
   346 
   347       // Reset data structures
   348       reset();
   349     }
   350 
   351     /// \name Parameters
   352     /// The parameters of the algorithm can be specified using these
   353     /// functions.
   354 
   355     /// @{
   356 
   357     /// \brief Set the lower bounds on the arcs.
   358     ///
   359     /// This function sets the lower bounds on the arcs.
   360     /// If it is not used before calling \ref run(), the lower bounds
   361     /// will be set to zero on all arcs.
   362     ///
   363     /// \param map An arc map storing the lower bounds.
   364     /// Its \c Value type must be convertible to the \c Value type
   365     /// of the algorithm.
   366     ///
   367     /// \return <tt>(*this)</tt>
   368     template <typename LowerMap>
   369     CostScaling& lowerMap(const LowerMap& map) {
   370       _have_lower = true;
   371       for (ArcIt a(_graph); a != INVALID; ++a) {
   372         _lower[_arc_idf[a]] = map[a];
   373         _lower[_arc_idb[a]] = map[a];
   374       }
   375       return *this;
   376     }
   377 
   378     /// \brief Set the upper bounds (capacities) on the arcs.
   379     ///
   380     /// This function sets the upper bounds (capacities) on the arcs.
   381     /// If it is not used before calling \ref run(), the upper bounds
   382     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   383     /// unbounded from above).
   384     ///
   385     /// \param map An arc map storing the upper bounds.
   386     /// Its \c Value type must be convertible to the \c Value type
   387     /// of the algorithm.
   388     ///
   389     /// \return <tt>(*this)</tt>
   390     template<typename UpperMap>
   391     CostScaling& upperMap(const UpperMap& map) {
   392       for (ArcIt a(_graph); a != INVALID; ++a) {
   393         _upper[_arc_idf[a]] = map[a];
   394       }
   395       return *this;
   396     }
   397 
   398     /// \brief Set the costs of the arcs.
   399     ///
   400     /// This function sets the costs of the arcs.
   401     /// If it is not used before calling \ref run(), the costs
   402     /// will be set to \c 1 on all arcs.
   403     ///
   404     /// \param map An arc map storing the costs.
   405     /// Its \c Value type must be convertible to the \c Cost type
   406     /// of the algorithm.
   407     ///
   408     /// \return <tt>(*this)</tt>
   409     template<typename CostMap>
   410     CostScaling& costMap(const CostMap& map) {
   411       for (ArcIt a(_graph); a != INVALID; ++a) {
   412         _scost[_arc_idf[a]] =  map[a];
   413         _scost[_arc_idb[a]] = -map[a];
   414       }
   415       return *this;
   416     }
   417 
   418     /// \brief Set the supply values of the nodes.
   419     ///
   420     /// This function sets the supply values of the nodes.
   421     /// If neither this function nor \ref stSupply() is used before
   422     /// calling \ref run(), the supply of each node will be set to zero.
   423     ///
   424     /// \param map A node map storing the supply values.
   425     /// Its \c Value type must be convertible to the \c Value type
   426     /// of the algorithm.
   427     ///
   428     /// \return <tt>(*this)</tt>
   429     template<typename SupplyMap>
   430     CostScaling& supplyMap(const SupplyMap& map) {
   431       for (NodeIt n(_graph); n != INVALID; ++n) {
   432         _supply[_node_id[n]] = map[n];
   433       }
   434       return *this;
   435     }
   436 
   437     /// \brief Set single source and target nodes and a supply value.
   438     ///
   439     /// This function sets a single source node and a single target node
   440     /// and the required flow value.
   441     /// If neither this function nor \ref supplyMap() is used before
   442     /// calling \ref run(), the supply of each node will be set to zero.
   443     ///
   444     /// Using this function has the same effect as using \ref supplyMap()
   445     /// with a map in which \c k is assigned to \c s, \c -k is
   446     /// assigned to \c t and all other nodes have zero supply value.
   447     ///
   448     /// \param s The source node.
   449     /// \param t The target node.
   450     /// \param k The required amount of flow from node \c s to node \c t
   451     /// (i.e. the supply of \c s and the demand of \c t).
   452     ///
   453     /// \return <tt>(*this)</tt>
   454     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   455       for (int i = 0; i != _res_node_num; ++i) {
   456         _supply[i] = 0;
   457       }
   458       _supply[_node_id[s]] =  k;
   459       _supply[_node_id[t]] = -k;
   460       return *this;
   461     }
   462 
   463     /// @}
   464 
   465     /// \name Execution control
   466     /// The algorithm can be executed using \ref run().
   467 
   468     /// @{
   469 
   470     /// \brief Run the algorithm.
   471     ///
   472     /// This function runs the algorithm.
   473     /// The paramters can be specified using functions \ref lowerMap(),
   474     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   475     /// For example,
   476     /// \code
   477     ///   CostScaling<ListDigraph> cs(graph);
   478     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   479     ///     .supplyMap(sup).run();
   480     /// \endcode
   481     ///
   482     /// This function can be called more than once. All the given parameters
   483     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   484     /// is used, thus only the modified parameters have to be set again.
   485     /// If the underlying digraph was also modified after the construction
   486     /// of the class (or the last \ref reset() call), then the \ref reset()
   487     /// function must be called.
   488     ///
   489     /// \param method The internal method that will be used in the
   490     /// algorithm. For more information, see \ref Method.
   491     /// \param factor The cost scaling factor. It must be at least two.
   492     ///
   493     /// \return \c INFEASIBLE if no feasible flow exists,
   494     /// \n \c OPTIMAL if the problem has optimal solution
   495     /// (i.e. it is feasible and bounded), and the algorithm has found
   496     /// optimal flow and node potentials (primal and dual solutions),
   497     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   498     /// and infinite upper bound. It means that the objective function
   499     /// is unbounded on that arc, however, note that it could actually be
   500     /// bounded over the feasible flows, but this algroithm cannot handle
   501     /// these cases.
   502     ///
   503     /// \see ProblemType, Method
   504     /// \see resetParams(), reset()
   505     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) {
   506       LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2");
   507       _alpha = factor;
   508       ProblemType pt = init();
   509       if (pt != OPTIMAL) return pt;
   510       start(method);
   511       return OPTIMAL;
   512     }
   513 
   514     /// \brief Reset all the parameters that have been given before.
   515     ///
   516     /// This function resets all the paramaters that have been given
   517     /// before using functions \ref lowerMap(), \ref upperMap(),
   518     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   519     ///
   520     /// It is useful for multiple \ref run() calls. Basically, all the given
   521     /// parameters are kept for the next \ref run() call, unless
   522     /// \ref resetParams() or \ref reset() is used.
   523     /// If the underlying digraph was also modified after the construction
   524     /// of the class or the last \ref reset() call, then the \ref reset()
   525     /// function must be used, otherwise \ref resetParams() is sufficient.
   526     ///
   527     /// For example,
   528     /// \code
   529     ///   CostScaling<ListDigraph> cs(graph);
   530     ///
   531     ///   // First run
   532     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   533     ///     .supplyMap(sup).run();
   534     ///
   535     ///   // Run again with modified cost map (resetParams() is not called,
   536     ///   // so only the cost map have to be set again)
   537     ///   cost[e] += 100;
   538     ///   cs.costMap(cost).run();
   539     ///
   540     ///   // Run again from scratch using resetParams()
   541     ///   // (the lower bounds will be set to zero on all arcs)
   542     ///   cs.resetParams();
   543     ///   cs.upperMap(capacity).costMap(cost)
   544     ///     .supplyMap(sup).run();
   545     /// \endcode
   546     ///
   547     /// \return <tt>(*this)</tt>
   548     ///
   549     /// \see reset(), run()
   550     CostScaling& resetParams() {
   551       for (int i = 0; i != _res_node_num; ++i) {
   552         _supply[i] = 0;
   553       }
   554       int limit = _first_out[_root];
   555       for (int j = 0; j != limit; ++j) {
   556         _lower[j] = 0;
   557         _upper[j] = INF;
   558         _scost[j] = _forward[j] ? 1 : -1;
   559       }
   560       for (int j = limit; j != _res_arc_num; ++j) {
   561         _lower[j] = 0;
   562         _upper[j] = INF;
   563         _scost[j] = 0;
   564         _scost[_reverse[j]] = 0;
   565       }
   566       _have_lower = false;
   567       return *this;
   568     }
   569 
   570     /// \brief Reset the internal data structures and all the parameters
   571     /// that have been given before.
   572     ///
   573     /// This function resets the internal data structures and all the
   574     /// paramaters that have been given before using functions \ref lowerMap(),
   575     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   576     ///
   577     /// It is useful for multiple \ref run() calls. By default, all the given
   578     /// parameters are kept for the next \ref run() call, unless
   579     /// \ref resetParams() or \ref reset() is used.
   580     /// If the underlying digraph was also modified after the construction
   581     /// of the class or the last \ref reset() call, then the \ref reset()
   582     /// function must be used, otherwise \ref resetParams() is sufficient.
   583     ///
   584     /// See \ref resetParams() for examples.
   585     ///
   586     /// \return <tt>(*this)</tt>
   587     ///
   588     /// \see resetParams(), run()
   589     CostScaling& reset() {
   590       // Resize vectors
   591       _node_num = countNodes(_graph);
   592       _arc_num = countArcs(_graph);
   593       _res_node_num = _node_num + 1;
   594       _res_arc_num = 2 * (_arc_num + _node_num);
   595       _root = _node_num;
   596 
   597       _first_out.resize(_res_node_num + 1);
   598       _forward.resize(_res_arc_num);
   599       _source.resize(_res_arc_num);
   600       _target.resize(_res_arc_num);
   601       _reverse.resize(_res_arc_num);
   602 
   603       _lower.resize(_res_arc_num);
   604       _upper.resize(_res_arc_num);
   605       _scost.resize(_res_arc_num);
   606       _supply.resize(_res_node_num);
   607 
   608       _res_cap.resize(_res_arc_num);
   609       _cost.resize(_res_arc_num);
   610       _pi.resize(_res_node_num);
   611       _excess.resize(_res_node_num);
   612       _next_out.resize(_res_node_num);
   613 
   614       // Copy the graph
   615       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   616       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   617         _node_id[n] = i;
   618       }
   619       i = 0;
   620       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   621         _first_out[i] = j;
   622         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   623           _arc_idf[a] = j;
   624           _forward[j] = true;
   625           _source[j] = i;
   626           _target[j] = _node_id[_graph.runningNode(a)];
   627         }
   628         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   629           _arc_idb[a] = j;
   630           _forward[j] = false;
   631           _source[j] = i;
   632           _target[j] = _node_id[_graph.runningNode(a)];
   633         }
   634         _forward[j] = false;
   635         _source[j] = i;
   636         _target[j] = _root;
   637         _reverse[j] = k;
   638         _forward[k] = true;
   639         _source[k] = _root;
   640         _target[k] = i;
   641         _reverse[k] = j;
   642         ++j; ++k;
   643       }
   644       _first_out[i] = j;
   645       _first_out[_res_node_num] = k;
   646       for (ArcIt a(_graph); a != INVALID; ++a) {
   647         int fi = _arc_idf[a];
   648         int bi = _arc_idb[a];
   649         _reverse[fi] = bi;
   650         _reverse[bi] = fi;
   651       }
   652 
   653       // Reset parameters
   654       resetParams();
   655       return *this;
   656     }
   657 
   658     /// @}
   659 
   660     /// \name Query Functions
   661     /// The results of the algorithm can be obtained using these
   662     /// functions.\n
   663     /// The \ref run() function must be called before using them.
   664 
   665     /// @{
   666 
   667     /// \brief Return the total cost of the found flow.
   668     ///
   669     /// This function returns the total cost of the found flow.
   670     /// Its complexity is O(e).
   671     ///
   672     /// \note The return type of the function can be specified as a
   673     /// template parameter. For example,
   674     /// \code
   675     ///   cs.totalCost<double>();
   676     /// \endcode
   677     /// It is useful if the total cost cannot be stored in the \c Cost
   678     /// type of the algorithm, which is the default return type of the
   679     /// function.
   680     ///
   681     /// \pre \ref run() must be called before using this function.
   682     template <typename Number>
   683     Number totalCost() const {
   684       Number c = 0;
   685       for (ArcIt a(_graph); a != INVALID; ++a) {
   686         int i = _arc_idb[a];
   687         c += static_cast<Number>(_res_cap[i]) *
   688              (-static_cast<Number>(_scost[i]));
   689       }
   690       return c;
   691     }
   692 
   693 #ifndef DOXYGEN
   694     Cost totalCost() const {
   695       return totalCost<Cost>();
   696     }
   697 #endif
   698 
   699     /// \brief Return the flow on the given arc.
   700     ///
   701     /// This function returns the flow on the given arc.
   702     ///
   703     /// \pre \ref run() must be called before using this function.
   704     Value flow(const Arc& a) const {
   705       return _res_cap[_arc_idb[a]];
   706     }
   707 
   708     /// \brief Copy the flow values (the primal solution) into the
   709     /// given map.
   710     ///
   711     /// This function copies the flow value on each arc into the given
   712     /// map. The \c Value type of the algorithm must be convertible to
   713     /// the \c Value type of the map.
   714     ///
   715     /// \pre \ref run() must be called before using this function.
   716     template <typename FlowMap>
   717     void flowMap(FlowMap &map) const {
   718       for (ArcIt a(_graph); a != INVALID; ++a) {
   719         map.set(a, _res_cap[_arc_idb[a]]);
   720       }
   721     }
   722 
   723     /// \brief Return the potential (dual value) of the given node.
   724     ///
   725     /// This function returns the potential (dual value) of the
   726     /// given node.
   727     ///
   728     /// \pre \ref run() must be called before using this function.
   729     Cost potential(const Node& n) const {
   730       return static_cast<Cost>(_pi[_node_id[n]]);
   731     }
   732 
   733     /// \brief Copy the potential values (the dual solution) into the
   734     /// given map.
   735     ///
   736     /// This function copies the potential (dual value) of each node
   737     /// into the given map.
   738     /// The \c Cost type of the algorithm must be convertible to the
   739     /// \c Value type of the map.
   740     ///
   741     /// \pre \ref run() must be called before using this function.
   742     template <typename PotentialMap>
   743     void potentialMap(PotentialMap &map) const {
   744       for (NodeIt n(_graph); n != INVALID; ++n) {
   745         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   746       }
   747     }
   748 
   749     /// @}
   750 
   751   private:
   752 
   753     // Initialize the algorithm
   754     ProblemType init() {
   755       if (_res_node_num <= 1) return INFEASIBLE;
   756 
   757       // Check the sum of supply values
   758       _sum_supply = 0;
   759       for (int i = 0; i != _root; ++i) {
   760         _sum_supply += _supply[i];
   761       }
   762       if (_sum_supply > 0) return INFEASIBLE;
   763 
   764 
   765       // Initialize vectors
   766       for (int i = 0; i != _res_node_num; ++i) {
   767         _pi[i] = 0;
   768         _excess[i] = _supply[i];
   769       }
   770 
   771       // Remove infinite upper bounds and check negative arcs
   772       const Value MAX = std::numeric_limits<Value>::max();
   773       int last_out;
   774       if (_have_lower) {
   775         for (int i = 0; i != _root; ++i) {
   776           last_out = _first_out[i+1];
   777           for (int j = _first_out[i]; j != last_out; ++j) {
   778             if (_forward[j]) {
   779               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   780               if (c >= MAX) return UNBOUNDED;
   781               _excess[i] -= c;
   782               _excess[_target[j]] += c;
   783             }
   784           }
   785         }
   786       } else {
   787         for (int i = 0; i != _root; ++i) {
   788           last_out = _first_out[i+1];
   789           for (int j = _first_out[i]; j != last_out; ++j) {
   790             if (_forward[j] && _scost[j] < 0) {
   791               Value c = _upper[j];
   792               if (c >= MAX) return UNBOUNDED;
   793               _excess[i] -= c;
   794               _excess[_target[j]] += c;
   795             }
   796           }
   797         }
   798       }
   799       Value ex, max_cap = 0;
   800       for (int i = 0; i != _res_node_num; ++i) {
   801         ex = _excess[i];
   802         _excess[i] = 0;
   803         if (ex < 0) max_cap -= ex;
   804       }
   805       for (int j = 0; j != _res_arc_num; ++j) {
   806         if (_upper[j] >= MAX) _upper[j] = max_cap;
   807       }
   808 
   809       // Initialize the large cost vector and the epsilon parameter
   810       _epsilon = 0;
   811       LargeCost lc;
   812       for (int i = 0; i != _root; ++i) {
   813         last_out = _first_out[i+1];
   814         for (int j = _first_out[i]; j != last_out; ++j) {
   815           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   816           _cost[j] = lc;
   817           if (lc > _epsilon) _epsilon = lc;
   818         }
   819       }
   820       _epsilon /= _alpha;
   821 
   822       // Initialize maps for Circulation and remove non-zero lower bounds
   823       ConstMap<Arc, Value> low(0);
   824       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   825       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   826       ValueArcMap cap(_graph), flow(_graph);
   827       ValueNodeMap sup(_graph);
   828       for (NodeIt n(_graph); n != INVALID; ++n) {
   829         sup[n] = _supply[_node_id[n]];
   830       }
   831       if (_have_lower) {
   832         for (ArcIt a(_graph); a != INVALID; ++a) {
   833           int j = _arc_idf[a];
   834           Value c = _lower[j];
   835           cap[a] = _upper[j] - c;
   836           sup[_graph.source(a)] -= c;
   837           sup[_graph.target(a)] += c;
   838         }
   839       } else {
   840         for (ArcIt a(_graph); a != INVALID; ++a) {
   841           cap[a] = _upper[_arc_idf[a]];
   842         }
   843       }
   844 
   845       _sup_node_num = 0;
   846       for (NodeIt n(_graph); n != INVALID; ++n) {
   847         if (sup[n] > 0) ++_sup_node_num;
   848       }
   849 
   850       // Find a feasible flow using Circulation
   851       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   852         circ(_graph, low, cap, sup);
   853       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   854 
   855       // Set residual capacities and handle GEQ supply type
   856       if (_sum_supply < 0) {
   857         for (ArcIt a(_graph); a != INVALID; ++a) {
   858           Value fa = flow[a];
   859           _res_cap[_arc_idf[a]] = cap[a] - fa;
   860           _res_cap[_arc_idb[a]] = fa;
   861           sup[_graph.source(a)] -= fa;
   862           sup[_graph.target(a)] += fa;
   863         }
   864         for (NodeIt n(_graph); n != INVALID; ++n) {
   865           _excess[_node_id[n]] = sup[n];
   866         }
   867         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   868           int u = _target[a];
   869           int ra = _reverse[a];
   870           _res_cap[a] = -_sum_supply + 1;
   871           _res_cap[ra] = -_excess[u];
   872           _cost[a] = 0;
   873           _cost[ra] = 0;
   874           _excess[u] = 0;
   875         }
   876       } else {
   877         for (ArcIt a(_graph); a != INVALID; ++a) {
   878           Value fa = flow[a];
   879           _res_cap[_arc_idf[a]] = cap[a] - fa;
   880           _res_cap[_arc_idb[a]] = fa;
   881         }
   882         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   883           int ra = _reverse[a];
   884           _res_cap[a] = 0;
   885           _res_cap[ra] = 0;
   886           _cost[a] = 0;
   887           _cost[ra] = 0;
   888         }
   889       }
   890 
   891       // Initialize data structures for buckets
   892       _max_rank = _alpha * _res_node_num;
   893       _buckets.resize(_max_rank);
   894       _bucket_next.resize(_res_node_num + 1);
   895       _bucket_prev.resize(_res_node_num + 1);
   896       _rank.resize(_res_node_num + 1);
   897 
   898       return OPTIMAL;
   899     }
   900 
   901     // Execute the algorithm and transform the results
   902     void start(Method method) {
   903       const int MAX_PARTIAL_PATH_LENGTH = 4;
   904 
   905       switch (method) {
   906         case PUSH:
   907           startPush();
   908           break;
   909         case AUGMENT:
   910           startAugment(_res_node_num - 1);
   911           break;
   912         case PARTIAL_AUGMENT:
   913           startAugment(MAX_PARTIAL_PATH_LENGTH);
   914           break;
   915       }
   916 
   917       // Compute node potentials (dual solution)
   918       for (int i = 0; i != _res_node_num; ++i) {
   919         _pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
   920       }
   921       bool optimal = true;
   922       for (int i = 0; optimal && i != _res_node_num; ++i) {
   923         LargeCost pi_i = _pi[i];
   924         int last_out = _first_out[i+1];
   925         for (int j = _first_out[i]; j != last_out; ++j) {
   926           if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
   927             optimal = false;
   928             break;
   929           }
   930         }
   931       }
   932 
   933       if (!optimal) {
   934         // Compute node potentials for the original costs with BellmanFord
   935         // (if it is necessary)
   936         typedef std::pair<int, int> IntPair;
   937         StaticDigraph sgr;
   938         std::vector<IntPair> arc_vec;
   939         std::vector<LargeCost> cost_vec;
   940         LargeCostArcMap cost_map(cost_vec);
   941 
   942         arc_vec.clear();
   943         cost_vec.clear();
   944         for (int j = 0; j != _res_arc_num; ++j) {
   945           if (_res_cap[j] > 0) {
   946             int u = _source[j], v = _target[j];
   947             arc_vec.push_back(IntPair(u, v));
   948             cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
   949           }
   950         }
   951         sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
   952 
   953         typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
   954           bf(sgr, cost_map);
   955         bf.init(0);
   956         bf.start();
   957 
   958         for (int i = 0; i != _res_node_num; ++i) {
   959           _pi[i] += bf.dist(sgr.node(i));
   960         }
   961       }
   962 
   963       // Shift potentials to meet the requirements of the GEQ type
   964       // optimality conditions
   965       LargeCost max_pot = _pi[_root];
   966       for (int i = 0; i != _res_node_num; ++i) {
   967         if (_pi[i] > max_pot) max_pot = _pi[i];
   968       }
   969       if (max_pot != 0) {
   970         for (int i = 0; i != _res_node_num; ++i) {
   971           _pi[i] -= max_pot;
   972         }
   973       }
   974 
   975       // Handle non-zero lower bounds
   976       if (_have_lower) {
   977         int limit = _first_out[_root];
   978         for (int j = 0; j != limit; ++j) {
   979           if (!_forward[j]) _res_cap[j] += _lower[j];
   980         }
   981       }
   982     }
   983 
   984     // Initialize a cost scaling phase
   985     void initPhase() {
   986       // Saturate arcs not satisfying the optimality condition
   987       for (int u = 0; u != _res_node_num; ++u) {
   988         int last_out = _first_out[u+1];
   989         LargeCost pi_u = _pi[u];
   990         for (int a = _first_out[u]; a != last_out; ++a) {
   991           Value delta = _res_cap[a];
   992           if (delta > 0) {
   993             int v = _target[a];
   994             if (_cost[a] + pi_u - _pi[v] < 0) {
   995               _excess[u] -= delta;
   996               _excess[v] += delta;
   997               _res_cap[a] = 0;
   998               _res_cap[_reverse[a]] += delta;
   999             }
  1000           }
  1001         }
  1002       }
  1003 
  1004       // Find active nodes (i.e. nodes with positive excess)
  1005       for (int u = 0; u != _res_node_num; ++u) {
  1006         if (_excess[u] > 0) _active_nodes.push_back(u);
  1007       }
  1008 
  1009       // Initialize the next arcs
  1010       for (int u = 0; u != _res_node_num; ++u) {
  1011         _next_out[u] = _first_out[u];
  1012       }
  1013     }
  1014 
  1015     // Price (potential) refinement heuristic
  1016     bool priceRefinement() {
  1017 
  1018       // Stack for stroing the topological order
  1019       IntVector stack(_res_node_num);
  1020       int stack_top;
  1021 
  1022       // Perform phases
  1023       while (topologicalSort(stack, stack_top)) {
  1024 
  1025         // Compute node ranks in the acyclic admissible network and
  1026         // store the nodes in buckets
  1027         for (int i = 0; i != _res_node_num; ++i) {
  1028           _rank[i] = 0;
  1029         }
  1030         const int bucket_end = _root + 1;
  1031         for (int r = 0; r != _max_rank; ++r) {
  1032           _buckets[r] = bucket_end;
  1033         }
  1034         int top_rank = 0;
  1035         for ( ; stack_top >= 0; --stack_top) {
  1036           int u = stack[stack_top], v;
  1037           int rank_u = _rank[u];
  1038 
  1039           LargeCost rc, pi_u = _pi[u];
  1040           int last_out = _first_out[u+1];
  1041           for (int a = _first_out[u]; a != last_out; ++a) {
  1042             if (_res_cap[a] > 0) {
  1043               v = _target[a];
  1044               rc = _cost[a] + pi_u - _pi[v];
  1045               if (rc < 0) {
  1046                 LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
  1047                 if (nrc < LargeCost(_max_rank)) {
  1048                   int new_rank_v = rank_u + static_cast<int>(nrc);
  1049                   if (new_rank_v > _rank[v]) {
  1050                     _rank[v] = new_rank_v;
  1051                   }
  1052                 }
  1053               }
  1054             }
  1055           }
  1056 
  1057           if (rank_u > 0) {
  1058             top_rank = std::max(top_rank, rank_u);
  1059             int bfirst = _buckets[rank_u];
  1060             _bucket_next[u] = bfirst;
  1061             _bucket_prev[bfirst] = u;
  1062             _buckets[rank_u] = u;
  1063           }
  1064         }
  1065 
  1066         // Check if the current flow is epsilon-optimal
  1067         if (top_rank == 0) {
  1068           return true;
  1069         }
  1070 
  1071         // Process buckets in top-down order
  1072         for (int rank = top_rank; rank > 0; --rank) {
  1073           while (_buckets[rank] != bucket_end) {
  1074             // Remove the first node from the current bucket
  1075             int u = _buckets[rank];
  1076             _buckets[rank] = _bucket_next[u];
  1077 
  1078             // Search the outgoing arcs of u
  1079             LargeCost rc, pi_u = _pi[u];
  1080             int last_out = _first_out[u+1];
  1081             int v, old_rank_v, new_rank_v;
  1082             for (int a = _first_out[u]; a != last_out; ++a) {
  1083               if (_res_cap[a] > 0) {
  1084                 v = _target[a];
  1085                 old_rank_v = _rank[v];
  1086 
  1087                 if (old_rank_v < rank) {
  1088 
  1089                   // Compute the new rank of node v
  1090                   rc = _cost[a] + pi_u - _pi[v];
  1091                   if (rc < 0) {
  1092                     new_rank_v = rank;
  1093                   } else {
  1094                     LargeCost nrc = rc / _epsilon;
  1095                     new_rank_v = 0;
  1096                     if (nrc < LargeCost(_max_rank)) {
  1097                       new_rank_v = rank - 1 - static_cast<int>(nrc);
  1098                     }
  1099                   }
  1100 
  1101                   // Change the rank of node v
  1102                   if (new_rank_v > old_rank_v) {
  1103                     _rank[v] = new_rank_v;
  1104 
  1105                     // Remove v from its old bucket
  1106                     if (old_rank_v > 0) {
  1107                       if (_buckets[old_rank_v] == v) {
  1108                         _buckets[old_rank_v] = _bucket_next[v];
  1109                       } else {
  1110                         int pv = _bucket_prev[v], nv = _bucket_next[v];
  1111                         _bucket_next[pv] = nv;
  1112                         _bucket_prev[nv] = pv;
  1113                       }
  1114                     }
  1115 
  1116                     // Insert v into its new bucket
  1117                     int nv = _buckets[new_rank_v];
  1118                     _bucket_next[v] = nv;
  1119                     _bucket_prev[nv] = v;
  1120                     _buckets[new_rank_v] = v;
  1121                   }
  1122                 }
  1123               }
  1124             }
  1125 
  1126             // Refine potential of node u
  1127             _pi[u] -= rank * _epsilon;
  1128           }
  1129         }
  1130 
  1131       }
  1132 
  1133       return false;
  1134     }
  1135 
  1136     // Find and cancel cycles in the admissible network and
  1137     // determine topological order using DFS
  1138     bool topologicalSort(IntVector &stack, int &stack_top) {
  1139       const int MAX_CYCLE_CANCEL = 1;
  1140 
  1141       BoolVector reached(_res_node_num, false);
  1142       BoolVector processed(_res_node_num, false);
  1143       IntVector pred(_res_node_num);
  1144       for (int i = 0; i != _res_node_num; ++i) {
  1145         _next_out[i] = _first_out[i];
  1146       }
  1147       stack_top = -1;
  1148 
  1149       int cycle_cnt = 0;
  1150       for (int start = 0; start != _res_node_num; ++start) {
  1151         if (reached[start]) continue;
  1152 
  1153         // Start DFS search from this start node
  1154         pred[start] = -1;
  1155         int tip = start, v;
  1156         while (true) {
  1157           // Check the outgoing arcs of the current tip node
  1158           reached[tip] = true;
  1159           LargeCost pi_tip = _pi[tip];
  1160           int a, last_out = _first_out[tip+1];
  1161           for (a = _next_out[tip]; a != last_out; ++a) {
  1162             if (_res_cap[a] > 0) {
  1163               v = _target[a];
  1164               if (_cost[a] + pi_tip - _pi[v] < 0) {
  1165                 if (!reached[v]) {
  1166                   // A new node is reached
  1167                   reached[v] = true;
  1168                   pred[v] = tip;
  1169                   _next_out[tip] = a;
  1170                   tip = v;
  1171                   a = _next_out[tip];
  1172                   last_out = _first_out[tip+1];
  1173                   break;
  1174                 }
  1175                 else if (!processed[v]) {
  1176                   // A cycle is found
  1177                   ++cycle_cnt;
  1178                   _next_out[tip] = a;
  1179 
  1180                   // Find the minimum residual capacity along the cycle
  1181                   Value d, delta = _res_cap[a];
  1182                   int u, delta_node = tip;
  1183                   for (u = tip; u != v; ) {
  1184                     u = pred[u];
  1185                     d = _res_cap[_next_out[u]];
  1186                     if (d <= delta) {
  1187                       delta = d;
  1188                       delta_node = u;
  1189                     }
  1190                   }
  1191 
  1192                   // Augment along the cycle
  1193                   _res_cap[a] -= delta;
  1194                   _res_cap[_reverse[a]] += delta;
  1195                   for (u = tip; u != v; ) {
  1196                     u = pred[u];
  1197                     int ca = _next_out[u];
  1198                     _res_cap[ca] -= delta;
  1199                     _res_cap[_reverse[ca]] += delta;
  1200                   }
  1201 
  1202                   // Check the maximum number of cycle canceling
  1203                   if (cycle_cnt >= MAX_CYCLE_CANCEL) {
  1204                     return false;
  1205                   }
  1206 
  1207                   // Roll back search to delta_node
  1208                   if (delta_node != tip) {
  1209                     for (u = tip; u != delta_node; u = pred[u]) {
  1210                       reached[u] = false;
  1211                     }
  1212                     tip = delta_node;
  1213                     a = _next_out[tip] + 1;
  1214                     last_out = _first_out[tip+1];
  1215                     break;
  1216                   }
  1217                 }
  1218               }
  1219             }
  1220           }
  1221 
  1222           // Step back to the previous node
  1223           if (a == last_out) {
  1224             processed[tip] = true;
  1225             stack[++stack_top] = tip;
  1226             tip = pred[tip];
  1227             if (tip < 0) {
  1228               // Finish DFS from the current start node
  1229               break;
  1230             }
  1231             ++_next_out[tip];
  1232           }
  1233         }
  1234 
  1235       }
  1236 
  1237       return (cycle_cnt == 0);
  1238     }
  1239 
  1240     // Global potential update heuristic
  1241     void globalUpdate() {
  1242       const int bucket_end = _root + 1;
  1243 
  1244       // Initialize buckets
  1245       for (int r = 0; r != _max_rank; ++r) {
  1246         _buckets[r] = bucket_end;
  1247       }
  1248       Value total_excess = 0;
  1249       int b0 = bucket_end;
  1250       for (int i = 0; i != _res_node_num; ++i) {
  1251         if (_excess[i] < 0) {
  1252           _rank[i] = 0;
  1253           _bucket_next[i] = b0;
  1254           _bucket_prev[b0] = i;
  1255           b0 = i;
  1256         } else {
  1257           total_excess += _excess[i];
  1258           _rank[i] = _max_rank;
  1259         }
  1260       }
  1261       if (total_excess == 0) return;
  1262       _buckets[0] = b0;
  1263 
  1264       // Search the buckets
  1265       int r = 0;
  1266       for ( ; r != _max_rank; ++r) {
  1267         while (_buckets[r] != bucket_end) {
  1268           // Remove the first node from the current bucket
  1269           int u = _buckets[r];
  1270           _buckets[r] = _bucket_next[u];
  1271 
  1272           // Search the incomming arcs of u
  1273           LargeCost pi_u = _pi[u];
  1274           int last_out = _first_out[u+1];
  1275           for (int a = _first_out[u]; a != last_out; ++a) {
  1276             int ra = _reverse[a];
  1277             if (_res_cap[ra] > 0) {
  1278               int v = _source[ra];
  1279               int old_rank_v = _rank[v];
  1280               if (r < old_rank_v) {
  1281                 // Compute the new rank of v
  1282                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1283                 int new_rank_v = old_rank_v;
  1284                 if (nrc < LargeCost(_max_rank)) {
  1285                   new_rank_v = r + 1 + static_cast<int>(nrc);
  1286                 }
  1287 
  1288                 // Change the rank of v
  1289                 if (new_rank_v < old_rank_v) {
  1290                   _rank[v] = new_rank_v;
  1291                   _next_out[v] = _first_out[v];
  1292 
  1293                   // Remove v from its old bucket
  1294                   if (old_rank_v < _max_rank) {
  1295                     if (_buckets[old_rank_v] == v) {
  1296                       _buckets[old_rank_v] = _bucket_next[v];
  1297                     } else {
  1298                       int pv = _bucket_prev[v], nv = _bucket_next[v];
  1299                       _bucket_next[pv] = nv;
  1300                       _bucket_prev[nv] = pv;
  1301                     }
  1302                   }
  1303 
  1304                   // Insert v into its new bucket
  1305                   int nv = _buckets[new_rank_v];
  1306                   _bucket_next[v] = nv;
  1307                   _bucket_prev[nv] = v;
  1308                   _buckets[new_rank_v] = v;
  1309                 }
  1310               }
  1311             }
  1312           }
  1313 
  1314           // Finish search if there are no more active nodes
  1315           if (_excess[u] > 0) {
  1316             total_excess -= _excess[u];
  1317             if (total_excess <= 0) break;
  1318           }
  1319         }
  1320         if (total_excess <= 0) break;
  1321       }
  1322 
  1323       // Relabel nodes
  1324       for (int u = 0; u != _res_node_num; ++u) {
  1325         int k = std::min(_rank[u], r);
  1326         if (k > 0) {
  1327           _pi[u] -= _epsilon * k;
  1328           _next_out[u] = _first_out[u];
  1329         }
  1330       }
  1331     }
  1332 
  1333     /// Execute the algorithm performing augment and relabel operations
  1334     void startAugment(int max_length) {
  1335       // Paramters for heuristics
  1336       const int PRICE_REFINEMENT_LIMIT = 2;
  1337       const double GLOBAL_UPDATE_FACTOR = 1.0;
  1338       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1339         (_res_node_num + _sup_node_num * _sup_node_num));
  1340       int next_global_update_limit = global_update_skip;
  1341 
  1342       // Perform cost scaling phases
  1343       IntVector path;
  1344       BoolVector path_arc(_res_arc_num, false);
  1345       int relabel_cnt = 0;
  1346       int eps_phase_cnt = 0;
  1347       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1348                                         1 : _epsilon / _alpha )
  1349       {
  1350         ++eps_phase_cnt;
  1351 
  1352         // Price refinement heuristic
  1353         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1354           if (priceRefinement()) continue;
  1355         }
  1356 
  1357         // Initialize current phase
  1358         initPhase();
  1359 
  1360         // Perform partial augment and relabel operations
  1361         while (true) {
  1362           // Select an active node (FIFO selection)
  1363           while (_active_nodes.size() > 0 &&
  1364                  _excess[_active_nodes.front()] <= 0) {
  1365             _active_nodes.pop_front();
  1366           }
  1367           if (_active_nodes.size() == 0) break;
  1368           int start = _active_nodes.front();
  1369 
  1370           // Find an augmenting path from the start node
  1371           int tip = start;
  1372           while (int(path.size()) < max_length && _excess[tip] >= 0) {
  1373             int u;
  1374             LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
  1375             LargeCost pi_tip = _pi[tip];
  1376             int last_out = _first_out[tip+1];
  1377             for (int a = _next_out[tip]; a != last_out; ++a) {
  1378               if (_res_cap[a] > 0) {
  1379                 u = _target[a];
  1380                 rc = _cost[a] + pi_tip - _pi[u];
  1381                 if (rc < 0) {
  1382                   path.push_back(a);
  1383                   _next_out[tip] = a;
  1384                   if (path_arc[a]) {
  1385                     goto augment;   // a cycle is found, stop path search
  1386                   }
  1387                   tip = u;
  1388                   path_arc[a] = true;
  1389                   goto next_step;
  1390                 }
  1391                 else if (rc < min_red_cost) {
  1392                   min_red_cost = rc;
  1393                 }
  1394               }
  1395             }
  1396 
  1397             // Relabel tip node
  1398             if (tip != start) {
  1399               int ra = _reverse[path.back()];
  1400               min_red_cost =
  1401                 std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
  1402             }
  1403             last_out = _next_out[tip];
  1404             for (int a = _first_out[tip]; a != last_out; ++a) {
  1405               if (_res_cap[a] > 0) {
  1406                 rc = _cost[a] + pi_tip - _pi[_target[a]];
  1407                 if (rc < min_red_cost) {
  1408                   min_red_cost = rc;
  1409                 }
  1410               }
  1411             }
  1412             _pi[tip] -= min_red_cost + _epsilon;
  1413             _next_out[tip] = _first_out[tip];
  1414             ++relabel_cnt;
  1415 
  1416             // Step back
  1417             if (tip != start) {
  1418               int pa = path.back();
  1419               path_arc[pa] = false;
  1420               tip = _source[pa];
  1421               path.pop_back();
  1422             }
  1423 
  1424           next_step: ;
  1425           }
  1426 
  1427           // Augment along the found path (as much flow as possible)
  1428         augment:
  1429           Value delta;
  1430           int pa, u, v = start;
  1431           for (int i = 0; i != int(path.size()); ++i) {
  1432             pa = path[i];
  1433             u = v;
  1434             v = _target[pa];
  1435             path_arc[pa] = false;
  1436             delta = std::min(_res_cap[pa], _excess[u]);
  1437             _res_cap[pa] -= delta;
  1438             _res_cap[_reverse[pa]] += delta;
  1439             _excess[u] -= delta;
  1440             _excess[v] += delta;
  1441             if (_excess[v] > 0 && _excess[v] <= delta) {
  1442               _active_nodes.push_back(v);
  1443             }
  1444           }
  1445           path.clear();
  1446 
  1447           // Global update heuristic
  1448           if (relabel_cnt >= next_global_update_limit) {
  1449             globalUpdate();
  1450             next_global_update_limit += global_update_skip;
  1451           }
  1452         }
  1453 
  1454       }
  1455 
  1456     }
  1457 
  1458     /// Execute the algorithm performing push and relabel operations
  1459     void startPush() {
  1460       // Paramters for heuristics
  1461       const int PRICE_REFINEMENT_LIMIT = 2;
  1462       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1463 
  1464       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1465         (_res_node_num + _sup_node_num * _sup_node_num));
  1466       int next_global_update_limit = global_update_skip;
  1467 
  1468       // Perform cost scaling phases
  1469       BoolVector hyper(_res_node_num, false);
  1470       LargeCostVector hyper_cost(_res_node_num);
  1471       int relabel_cnt = 0;
  1472       int eps_phase_cnt = 0;
  1473       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1474                                         1 : _epsilon / _alpha )
  1475       {
  1476         ++eps_phase_cnt;
  1477 
  1478         // Price refinement heuristic
  1479         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1480           if (priceRefinement()) continue;
  1481         }
  1482 
  1483         // Initialize current phase
  1484         initPhase();
  1485 
  1486         // Perform push and relabel operations
  1487         while (_active_nodes.size() > 0) {
  1488           LargeCost min_red_cost, rc, pi_n;
  1489           Value delta;
  1490           int n, t, a, last_out = _res_arc_num;
  1491 
  1492         next_node:
  1493           // Select an active node (FIFO selection)
  1494           n = _active_nodes.front();
  1495           last_out = _first_out[n+1];
  1496           pi_n = _pi[n];
  1497 
  1498           // Perform push operations if there are admissible arcs
  1499           if (_excess[n] > 0) {
  1500             for (a = _next_out[n]; a != last_out; ++a) {
  1501               if (_res_cap[a] > 0 &&
  1502                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1503                 delta = std::min(_res_cap[a], _excess[n]);
  1504                 t = _target[a];
  1505 
  1506                 // Push-look-ahead heuristic
  1507                 Value ahead = -_excess[t];
  1508                 int last_out_t = _first_out[t+1];
  1509                 LargeCost pi_t = _pi[t];
  1510                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1511                   if (_res_cap[ta] > 0 &&
  1512                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1513                     ahead += _res_cap[ta];
  1514                   if (ahead >= delta) break;
  1515                 }
  1516                 if (ahead < 0) ahead = 0;
  1517 
  1518                 // Push flow along the arc
  1519                 if (ahead < delta && !hyper[t]) {
  1520                   _res_cap[a] -= ahead;
  1521                   _res_cap[_reverse[a]] += ahead;
  1522                   _excess[n] -= ahead;
  1523                   _excess[t] += ahead;
  1524                   _active_nodes.push_front(t);
  1525                   hyper[t] = true;
  1526                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1527                   _next_out[n] = a;
  1528                   goto next_node;
  1529                 } else {
  1530                   _res_cap[a] -= delta;
  1531                   _res_cap[_reverse[a]] += delta;
  1532                   _excess[n] -= delta;
  1533                   _excess[t] += delta;
  1534                   if (_excess[t] > 0 && _excess[t] <= delta)
  1535                     _active_nodes.push_back(t);
  1536                 }
  1537 
  1538                 if (_excess[n] == 0) {
  1539                   _next_out[n] = a;
  1540                   goto remove_nodes;
  1541                 }
  1542               }
  1543             }
  1544             _next_out[n] = a;
  1545           }
  1546 
  1547           // Relabel the node if it is still active (or hyper)
  1548           if (_excess[n] > 0 || hyper[n]) {
  1549              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1550                std::numeric_limits<LargeCost>::max();
  1551             for (int a = _first_out[n]; a != last_out; ++a) {
  1552               if (_res_cap[a] > 0) {
  1553                 rc = _cost[a] + pi_n - _pi[_target[a]];
  1554                 if (rc < min_red_cost) {
  1555                   min_red_cost = rc;
  1556                 }
  1557               }
  1558             }
  1559             _pi[n] -= min_red_cost + _epsilon;
  1560             _next_out[n] = _first_out[n];
  1561             hyper[n] = false;
  1562             ++relabel_cnt;
  1563           }
  1564 
  1565           // Remove nodes that are not active nor hyper
  1566         remove_nodes:
  1567           while ( _active_nodes.size() > 0 &&
  1568                   _excess[_active_nodes.front()] <= 0 &&
  1569                   !hyper[_active_nodes.front()] ) {
  1570             _active_nodes.pop_front();
  1571           }
  1572 
  1573           // Global update heuristic
  1574           if (relabel_cnt >= next_global_update_limit) {
  1575             globalUpdate();
  1576             for (int u = 0; u != _res_node_num; ++u)
  1577               hyper[u] = false;
  1578             next_global_update_limit += global_update_skip;
  1579           }
  1580         }
  1581       }
  1582     }
  1583 
  1584   }; //class CostScaling
  1585 
  1586   ///@}
  1587 
  1588 } //namespace lemon
  1589 
  1590 #endif //LEMON_COST_SCALING_H