rev |
line source |
alpar@9
|
1 /* ASSIGN, Assignment Problem */
|
alpar@9
|
2
|
alpar@9
|
3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
|
alpar@9
|
4
|
alpar@9
|
5 /* The assignment problem is one of the fundamental combinatorial
|
alpar@9
|
6 optimization problems.
|
alpar@9
|
7
|
alpar@9
|
8 In its most general form, the problem is as follows:
|
alpar@9
|
9
|
alpar@9
|
10 There are a number of agents and a number of tasks. Any agent can be
|
alpar@9
|
11 assigned to perform any task, incurring some cost that may vary
|
alpar@9
|
12 depending on the agent-task assignment. It is required to perform all
|
alpar@9
|
13 tasks by assigning exactly one agent to each task in such a way that
|
alpar@9
|
14 the total cost of the assignment is minimized.
|
alpar@9
|
15
|
alpar@9
|
16 (From Wikipedia, the free encyclopedia.) */
|
alpar@9
|
17
|
alpar@9
|
18 param m, integer, > 0;
|
alpar@9
|
19 /* number of agents */
|
alpar@9
|
20
|
alpar@9
|
21 param n, integer, > 0;
|
alpar@9
|
22 /* number of tasks */
|
alpar@9
|
23
|
alpar@9
|
24 set I := 1..m;
|
alpar@9
|
25 /* set of agents */
|
alpar@9
|
26
|
alpar@9
|
27 set J := 1..n;
|
alpar@9
|
28 /* set of tasks */
|
alpar@9
|
29
|
alpar@9
|
30 param c{i in I, j in J}, >= 0;
|
alpar@9
|
31 /* cost of allocating task j to agent i */
|
alpar@9
|
32
|
alpar@9
|
33 var x{i in I, j in J}, >= 0;
|
alpar@9
|
34 /* x[i,j] = 1 means task j is assigned to agent i
|
alpar@9
|
35 note that variables x[i,j] are binary, however, there is no need to
|
alpar@9
|
36 declare them so due to the totally unimodular constraint matrix */
|
alpar@9
|
37
|
alpar@9
|
38 s.t. phi{i in I}: sum{j in J} x[i,j] <= 1;
|
alpar@9
|
39 /* each agent can perform at most one task */
|
alpar@9
|
40
|
alpar@9
|
41 s.t. psi{j in J}: sum{i in I} x[i,j] = 1;
|
alpar@9
|
42 /* each task must be assigned exactly to one agent */
|
alpar@9
|
43
|
alpar@9
|
44 minimize obj: sum{i in I, j in J} c[i,j] * x[i,j];
|
alpar@9
|
45 /* the objective is to find a cheapest assignment */
|
alpar@9
|
46
|
alpar@9
|
47 solve;
|
alpar@9
|
48
|
alpar@9
|
49 printf "\n";
|
alpar@9
|
50 printf "Agent Task Cost\n";
|
alpar@9
|
51 printf{i in I} "%5d %5d %10g\n", i, sum{j in J} j * x[i,j],
|
alpar@9
|
52 sum{j in J} c[i,j] * x[i,j];
|
alpar@9
|
53 printf "----------------------\n";
|
alpar@9
|
54 printf " Total: %10g\n", sum{i in I, j in J} c[i,j] * x[i,j];
|
alpar@9
|
55 printf "\n";
|
alpar@9
|
56
|
alpar@9
|
57 data;
|
alpar@9
|
58
|
alpar@9
|
59 /* These data correspond to an example from [Christofides]. */
|
alpar@9
|
60
|
alpar@9
|
61 /* Optimal solution is 76 */
|
alpar@9
|
62
|
alpar@9
|
63 param m := 8;
|
alpar@9
|
64
|
alpar@9
|
65 param n := 8;
|
alpar@9
|
66
|
alpar@9
|
67 param c : 1 2 3 4 5 6 7 8 :=
|
alpar@9
|
68 1 13 21 20 12 8 26 22 11
|
alpar@9
|
69 2 12 36 25 41 40 11 4 8
|
alpar@9
|
70 3 35 32 13 36 26 21 13 37
|
alpar@9
|
71 4 34 54 7 8 12 22 11 40
|
alpar@9
|
72 5 21 6 45 18 24 34 12 48
|
alpar@9
|
73 6 42 19 39 15 14 16 28 46
|
alpar@9
|
74 7 16 34 38 3 34 40 22 24
|
alpar@9
|
75 8 26 20 5 17 45 31 37 43 ;
|
alpar@9
|
76
|
alpar@9
|
77 end;
|