rev |
line source |
alpar@9
|
1 /* A solver for the Japanese number-puzzle Hashiwokakero
|
alpar@9
|
2 * (http://en.wikipedia.org/wiki/Hashiwokakero)
|
alpar@9
|
3 *
|
alpar@9
|
4 * Sebastian Nowozin <nowozin@gmail.com>, 13th January 2009
|
alpar@9
|
5 */
|
alpar@9
|
6
|
alpar@9
|
7 param n := 25;
|
alpar@9
|
8 set rows := 1..n;
|
alpar@9
|
9 set cols := 1..n;
|
alpar@9
|
10 param givens{rows, cols}, integer, >= 0, <= 8, default 0;
|
alpar@9
|
11
|
alpar@9
|
12 /* Set of vertices as (row,col) coordinates */
|
alpar@9
|
13 set V := { (i,j) in { rows, cols }: givens[i,j] != 0 };
|
alpar@9
|
14
|
alpar@9
|
15 /* Set of feasible horizontal edges from (i,j) to (k,l) rightwards */
|
alpar@9
|
16 set Eh := { (i,j,k,l) in { V, V }:
|
alpar@9
|
17 i = k and j < l and # Same row and left to right
|
alpar@9
|
18 card({ (s,t) in V: s = i and t > j and t < l }) = 0 # No vertex inbetween
|
alpar@9
|
19 };
|
alpar@9
|
20
|
alpar@9
|
21 /* Set of feasible vertical edges from (i,j) to (k,l) downwards */
|
alpar@9
|
22 set Ev := { (i,j,k,l) in { V, V }:
|
alpar@9
|
23 j = l and i < k and # Same column and top to bottom
|
alpar@9
|
24 card({ (s,t) in V: t = j and s > i and s < k }) = 0 # No vertex inbetween
|
alpar@9
|
25 };
|
alpar@9
|
26
|
alpar@9
|
27 set E := Eh union Ev;
|
alpar@9
|
28
|
alpar@9
|
29 /* Indicators: use edge once/twice */
|
alpar@9
|
30 var xe1{E}, binary;
|
alpar@9
|
31 var xe2{E}, binary;
|
alpar@9
|
32
|
alpar@9
|
33 /* Constraint: Do not use edge or do use once or do use twice */
|
alpar@9
|
34 s.t. edge_sel{(i,j,k,l) in E}:
|
alpar@9
|
35 xe1[i,j,k,l] + xe2[i,j,k,l] <= 1;
|
alpar@9
|
36
|
alpar@9
|
37 /* Constraint: There must be as many edges used as the node value */
|
alpar@9
|
38 s.t. satisfy_vertex_demand{(s,t) in V}:
|
alpar@9
|
39 sum{(i,j,k,l) in E: (i = s and j = t) or (k = s and l = t)}
|
alpar@9
|
40 (xe1[i,j,k,l] + 2.0*xe2[i,j,k,l]) = givens[s,t];
|
alpar@9
|
41
|
alpar@9
|
42 /* Constraint: No crossings */
|
alpar@9
|
43 s.t. no_crossing1{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
|
alpar@9
|
44 s < i and u > i and j < t and l > t}:
|
alpar@9
|
45 xe1[i,j,k,l] + xe1[s,t,u,v] <= 1;
|
alpar@9
|
46 s.t. no_crossing2{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
|
alpar@9
|
47 s < i and u > i and j < t and l > t}:
|
alpar@9
|
48 xe1[i,j,k,l] + xe2[s,t,u,v] <= 1;
|
alpar@9
|
49 s.t. no_crossing3{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
|
alpar@9
|
50 s < i and u > i and j < t and l > t}:
|
alpar@9
|
51 xe2[i,j,k,l] + xe1[s,t,u,v] <= 1;
|
alpar@9
|
52 s.t. no_crossing4{(i,j,k,l) in Eh, (s,t,u,v) in Ev:
|
alpar@9
|
53 s < i and u > i and j < t and l > t}:
|
alpar@9
|
54 xe2[i,j,k,l] + xe2[s,t,u,v] <= 1;
|
alpar@9
|
55
|
alpar@9
|
56
|
alpar@9
|
57 /* Model connectivity by auxiliary network flow problem:
|
alpar@9
|
58 * One vertex becomes a target node and all other vertices send a unit flow
|
alpar@9
|
59 * to it. The edge selection variables xe1/xe2 are VUB constraints and
|
alpar@9
|
60 * therefore xe1/xe2 select the feasible graph for the max-flow problems.
|
alpar@9
|
61 */
|
alpar@9
|
62 set node_target := { (s,t) in V:
|
alpar@9
|
63 card({ (i,j) in V: i < s or (i = s and j < t) }) = 0};
|
alpar@9
|
64 set node_sources := { (s,t) in V: (s,t) not in node_target };
|
alpar@9
|
65
|
alpar@9
|
66 var flow_forward{ E }, >= 0;
|
alpar@9
|
67 var flow_backward{ E }, >= 0;
|
alpar@9
|
68 s.t. flow_conservation{ (s,t) in node_target, (p,q) in V }:
|
alpar@9
|
69 /* All incoming flows */
|
alpar@9
|
70 - sum{(i,j,k,l) in E: k = p and l = q} flow_forward[i,j,k,l]
|
alpar@9
|
71 - sum{(i,j,k,l) in E: i = p and j = q} flow_backward[i,j,k,l]
|
alpar@9
|
72 /* All outgoing flows */
|
alpar@9
|
73 + sum{(i,j,k,l) in E: k = p and l = q} flow_backward[i,j,k,l]
|
alpar@9
|
74 + sum{(i,j,k,l) in E: i = p and j = q} flow_forward[i,j,k,l]
|
alpar@9
|
75 = 0 + (if (p = s and q = t) then card(node_sources) else -1);
|
alpar@9
|
76
|
alpar@9
|
77 /* Variable-Upper-Bound (VUB) constraints: xe1/xe2 bound the flows.
|
alpar@9
|
78 */
|
alpar@9
|
79 s.t. connectivity_vub1{(i,j,k,l) in E}:
|
alpar@9
|
80 flow_forward[i,j,k,l] <= card(node_sources)*(xe1[i,j,k,l] + xe2[i,j,k,l]);
|
alpar@9
|
81 s.t. connectivity_vub2{(i,j,k,l) in E}:
|
alpar@9
|
82 flow_backward[i,j,k,l] <= card(node_sources)*(xe1[i,j,k,l] + xe2[i,j,k,l]);
|
alpar@9
|
83
|
alpar@9
|
84 /* A feasible solution is enough
|
alpar@9
|
85 */
|
alpar@9
|
86 minimize cost: 0;
|
alpar@9
|
87
|
alpar@9
|
88 solve;
|
alpar@9
|
89
|
alpar@9
|
90 /* Output solution graphically */
|
alpar@9
|
91 printf "\nSolution:\n";
|
alpar@9
|
92 for { row in rows } {
|
alpar@9
|
93 for { col in cols } {
|
alpar@9
|
94 /* First print this cell information: givens or space */
|
alpar@9
|
95 printf{0..0: givens[row,col] != 0} "%d", givens[row,col];
|
alpar@9
|
96 printf{0..0: givens[row,col] = 0 and
|
alpar@9
|
97 card({(i,j,k,l) in Eh: i = row and col >= j and col < l and
|
alpar@9
|
98 xe1[i,j,k,l] = 1}) = 1} "-";
|
alpar@9
|
99 printf{0..0: givens[row,col] = 0 and
|
alpar@9
|
100 card({(i,j,k,l) in Eh: i = row and col >= j and col < l and
|
alpar@9
|
101 xe2[i,j,k,l] = 1}) = 1} "=";
|
alpar@9
|
102 printf{0..0: givens[row,col] = 0
|
alpar@9
|
103 and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and
|
alpar@9
|
104 xe1[i,j,k,l] = 1}) = 1} "|";
|
alpar@9
|
105 printf{0..0: givens[row,col] = 0
|
alpar@9
|
106 and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and
|
alpar@9
|
107 xe2[i,j,k,l] = 1}) = 1} '"';
|
alpar@9
|
108 printf{0..0: givens[row,col] = 0
|
alpar@9
|
109 and card({(i,j,k,l) in Eh: i = row and col >= j and col < l and
|
alpar@9
|
110 (xe1[i,j,k,l] = 1 or xe2[i,j,k,l] = 1)}) = 0
|
alpar@9
|
111 and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and
|
alpar@9
|
112 (xe1[i,j,k,l] = 1 or xe2[i,j,k,l] = 1)}) = 0} " ";
|
alpar@9
|
113
|
alpar@9
|
114 /* Now print any edges */
|
alpar@9
|
115 printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and xe1[i,j,k,l] = 1} "-";
|
alpar@9
|
116 printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and xe2[i,j,k,l] = 1} "=";
|
alpar@9
|
117
|
alpar@9
|
118 printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and
|
alpar@9
|
119 xe1[i,j,k,l] = 0 and xe2[i,j,k,l] = 0} " ";
|
alpar@9
|
120 printf{0..0: card({(i,j,k,l) in Eh: i = row and col >= j and col < l}) = 0} " ";
|
alpar@9
|
121 }
|
alpar@9
|
122 printf "\n";
|
alpar@9
|
123 for { col in cols } {
|
alpar@9
|
124 printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and xe1[i,j,k,l] = 1} "|";
|
alpar@9
|
125 printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and xe2[i,j,k,l] = 1} '"';
|
alpar@9
|
126 printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and
|
alpar@9
|
127 xe1[i,j,k,l] = 0 and xe2[i,j,k,l] = 0} " ";
|
alpar@9
|
128 /* No vertical edges: skip also a field */
|
alpar@9
|
129 printf{0..0: card({(i,j,k,l) in Ev: j = col and row >= i and row < k}) = 0} " ";
|
alpar@9
|
130 printf " ";
|
alpar@9
|
131 }
|
alpar@9
|
132 printf "\n";
|
alpar@9
|
133 }
|
alpar@9
|
134
|
alpar@9
|
135 data;
|
alpar@9
|
136
|
alpar@9
|
137 /* This is a difficult 25x25 Hashiwokakero.
|
alpar@9
|
138 */
|
alpar@9
|
139 param givens : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
|
alpar@9
|
140 25 :=
|
alpar@9
|
141 1 2 . 2 . 2 . . 2 . 2 . . 2 . . . . 2 . 2 . 2 . 2 .
|
alpar@9
|
142 2 . 1 . . . . 2 . . . 4 . . 5 . 2 . . 1 . 2 . 2 . 1
|
alpar@9
|
143 3 2 . . 5 . 4 . . 3 . . . . . 1 . . 4 . 5 . 1 . 1 .
|
alpar@9
|
144 4 . . . . . . . . . . . 1 . 3 . . 1 . . . . . . . .
|
alpar@9
|
145 5 2 . . 6 . 6 . . 8 . 5 . 2 . . 3 . 5 . 7 . . 2 . .
|
alpar@9
|
146 6 . 1 . . . . . . . . . 1 . . 2 . . . . . 1 . . . 3
|
alpar@9
|
147 7 2 . . . . 5 . . 6 . 4 . . 2 . . . 2 . 5 . 4 . 2 .
|
alpar@9
|
148 8 . 2 . 2 . . . . . . . . . . . 3 . . 3 . . . 1 . 2
|
alpar@9
|
149 9 . . . . . . . . . . 4 . 2 . 2 . . 1 . . . 3 . 1 .
|
alpar@9
|
150 10 2 . 3 . . 6 . . 2 . . . . . . . . . . 3 . . . . .
|
alpar@9
|
151 11 . . . . 1 . . 2 . . 5 . . 1 . 4 . 3 . . . . 2 . 4
|
alpar@9
|
152 12 . . 2 . . 1 . . . . . . 5 . 4 . . . . 4 . 3 . . .
|
alpar@9
|
153 13 2 . . . 3 . 1 . . . . . . . . 3 . . 5 . 5 . . 2 .
|
alpar@9
|
154 14 . . . . . 2 . 5 . . 7 . 5 . 3 . 1 . . 1 . . 1 . 4
|
alpar@9
|
155 15 2 . 5 . 3 . . . . 1 . 2 . 1 . . . . 2 . 4 . . 2 .
|
alpar@9
|
156 16 . . . . . 1 . . . . . . . . . . 2 . . 2 . 1 . . 3
|
alpar@9
|
157 17 2 . 6 . 6 . . 2 . . 2 . 2 . 5 . . . . . 2 . . . .
|
alpar@9
|
158 18 . . . . . 1 . . . 3 . . . . . 1 . . 1 . . 4 . 3 .
|
alpar@9
|
159 19 . . 4 . 5 . . 2 . . . 2 . . 6 . 6 . . 3 . . . . 3
|
alpar@9
|
160 20 2 . . . . . . . . . 2 . . 1 . . . . . . 1 . . 1 .
|
alpar@9
|
161 21 . . 3 . . 3 . 5 . 5 . . 4 . 6 . 7 . . 4 . 6 . . 4
|
alpar@9
|
162 22 2 . . . 3 . 5 . 2 . 1 . . . . . . . . . . . . . .
|
alpar@9
|
163 23 . . . . . . . . . 1 . . . . . . 3 . 2 . . 5 . . 5
|
alpar@9
|
164 24 2 . 3 . 3 . 5 . 4 . 3 . 3 . 4 . . 2 . 2 . . . 1 .
|
alpar@9
|
165 25 . 1 . 2 . 2 . . . 2 . 2 . . . 2 . . . . 2 . 2 . 2
|
alpar@9
|
166 ;
|
alpar@9
|
167
|
alpar@9
|
168 end;
|