rev |
line source |
alpar@9
|
1 /* glpapi07.c (exact simplex solver) */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpapi.h"
|
alpar@9
|
26 #include "glpssx.h"
|
alpar@9
|
27
|
alpar@9
|
28 /***********************************************************************
|
alpar@9
|
29 * NAME
|
alpar@9
|
30 *
|
alpar@9
|
31 * glp_exact - solve LP problem in exact arithmetic
|
alpar@9
|
32 *
|
alpar@9
|
33 * SYNOPSIS
|
alpar@9
|
34 *
|
alpar@9
|
35 * int glp_exact(glp_prob *lp, const glp_smcp *parm);
|
alpar@9
|
36 *
|
alpar@9
|
37 * DESCRIPTION
|
alpar@9
|
38 *
|
alpar@9
|
39 * The routine glp_exact is a tentative implementation of the primal
|
alpar@9
|
40 * two-phase simplex method based on exact (rational) arithmetic. It is
|
alpar@9
|
41 * similar to the routine glp_simplex, however, for all internal
|
alpar@9
|
42 * computations it uses arithmetic of rational numbers, which is exact
|
alpar@9
|
43 * in mathematical sense, i.e. free of round-off errors unlike floating
|
alpar@9
|
44 * point arithmetic.
|
alpar@9
|
45 *
|
alpar@9
|
46 * Note that the routine glp_exact uses inly two control parameters
|
alpar@9
|
47 * passed in the structure glp_smcp, namely, it_lim and tm_lim.
|
alpar@9
|
48 *
|
alpar@9
|
49 * RETURNS
|
alpar@9
|
50 *
|
alpar@9
|
51 * 0 The LP problem instance has been successfully solved. This code
|
alpar@9
|
52 * does not necessarily mean that the solver has found optimal
|
alpar@9
|
53 * solution. It only means that the solution process was successful.
|
alpar@9
|
54 *
|
alpar@9
|
55 * GLP_EBADB
|
alpar@9
|
56 * Unable to start the search, because the initial basis specified
|
alpar@9
|
57 * in the problem object is invalid--the number of basic (auxiliary
|
alpar@9
|
58 * and structural) variables is not the same as the number of rows in
|
alpar@9
|
59 * the problem object.
|
alpar@9
|
60 *
|
alpar@9
|
61 * GLP_ESING
|
alpar@9
|
62 * Unable to start the search, because the basis matrix correspodning
|
alpar@9
|
63 * to the initial basis is exactly singular.
|
alpar@9
|
64 *
|
alpar@9
|
65 * GLP_EBOUND
|
alpar@9
|
66 * Unable to start the search, because some double-bounded variables
|
alpar@9
|
67 * have incorrect bounds.
|
alpar@9
|
68 *
|
alpar@9
|
69 * GLP_EFAIL
|
alpar@9
|
70 * The problem has no rows/columns.
|
alpar@9
|
71 *
|
alpar@9
|
72 * GLP_EITLIM
|
alpar@9
|
73 * The search was prematurely terminated, because the simplex
|
alpar@9
|
74 * iteration limit has been exceeded.
|
alpar@9
|
75 *
|
alpar@9
|
76 * GLP_ETMLIM
|
alpar@9
|
77 * The search was prematurely terminated, because the time limit has
|
alpar@9
|
78 * been exceeded. */
|
alpar@9
|
79
|
alpar@9
|
80 static void set_d_eps(mpq_t x, double val)
|
alpar@9
|
81 { /* convert double val to rational x obtaining a more adequate
|
alpar@9
|
82 fraction than provided by mpq_set_d due to allowing a small
|
alpar@9
|
83 approximation error specified by a given relative tolerance;
|
alpar@9
|
84 for example, mpq_set_d would give the following
|
alpar@9
|
85 1/3 ~= 0.333333333333333314829616256247391... ->
|
alpar@9
|
86 -> 6004799503160661/18014398509481984
|
alpar@9
|
87 while this routine gives exactly 1/3 */
|
alpar@9
|
88 int s, n, j;
|
alpar@9
|
89 double f, p, q, eps = 1e-9;
|
alpar@9
|
90 mpq_t temp;
|
alpar@9
|
91 xassert(-DBL_MAX <= val && val <= +DBL_MAX);
|
alpar@9
|
92 #if 1 /* 30/VII-2008 */
|
alpar@9
|
93 if (val == floor(val))
|
alpar@9
|
94 { /* if val is integral, do not approximate */
|
alpar@9
|
95 mpq_set_d(x, val);
|
alpar@9
|
96 goto done;
|
alpar@9
|
97 }
|
alpar@9
|
98 #endif
|
alpar@9
|
99 if (val > 0.0)
|
alpar@9
|
100 s = +1;
|
alpar@9
|
101 else if (val < 0.0)
|
alpar@9
|
102 s = -1;
|
alpar@9
|
103 else
|
alpar@9
|
104 { mpq_set_si(x, 0, 1);
|
alpar@9
|
105 goto done;
|
alpar@9
|
106 }
|
alpar@9
|
107 f = frexp(fabs(val), &n);
|
alpar@9
|
108 /* |val| = f * 2^n, where 0.5 <= f < 1.0 */
|
alpar@9
|
109 fp2rat(f, 0.1 * eps, &p, &q);
|
alpar@9
|
110 /* f ~= p / q, where p and q are integers */
|
alpar@9
|
111 mpq_init(temp);
|
alpar@9
|
112 mpq_set_d(x, p);
|
alpar@9
|
113 mpq_set_d(temp, q);
|
alpar@9
|
114 mpq_div(x, x, temp);
|
alpar@9
|
115 mpq_set_si(temp, 1, 1);
|
alpar@9
|
116 for (j = 1; j <= abs(n); j++)
|
alpar@9
|
117 mpq_add(temp, temp, temp);
|
alpar@9
|
118 if (n > 0)
|
alpar@9
|
119 mpq_mul(x, x, temp);
|
alpar@9
|
120 else if (n < 0)
|
alpar@9
|
121 mpq_div(x, x, temp);
|
alpar@9
|
122 mpq_clear(temp);
|
alpar@9
|
123 if (s < 0) mpq_neg(x, x);
|
alpar@9
|
124 /* check that the desired tolerance has been attained */
|
alpar@9
|
125 xassert(fabs(val - mpq_get_d(x)) <= eps * (1.0 + fabs(val)));
|
alpar@9
|
126 done: return;
|
alpar@9
|
127 }
|
alpar@9
|
128
|
alpar@9
|
129 static void load_data(SSX *ssx, LPX *lp)
|
alpar@9
|
130 { /* load LP problem data into simplex solver workspace */
|
alpar@9
|
131 int m = ssx->m;
|
alpar@9
|
132 int n = ssx->n;
|
alpar@9
|
133 int nnz = ssx->A_ptr[n+1]-1;
|
alpar@9
|
134 int j, k, type, loc, len, *ind;
|
alpar@9
|
135 double lb, ub, coef, *val;
|
alpar@9
|
136 xassert(lpx_get_num_rows(lp) == m);
|
alpar@9
|
137 xassert(lpx_get_num_cols(lp) == n);
|
alpar@9
|
138 xassert(lpx_get_num_nz(lp) == nnz);
|
alpar@9
|
139 /* types and bounds of rows and columns */
|
alpar@9
|
140 for (k = 1; k <= m+n; k++)
|
alpar@9
|
141 { if (k <= m)
|
alpar@9
|
142 { type = lpx_get_row_type(lp, k);
|
alpar@9
|
143 lb = lpx_get_row_lb(lp, k);
|
alpar@9
|
144 ub = lpx_get_row_ub(lp, k);
|
alpar@9
|
145 }
|
alpar@9
|
146 else
|
alpar@9
|
147 { type = lpx_get_col_type(lp, k-m);
|
alpar@9
|
148 lb = lpx_get_col_lb(lp, k-m);
|
alpar@9
|
149 ub = lpx_get_col_ub(lp, k-m);
|
alpar@9
|
150 }
|
alpar@9
|
151 switch (type)
|
alpar@9
|
152 { case LPX_FR: type = SSX_FR; break;
|
alpar@9
|
153 case LPX_LO: type = SSX_LO; break;
|
alpar@9
|
154 case LPX_UP: type = SSX_UP; break;
|
alpar@9
|
155 case LPX_DB: type = SSX_DB; break;
|
alpar@9
|
156 case LPX_FX: type = SSX_FX; break;
|
alpar@9
|
157 default: xassert(type != type);
|
alpar@9
|
158 }
|
alpar@9
|
159 ssx->type[k] = type;
|
alpar@9
|
160 set_d_eps(ssx->lb[k], lb);
|
alpar@9
|
161 set_d_eps(ssx->ub[k], ub);
|
alpar@9
|
162 }
|
alpar@9
|
163 /* optimization direction */
|
alpar@9
|
164 switch (lpx_get_obj_dir(lp))
|
alpar@9
|
165 { case LPX_MIN: ssx->dir = SSX_MIN; break;
|
alpar@9
|
166 case LPX_MAX: ssx->dir = SSX_MAX; break;
|
alpar@9
|
167 default: xassert(lp != lp);
|
alpar@9
|
168 }
|
alpar@9
|
169 /* objective coefficients */
|
alpar@9
|
170 for (k = 0; k <= m+n; k++)
|
alpar@9
|
171 { if (k == 0)
|
alpar@9
|
172 coef = lpx_get_obj_coef(lp, 0);
|
alpar@9
|
173 else if (k <= m)
|
alpar@9
|
174 coef = 0.0;
|
alpar@9
|
175 else
|
alpar@9
|
176 coef = lpx_get_obj_coef(lp, k-m);
|
alpar@9
|
177 set_d_eps(ssx->coef[k], coef);
|
alpar@9
|
178 }
|
alpar@9
|
179 /* constraint coefficients */
|
alpar@9
|
180 ind = xcalloc(1+m, sizeof(int));
|
alpar@9
|
181 val = xcalloc(1+m, sizeof(double));
|
alpar@9
|
182 loc = 0;
|
alpar@9
|
183 for (j = 1; j <= n; j++)
|
alpar@9
|
184 { ssx->A_ptr[j] = loc+1;
|
alpar@9
|
185 len = lpx_get_mat_col(lp, j, ind, val);
|
alpar@9
|
186 for (k = 1; k <= len; k++)
|
alpar@9
|
187 { loc++;
|
alpar@9
|
188 ssx->A_ind[loc] = ind[k];
|
alpar@9
|
189 set_d_eps(ssx->A_val[loc], val[k]);
|
alpar@9
|
190 }
|
alpar@9
|
191 }
|
alpar@9
|
192 xassert(loc == nnz);
|
alpar@9
|
193 xfree(ind);
|
alpar@9
|
194 xfree(val);
|
alpar@9
|
195 return;
|
alpar@9
|
196 }
|
alpar@9
|
197
|
alpar@9
|
198 static int load_basis(SSX *ssx, LPX *lp)
|
alpar@9
|
199 { /* load current LP basis into simplex solver workspace */
|
alpar@9
|
200 int m = ssx->m;
|
alpar@9
|
201 int n = ssx->n;
|
alpar@9
|
202 int *type = ssx->type;
|
alpar@9
|
203 int *stat = ssx->stat;
|
alpar@9
|
204 int *Q_row = ssx->Q_row;
|
alpar@9
|
205 int *Q_col = ssx->Q_col;
|
alpar@9
|
206 int i, j, k;
|
alpar@9
|
207 xassert(lpx_get_num_rows(lp) == m);
|
alpar@9
|
208 xassert(lpx_get_num_cols(lp) == n);
|
alpar@9
|
209 /* statuses of rows and columns */
|
alpar@9
|
210 for (k = 1; k <= m+n; k++)
|
alpar@9
|
211 { if (k <= m)
|
alpar@9
|
212 stat[k] = lpx_get_row_stat(lp, k);
|
alpar@9
|
213 else
|
alpar@9
|
214 stat[k] = lpx_get_col_stat(lp, k-m);
|
alpar@9
|
215 switch (stat[k])
|
alpar@9
|
216 { case LPX_BS:
|
alpar@9
|
217 stat[k] = SSX_BS;
|
alpar@9
|
218 break;
|
alpar@9
|
219 case LPX_NL:
|
alpar@9
|
220 stat[k] = SSX_NL;
|
alpar@9
|
221 xassert(type[k] == SSX_LO || type[k] == SSX_DB);
|
alpar@9
|
222 break;
|
alpar@9
|
223 case LPX_NU:
|
alpar@9
|
224 stat[k] = SSX_NU;
|
alpar@9
|
225 xassert(type[k] == SSX_UP || type[k] == SSX_DB);
|
alpar@9
|
226 break;
|
alpar@9
|
227 case LPX_NF:
|
alpar@9
|
228 stat[k] = SSX_NF;
|
alpar@9
|
229 xassert(type[k] == SSX_FR);
|
alpar@9
|
230 break;
|
alpar@9
|
231 case LPX_NS:
|
alpar@9
|
232 stat[k] = SSX_NS;
|
alpar@9
|
233 xassert(type[k] == SSX_FX);
|
alpar@9
|
234 break;
|
alpar@9
|
235 default:
|
alpar@9
|
236 xassert(stat != stat);
|
alpar@9
|
237 }
|
alpar@9
|
238 }
|
alpar@9
|
239 /* build permutation matix Q */
|
alpar@9
|
240 i = j = 0;
|
alpar@9
|
241 for (k = 1; k <= m+n; k++)
|
alpar@9
|
242 { if (stat[k] == SSX_BS)
|
alpar@9
|
243 { i++;
|
alpar@9
|
244 if (i > m) return 1;
|
alpar@9
|
245 Q_row[k] = i, Q_col[i] = k;
|
alpar@9
|
246 }
|
alpar@9
|
247 else
|
alpar@9
|
248 { j++;
|
alpar@9
|
249 if (j > n) return 1;
|
alpar@9
|
250 Q_row[k] = m+j, Q_col[m+j] = k;
|
alpar@9
|
251 }
|
alpar@9
|
252 }
|
alpar@9
|
253 xassert(i == m && j == n);
|
alpar@9
|
254 return 0;
|
alpar@9
|
255 }
|
alpar@9
|
256
|
alpar@9
|
257 int glp_exact(glp_prob *lp, const glp_smcp *parm)
|
alpar@9
|
258 { glp_smcp _parm;
|
alpar@9
|
259 SSX *ssx;
|
alpar@9
|
260 int m = lpx_get_num_rows(lp);
|
alpar@9
|
261 int n = lpx_get_num_cols(lp);
|
alpar@9
|
262 int nnz = lpx_get_num_nz(lp);
|
alpar@9
|
263 int i, j, k, type, pst, dst, ret, *stat;
|
alpar@9
|
264 double lb, ub, *prim, *dual, sum;
|
alpar@9
|
265 if (parm == NULL)
|
alpar@9
|
266 parm = &_parm, glp_init_smcp((glp_smcp *)parm);
|
alpar@9
|
267 /* check control parameters */
|
alpar@9
|
268 if (parm->it_lim < 0)
|
alpar@9
|
269 xerror("glp_exact: it_lim = %d; invalid parameter\n",
|
alpar@9
|
270 parm->it_lim);
|
alpar@9
|
271 if (parm->tm_lim < 0)
|
alpar@9
|
272 xerror("glp_exact: tm_lim = %d; invalid parameter\n",
|
alpar@9
|
273 parm->tm_lim);
|
alpar@9
|
274 /* the problem must have at least one row and one column */
|
alpar@9
|
275 if (!(m > 0 && n > 0))
|
alpar@9
|
276 { xprintf("glp_exact: problem has no rows/columns\n");
|
alpar@9
|
277 return GLP_EFAIL;
|
alpar@9
|
278 }
|
alpar@9
|
279 #if 1
|
alpar@9
|
280 /* basic solution is currently undefined */
|
alpar@9
|
281 lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
|
alpar@9
|
282 lp->obj_val = 0.0;
|
alpar@9
|
283 lp->some = 0;
|
alpar@9
|
284 #endif
|
alpar@9
|
285 /* check that all double-bounded variables have correct bounds */
|
alpar@9
|
286 for (k = 1; k <= m+n; k++)
|
alpar@9
|
287 { if (k <= m)
|
alpar@9
|
288 { type = lpx_get_row_type(lp, k);
|
alpar@9
|
289 lb = lpx_get_row_lb(lp, k);
|
alpar@9
|
290 ub = lpx_get_row_ub(lp, k);
|
alpar@9
|
291 }
|
alpar@9
|
292 else
|
alpar@9
|
293 { type = lpx_get_col_type(lp, k-m);
|
alpar@9
|
294 lb = lpx_get_col_lb(lp, k-m);
|
alpar@9
|
295 ub = lpx_get_col_ub(lp, k-m);
|
alpar@9
|
296 }
|
alpar@9
|
297 if (type == LPX_DB && lb >= ub)
|
alpar@9
|
298 { xprintf("glp_exact: %s %d has invalid bounds\n",
|
alpar@9
|
299 k <= m ? "row" : "column", k <= m ? k : k-m);
|
alpar@9
|
300 return GLP_EBOUND;
|
alpar@9
|
301 }
|
alpar@9
|
302 }
|
alpar@9
|
303 /* create the simplex solver workspace */
|
alpar@9
|
304 xprintf("glp_exact: %d rows, %d columns, %d non-zeros\n",
|
alpar@9
|
305 m, n, nnz);
|
alpar@9
|
306 #ifdef HAVE_GMP
|
alpar@9
|
307 xprintf("GNU MP bignum library is being used\n");
|
alpar@9
|
308 #else
|
alpar@9
|
309 xprintf("GLPK bignum module is being used\n");
|
alpar@9
|
310 xprintf("(Consider installing GNU MP to attain a much better perf"
|
alpar@9
|
311 "ormance.)\n");
|
alpar@9
|
312 #endif
|
alpar@9
|
313 ssx = ssx_create(m, n, nnz);
|
alpar@9
|
314 /* load LP problem data into the workspace */
|
alpar@9
|
315 load_data(ssx, lp);
|
alpar@9
|
316 /* load current LP basis into the workspace */
|
alpar@9
|
317 if (load_basis(ssx, lp))
|
alpar@9
|
318 { xprintf("glp_exact: initial LP basis is invalid\n");
|
alpar@9
|
319 ret = GLP_EBADB;
|
alpar@9
|
320 goto done;
|
alpar@9
|
321 }
|
alpar@9
|
322 /* inherit some control parameters from the LP object */
|
alpar@9
|
323 #if 0
|
alpar@9
|
324 ssx->it_lim = lpx_get_int_parm(lp, LPX_K_ITLIM);
|
alpar@9
|
325 ssx->it_cnt = lpx_get_int_parm(lp, LPX_K_ITCNT);
|
alpar@9
|
326 ssx->tm_lim = lpx_get_real_parm(lp, LPX_K_TMLIM);
|
alpar@9
|
327 #else
|
alpar@9
|
328 ssx->it_lim = parm->it_lim;
|
alpar@9
|
329 ssx->it_cnt = lp->it_cnt;
|
alpar@9
|
330 ssx->tm_lim = (double)parm->tm_lim / 1000.0;
|
alpar@9
|
331 #endif
|
alpar@9
|
332 ssx->out_frq = 5.0;
|
alpar@9
|
333 ssx->tm_beg = xtime();
|
alpar@9
|
334 ssx->tm_lag = xlset(0);
|
alpar@9
|
335 /* solve LP */
|
alpar@9
|
336 ret = ssx_driver(ssx);
|
alpar@9
|
337 /* copy back some statistics to the LP object */
|
alpar@9
|
338 #if 0
|
alpar@9
|
339 lpx_set_int_parm(lp, LPX_K_ITLIM, ssx->it_lim);
|
alpar@9
|
340 lpx_set_int_parm(lp, LPX_K_ITCNT, ssx->it_cnt);
|
alpar@9
|
341 lpx_set_real_parm(lp, LPX_K_TMLIM, ssx->tm_lim);
|
alpar@9
|
342 #else
|
alpar@9
|
343 lp->it_cnt = ssx->it_cnt;
|
alpar@9
|
344 #endif
|
alpar@9
|
345 /* analyze the return code */
|
alpar@9
|
346 switch (ret)
|
alpar@9
|
347 { case 0:
|
alpar@9
|
348 /* optimal solution found */
|
alpar@9
|
349 ret = 0;
|
alpar@9
|
350 pst = LPX_P_FEAS, dst = LPX_D_FEAS;
|
alpar@9
|
351 break;
|
alpar@9
|
352 case 1:
|
alpar@9
|
353 /* problem has no feasible solution */
|
alpar@9
|
354 ret = 0;
|
alpar@9
|
355 pst = LPX_P_NOFEAS, dst = LPX_D_INFEAS;
|
alpar@9
|
356 break;
|
alpar@9
|
357 case 2:
|
alpar@9
|
358 /* problem has unbounded solution */
|
alpar@9
|
359 ret = 0;
|
alpar@9
|
360 pst = LPX_P_FEAS, dst = LPX_D_NOFEAS;
|
alpar@9
|
361 #if 1
|
alpar@9
|
362 xassert(1 <= ssx->q && ssx->q <= n);
|
alpar@9
|
363 lp->some = ssx->Q_col[m + ssx->q];
|
alpar@9
|
364 xassert(1 <= lp->some && lp->some <= m+n);
|
alpar@9
|
365 #endif
|
alpar@9
|
366 break;
|
alpar@9
|
367 case 3:
|
alpar@9
|
368 /* iteration limit exceeded (phase I) */
|
alpar@9
|
369 ret = GLP_EITLIM;
|
alpar@9
|
370 pst = LPX_P_INFEAS, dst = LPX_D_INFEAS;
|
alpar@9
|
371 break;
|
alpar@9
|
372 case 4:
|
alpar@9
|
373 /* iteration limit exceeded (phase II) */
|
alpar@9
|
374 ret = GLP_EITLIM;
|
alpar@9
|
375 pst = LPX_P_FEAS, dst = LPX_D_INFEAS;
|
alpar@9
|
376 break;
|
alpar@9
|
377 case 5:
|
alpar@9
|
378 /* time limit exceeded (phase I) */
|
alpar@9
|
379 ret = GLP_ETMLIM;
|
alpar@9
|
380 pst = LPX_P_INFEAS, dst = LPX_D_INFEAS;
|
alpar@9
|
381 break;
|
alpar@9
|
382 case 6:
|
alpar@9
|
383 /* time limit exceeded (phase II) */
|
alpar@9
|
384 ret = GLP_ETMLIM;
|
alpar@9
|
385 pst = LPX_P_FEAS, dst = LPX_D_INFEAS;
|
alpar@9
|
386 break;
|
alpar@9
|
387 case 7:
|
alpar@9
|
388 /* initial basis matrix is singular */
|
alpar@9
|
389 ret = GLP_ESING;
|
alpar@9
|
390 goto done;
|
alpar@9
|
391 default:
|
alpar@9
|
392 xassert(ret != ret);
|
alpar@9
|
393 }
|
alpar@9
|
394 /* obtain final basic solution components */
|
alpar@9
|
395 stat = xcalloc(1+m+n, sizeof(int));
|
alpar@9
|
396 prim = xcalloc(1+m+n, sizeof(double));
|
alpar@9
|
397 dual = xcalloc(1+m+n, sizeof(double));
|
alpar@9
|
398 for (k = 1; k <= m+n; k++)
|
alpar@9
|
399 { if (ssx->stat[k] == SSX_BS)
|
alpar@9
|
400 { i = ssx->Q_row[k]; /* x[k] = xB[i] */
|
alpar@9
|
401 xassert(1 <= i && i <= m);
|
alpar@9
|
402 stat[k] = LPX_BS;
|
alpar@9
|
403 prim[k] = mpq_get_d(ssx->bbar[i]);
|
alpar@9
|
404 dual[k] = 0.0;
|
alpar@9
|
405 }
|
alpar@9
|
406 else
|
alpar@9
|
407 { j = ssx->Q_row[k] - m; /* x[k] = xN[j] */
|
alpar@9
|
408 xassert(1 <= j && j <= n);
|
alpar@9
|
409 switch (ssx->stat[k])
|
alpar@9
|
410 { case SSX_NF:
|
alpar@9
|
411 stat[k] = LPX_NF;
|
alpar@9
|
412 prim[k] = 0.0;
|
alpar@9
|
413 break;
|
alpar@9
|
414 case SSX_NL:
|
alpar@9
|
415 stat[k] = LPX_NL;
|
alpar@9
|
416 prim[k] = mpq_get_d(ssx->lb[k]);
|
alpar@9
|
417 break;
|
alpar@9
|
418 case SSX_NU:
|
alpar@9
|
419 stat[k] = LPX_NU;
|
alpar@9
|
420 prim[k] = mpq_get_d(ssx->ub[k]);
|
alpar@9
|
421 break;
|
alpar@9
|
422 case SSX_NS:
|
alpar@9
|
423 stat[k] = LPX_NS;
|
alpar@9
|
424 prim[k] = mpq_get_d(ssx->lb[k]);
|
alpar@9
|
425 break;
|
alpar@9
|
426 default:
|
alpar@9
|
427 xassert(ssx != ssx);
|
alpar@9
|
428 }
|
alpar@9
|
429 dual[k] = mpq_get_d(ssx->cbar[j]);
|
alpar@9
|
430 }
|
alpar@9
|
431 }
|
alpar@9
|
432 /* and store them into the LP object */
|
alpar@9
|
433 pst = pst - LPX_P_UNDEF + GLP_UNDEF;
|
alpar@9
|
434 dst = dst - LPX_D_UNDEF + GLP_UNDEF;
|
alpar@9
|
435 for (k = 1; k <= m+n; k++)
|
alpar@9
|
436 stat[k] = stat[k] - LPX_BS + GLP_BS;
|
alpar@9
|
437 sum = lpx_get_obj_coef(lp, 0);
|
alpar@9
|
438 for (j = 1; j <= n; j++)
|
alpar@9
|
439 sum += lpx_get_obj_coef(lp, j) * prim[m+j];
|
alpar@9
|
440 lpx_put_solution(lp, 1, &pst, &dst, &sum,
|
alpar@9
|
441 &stat[0], &prim[0], &dual[0], &stat[m], &prim[m], &dual[m]);
|
alpar@9
|
442 xfree(stat);
|
alpar@9
|
443 xfree(prim);
|
alpar@9
|
444 xfree(dual);
|
alpar@9
|
445 done: /* delete the simplex solver workspace */
|
alpar@9
|
446 ssx_delete(ssx);
|
alpar@9
|
447 /* return to the application program */
|
alpar@9
|
448 return ret;
|
alpar@9
|
449 }
|
alpar@9
|
450
|
alpar@9
|
451 /* eof */
|