rev |
line source |
alpar@9
|
1 /* glpini02.c */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpapi.h"
|
alpar@9
|
26
|
alpar@9
|
27 struct var
|
alpar@9
|
28 { /* structural variable */
|
alpar@9
|
29 int j;
|
alpar@9
|
30 /* ordinal number */
|
alpar@9
|
31 double q;
|
alpar@9
|
32 /* penalty value */
|
alpar@9
|
33 };
|
alpar@9
|
34
|
alpar@9
|
35 static int fcmp(const void *ptr1, const void *ptr2)
|
alpar@9
|
36 { /* this routine is passed to the qsort() function */
|
alpar@9
|
37 struct var *col1 = (void *)ptr1, *col2 = (void *)ptr2;
|
alpar@9
|
38 if (col1->q < col2->q) return -1;
|
alpar@9
|
39 if (col1->q > col2->q) return +1;
|
alpar@9
|
40 return 0;
|
alpar@9
|
41 }
|
alpar@9
|
42
|
alpar@9
|
43 static int get_column(glp_prob *lp, int j, int ind[], double val[])
|
alpar@9
|
44 { /* Bixby's algorithm assumes that the constraint matrix is scaled
|
alpar@9
|
45 such that the maximum absolute value in every non-zero row and
|
alpar@9
|
46 column is 1 */
|
alpar@9
|
47 int k, len;
|
alpar@9
|
48 double big;
|
alpar@9
|
49 len = glp_get_mat_col(lp, j, ind, val);
|
alpar@9
|
50 big = 0.0;
|
alpar@9
|
51 for (k = 1; k <= len; k++)
|
alpar@9
|
52 if (big < fabs(val[k])) big = fabs(val[k]);
|
alpar@9
|
53 if (big == 0.0) big = 1.0;
|
alpar@9
|
54 for (k = 1; k <= len; k++) val[k] /= big;
|
alpar@9
|
55 return len;
|
alpar@9
|
56 }
|
alpar@9
|
57
|
alpar@9
|
58 static void cpx_basis(glp_prob *lp)
|
alpar@9
|
59 { /* main routine */
|
alpar@9
|
60 struct var *C, *C2, *C3, *C4;
|
alpar@9
|
61 int m, n, i, j, jk, k, l, ll, t, n2, n3, n4, type, len, *I, *r,
|
alpar@9
|
62 *ind;
|
alpar@9
|
63 double alpha, gamma, cmax, temp, *v, *val;
|
alpar@9
|
64 xprintf("Constructing initial basis...\n");
|
alpar@9
|
65 /* determine the number of rows and columns */
|
alpar@9
|
66 m = glp_get_num_rows(lp);
|
alpar@9
|
67 n = glp_get_num_cols(lp);
|
alpar@9
|
68 /* allocate working arrays */
|
alpar@9
|
69 C = xcalloc(1+n, sizeof(struct var));
|
alpar@9
|
70 I = xcalloc(1+m, sizeof(int));
|
alpar@9
|
71 r = xcalloc(1+m, sizeof(int));
|
alpar@9
|
72 v = xcalloc(1+m, sizeof(double));
|
alpar@9
|
73 ind = xcalloc(1+m, sizeof(int));
|
alpar@9
|
74 val = xcalloc(1+m, sizeof(double));
|
alpar@9
|
75 /* make all auxiliary variables non-basic */
|
alpar@9
|
76 for (i = 1; i <= m; i++)
|
alpar@9
|
77 { if (glp_get_row_type(lp, i) != GLP_DB)
|
alpar@9
|
78 glp_set_row_stat(lp, i, GLP_NS);
|
alpar@9
|
79 else if (fabs(glp_get_row_lb(lp, i)) <=
|
alpar@9
|
80 fabs(glp_get_row_ub(lp, i)))
|
alpar@9
|
81 glp_set_row_stat(lp, i, GLP_NL);
|
alpar@9
|
82 else
|
alpar@9
|
83 glp_set_row_stat(lp, i, GLP_NU);
|
alpar@9
|
84 }
|
alpar@9
|
85 /* make all structural variables non-basic */
|
alpar@9
|
86 for (j = 1; j <= n; j++)
|
alpar@9
|
87 { if (glp_get_col_type(lp, j) != GLP_DB)
|
alpar@9
|
88 glp_set_col_stat(lp, j, GLP_NS);
|
alpar@9
|
89 else if (fabs(glp_get_col_lb(lp, j)) <=
|
alpar@9
|
90 fabs(glp_get_col_ub(lp, j)))
|
alpar@9
|
91 glp_set_col_stat(lp, j, GLP_NL);
|
alpar@9
|
92 else
|
alpar@9
|
93 glp_set_col_stat(lp, j, GLP_NU);
|
alpar@9
|
94 }
|
alpar@9
|
95 /* C2 is a set of free structural variables */
|
alpar@9
|
96 n2 = 0, C2 = C + 0;
|
alpar@9
|
97 for (j = 1; j <= n; j++)
|
alpar@9
|
98 { type = glp_get_col_type(lp, j);
|
alpar@9
|
99 if (type == GLP_FR)
|
alpar@9
|
100 { n2++;
|
alpar@9
|
101 C2[n2].j = j;
|
alpar@9
|
102 C2[n2].q = 0.0;
|
alpar@9
|
103 }
|
alpar@9
|
104 }
|
alpar@9
|
105 /* C3 is a set of structural variables having excatly one (lower
|
alpar@9
|
106 or upper) bound */
|
alpar@9
|
107 n3 = 0, C3 = C2 + n2;
|
alpar@9
|
108 for (j = 1; j <= n; j++)
|
alpar@9
|
109 { type = glp_get_col_type(lp, j);
|
alpar@9
|
110 if (type == GLP_LO)
|
alpar@9
|
111 { n3++;
|
alpar@9
|
112 C3[n3].j = j;
|
alpar@9
|
113 C3[n3].q = + glp_get_col_lb(lp, j);
|
alpar@9
|
114 }
|
alpar@9
|
115 else if (type == GLP_UP)
|
alpar@9
|
116 { n3++;
|
alpar@9
|
117 C3[n3].j = j;
|
alpar@9
|
118 C3[n3].q = - glp_get_col_ub(lp, j);
|
alpar@9
|
119 }
|
alpar@9
|
120 }
|
alpar@9
|
121 /* C4 is a set of structural variables having both (lower and
|
alpar@9
|
122 upper) bounds */
|
alpar@9
|
123 n4 = 0, C4 = C3 + n3;
|
alpar@9
|
124 for (j = 1; j <= n; j++)
|
alpar@9
|
125 { type = glp_get_col_type(lp, j);
|
alpar@9
|
126 if (type == GLP_DB)
|
alpar@9
|
127 { n4++;
|
alpar@9
|
128 C4[n4].j = j;
|
alpar@9
|
129 C4[n4].q = glp_get_col_lb(lp, j) - glp_get_col_ub(lp, j);
|
alpar@9
|
130 }
|
alpar@9
|
131 }
|
alpar@9
|
132 /* compute gamma = max{|c[j]|: 1 <= j <= n} */
|
alpar@9
|
133 gamma = 0.0;
|
alpar@9
|
134 for (j = 1; j <= n; j++)
|
alpar@9
|
135 { temp = fabs(glp_get_obj_coef(lp, j));
|
alpar@9
|
136 if (gamma < temp) gamma = temp;
|
alpar@9
|
137 }
|
alpar@9
|
138 /* compute cmax */
|
alpar@9
|
139 cmax = (gamma == 0.0 ? 1.0 : 1000.0 * gamma);
|
alpar@9
|
140 /* compute final penalty for all structural variables within sets
|
alpar@9
|
141 C2, C3, and C4 */
|
alpar@9
|
142 switch (glp_get_obj_dir(lp))
|
alpar@9
|
143 { case GLP_MIN: temp = +1.0; break;
|
alpar@9
|
144 case GLP_MAX: temp = -1.0; break;
|
alpar@9
|
145 default: xassert(lp != lp);
|
alpar@9
|
146 }
|
alpar@9
|
147 for (k = 1; k <= n2+n3+n4; k++)
|
alpar@9
|
148 { j = C[k].j;
|
alpar@9
|
149 C[k].q += (temp * glp_get_obj_coef(lp, j)) / cmax;
|
alpar@9
|
150 }
|
alpar@9
|
151 /* sort structural variables within C2, C3, and C4 in ascending
|
alpar@9
|
152 order of penalty value */
|
alpar@9
|
153 qsort(C2+1, n2, sizeof(struct var), fcmp);
|
alpar@9
|
154 for (k = 1; k < n2; k++) xassert(C2[k].q <= C2[k+1].q);
|
alpar@9
|
155 qsort(C3+1, n3, sizeof(struct var), fcmp);
|
alpar@9
|
156 for (k = 1; k < n3; k++) xassert(C3[k].q <= C3[k+1].q);
|
alpar@9
|
157 qsort(C4+1, n4, sizeof(struct var), fcmp);
|
alpar@9
|
158 for (k = 1; k < n4; k++) xassert(C4[k].q <= C4[k+1].q);
|
alpar@9
|
159 /*** STEP 1 ***/
|
alpar@9
|
160 for (i = 1; i <= m; i++)
|
alpar@9
|
161 { type = glp_get_row_type(lp, i);
|
alpar@9
|
162 if (type != GLP_FX)
|
alpar@9
|
163 { /* row i is either free or inequality constraint */
|
alpar@9
|
164 glp_set_row_stat(lp, i, GLP_BS);
|
alpar@9
|
165 I[i] = 1;
|
alpar@9
|
166 r[i] = 1;
|
alpar@9
|
167 }
|
alpar@9
|
168 else
|
alpar@9
|
169 { /* row i is equality constraint */
|
alpar@9
|
170 I[i] = 0;
|
alpar@9
|
171 r[i] = 0;
|
alpar@9
|
172 }
|
alpar@9
|
173 v[i] = +DBL_MAX;
|
alpar@9
|
174 }
|
alpar@9
|
175 /*** STEP 2 ***/
|
alpar@9
|
176 for (k = 1; k <= n2+n3+n4; k++)
|
alpar@9
|
177 { jk = C[k].j;
|
alpar@9
|
178 len = get_column(lp, jk, ind, val);
|
alpar@9
|
179 /* let alpha = max{|A[l,jk]|: r[l] = 0} and let l' be such
|
alpar@9
|
180 that alpha = |A[l',jk]| */
|
alpar@9
|
181 alpha = 0.0, ll = 0;
|
alpar@9
|
182 for (t = 1; t <= len; t++)
|
alpar@9
|
183 { l = ind[t];
|
alpar@9
|
184 if (r[l] == 0 && alpha < fabs(val[t]))
|
alpar@9
|
185 alpha = fabs(val[t]), ll = l;
|
alpar@9
|
186 }
|
alpar@9
|
187 if (alpha >= 0.99)
|
alpar@9
|
188 { /* B := B union {jk} */
|
alpar@9
|
189 glp_set_col_stat(lp, jk, GLP_BS);
|
alpar@9
|
190 I[ll] = 1;
|
alpar@9
|
191 v[ll] = alpha;
|
alpar@9
|
192 /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */
|
alpar@9
|
193 for (t = 1; t <= len; t++)
|
alpar@9
|
194 { l = ind[t];
|
alpar@9
|
195 if (val[t] != 0.0) r[l]++;
|
alpar@9
|
196 }
|
alpar@9
|
197 /* continue to the next k */
|
alpar@9
|
198 continue;
|
alpar@9
|
199 }
|
alpar@9
|
200 /* if |A[l,jk]| > 0.01 * v[l] for some l, continue to the
|
alpar@9
|
201 next k */
|
alpar@9
|
202 for (t = 1; t <= len; t++)
|
alpar@9
|
203 { l = ind[t];
|
alpar@9
|
204 if (fabs(val[t]) > 0.01 * v[l]) break;
|
alpar@9
|
205 }
|
alpar@9
|
206 if (t <= len) continue;
|
alpar@9
|
207 /* otherwise, let alpha = max{|A[l,jk]|: I[l] = 0} and let l'
|
alpar@9
|
208 be such that alpha = |A[l',jk]| */
|
alpar@9
|
209 alpha = 0.0, ll = 0;
|
alpar@9
|
210 for (t = 1; t <= len; t++)
|
alpar@9
|
211 { l = ind[t];
|
alpar@9
|
212 if (I[l] == 0 && alpha < fabs(val[t]))
|
alpar@9
|
213 alpha = fabs(val[t]), ll = l;
|
alpar@9
|
214 }
|
alpar@9
|
215 /* if alpha = 0, continue to the next k */
|
alpar@9
|
216 if (alpha == 0.0) continue;
|
alpar@9
|
217 /* B := B union {jk} */
|
alpar@9
|
218 glp_set_col_stat(lp, jk, GLP_BS);
|
alpar@9
|
219 I[ll] = 1;
|
alpar@9
|
220 v[ll] = alpha;
|
alpar@9
|
221 /* r[l] := r[l] + 1 for all l such that |A[l,jk]| != 0 */
|
alpar@9
|
222 for (t = 1; t <= len; t++)
|
alpar@9
|
223 { l = ind[t];
|
alpar@9
|
224 if (val[t] != 0.0) r[l]++;
|
alpar@9
|
225 }
|
alpar@9
|
226 }
|
alpar@9
|
227 /*** STEP 3 ***/
|
alpar@9
|
228 /* add an artificial variable (auxiliary variable for equality
|
alpar@9
|
229 constraint) to cover each remaining uncovered row */
|
alpar@9
|
230 for (i = 1; i <= m; i++)
|
alpar@9
|
231 if (I[i] == 0) glp_set_row_stat(lp, i, GLP_BS);
|
alpar@9
|
232 /* free working arrays */
|
alpar@9
|
233 xfree(C);
|
alpar@9
|
234 xfree(I);
|
alpar@9
|
235 xfree(r);
|
alpar@9
|
236 xfree(v);
|
alpar@9
|
237 xfree(ind);
|
alpar@9
|
238 xfree(val);
|
alpar@9
|
239 return;
|
alpar@9
|
240 }
|
alpar@9
|
241
|
alpar@9
|
242 /***********************************************************************
|
alpar@9
|
243 * NAME
|
alpar@9
|
244 *
|
alpar@9
|
245 * glp_cpx_basis - construct Bixby's initial LP basis
|
alpar@9
|
246 *
|
alpar@9
|
247 * SYNOPSIS
|
alpar@9
|
248 *
|
alpar@9
|
249 * void glp_cpx_basis(glp_prob *lp);
|
alpar@9
|
250 *
|
alpar@9
|
251 * DESCRIPTION
|
alpar@9
|
252 *
|
alpar@9
|
253 * The routine glp_cpx_basis constructs an advanced initial basis for
|
alpar@9
|
254 * the specified problem object.
|
alpar@9
|
255 *
|
alpar@9
|
256 * The routine is based on Bixby's algorithm described in the paper:
|
alpar@9
|
257 *
|
alpar@9
|
258 * Robert E. Bixby. Implementing the Simplex Method: The Initial Basis.
|
alpar@9
|
259 * ORSA Journal on Computing, Vol. 4, No. 3, 1992, pp. 267-84. */
|
alpar@9
|
260
|
alpar@9
|
261 void glp_cpx_basis(glp_prob *lp)
|
alpar@9
|
262 { if (lp->m == 0 || lp->n == 0)
|
alpar@9
|
263 glp_std_basis(lp);
|
alpar@9
|
264 else
|
alpar@9
|
265 cpx_basis(lp);
|
alpar@9
|
266 return;
|
alpar@9
|
267 }
|
alpar@9
|
268
|
alpar@9
|
269 /* eof */
|