rev |
line source |
alpar@9
|
1 /* glpios07.c (mixed cover cut generator) */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpios.h"
|
alpar@9
|
26
|
alpar@9
|
27 /*----------------------------------------------------------------------
|
alpar@9
|
28 -- COVER INEQUALITIES
|
alpar@9
|
29 --
|
alpar@9
|
30 -- Consider the set of feasible solutions to 0-1 knapsack problem:
|
alpar@9
|
31 --
|
alpar@9
|
32 -- sum a[j]*x[j] <= b, (1)
|
alpar@9
|
33 -- j in J
|
alpar@9
|
34 --
|
alpar@9
|
35 -- x[j] is binary, (2)
|
alpar@9
|
36 --
|
alpar@9
|
37 -- where, wlog, we assume that a[j] > 0 (since 0-1 variables can be
|
alpar@9
|
38 -- complemented) and a[j] <= b (since a[j] > b implies x[j] = 0).
|
alpar@9
|
39 --
|
alpar@9
|
40 -- A set C within J is called a cover if
|
alpar@9
|
41 --
|
alpar@9
|
42 -- sum a[j] > b. (3)
|
alpar@9
|
43 -- j in C
|
alpar@9
|
44 --
|
alpar@9
|
45 -- For any cover C the inequality
|
alpar@9
|
46 --
|
alpar@9
|
47 -- sum x[j] <= |C| - 1 (4)
|
alpar@9
|
48 -- j in C
|
alpar@9
|
49 --
|
alpar@9
|
50 -- is called a cover inequality and is valid for (1)-(2).
|
alpar@9
|
51 --
|
alpar@9
|
52 -- MIXED COVER INEQUALITIES
|
alpar@9
|
53 --
|
alpar@9
|
54 -- Consider the set of feasible solutions to mixed knapsack problem:
|
alpar@9
|
55 --
|
alpar@9
|
56 -- sum a[j]*x[j] + y <= b, (5)
|
alpar@9
|
57 -- j in J
|
alpar@9
|
58 --
|
alpar@9
|
59 -- x[j] is binary, (6)
|
alpar@9
|
60 --
|
alpar@9
|
61 -- 0 <= y <= u is continuous, (7)
|
alpar@9
|
62 --
|
alpar@9
|
63 -- where again we assume that a[j] > 0.
|
alpar@9
|
64 --
|
alpar@9
|
65 -- Let C within J be some set. From (1)-(4) it follows that
|
alpar@9
|
66 --
|
alpar@9
|
67 -- sum a[j] > b - y (8)
|
alpar@9
|
68 -- j in C
|
alpar@9
|
69 --
|
alpar@9
|
70 -- implies
|
alpar@9
|
71 --
|
alpar@9
|
72 -- sum x[j] <= |C| - 1. (9)
|
alpar@9
|
73 -- j in C
|
alpar@9
|
74 --
|
alpar@9
|
75 -- Thus, we need to modify the inequality (9) in such a way that it be
|
alpar@9
|
76 -- a constraint only if the condition (8) is satisfied.
|
alpar@9
|
77 --
|
alpar@9
|
78 -- Consider the following inequality:
|
alpar@9
|
79 --
|
alpar@9
|
80 -- sum x[j] <= |C| - t. (10)
|
alpar@9
|
81 -- j in C
|
alpar@9
|
82 --
|
alpar@9
|
83 -- If 0 < t <= 1, then (10) is equivalent to (9), because all x[j] are
|
alpar@9
|
84 -- binary variables. On the other hand, if t <= 0, (10) being satisfied
|
alpar@9
|
85 -- for any values of x[j] is not a constraint.
|
alpar@9
|
86 --
|
alpar@9
|
87 -- Let
|
alpar@9
|
88 --
|
alpar@9
|
89 -- t' = sum a[j] + y - b. (11)
|
alpar@9
|
90 -- j in C
|
alpar@9
|
91 --
|
alpar@9
|
92 -- It is understood that the condition t' > 0 is equivalent to (8).
|
alpar@9
|
93 -- Besides, from (6)-(7) it follows that t' has an implied upper bound:
|
alpar@9
|
94 --
|
alpar@9
|
95 -- t'max = sum a[j] + u - b. (12)
|
alpar@9
|
96 -- j in C
|
alpar@9
|
97 --
|
alpar@9
|
98 -- This allows to express the parameter t having desired properties:
|
alpar@9
|
99 --
|
alpar@9
|
100 -- t = t' / t'max. (13)
|
alpar@9
|
101 --
|
alpar@9
|
102 -- In fact, t <= 1 by definition, and t > 0 being equivalent to t' > 0
|
alpar@9
|
103 -- is equivalent to (8).
|
alpar@9
|
104 --
|
alpar@9
|
105 -- Thus, the inequality (10), where t is given by formula (13) is valid
|
alpar@9
|
106 -- for (5)-(7).
|
alpar@9
|
107 --
|
alpar@9
|
108 -- Note that if u = 0, then y = 0, so t = 1, and the conditions (8) and
|
alpar@9
|
109 -- (10) is transformed to the conditions (3) and (4).
|
alpar@9
|
110 --
|
alpar@9
|
111 -- GENERATING MIXED COVER CUTS
|
alpar@9
|
112 --
|
alpar@9
|
113 -- To generate a mixed cover cut in the form (10) we need to find such
|
alpar@9
|
114 -- set C which satisfies to the inequality (8) and for which, in turn,
|
alpar@9
|
115 -- the inequality (10) is violated in the current point.
|
alpar@9
|
116 --
|
alpar@9
|
117 -- Substituting t from (13) to (10) gives:
|
alpar@9
|
118 --
|
alpar@9
|
119 -- 1
|
alpar@9
|
120 -- sum x[j] <= |C| - ----- (sum a[j] + y - b), (14)
|
alpar@9
|
121 -- j in C t'max j in C
|
alpar@9
|
122 --
|
alpar@9
|
123 -- and finally we have the cut inequality in the standard form:
|
alpar@9
|
124 --
|
alpar@9
|
125 -- sum x[j] + alfa * y <= beta, (15)
|
alpar@9
|
126 -- j in C
|
alpar@9
|
127 --
|
alpar@9
|
128 -- where:
|
alpar@9
|
129 --
|
alpar@9
|
130 -- alfa = 1 / t'max, (16)
|
alpar@9
|
131 --
|
alpar@9
|
132 -- beta = |C| - alfa * (sum a[j] - b). (17)
|
alpar@9
|
133 -- j in C */
|
alpar@9
|
134
|
alpar@9
|
135 #if 1
|
alpar@9
|
136 #define MAXTRY 1000
|
alpar@9
|
137 #else
|
alpar@9
|
138 #define MAXTRY 10000
|
alpar@9
|
139 #endif
|
alpar@9
|
140
|
alpar@9
|
141 static int cover2(int n, double a[], double b, double u, double x[],
|
alpar@9
|
142 double y, int cov[], double *_alfa, double *_beta)
|
alpar@9
|
143 { /* try to generate mixed cover cut using two-element cover */
|
alpar@9
|
144 int i, j, try = 0, ret = 0;
|
alpar@9
|
145 double eps, alfa, beta, temp, rmax = 0.001;
|
alpar@9
|
146 eps = 0.001 * (1.0 + fabs(b));
|
alpar@9
|
147 for (i = 0+1; i <= n; i++)
|
alpar@9
|
148 for (j = i+1; j <= n; j++)
|
alpar@9
|
149 { /* C = {i, j} */
|
alpar@9
|
150 try++;
|
alpar@9
|
151 if (try > MAXTRY) goto done;
|
alpar@9
|
152 /* check if condition (8) is satisfied */
|
alpar@9
|
153 if (a[i] + a[j] + y > b + eps)
|
alpar@9
|
154 { /* compute parameters for inequality (15) */
|
alpar@9
|
155 temp = a[i] + a[j] - b;
|
alpar@9
|
156 alfa = 1.0 / (temp + u);
|
alpar@9
|
157 beta = 2.0 - alfa * temp;
|
alpar@9
|
158 /* compute violation of inequality (15) */
|
alpar@9
|
159 temp = x[i] + x[j] + alfa * y - beta;
|
alpar@9
|
160 /* choose C providing maximum violation */
|
alpar@9
|
161 if (rmax < temp)
|
alpar@9
|
162 { rmax = temp;
|
alpar@9
|
163 cov[1] = i;
|
alpar@9
|
164 cov[2] = j;
|
alpar@9
|
165 *_alfa = alfa;
|
alpar@9
|
166 *_beta = beta;
|
alpar@9
|
167 ret = 1;
|
alpar@9
|
168 }
|
alpar@9
|
169 }
|
alpar@9
|
170 }
|
alpar@9
|
171 done: return ret;
|
alpar@9
|
172 }
|
alpar@9
|
173
|
alpar@9
|
174 static int cover3(int n, double a[], double b, double u, double x[],
|
alpar@9
|
175 double y, int cov[], double *_alfa, double *_beta)
|
alpar@9
|
176 { /* try to generate mixed cover cut using three-element cover */
|
alpar@9
|
177 int i, j, k, try = 0, ret = 0;
|
alpar@9
|
178 double eps, alfa, beta, temp, rmax = 0.001;
|
alpar@9
|
179 eps = 0.001 * (1.0 + fabs(b));
|
alpar@9
|
180 for (i = 0+1; i <= n; i++)
|
alpar@9
|
181 for (j = i+1; j <= n; j++)
|
alpar@9
|
182 for (k = j+1; k <= n; k++)
|
alpar@9
|
183 { /* C = {i, j, k} */
|
alpar@9
|
184 try++;
|
alpar@9
|
185 if (try > MAXTRY) goto done;
|
alpar@9
|
186 /* check if condition (8) is satisfied */
|
alpar@9
|
187 if (a[i] + a[j] + a[k] + y > b + eps)
|
alpar@9
|
188 { /* compute parameters for inequality (15) */
|
alpar@9
|
189 temp = a[i] + a[j] + a[k] - b;
|
alpar@9
|
190 alfa = 1.0 / (temp + u);
|
alpar@9
|
191 beta = 3.0 - alfa * temp;
|
alpar@9
|
192 /* compute violation of inequality (15) */
|
alpar@9
|
193 temp = x[i] + x[j] + x[k] + alfa * y - beta;
|
alpar@9
|
194 /* choose C providing maximum violation */
|
alpar@9
|
195 if (rmax < temp)
|
alpar@9
|
196 { rmax = temp;
|
alpar@9
|
197 cov[1] = i;
|
alpar@9
|
198 cov[2] = j;
|
alpar@9
|
199 cov[3] = k;
|
alpar@9
|
200 *_alfa = alfa;
|
alpar@9
|
201 *_beta = beta;
|
alpar@9
|
202 ret = 1;
|
alpar@9
|
203 }
|
alpar@9
|
204 }
|
alpar@9
|
205 }
|
alpar@9
|
206 done: return ret;
|
alpar@9
|
207 }
|
alpar@9
|
208
|
alpar@9
|
209 static int cover4(int n, double a[], double b, double u, double x[],
|
alpar@9
|
210 double y, int cov[], double *_alfa, double *_beta)
|
alpar@9
|
211 { /* try to generate mixed cover cut using four-element cover */
|
alpar@9
|
212 int i, j, k, l, try = 0, ret = 0;
|
alpar@9
|
213 double eps, alfa, beta, temp, rmax = 0.001;
|
alpar@9
|
214 eps = 0.001 * (1.0 + fabs(b));
|
alpar@9
|
215 for (i = 0+1; i <= n; i++)
|
alpar@9
|
216 for (j = i+1; j <= n; j++)
|
alpar@9
|
217 for (k = j+1; k <= n; k++)
|
alpar@9
|
218 for (l = k+1; l <= n; l++)
|
alpar@9
|
219 { /* C = {i, j, k, l} */
|
alpar@9
|
220 try++;
|
alpar@9
|
221 if (try > MAXTRY) goto done;
|
alpar@9
|
222 /* check if condition (8) is satisfied */
|
alpar@9
|
223 if (a[i] + a[j] + a[k] + a[l] + y > b + eps)
|
alpar@9
|
224 { /* compute parameters for inequality (15) */
|
alpar@9
|
225 temp = a[i] + a[j] + a[k] + a[l] - b;
|
alpar@9
|
226 alfa = 1.0 / (temp + u);
|
alpar@9
|
227 beta = 4.0 - alfa * temp;
|
alpar@9
|
228 /* compute violation of inequality (15) */
|
alpar@9
|
229 temp = x[i] + x[j] + x[k] + x[l] + alfa * y - beta;
|
alpar@9
|
230 /* choose C providing maximum violation */
|
alpar@9
|
231 if (rmax < temp)
|
alpar@9
|
232 { rmax = temp;
|
alpar@9
|
233 cov[1] = i;
|
alpar@9
|
234 cov[2] = j;
|
alpar@9
|
235 cov[3] = k;
|
alpar@9
|
236 cov[4] = l;
|
alpar@9
|
237 *_alfa = alfa;
|
alpar@9
|
238 *_beta = beta;
|
alpar@9
|
239 ret = 1;
|
alpar@9
|
240 }
|
alpar@9
|
241 }
|
alpar@9
|
242 }
|
alpar@9
|
243 done: return ret;
|
alpar@9
|
244 }
|
alpar@9
|
245
|
alpar@9
|
246 static int cover(int n, double a[], double b, double u, double x[],
|
alpar@9
|
247 double y, int cov[], double *alfa, double *beta)
|
alpar@9
|
248 { /* try to generate mixed cover cut;
|
alpar@9
|
249 input (see (5)):
|
alpar@9
|
250 n is the number of binary variables;
|
alpar@9
|
251 a[1:n] are coefficients at binary variables;
|
alpar@9
|
252 b is the right-hand side;
|
alpar@9
|
253 u is upper bound of continuous variable;
|
alpar@9
|
254 x[1:n] are values of binary variables at current point;
|
alpar@9
|
255 y is value of continuous variable at current point;
|
alpar@9
|
256 output (see (15), (16), (17)):
|
alpar@9
|
257 cov[1:r] are indices of binary variables included in cover C,
|
alpar@9
|
258 where r is the set cardinality returned on exit;
|
alpar@9
|
259 alfa coefficient at continuous variable;
|
alpar@9
|
260 beta is the right-hand side; */
|
alpar@9
|
261 int j;
|
alpar@9
|
262 /* perform some sanity checks */
|
alpar@9
|
263 xassert(n >= 2);
|
alpar@9
|
264 for (j = 1; j <= n; j++) xassert(a[j] > 0.0);
|
alpar@9
|
265 #if 1 /* ??? */
|
alpar@9
|
266 xassert(b > -1e-5);
|
alpar@9
|
267 #else
|
alpar@9
|
268 xassert(b > 0.0);
|
alpar@9
|
269 #endif
|
alpar@9
|
270 xassert(u >= 0.0);
|
alpar@9
|
271 for (j = 1; j <= n; j++) xassert(0.0 <= x[j] && x[j] <= 1.0);
|
alpar@9
|
272 xassert(0.0 <= y && y <= u);
|
alpar@9
|
273 /* try to generate mixed cover cut */
|
alpar@9
|
274 if (cover2(n, a, b, u, x, y, cov, alfa, beta)) return 2;
|
alpar@9
|
275 if (cover3(n, a, b, u, x, y, cov, alfa, beta)) return 3;
|
alpar@9
|
276 if (cover4(n, a, b, u, x, y, cov, alfa, beta)) return 4;
|
alpar@9
|
277 return 0;
|
alpar@9
|
278 }
|
alpar@9
|
279
|
alpar@9
|
280 /*----------------------------------------------------------------------
|
alpar@9
|
281 -- lpx_cover_cut - generate mixed cover cut.
|
alpar@9
|
282 --
|
alpar@9
|
283 -- SYNOPSIS
|
alpar@9
|
284 --
|
alpar@9
|
285 -- #include "glplpx.h"
|
alpar@9
|
286 -- int lpx_cover_cut(LPX *lp, int len, int ind[], double val[],
|
alpar@9
|
287 -- double work[]);
|
alpar@9
|
288 --
|
alpar@9
|
289 -- DESCRIPTION
|
alpar@9
|
290 --
|
alpar@9
|
291 -- The routine lpx_cover_cut generates a mixed cover cut for a given
|
alpar@9
|
292 -- row of the MIP problem.
|
alpar@9
|
293 --
|
alpar@9
|
294 -- The given row of the MIP problem should be explicitly specified in
|
alpar@9
|
295 -- the form:
|
alpar@9
|
296 --
|
alpar@9
|
297 -- sum{j in J} a[j]*x[j] <= b. (1)
|
alpar@9
|
298 --
|
alpar@9
|
299 -- On entry indices (ordinal numbers) of structural variables, which
|
alpar@9
|
300 -- have non-zero constraint coefficients, should be placed in locations
|
alpar@9
|
301 -- ind[1], ..., ind[len], and corresponding constraint coefficients
|
alpar@9
|
302 -- should be placed in locations val[1], ..., val[len]. The right-hand
|
alpar@9
|
303 -- side b should be stored in location val[0].
|
alpar@9
|
304 --
|
alpar@9
|
305 -- The working array work should have at least nb locations, where nb
|
alpar@9
|
306 -- is the number of binary variables in (1).
|
alpar@9
|
307 --
|
alpar@9
|
308 -- The routine generates a mixed cover cut in the same form as (1) and
|
alpar@9
|
309 -- stores the cut coefficients and right-hand side in the same way as
|
alpar@9
|
310 -- just described above.
|
alpar@9
|
311 --
|
alpar@9
|
312 -- RETURNS
|
alpar@9
|
313 --
|
alpar@9
|
314 -- If the cutting plane has been successfully generated, the routine
|
alpar@9
|
315 -- returns 1 <= len' <= n, which is the number of non-zero coefficients
|
alpar@9
|
316 -- in the inequality constraint. Otherwise, the routine returns zero. */
|
alpar@9
|
317
|
alpar@9
|
318 static int lpx_cover_cut(LPX *lp, int len, int ind[], double val[],
|
alpar@9
|
319 double work[])
|
alpar@9
|
320 { int cov[1+4], j, k, nb, newlen, r;
|
alpar@9
|
321 double f_min, f_max, alfa, beta, u, *x = work, y;
|
alpar@9
|
322 /* substitute and remove fixed variables */
|
alpar@9
|
323 newlen = 0;
|
alpar@9
|
324 for (k = 1; k <= len; k++)
|
alpar@9
|
325 { j = ind[k];
|
alpar@9
|
326 if (lpx_get_col_type(lp, j) == LPX_FX)
|
alpar@9
|
327 val[0] -= val[k] * lpx_get_col_lb(lp, j);
|
alpar@9
|
328 else
|
alpar@9
|
329 { newlen++;
|
alpar@9
|
330 ind[newlen] = ind[k];
|
alpar@9
|
331 val[newlen] = val[k];
|
alpar@9
|
332 }
|
alpar@9
|
333 }
|
alpar@9
|
334 len = newlen;
|
alpar@9
|
335 /* move binary variables to the beginning of the list so that
|
alpar@9
|
336 elements 1, 2, ..., nb correspond to binary variables, and
|
alpar@9
|
337 elements nb+1, nb+2, ..., len correspond to rest variables */
|
alpar@9
|
338 nb = 0;
|
alpar@9
|
339 for (k = 1; k <= len; k++)
|
alpar@9
|
340 { j = ind[k];
|
alpar@9
|
341 if (lpx_get_col_kind(lp, j) == LPX_IV &&
|
alpar@9
|
342 lpx_get_col_type(lp, j) == LPX_DB &&
|
alpar@9
|
343 lpx_get_col_lb(lp, j) == 0.0 &&
|
alpar@9
|
344 lpx_get_col_ub(lp, j) == 1.0)
|
alpar@9
|
345 { /* binary variable */
|
alpar@9
|
346 int ind_k;
|
alpar@9
|
347 double val_k;
|
alpar@9
|
348 nb++;
|
alpar@9
|
349 ind_k = ind[nb], val_k = val[nb];
|
alpar@9
|
350 ind[nb] = ind[k], val[nb] = val[k];
|
alpar@9
|
351 ind[k] = ind_k, val[k] = val_k;
|
alpar@9
|
352 }
|
alpar@9
|
353 }
|
alpar@9
|
354 /* now the specified row has the form:
|
alpar@9
|
355 sum a[j]*x[j] + sum a[j]*y[j] <= b,
|
alpar@9
|
356 where x[j] are binary variables, y[j] are rest variables */
|
alpar@9
|
357 /* at least two binary variables are needed */
|
alpar@9
|
358 if (nb < 2) return 0;
|
alpar@9
|
359 /* compute implied lower and upper bounds for sum a[j]*y[j] */
|
alpar@9
|
360 f_min = f_max = 0.0;
|
alpar@9
|
361 for (k = nb+1; k <= len; k++)
|
alpar@9
|
362 { j = ind[k];
|
alpar@9
|
363 /* both bounds must be finite */
|
alpar@9
|
364 if (lpx_get_col_type(lp, j) != LPX_DB) return 0;
|
alpar@9
|
365 if (val[k] > 0.0)
|
alpar@9
|
366 { f_min += val[k] * lpx_get_col_lb(lp, j);
|
alpar@9
|
367 f_max += val[k] * lpx_get_col_ub(lp, j);
|
alpar@9
|
368 }
|
alpar@9
|
369 else
|
alpar@9
|
370 { f_min += val[k] * lpx_get_col_ub(lp, j);
|
alpar@9
|
371 f_max += val[k] * lpx_get_col_lb(lp, j);
|
alpar@9
|
372 }
|
alpar@9
|
373 }
|
alpar@9
|
374 /* sum a[j]*x[j] + sum a[j]*y[j] <= b ===>
|
alpar@9
|
375 sum a[j]*x[j] + (sum a[j]*y[j] - f_min) <= b - f_min ===>
|
alpar@9
|
376 sum a[j]*x[j] + y <= b - f_min,
|
alpar@9
|
377 where y = sum a[j]*y[j] - f_min;
|
alpar@9
|
378 note that 0 <= y <= u, u = f_max - f_min */
|
alpar@9
|
379 /* determine upper bound of y */
|
alpar@9
|
380 u = f_max - f_min;
|
alpar@9
|
381 /* determine value of y at the current point */
|
alpar@9
|
382 y = 0.0;
|
alpar@9
|
383 for (k = nb+1; k <= len; k++)
|
alpar@9
|
384 { j = ind[k];
|
alpar@9
|
385 y += val[k] * lpx_get_col_prim(lp, j);
|
alpar@9
|
386 }
|
alpar@9
|
387 y -= f_min;
|
alpar@9
|
388 if (y < 0.0) y = 0.0;
|
alpar@9
|
389 if (y > u) y = u;
|
alpar@9
|
390 /* modify the right-hand side b */
|
alpar@9
|
391 val[0] -= f_min;
|
alpar@9
|
392 /* now the transformed row has the form:
|
alpar@9
|
393 sum a[j]*x[j] + y <= b, where 0 <= y <= u */
|
alpar@9
|
394 /* determine values of x[j] at the current point */
|
alpar@9
|
395 for (k = 1; k <= nb; k++)
|
alpar@9
|
396 { j = ind[k];
|
alpar@9
|
397 x[k] = lpx_get_col_prim(lp, j);
|
alpar@9
|
398 if (x[k] < 0.0) x[k] = 0.0;
|
alpar@9
|
399 if (x[k] > 1.0) x[k] = 1.0;
|
alpar@9
|
400 }
|
alpar@9
|
401 /* if a[j] < 0, replace x[j] by its complement 1 - x'[j] */
|
alpar@9
|
402 for (k = 1; k <= nb; k++)
|
alpar@9
|
403 { if (val[k] < 0.0)
|
alpar@9
|
404 { ind[k] = - ind[k];
|
alpar@9
|
405 val[k] = - val[k];
|
alpar@9
|
406 val[0] += val[k];
|
alpar@9
|
407 x[k] = 1.0 - x[k];
|
alpar@9
|
408 }
|
alpar@9
|
409 }
|
alpar@9
|
410 /* try to generate a mixed cover cut for the transformed row */
|
alpar@9
|
411 r = cover(nb, val, val[0], u, x, y, cov, &alfa, &beta);
|
alpar@9
|
412 if (r == 0) return 0;
|
alpar@9
|
413 xassert(2 <= r && r <= 4);
|
alpar@9
|
414 /* now the cut is in the form:
|
alpar@9
|
415 sum{j in C} x[j] + alfa * y <= beta */
|
alpar@9
|
416 /* store the right-hand side beta */
|
alpar@9
|
417 ind[0] = 0, val[0] = beta;
|
alpar@9
|
418 /* restore the original ordinal numbers of x[j] */
|
alpar@9
|
419 for (j = 1; j <= r; j++) cov[j] = ind[cov[j]];
|
alpar@9
|
420 /* store cut coefficients at binary variables complementing back
|
alpar@9
|
421 the variables having negative row coefficients */
|
alpar@9
|
422 xassert(r <= nb);
|
alpar@9
|
423 for (k = 1; k <= r; k++)
|
alpar@9
|
424 { if (cov[k] > 0)
|
alpar@9
|
425 { ind[k] = +cov[k];
|
alpar@9
|
426 val[k] = +1.0;
|
alpar@9
|
427 }
|
alpar@9
|
428 else
|
alpar@9
|
429 { ind[k] = -cov[k];
|
alpar@9
|
430 val[k] = -1.0;
|
alpar@9
|
431 val[0] -= 1.0;
|
alpar@9
|
432 }
|
alpar@9
|
433 }
|
alpar@9
|
434 /* substitute y = sum a[j]*y[j] - f_min */
|
alpar@9
|
435 for (k = nb+1; k <= len; k++)
|
alpar@9
|
436 { r++;
|
alpar@9
|
437 ind[r] = ind[k];
|
alpar@9
|
438 val[r] = alfa * val[k];
|
alpar@9
|
439 }
|
alpar@9
|
440 val[0] += alfa * f_min;
|
alpar@9
|
441 xassert(r <= len);
|
alpar@9
|
442 len = r;
|
alpar@9
|
443 return len;
|
alpar@9
|
444 }
|
alpar@9
|
445
|
alpar@9
|
446 /*----------------------------------------------------------------------
|
alpar@9
|
447 -- lpx_eval_row - compute explictily specified row.
|
alpar@9
|
448 --
|
alpar@9
|
449 -- SYNOPSIS
|
alpar@9
|
450 --
|
alpar@9
|
451 -- #include "glplpx.h"
|
alpar@9
|
452 -- double lpx_eval_row(LPX *lp, int len, int ind[], double val[]);
|
alpar@9
|
453 --
|
alpar@9
|
454 -- DESCRIPTION
|
alpar@9
|
455 --
|
alpar@9
|
456 -- The routine lpx_eval_row computes the primal value of an explicitly
|
alpar@9
|
457 -- specified row using current values of structural variables.
|
alpar@9
|
458 --
|
alpar@9
|
459 -- The explicitly specified row may be thought as a linear form:
|
alpar@9
|
460 --
|
alpar@9
|
461 -- y = a[1]*x[m+1] + a[2]*x[m+2] + ... + a[n]*x[m+n],
|
alpar@9
|
462 --
|
alpar@9
|
463 -- where y is an auxiliary variable for this row, a[j] are coefficients
|
alpar@9
|
464 -- of the linear form, x[m+j] are structural variables.
|
alpar@9
|
465 --
|
alpar@9
|
466 -- On entry column indices and numerical values of non-zero elements of
|
alpar@9
|
467 -- the row should be stored in locations ind[1], ..., ind[len] and
|
alpar@9
|
468 -- val[1], ..., val[len], where len is the number of non-zero elements.
|
alpar@9
|
469 -- The array ind and val are not changed on exit.
|
alpar@9
|
470 --
|
alpar@9
|
471 -- RETURNS
|
alpar@9
|
472 --
|
alpar@9
|
473 -- The routine returns a computed value of y, the auxiliary variable of
|
alpar@9
|
474 -- the specified row. */
|
alpar@9
|
475
|
alpar@9
|
476 static double lpx_eval_row(LPX *lp, int len, int ind[], double val[])
|
alpar@9
|
477 { int n = lpx_get_num_cols(lp);
|
alpar@9
|
478 int j, k;
|
alpar@9
|
479 double sum = 0.0;
|
alpar@9
|
480 if (len < 0)
|
alpar@9
|
481 xerror("lpx_eval_row: len = %d; invalid row length\n", len);
|
alpar@9
|
482 for (k = 1; k <= len; k++)
|
alpar@9
|
483 { j = ind[k];
|
alpar@9
|
484 if (!(1 <= j && j <= n))
|
alpar@9
|
485 xerror("lpx_eval_row: j = %d; column number out of range\n",
|
alpar@9
|
486 j);
|
alpar@9
|
487 sum += val[k] * lpx_get_col_prim(lp, j);
|
alpar@9
|
488 }
|
alpar@9
|
489 return sum;
|
alpar@9
|
490 }
|
alpar@9
|
491
|
alpar@9
|
492 /***********************************************************************
|
alpar@9
|
493 * NAME
|
alpar@9
|
494 *
|
alpar@9
|
495 * ios_cov_gen - generate mixed cover cuts
|
alpar@9
|
496 *
|
alpar@9
|
497 * SYNOPSIS
|
alpar@9
|
498 *
|
alpar@9
|
499 * #include "glpios.h"
|
alpar@9
|
500 * void ios_cov_gen(glp_tree *tree);
|
alpar@9
|
501 *
|
alpar@9
|
502 * DESCRIPTION
|
alpar@9
|
503 *
|
alpar@9
|
504 * The routine ios_cov_gen generates mixed cover cuts for the current
|
alpar@9
|
505 * point and adds them to the cut pool. */
|
alpar@9
|
506
|
alpar@9
|
507 void ios_cov_gen(glp_tree *tree)
|
alpar@9
|
508 { glp_prob *prob = tree->mip;
|
alpar@9
|
509 int m = lpx_get_num_rows(prob);
|
alpar@9
|
510 int n = lpx_get_num_cols(prob);
|
alpar@9
|
511 int i, k, type, kase, len, *ind;
|
alpar@9
|
512 double r, *val, *work;
|
alpar@9
|
513 xassert(lpx_get_status(prob) == LPX_OPT);
|
alpar@9
|
514 /* allocate working arrays */
|
alpar@9
|
515 ind = xcalloc(1+n, sizeof(int));
|
alpar@9
|
516 val = xcalloc(1+n, sizeof(double));
|
alpar@9
|
517 work = xcalloc(1+n, sizeof(double));
|
alpar@9
|
518 /* look through all rows */
|
alpar@9
|
519 for (i = 1; i <= m; i++)
|
alpar@9
|
520 for (kase = 1; kase <= 2; kase++)
|
alpar@9
|
521 { type = lpx_get_row_type(prob, i);
|
alpar@9
|
522 if (kase == 1)
|
alpar@9
|
523 { /* consider rows of '<=' type */
|
alpar@9
|
524 if (!(type == LPX_UP || type == LPX_DB)) continue;
|
alpar@9
|
525 len = lpx_get_mat_row(prob, i, ind, val);
|
alpar@9
|
526 val[0] = lpx_get_row_ub(prob, i);
|
alpar@9
|
527 }
|
alpar@9
|
528 else
|
alpar@9
|
529 { /* consider rows of '>=' type */
|
alpar@9
|
530 if (!(type == LPX_LO || type == LPX_DB)) continue;
|
alpar@9
|
531 len = lpx_get_mat_row(prob, i, ind, val);
|
alpar@9
|
532 for (k = 1; k <= len; k++) val[k] = - val[k];
|
alpar@9
|
533 val[0] = - lpx_get_row_lb(prob, i);
|
alpar@9
|
534 }
|
alpar@9
|
535 /* generate mixed cover cut:
|
alpar@9
|
536 sum{j in J} a[j] * x[j] <= b */
|
alpar@9
|
537 len = lpx_cover_cut(prob, len, ind, val, work);
|
alpar@9
|
538 if (len == 0) continue;
|
alpar@9
|
539 /* at the current point the cut inequality is violated, i.e.
|
alpar@9
|
540 sum{j in J} a[j] * x[j] - b > 0 */
|
alpar@9
|
541 r = lpx_eval_row(prob, len, ind, val) - val[0];
|
alpar@9
|
542 if (r < 1e-3) continue;
|
alpar@9
|
543 /* add the cut to the cut pool */
|
alpar@9
|
544 glp_ios_add_row(tree, NULL, GLP_RF_COV, 0, len, ind, val,
|
alpar@9
|
545 GLP_UP, val[0]);
|
alpar@9
|
546 }
|
alpar@9
|
547 /* free working arrays */
|
alpar@9
|
548 xfree(ind);
|
alpar@9
|
549 xfree(val);
|
alpar@9
|
550 xfree(work);
|
alpar@9
|
551 return;
|
alpar@9
|
552 }
|
alpar@9
|
553
|
alpar@9
|
554 /* eof */
|