rev |
line source |
alpar@9
|
1 /* glpipm.c */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpipm.h"
|
alpar@9
|
26 #include "glpmat.h"
|
alpar@9
|
27
|
alpar@9
|
28 #define ITER_MAX 100
|
alpar@9
|
29 /* maximal number of iterations */
|
alpar@9
|
30
|
alpar@9
|
31 struct csa
|
alpar@9
|
32 { /* common storage area */
|
alpar@9
|
33 /*--------------------------------------------------------------*/
|
alpar@9
|
34 /* LP data */
|
alpar@9
|
35 int m;
|
alpar@9
|
36 /* number of rows (equality constraints) */
|
alpar@9
|
37 int n;
|
alpar@9
|
38 /* number of columns (structural variables) */
|
alpar@9
|
39 int *A_ptr; /* int A_ptr[1+m+1]; */
|
alpar@9
|
40 int *A_ind; /* int A_ind[A_ptr[m+1]]; */
|
alpar@9
|
41 double *A_val; /* double A_val[A_ptr[m+1]]; */
|
alpar@9
|
42 /* mxn-matrix A in storage-by-rows format */
|
alpar@9
|
43 double *b; /* double b[1+m]; */
|
alpar@9
|
44 /* m-vector b of right-hand sides */
|
alpar@9
|
45 double *c; /* double c[1+n]; */
|
alpar@9
|
46 /* n-vector c of objective coefficients; c[0] is constant term of
|
alpar@9
|
47 the objective function */
|
alpar@9
|
48 /*--------------------------------------------------------------*/
|
alpar@9
|
49 /* LP solution */
|
alpar@9
|
50 double *x; /* double x[1+n]; */
|
alpar@9
|
51 double *y; /* double y[1+m]; */
|
alpar@9
|
52 double *z; /* double z[1+n]; */
|
alpar@9
|
53 /* current point in primal-dual space; the best point on exit */
|
alpar@9
|
54 /*--------------------------------------------------------------*/
|
alpar@9
|
55 /* control parameters */
|
alpar@9
|
56 const glp_iptcp *parm;
|
alpar@9
|
57 /*--------------------------------------------------------------*/
|
alpar@9
|
58 /* working arrays and variables */
|
alpar@9
|
59 double *D; /* double D[1+n]; */
|
alpar@9
|
60 /* diagonal nxn-matrix D = X*inv(Z), where X = diag(x[j]) and
|
alpar@9
|
61 Z = diag(z[j]) */
|
alpar@9
|
62 int *P; /* int P[1+m+m]; */
|
alpar@9
|
63 /* permutation mxm-matrix P used to minimize fill-in in Cholesky
|
alpar@9
|
64 factorization */
|
alpar@9
|
65 int *S_ptr; /* int S_ptr[1+m+1]; */
|
alpar@9
|
66 int *S_ind; /* int S_ind[S_ptr[m+1]]; */
|
alpar@9
|
67 double *S_val; /* double S_val[S_ptr[m+1]]; */
|
alpar@9
|
68 double *S_diag; /* double S_diag[1+m]; */
|
alpar@9
|
69 /* symmetric mxm-matrix S = P*A*D*A'*P' whose upper triangular
|
alpar@9
|
70 part without diagonal elements is stored in S_ptr, S_ind, and
|
alpar@9
|
71 S_val in storage-by-rows format, diagonal elements are stored
|
alpar@9
|
72 in S_diag */
|
alpar@9
|
73 int *U_ptr; /* int U_ptr[1+m+1]; */
|
alpar@9
|
74 int *U_ind; /* int U_ind[U_ptr[m+1]]; */
|
alpar@9
|
75 double *U_val; /* double U_val[U_ptr[m+1]]; */
|
alpar@9
|
76 double *U_diag; /* double U_diag[1+m]; */
|
alpar@9
|
77 /* upper triangular mxm-matrix U defining Cholesky factorization
|
alpar@9
|
78 S = U'*U; its non-diagonal elements are stored in U_ptr, U_ind,
|
alpar@9
|
79 U_val in storage-by-rows format, diagonal elements are stored
|
alpar@9
|
80 in U_diag */
|
alpar@9
|
81 int iter;
|
alpar@9
|
82 /* iteration number (0, 1, 2, ...); iter = 0 corresponds to the
|
alpar@9
|
83 initial point */
|
alpar@9
|
84 double obj;
|
alpar@9
|
85 /* current value of the objective function */
|
alpar@9
|
86 double rpi;
|
alpar@9
|
87 /* relative primal infeasibility rpi = ||A*x-b||/(1+||b||) */
|
alpar@9
|
88 double rdi;
|
alpar@9
|
89 /* relative dual infeasibility rdi = ||A'*y+z-c||/(1+||c||) */
|
alpar@9
|
90 double gap;
|
alpar@9
|
91 /* primal-dual gap = |c'*x-b'*y|/(1+|c'*x|) which is a relative
|
alpar@9
|
92 difference between primal and dual objective functions */
|
alpar@9
|
93 double phi;
|
alpar@9
|
94 /* merit function phi = ||A*x-b||/max(1,||b||) +
|
alpar@9
|
95 + ||A'*y+z-c||/max(1,||c||) +
|
alpar@9
|
96 + |c'*x-b'*y|/max(1,||b||,||c||) */
|
alpar@9
|
97 double mu;
|
alpar@9
|
98 /* duality measure mu = x'*z/n (used as barrier parameter) */
|
alpar@9
|
99 double rmu;
|
alpar@9
|
100 /* rmu = max(||A*x-b||,||A'*y+z-c||)/mu */
|
alpar@9
|
101 double rmu0;
|
alpar@9
|
102 /* the initial value of rmu on iteration 0 */
|
alpar@9
|
103 double *phi_min; /* double phi_min[1+ITER_MAX]; */
|
alpar@9
|
104 /* phi_min[k] = min(phi[k]), where phi[k] is the value of phi on
|
alpar@9
|
105 k-th iteration, 0 <= k <= iter */
|
alpar@9
|
106 int best_iter;
|
alpar@9
|
107 /* iteration number, on which the value of phi reached its best
|
alpar@9
|
108 (minimal) value */
|
alpar@9
|
109 double *best_x; /* double best_x[1+n]; */
|
alpar@9
|
110 double *best_y; /* double best_y[1+m]; */
|
alpar@9
|
111 double *best_z; /* double best_z[1+n]; */
|
alpar@9
|
112 /* best point (in the sense of the merit function phi) which has
|
alpar@9
|
113 been reached on iteration iter_best */
|
alpar@9
|
114 double best_obj;
|
alpar@9
|
115 /* objective value at the best point */
|
alpar@9
|
116 double *dx_aff; /* double dx_aff[1+n]; */
|
alpar@9
|
117 double *dy_aff; /* double dy_aff[1+m]; */
|
alpar@9
|
118 double *dz_aff; /* double dz_aff[1+n]; */
|
alpar@9
|
119 /* affine scaling direction */
|
alpar@9
|
120 double alfa_aff_p, alfa_aff_d;
|
alpar@9
|
121 /* maximal primal and dual stepsizes in affine scaling direction,
|
alpar@9
|
122 on which x and z are still non-negative */
|
alpar@9
|
123 double mu_aff;
|
alpar@9
|
124 /* duality measure mu_aff = x_aff'*z_aff/n in the boundary point
|
alpar@9
|
125 x_aff' = x+alfa_aff_p*dx_aff, z_aff' = z+alfa_aff_d*dz_aff */
|
alpar@9
|
126 double sigma;
|
alpar@9
|
127 /* Mehrotra's heuristic parameter (0 <= sigma <= 1) */
|
alpar@9
|
128 double *dx_cc; /* double dx_cc[1+n]; */
|
alpar@9
|
129 double *dy_cc; /* double dy_cc[1+m]; */
|
alpar@9
|
130 double *dz_cc; /* double dz_cc[1+n]; */
|
alpar@9
|
131 /* centering corrector direction */
|
alpar@9
|
132 double *dx; /* double dx[1+n]; */
|
alpar@9
|
133 double *dy; /* double dy[1+m]; */
|
alpar@9
|
134 double *dz; /* double dz[1+n]; */
|
alpar@9
|
135 /* final combined direction dx = dx_aff+dx_cc, dy = dy_aff+dy_cc,
|
alpar@9
|
136 dz = dz_aff+dz_cc */
|
alpar@9
|
137 double alfa_max_p;
|
alpar@9
|
138 double alfa_max_d;
|
alpar@9
|
139 /* maximal primal and dual stepsizes in combined direction, on
|
alpar@9
|
140 which x and z are still non-negative */
|
alpar@9
|
141 };
|
alpar@9
|
142
|
alpar@9
|
143 /***********************************************************************
|
alpar@9
|
144 * initialize - allocate and initialize common storage area
|
alpar@9
|
145 *
|
alpar@9
|
146 * This routine allocates and initializes the common storage area (CSA)
|
alpar@9
|
147 * used by interior-point method routines. */
|
alpar@9
|
148
|
alpar@9
|
149 static void initialize(struct csa *csa)
|
alpar@9
|
150 { int m = csa->m;
|
alpar@9
|
151 int n = csa->n;
|
alpar@9
|
152 int i;
|
alpar@9
|
153 if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
154 xprintf("Matrix A has %d non-zeros\n", csa->A_ptr[m+1]-1);
|
alpar@9
|
155 csa->D = xcalloc(1+n, sizeof(double));
|
alpar@9
|
156 /* P := I */
|
alpar@9
|
157 csa->P = xcalloc(1+m+m, sizeof(int));
|
alpar@9
|
158 for (i = 1; i <= m; i++) csa->P[i] = csa->P[m+i] = i;
|
alpar@9
|
159 /* S := A*A', symbolically */
|
alpar@9
|
160 csa->S_ptr = xcalloc(1+m+1, sizeof(int));
|
alpar@9
|
161 csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind,
|
alpar@9
|
162 csa->S_ptr);
|
alpar@9
|
163 if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
164 xprintf("Matrix S = A*A' has %d non-zeros (upper triangle)\n",
|
alpar@9
|
165 csa->S_ptr[m+1]-1 + m);
|
alpar@9
|
166 /* determine P using specified ordering algorithm */
|
alpar@9
|
167 if (csa->parm->ord_alg == GLP_ORD_NONE)
|
alpar@9
|
168 { if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
169 xprintf("Original ordering is being used\n");
|
alpar@9
|
170 for (i = 1; i <= m; i++)
|
alpar@9
|
171 csa->P[i] = csa->P[m+i] = i;
|
alpar@9
|
172 }
|
alpar@9
|
173 else if (csa->parm->ord_alg == GLP_ORD_QMD)
|
alpar@9
|
174 { if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
175 xprintf("Minimum degree ordering (QMD)...\n");
|
alpar@9
|
176 min_degree(m, csa->S_ptr, csa->S_ind, csa->P);
|
alpar@9
|
177 }
|
alpar@9
|
178 else if (csa->parm->ord_alg == GLP_ORD_AMD)
|
alpar@9
|
179 { if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
180 xprintf("Approximate minimum degree ordering (AMD)...\n");
|
alpar@9
|
181 amd_order1(m, csa->S_ptr, csa->S_ind, csa->P);
|
alpar@9
|
182 }
|
alpar@9
|
183 else if (csa->parm->ord_alg == GLP_ORD_SYMAMD)
|
alpar@9
|
184 { if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
185 xprintf("Approximate minimum degree ordering (SYMAMD)...\n")
|
alpar@9
|
186 ;
|
alpar@9
|
187 symamd_ord(m, csa->S_ptr, csa->S_ind, csa->P);
|
alpar@9
|
188 }
|
alpar@9
|
189 else
|
alpar@9
|
190 xassert(csa != csa);
|
alpar@9
|
191 /* S := P*A*A'*P', symbolically */
|
alpar@9
|
192 xfree(csa->S_ind);
|
alpar@9
|
193 csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind,
|
alpar@9
|
194 csa->S_ptr);
|
alpar@9
|
195 csa->S_val = xcalloc(csa->S_ptr[m+1], sizeof(double));
|
alpar@9
|
196 csa->S_diag = xcalloc(1+m, sizeof(double));
|
alpar@9
|
197 /* compute Cholesky factorization S = U'*U, symbolically */
|
alpar@9
|
198 if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
199 xprintf("Computing Cholesky factorization S = L*L'...\n");
|
alpar@9
|
200 csa->U_ptr = xcalloc(1+m+1, sizeof(int));
|
alpar@9
|
201 csa->U_ind = chol_symbolic(m, csa->S_ptr, csa->S_ind, csa->U_ptr);
|
alpar@9
|
202 if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
203 xprintf("Matrix L has %d non-zeros\n", csa->U_ptr[m+1]-1 + m);
|
alpar@9
|
204 csa->U_val = xcalloc(csa->U_ptr[m+1], sizeof(double));
|
alpar@9
|
205 csa->U_diag = xcalloc(1+m, sizeof(double));
|
alpar@9
|
206 csa->iter = 0;
|
alpar@9
|
207 csa->obj = 0.0;
|
alpar@9
|
208 csa->rpi = 0.0;
|
alpar@9
|
209 csa->rdi = 0.0;
|
alpar@9
|
210 csa->gap = 0.0;
|
alpar@9
|
211 csa->phi = 0.0;
|
alpar@9
|
212 csa->mu = 0.0;
|
alpar@9
|
213 csa->rmu = 0.0;
|
alpar@9
|
214 csa->rmu0 = 0.0;
|
alpar@9
|
215 csa->phi_min = xcalloc(1+ITER_MAX, sizeof(double));
|
alpar@9
|
216 csa->best_iter = 0;
|
alpar@9
|
217 csa->best_x = xcalloc(1+n, sizeof(double));
|
alpar@9
|
218 csa->best_y = xcalloc(1+m, sizeof(double));
|
alpar@9
|
219 csa->best_z = xcalloc(1+n, sizeof(double));
|
alpar@9
|
220 csa->best_obj = 0.0;
|
alpar@9
|
221 csa->dx_aff = xcalloc(1+n, sizeof(double));
|
alpar@9
|
222 csa->dy_aff = xcalloc(1+m, sizeof(double));
|
alpar@9
|
223 csa->dz_aff = xcalloc(1+n, sizeof(double));
|
alpar@9
|
224 csa->alfa_aff_p = 0.0;
|
alpar@9
|
225 csa->alfa_aff_d = 0.0;
|
alpar@9
|
226 csa->mu_aff = 0.0;
|
alpar@9
|
227 csa->sigma = 0.0;
|
alpar@9
|
228 csa->dx_cc = xcalloc(1+n, sizeof(double));
|
alpar@9
|
229 csa->dy_cc = xcalloc(1+m, sizeof(double));
|
alpar@9
|
230 csa->dz_cc = xcalloc(1+n, sizeof(double));
|
alpar@9
|
231 csa->dx = csa->dx_aff;
|
alpar@9
|
232 csa->dy = csa->dy_aff;
|
alpar@9
|
233 csa->dz = csa->dz_aff;
|
alpar@9
|
234 csa->alfa_max_p = 0.0;
|
alpar@9
|
235 csa->alfa_max_d = 0.0;
|
alpar@9
|
236 return;
|
alpar@9
|
237 }
|
alpar@9
|
238
|
alpar@9
|
239 /***********************************************************************
|
alpar@9
|
240 * A_by_vec - compute y = A*x
|
alpar@9
|
241 *
|
alpar@9
|
242 * This routine computes matrix-vector product y = A*x, where A is the
|
alpar@9
|
243 * constraint matrix. */
|
alpar@9
|
244
|
alpar@9
|
245 static void A_by_vec(struct csa *csa, double x[], double y[])
|
alpar@9
|
246 { /* compute y = A*x */
|
alpar@9
|
247 int m = csa->m;
|
alpar@9
|
248 int *A_ptr = csa->A_ptr;
|
alpar@9
|
249 int *A_ind = csa->A_ind;
|
alpar@9
|
250 double *A_val = csa->A_val;
|
alpar@9
|
251 int i, t, beg, end;
|
alpar@9
|
252 double temp;
|
alpar@9
|
253 for (i = 1; i <= m; i++)
|
alpar@9
|
254 { temp = 0.0;
|
alpar@9
|
255 beg = A_ptr[i], end = A_ptr[i+1];
|
alpar@9
|
256 for (t = beg; t < end; t++) temp += A_val[t] * x[A_ind[t]];
|
alpar@9
|
257 y[i] = temp;
|
alpar@9
|
258 }
|
alpar@9
|
259 return;
|
alpar@9
|
260 }
|
alpar@9
|
261
|
alpar@9
|
262 /***********************************************************************
|
alpar@9
|
263 * AT_by_vec - compute y = A'*x
|
alpar@9
|
264 *
|
alpar@9
|
265 * This routine computes matrix-vector product y = A'*x, where A' is a
|
alpar@9
|
266 * matrix transposed to the constraint matrix A. */
|
alpar@9
|
267
|
alpar@9
|
268 static void AT_by_vec(struct csa *csa, double x[], double y[])
|
alpar@9
|
269 { /* compute y = A'*x, where A' is transposed to A */
|
alpar@9
|
270 int m = csa->m;
|
alpar@9
|
271 int n = csa->n;
|
alpar@9
|
272 int *A_ptr = csa->A_ptr;
|
alpar@9
|
273 int *A_ind = csa->A_ind;
|
alpar@9
|
274 double *A_val = csa->A_val;
|
alpar@9
|
275 int i, j, t, beg, end;
|
alpar@9
|
276 double temp;
|
alpar@9
|
277 for (j = 1; j <= n; j++) y[j] = 0.0;
|
alpar@9
|
278 for (i = 1; i <= m; i++)
|
alpar@9
|
279 { temp = x[i];
|
alpar@9
|
280 if (temp == 0.0) continue;
|
alpar@9
|
281 beg = A_ptr[i], end = A_ptr[i+1];
|
alpar@9
|
282 for (t = beg; t < end; t++) y[A_ind[t]] += A_val[t] * temp;
|
alpar@9
|
283 }
|
alpar@9
|
284 return;
|
alpar@9
|
285 }
|
alpar@9
|
286
|
alpar@9
|
287 /***********************************************************************
|
alpar@9
|
288 * decomp_NE - numeric factorization of matrix S = P*A*D*A'*P'
|
alpar@9
|
289 *
|
alpar@9
|
290 * This routine implements numeric phase of Cholesky factorization of
|
alpar@9
|
291 * the matrix S = P*A*D*A'*P', which is a permuted matrix of the normal
|
alpar@9
|
292 * equation system. Matrix D is assumed to be already computed. */
|
alpar@9
|
293
|
alpar@9
|
294 static void decomp_NE(struct csa *csa)
|
alpar@9
|
295 { adat_numeric(csa->m, csa->n, csa->P, csa->A_ptr, csa->A_ind,
|
alpar@9
|
296 csa->A_val, csa->D, csa->S_ptr, csa->S_ind, csa->S_val,
|
alpar@9
|
297 csa->S_diag);
|
alpar@9
|
298 chol_numeric(csa->m, csa->S_ptr, csa->S_ind, csa->S_val,
|
alpar@9
|
299 csa->S_diag, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag);
|
alpar@9
|
300 return;
|
alpar@9
|
301 }
|
alpar@9
|
302
|
alpar@9
|
303 /***********************************************************************
|
alpar@9
|
304 * solve_NE - solve normal equation system
|
alpar@9
|
305 *
|
alpar@9
|
306 * This routine solves the normal equation system:
|
alpar@9
|
307 *
|
alpar@9
|
308 * A*D*A'*y = h.
|
alpar@9
|
309 *
|
alpar@9
|
310 * It is assumed that the matrix A*D*A' has been previously factorized
|
alpar@9
|
311 * by the routine decomp_NE.
|
alpar@9
|
312 *
|
alpar@9
|
313 * On entry the array y contains the vector of right-hand sides h. On
|
alpar@9
|
314 * exit this array contains the computed vector of unknowns y.
|
alpar@9
|
315 *
|
alpar@9
|
316 * Once the vector y has been computed the routine checks for numeric
|
alpar@9
|
317 * stability. If the residual vector:
|
alpar@9
|
318 *
|
alpar@9
|
319 * r = A*D*A'*y - h
|
alpar@9
|
320 *
|
alpar@9
|
321 * is relatively small, the routine returns zero, otherwise non-zero is
|
alpar@9
|
322 * returned. */
|
alpar@9
|
323
|
alpar@9
|
324 static int solve_NE(struct csa *csa, double y[])
|
alpar@9
|
325 { int m = csa->m;
|
alpar@9
|
326 int n = csa->n;
|
alpar@9
|
327 int *P = csa->P;
|
alpar@9
|
328 int i, j, ret = 0;
|
alpar@9
|
329 double *h, *r, *w;
|
alpar@9
|
330 /* save vector of right-hand sides h */
|
alpar@9
|
331 h = xcalloc(1+m, sizeof(double));
|
alpar@9
|
332 for (i = 1; i <= m; i++) h[i] = y[i];
|
alpar@9
|
333 /* solve normal equation system (A*D*A')*y = h */
|
alpar@9
|
334 /* since S = P*A*D*A'*P' = U'*U, then A*D*A' = P'*U'*U*P, so we
|
alpar@9
|
335 have inv(A*D*A') = P'*inv(U)*inv(U')*P */
|
alpar@9
|
336 /* w := P*h */
|
alpar@9
|
337 w = xcalloc(1+m, sizeof(double));
|
alpar@9
|
338 for (i = 1; i <= m; i++) w[i] = y[P[i]];
|
alpar@9
|
339 /* w := inv(U')*w */
|
alpar@9
|
340 ut_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w);
|
alpar@9
|
341 /* w := inv(U)*w */
|
alpar@9
|
342 u_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w);
|
alpar@9
|
343 /* y := P'*w */
|
alpar@9
|
344 for (i = 1; i <= m; i++) y[i] = w[P[m+i]];
|
alpar@9
|
345 xfree(w);
|
alpar@9
|
346 /* compute residual vector r = A*D*A'*y - h */
|
alpar@9
|
347 r = xcalloc(1+m, sizeof(double));
|
alpar@9
|
348 /* w := A'*y */
|
alpar@9
|
349 w = xcalloc(1+n, sizeof(double));
|
alpar@9
|
350 AT_by_vec(csa, y, w);
|
alpar@9
|
351 /* w := D*w */
|
alpar@9
|
352 for (j = 1; j <= n; j++) w[j] *= csa->D[j];
|
alpar@9
|
353 /* r := A*w */
|
alpar@9
|
354 A_by_vec(csa, w, r);
|
alpar@9
|
355 xfree(w);
|
alpar@9
|
356 /* r := r - h */
|
alpar@9
|
357 for (i = 1; i <= m; i++) r[i] -= h[i];
|
alpar@9
|
358 /* check for numeric stability */
|
alpar@9
|
359 for (i = 1; i <= m; i++)
|
alpar@9
|
360 { if (fabs(r[i]) / (1.0 + fabs(h[i])) > 1e-4)
|
alpar@9
|
361 { ret = 1;
|
alpar@9
|
362 break;
|
alpar@9
|
363 }
|
alpar@9
|
364 }
|
alpar@9
|
365 xfree(h);
|
alpar@9
|
366 xfree(r);
|
alpar@9
|
367 return ret;
|
alpar@9
|
368 }
|
alpar@9
|
369
|
alpar@9
|
370 /***********************************************************************
|
alpar@9
|
371 * solve_NS - solve Newtonian system
|
alpar@9
|
372 *
|
alpar@9
|
373 * This routine solves the Newtonian system:
|
alpar@9
|
374 *
|
alpar@9
|
375 * A*dx = p
|
alpar@9
|
376 *
|
alpar@9
|
377 * A'*dy + dz = q
|
alpar@9
|
378 *
|
alpar@9
|
379 * Z*dx + X*dz = r
|
alpar@9
|
380 *
|
alpar@9
|
381 * where X = diag(x[j]), Z = diag(z[j]), by reducing it to the normal
|
alpar@9
|
382 * equation system:
|
alpar@9
|
383 *
|
alpar@9
|
384 * (A*inv(Z)*X*A')*dy = A*inv(Z)*(X*q-r)+p
|
alpar@9
|
385 *
|
alpar@9
|
386 * (it is assumed that the matrix A*inv(Z)*X*A' has been factorized by
|
alpar@9
|
387 * the routine decomp_NE).
|
alpar@9
|
388 *
|
alpar@9
|
389 * Once vector dy has been computed the routine computes vectors dx and
|
alpar@9
|
390 * dz as follows:
|
alpar@9
|
391 *
|
alpar@9
|
392 * dx = inv(Z)*(X*(A'*dy-q)+r)
|
alpar@9
|
393 *
|
alpar@9
|
394 * dz = inv(X)*(r-Z*dx)
|
alpar@9
|
395 *
|
alpar@9
|
396 * The routine solve_NS returns the same code which was reported by the
|
alpar@9
|
397 * routine solve_NE (see above). */
|
alpar@9
|
398
|
alpar@9
|
399 static int solve_NS(struct csa *csa, double p[], double q[], double r[],
|
alpar@9
|
400 double dx[], double dy[], double dz[])
|
alpar@9
|
401 { int m = csa->m;
|
alpar@9
|
402 int n = csa->n;
|
alpar@9
|
403 double *x = csa->x;
|
alpar@9
|
404 double *z = csa->z;
|
alpar@9
|
405 int i, j, ret;
|
alpar@9
|
406 double *w = dx;
|
alpar@9
|
407 /* compute the vector of right-hand sides A*inv(Z)*(X*q-r)+p for
|
alpar@9
|
408 the normal equation system */
|
alpar@9
|
409 for (j = 1; j <= n; j++)
|
alpar@9
|
410 w[j] = (x[j] * q[j] - r[j]) / z[j];
|
alpar@9
|
411 A_by_vec(csa, w, dy);
|
alpar@9
|
412 for (i = 1; i <= m; i++) dy[i] += p[i];
|
alpar@9
|
413 /* solve the normal equation system to compute vector dy */
|
alpar@9
|
414 ret = solve_NE(csa, dy);
|
alpar@9
|
415 /* compute vectors dx and dz */
|
alpar@9
|
416 AT_by_vec(csa, dy, dx);
|
alpar@9
|
417 for (j = 1; j <= n; j++)
|
alpar@9
|
418 { dx[j] = (x[j] * (dx[j] - q[j]) + r[j]) / z[j];
|
alpar@9
|
419 dz[j] = (r[j] - z[j] * dx[j]) / x[j];
|
alpar@9
|
420 }
|
alpar@9
|
421 return ret;
|
alpar@9
|
422 }
|
alpar@9
|
423
|
alpar@9
|
424 /***********************************************************************
|
alpar@9
|
425 * initial_point - choose initial point using Mehrotra's heuristic
|
alpar@9
|
426 *
|
alpar@9
|
427 * This routine chooses a starting point using a heuristic proposed in
|
alpar@9
|
428 * the paper:
|
alpar@9
|
429 *
|
alpar@9
|
430 * S. Mehrotra. On the implementation of a primal-dual interior point
|
alpar@9
|
431 * method. SIAM J. on Optim., 2(4), pp. 575-601, 1992.
|
alpar@9
|
432 *
|
alpar@9
|
433 * The starting point x in the primal space is chosen as a solution of
|
alpar@9
|
434 * the following least squares problem:
|
alpar@9
|
435 *
|
alpar@9
|
436 * minimize ||x||
|
alpar@9
|
437 *
|
alpar@9
|
438 * subject to A*x = b
|
alpar@9
|
439 *
|
alpar@9
|
440 * which can be computed explicitly as follows:
|
alpar@9
|
441 *
|
alpar@9
|
442 * x = A'*inv(A*A')*b
|
alpar@9
|
443 *
|
alpar@9
|
444 * Similarly, the starting point (y, z) in the dual space is chosen as
|
alpar@9
|
445 * a solution of the following least squares problem:
|
alpar@9
|
446 *
|
alpar@9
|
447 * minimize ||z||
|
alpar@9
|
448 *
|
alpar@9
|
449 * subject to A'*y + z = c
|
alpar@9
|
450 *
|
alpar@9
|
451 * which can be computed explicitly as follows:
|
alpar@9
|
452 *
|
alpar@9
|
453 * y = inv(A*A')*A*c
|
alpar@9
|
454 *
|
alpar@9
|
455 * z = c - A'*y
|
alpar@9
|
456 *
|
alpar@9
|
457 * However, some components of the vectors x and z may be non-positive
|
alpar@9
|
458 * or close to zero, so the routine uses a Mehrotra's heuristic to find
|
alpar@9
|
459 * a more appropriate starting point. */
|
alpar@9
|
460
|
alpar@9
|
461 static void initial_point(struct csa *csa)
|
alpar@9
|
462 { int m = csa->m;
|
alpar@9
|
463 int n = csa->n;
|
alpar@9
|
464 double *b = csa->b;
|
alpar@9
|
465 double *c = csa->c;
|
alpar@9
|
466 double *x = csa->x;
|
alpar@9
|
467 double *y = csa->y;
|
alpar@9
|
468 double *z = csa->z;
|
alpar@9
|
469 double *D = csa->D;
|
alpar@9
|
470 int i, j;
|
alpar@9
|
471 double dp, dd, ex, ez, xz;
|
alpar@9
|
472 /* factorize A*A' */
|
alpar@9
|
473 for (j = 1; j <= n; j++) D[j] = 1.0;
|
alpar@9
|
474 decomp_NE(csa);
|
alpar@9
|
475 /* x~ = A'*inv(A*A')*b */
|
alpar@9
|
476 for (i = 1; i <= m; i++) y[i] = b[i];
|
alpar@9
|
477 solve_NE(csa, y);
|
alpar@9
|
478 AT_by_vec(csa, y, x);
|
alpar@9
|
479 /* y~ = inv(A*A')*A*c */
|
alpar@9
|
480 A_by_vec(csa, c, y);
|
alpar@9
|
481 solve_NE(csa, y);
|
alpar@9
|
482 /* z~ = c - A'*y~ */
|
alpar@9
|
483 AT_by_vec(csa, y,z);
|
alpar@9
|
484 for (j = 1; j <= n; j++) z[j] = c[j] - z[j];
|
alpar@9
|
485 /* use Mehrotra's heuristic in order to choose more appropriate
|
alpar@9
|
486 starting point with positive components of vectors x and z */
|
alpar@9
|
487 dp = dd = 0.0;
|
alpar@9
|
488 for (j = 1; j <= n; j++)
|
alpar@9
|
489 { if (dp < -1.5 * x[j]) dp = -1.5 * x[j];
|
alpar@9
|
490 if (dd < -1.5 * z[j]) dd = -1.5 * z[j];
|
alpar@9
|
491 }
|
alpar@9
|
492 /* note that b = 0 involves x = 0, and c = 0 involves y = 0 and
|
alpar@9
|
493 z = 0, so we need to be careful */
|
alpar@9
|
494 if (dp == 0.0) dp = 1.5;
|
alpar@9
|
495 if (dd == 0.0) dd = 1.5;
|
alpar@9
|
496 ex = ez = xz = 0.0;
|
alpar@9
|
497 for (j = 1; j <= n; j++)
|
alpar@9
|
498 { ex += (x[j] + dp);
|
alpar@9
|
499 ez += (z[j] + dd);
|
alpar@9
|
500 xz += (x[j] + dp) * (z[j] + dd);
|
alpar@9
|
501 }
|
alpar@9
|
502 dp += 0.5 * (xz / ez);
|
alpar@9
|
503 dd += 0.5 * (xz / ex);
|
alpar@9
|
504 for (j = 1; j <= n; j++)
|
alpar@9
|
505 { x[j] += dp;
|
alpar@9
|
506 z[j] += dd;
|
alpar@9
|
507 xassert(x[j] > 0.0 && z[j] > 0.0);
|
alpar@9
|
508 }
|
alpar@9
|
509 return;
|
alpar@9
|
510 }
|
alpar@9
|
511
|
alpar@9
|
512 /***********************************************************************
|
alpar@9
|
513 * basic_info - perform basic computations at the current point
|
alpar@9
|
514 *
|
alpar@9
|
515 * This routine computes the following quantities at the current point:
|
alpar@9
|
516 *
|
alpar@9
|
517 * 1) value of the objective function:
|
alpar@9
|
518 *
|
alpar@9
|
519 * F = c'*x + c[0]
|
alpar@9
|
520 *
|
alpar@9
|
521 * 2) relative primal infeasibility:
|
alpar@9
|
522 *
|
alpar@9
|
523 * rpi = ||A*x-b|| / (1+||b||)
|
alpar@9
|
524 *
|
alpar@9
|
525 * 3) relative dual infeasibility:
|
alpar@9
|
526 *
|
alpar@9
|
527 * rdi = ||A'*y+z-c|| / (1+||c||)
|
alpar@9
|
528 *
|
alpar@9
|
529 * 4) primal-dual gap (relative difference between the primal and the
|
alpar@9
|
530 * dual objective function values):
|
alpar@9
|
531 *
|
alpar@9
|
532 * gap = |c'*x-b'*y| / (1+|c'*x|)
|
alpar@9
|
533 *
|
alpar@9
|
534 * 5) merit function:
|
alpar@9
|
535 *
|
alpar@9
|
536 * phi = ||A*x-b|| / max(1,||b||) + ||A'*y+z-c|| / max(1,||c||) +
|
alpar@9
|
537 *
|
alpar@9
|
538 * + |c'*x-b'*y| / max(1,||b||,||c||)
|
alpar@9
|
539 *
|
alpar@9
|
540 * 6) duality measure:
|
alpar@9
|
541 *
|
alpar@9
|
542 * mu = x'*z / n
|
alpar@9
|
543 *
|
alpar@9
|
544 * 7) the ratio of infeasibility to mu:
|
alpar@9
|
545 *
|
alpar@9
|
546 * rmu = max(||A*x-b||,||A'*y+z-c||) / mu
|
alpar@9
|
547 *
|
alpar@9
|
548 * where ||*|| denotes euclidian norm, *' denotes transposition. */
|
alpar@9
|
549
|
alpar@9
|
550 static void basic_info(struct csa *csa)
|
alpar@9
|
551 { int m = csa->m;
|
alpar@9
|
552 int n = csa->n;
|
alpar@9
|
553 double *b = csa->b;
|
alpar@9
|
554 double *c = csa->c;
|
alpar@9
|
555 double *x = csa->x;
|
alpar@9
|
556 double *y = csa->y;
|
alpar@9
|
557 double *z = csa->z;
|
alpar@9
|
558 int i, j;
|
alpar@9
|
559 double norm1, bnorm, norm2, cnorm, cx, by, *work, temp;
|
alpar@9
|
560 /* compute value of the objective function */
|
alpar@9
|
561 temp = c[0];
|
alpar@9
|
562 for (j = 1; j <= n; j++) temp += c[j] * x[j];
|
alpar@9
|
563 csa->obj = temp;
|
alpar@9
|
564 /* norm1 = ||A*x-b|| */
|
alpar@9
|
565 work = xcalloc(1+m, sizeof(double));
|
alpar@9
|
566 A_by_vec(csa, x, work);
|
alpar@9
|
567 norm1 = 0.0;
|
alpar@9
|
568 for (i = 1; i <= m; i++)
|
alpar@9
|
569 norm1 += (work[i] - b[i]) * (work[i] - b[i]);
|
alpar@9
|
570 norm1 = sqrt(norm1);
|
alpar@9
|
571 xfree(work);
|
alpar@9
|
572 /* bnorm = ||b|| */
|
alpar@9
|
573 bnorm = 0.0;
|
alpar@9
|
574 for (i = 1; i <= m; i++) bnorm += b[i] * b[i];
|
alpar@9
|
575 bnorm = sqrt(bnorm);
|
alpar@9
|
576 /* compute relative primal infeasibility */
|
alpar@9
|
577 csa->rpi = norm1 / (1.0 + bnorm);
|
alpar@9
|
578 /* norm2 = ||A'*y+z-c|| */
|
alpar@9
|
579 work = xcalloc(1+n, sizeof(double));
|
alpar@9
|
580 AT_by_vec(csa, y, work);
|
alpar@9
|
581 norm2 = 0.0;
|
alpar@9
|
582 for (j = 1; j <= n; j++)
|
alpar@9
|
583 norm2 += (work[j] + z[j] - c[j]) * (work[j] + z[j] - c[j]);
|
alpar@9
|
584 norm2 = sqrt(norm2);
|
alpar@9
|
585 xfree(work);
|
alpar@9
|
586 /* cnorm = ||c|| */
|
alpar@9
|
587 cnorm = 0.0;
|
alpar@9
|
588 for (j = 1; j <= n; j++) cnorm += c[j] * c[j];
|
alpar@9
|
589 cnorm = sqrt(cnorm);
|
alpar@9
|
590 /* compute relative dual infeasibility */
|
alpar@9
|
591 csa->rdi = norm2 / (1.0 + cnorm);
|
alpar@9
|
592 /* by = b'*y */
|
alpar@9
|
593 by = 0.0;
|
alpar@9
|
594 for (i = 1; i <= m; i++) by += b[i] * y[i];
|
alpar@9
|
595 /* cx = c'*x */
|
alpar@9
|
596 cx = 0.0;
|
alpar@9
|
597 for (j = 1; j <= n; j++) cx += c[j] * x[j];
|
alpar@9
|
598 /* compute primal-dual gap */
|
alpar@9
|
599 csa->gap = fabs(cx - by) / (1.0 + fabs(cx));
|
alpar@9
|
600 /* compute merit function */
|
alpar@9
|
601 csa->phi = 0.0;
|
alpar@9
|
602 csa->phi += norm1 / (bnorm > 1.0 ? bnorm : 1.0);
|
alpar@9
|
603 csa->phi += norm2 / (cnorm > 1.0 ? cnorm : 1.0);
|
alpar@9
|
604 temp = 1.0;
|
alpar@9
|
605 if (temp < bnorm) temp = bnorm;
|
alpar@9
|
606 if (temp < cnorm) temp = cnorm;
|
alpar@9
|
607 csa->phi += fabs(cx - by) / temp;
|
alpar@9
|
608 /* compute duality measure */
|
alpar@9
|
609 temp = 0.0;
|
alpar@9
|
610 for (j = 1; j <= n; j++) temp += x[j] * z[j];
|
alpar@9
|
611 csa->mu = temp / (double)n;
|
alpar@9
|
612 /* compute the ratio of infeasibility to mu */
|
alpar@9
|
613 csa->rmu = (norm1 > norm2 ? norm1 : norm2) / csa->mu;
|
alpar@9
|
614 return;
|
alpar@9
|
615 }
|
alpar@9
|
616
|
alpar@9
|
617 /***********************************************************************
|
alpar@9
|
618 * make_step - compute next point using Mehrotra's technique
|
alpar@9
|
619 *
|
alpar@9
|
620 * This routine computes the next point using the predictor-corrector
|
alpar@9
|
621 * technique proposed in the paper:
|
alpar@9
|
622 *
|
alpar@9
|
623 * S. Mehrotra. On the implementation of a primal-dual interior point
|
alpar@9
|
624 * method. SIAM J. on Optim., 2(4), pp. 575-601, 1992.
|
alpar@9
|
625 *
|
alpar@9
|
626 * At first, the routine computes so called affine scaling (predictor)
|
alpar@9
|
627 * direction (dx_aff,dy_aff,dz_aff) which is a solution of the system:
|
alpar@9
|
628 *
|
alpar@9
|
629 * A*dx_aff = b - A*x
|
alpar@9
|
630 *
|
alpar@9
|
631 * A'*dy_aff + dz_aff = c - A'*y - z
|
alpar@9
|
632 *
|
alpar@9
|
633 * Z*dx_aff + X*dz_aff = - X*Z*e
|
alpar@9
|
634 *
|
alpar@9
|
635 * where (x,y,z) is the current point, X = diag(x[j]), Z = diag(z[j]),
|
alpar@9
|
636 * e = (1,...,1)'.
|
alpar@9
|
637 *
|
alpar@9
|
638 * Then, the routine computes the centering parameter sigma, using the
|
alpar@9
|
639 * following Mehrotra's heuristic:
|
alpar@9
|
640 *
|
alpar@9
|
641 * alfa_aff_p = inf{0 <= alfa <= 1 | x+alfa*dx_aff >= 0}
|
alpar@9
|
642 *
|
alpar@9
|
643 * alfa_aff_d = inf{0 <= alfa <= 1 | z+alfa*dz_aff >= 0}
|
alpar@9
|
644 *
|
alpar@9
|
645 * mu_aff = (x+alfa_aff_p*dx_aff)'*(z+alfa_aff_d*dz_aff)/n
|
alpar@9
|
646 *
|
alpar@9
|
647 * sigma = (mu_aff/mu)^3
|
alpar@9
|
648 *
|
alpar@9
|
649 * where alfa_aff_p is the maximal stepsize along the affine scaling
|
alpar@9
|
650 * direction in the primal space, alfa_aff_d is the maximal stepsize
|
alpar@9
|
651 * along the same direction in the dual space.
|
alpar@9
|
652 *
|
alpar@9
|
653 * After determining sigma the routine computes so called centering
|
alpar@9
|
654 * (corrector) direction (dx_cc,dy_cc,dz_cc) which is the solution of
|
alpar@9
|
655 * the system:
|
alpar@9
|
656 *
|
alpar@9
|
657 * A*dx_cc = 0
|
alpar@9
|
658 *
|
alpar@9
|
659 * A'*dy_cc + dz_cc = 0
|
alpar@9
|
660 *
|
alpar@9
|
661 * Z*dx_cc + X*dz_cc = sigma*mu*e - X*Z*e
|
alpar@9
|
662 *
|
alpar@9
|
663 * Finally, the routine computes the combined direction
|
alpar@9
|
664 *
|
alpar@9
|
665 * (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc)
|
alpar@9
|
666 *
|
alpar@9
|
667 * and determines maximal primal and dual stepsizes along the combined
|
alpar@9
|
668 * direction:
|
alpar@9
|
669 *
|
alpar@9
|
670 * alfa_max_p = inf{0 <= alfa <= 1 | x+alfa*dx >= 0}
|
alpar@9
|
671 *
|
alpar@9
|
672 * alfa_max_d = inf{0 <= alfa <= 1 | z+alfa*dz >= 0}
|
alpar@9
|
673 *
|
alpar@9
|
674 * In order to prevent the next point to be too close to the boundary
|
alpar@9
|
675 * of the positive ortant, the routine decreases maximal stepsizes:
|
alpar@9
|
676 *
|
alpar@9
|
677 * alfa_p = gamma_p * alfa_max_p
|
alpar@9
|
678 *
|
alpar@9
|
679 * alfa_d = gamma_d * alfa_max_d
|
alpar@9
|
680 *
|
alpar@9
|
681 * where gamma_p and gamma_d are scaling factors, and computes the next
|
alpar@9
|
682 * point:
|
alpar@9
|
683 *
|
alpar@9
|
684 * x_new = x + alfa_p * dx
|
alpar@9
|
685 *
|
alpar@9
|
686 * y_new = y + alfa_d * dy
|
alpar@9
|
687 *
|
alpar@9
|
688 * z_new = z + alfa_d * dz
|
alpar@9
|
689 *
|
alpar@9
|
690 * which becomes the current point on the next iteration. */
|
alpar@9
|
691
|
alpar@9
|
692 static int make_step(struct csa *csa)
|
alpar@9
|
693 { int m = csa->m;
|
alpar@9
|
694 int n = csa->n;
|
alpar@9
|
695 double *b = csa->b;
|
alpar@9
|
696 double *c = csa->c;
|
alpar@9
|
697 double *x = csa->x;
|
alpar@9
|
698 double *y = csa->y;
|
alpar@9
|
699 double *z = csa->z;
|
alpar@9
|
700 double *dx_aff = csa->dx_aff;
|
alpar@9
|
701 double *dy_aff = csa->dy_aff;
|
alpar@9
|
702 double *dz_aff = csa->dz_aff;
|
alpar@9
|
703 double *dx_cc = csa->dx_cc;
|
alpar@9
|
704 double *dy_cc = csa->dy_cc;
|
alpar@9
|
705 double *dz_cc = csa->dz_cc;
|
alpar@9
|
706 double *dx = csa->dx;
|
alpar@9
|
707 double *dy = csa->dy;
|
alpar@9
|
708 double *dz = csa->dz;
|
alpar@9
|
709 int i, j, ret = 0;
|
alpar@9
|
710 double temp, gamma_p, gamma_d, *p, *q, *r;
|
alpar@9
|
711 /* allocate working arrays */
|
alpar@9
|
712 p = xcalloc(1+m, sizeof(double));
|
alpar@9
|
713 q = xcalloc(1+n, sizeof(double));
|
alpar@9
|
714 r = xcalloc(1+n, sizeof(double));
|
alpar@9
|
715 /* p = b - A*x */
|
alpar@9
|
716 A_by_vec(csa, x, p);
|
alpar@9
|
717 for (i = 1; i <= m; i++) p[i] = b[i] - p[i];
|
alpar@9
|
718 /* q = c - A'*y - z */
|
alpar@9
|
719 AT_by_vec(csa, y,q);
|
alpar@9
|
720 for (j = 1; j <= n; j++) q[j] = c[j] - q[j] - z[j];
|
alpar@9
|
721 /* r = - X * Z * e */
|
alpar@9
|
722 for (j = 1; j <= n; j++) r[j] = - x[j] * z[j];
|
alpar@9
|
723 /* solve the first Newtonian system */
|
alpar@9
|
724 if (solve_NS(csa, p, q, r, dx_aff, dy_aff, dz_aff))
|
alpar@9
|
725 { ret = 1;
|
alpar@9
|
726 goto done;
|
alpar@9
|
727 }
|
alpar@9
|
728 /* alfa_aff_p = inf{0 <= alfa <= 1 | x + alfa*dx_aff >= 0} */
|
alpar@9
|
729 /* alfa_aff_d = inf{0 <= alfa <= 1 | z + alfa*dz_aff >= 0} */
|
alpar@9
|
730 csa->alfa_aff_p = csa->alfa_aff_d = 1.0;
|
alpar@9
|
731 for (j = 1; j <= n; j++)
|
alpar@9
|
732 { if (dx_aff[j] < 0.0)
|
alpar@9
|
733 { temp = - x[j] / dx_aff[j];
|
alpar@9
|
734 if (csa->alfa_aff_p > temp) csa->alfa_aff_p = temp;
|
alpar@9
|
735 }
|
alpar@9
|
736 if (dz_aff[j] < 0.0)
|
alpar@9
|
737 { temp = - z[j] / dz_aff[j];
|
alpar@9
|
738 if (csa->alfa_aff_d > temp) csa->alfa_aff_d = temp;
|
alpar@9
|
739 }
|
alpar@9
|
740 }
|
alpar@9
|
741 /* mu_aff = (x+alfa_aff_p*dx_aff)' * (z+alfa_aff_d*dz_aff) / n */
|
alpar@9
|
742 temp = 0.0;
|
alpar@9
|
743 for (j = 1; j <= n; j++)
|
alpar@9
|
744 temp += (x[j] + csa->alfa_aff_p * dx_aff[j]) *
|
alpar@9
|
745 (z[j] + csa->alfa_aff_d * dz_aff[j]);
|
alpar@9
|
746 csa->mu_aff = temp / (double)n;
|
alpar@9
|
747 /* sigma = (mu_aff/mu)^3 */
|
alpar@9
|
748 temp = csa->mu_aff / csa->mu;
|
alpar@9
|
749 csa->sigma = temp * temp * temp;
|
alpar@9
|
750 /* p = 0 */
|
alpar@9
|
751 for (i = 1; i <= m; i++) p[i] = 0.0;
|
alpar@9
|
752 /* q = 0 */
|
alpar@9
|
753 for (j = 1; j <= n; j++) q[j] = 0.0;
|
alpar@9
|
754 /* r = sigma * mu * e - X * Z * e */
|
alpar@9
|
755 for (j = 1; j <= n; j++)
|
alpar@9
|
756 r[j] = csa->sigma * csa->mu - dx_aff[j] * dz_aff[j];
|
alpar@9
|
757 /* solve the second Newtonian system with the same coefficients
|
alpar@9
|
758 but with altered right-hand sides */
|
alpar@9
|
759 if (solve_NS(csa, p, q, r, dx_cc, dy_cc, dz_cc))
|
alpar@9
|
760 { ret = 1;
|
alpar@9
|
761 goto done;
|
alpar@9
|
762 }
|
alpar@9
|
763 /* (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc) */
|
alpar@9
|
764 for (j = 1; j <= n; j++) dx[j] = dx_aff[j] + dx_cc[j];
|
alpar@9
|
765 for (i = 1; i <= m; i++) dy[i] = dy_aff[i] + dy_cc[i];
|
alpar@9
|
766 for (j = 1; j <= n; j++) dz[j] = dz_aff[j] + dz_cc[j];
|
alpar@9
|
767 /* alfa_max_p = inf{0 <= alfa <= 1 | x + alfa*dx >= 0} */
|
alpar@9
|
768 /* alfa_max_d = inf{0 <= alfa <= 1 | z + alfa*dz >= 0} */
|
alpar@9
|
769 csa->alfa_max_p = csa->alfa_max_d = 1.0;
|
alpar@9
|
770 for (j = 1; j <= n; j++)
|
alpar@9
|
771 { if (dx[j] < 0.0)
|
alpar@9
|
772 { temp = - x[j] / dx[j];
|
alpar@9
|
773 if (csa->alfa_max_p > temp) csa->alfa_max_p = temp;
|
alpar@9
|
774 }
|
alpar@9
|
775 if (dz[j] < 0.0)
|
alpar@9
|
776 { temp = - z[j] / dz[j];
|
alpar@9
|
777 if (csa->alfa_max_d > temp) csa->alfa_max_d = temp;
|
alpar@9
|
778 }
|
alpar@9
|
779 }
|
alpar@9
|
780 /* determine scale factors (not implemented yet) */
|
alpar@9
|
781 gamma_p = 0.90;
|
alpar@9
|
782 gamma_d = 0.90;
|
alpar@9
|
783 /* compute the next point */
|
alpar@9
|
784 for (j = 1; j <= n; j++)
|
alpar@9
|
785 { x[j] += gamma_p * csa->alfa_max_p * dx[j];
|
alpar@9
|
786 xassert(x[j] > 0.0);
|
alpar@9
|
787 }
|
alpar@9
|
788 for (i = 1; i <= m; i++)
|
alpar@9
|
789 y[i] += gamma_d * csa->alfa_max_d * dy[i];
|
alpar@9
|
790 for (j = 1; j <= n; j++)
|
alpar@9
|
791 { z[j] += gamma_d * csa->alfa_max_d * dz[j];
|
alpar@9
|
792 xassert(z[j] > 0.0);
|
alpar@9
|
793 }
|
alpar@9
|
794 done: /* free working arrays */
|
alpar@9
|
795 xfree(p);
|
alpar@9
|
796 xfree(q);
|
alpar@9
|
797 xfree(r);
|
alpar@9
|
798 return ret;
|
alpar@9
|
799 }
|
alpar@9
|
800
|
alpar@9
|
801 /***********************************************************************
|
alpar@9
|
802 * terminate - deallocate common storage area
|
alpar@9
|
803 *
|
alpar@9
|
804 * This routine frees all memory allocated to the common storage area
|
alpar@9
|
805 * used by interior-point method routines. */
|
alpar@9
|
806
|
alpar@9
|
807 static void terminate(struct csa *csa)
|
alpar@9
|
808 { xfree(csa->D);
|
alpar@9
|
809 xfree(csa->P);
|
alpar@9
|
810 xfree(csa->S_ptr);
|
alpar@9
|
811 xfree(csa->S_ind);
|
alpar@9
|
812 xfree(csa->S_val);
|
alpar@9
|
813 xfree(csa->S_diag);
|
alpar@9
|
814 xfree(csa->U_ptr);
|
alpar@9
|
815 xfree(csa->U_ind);
|
alpar@9
|
816 xfree(csa->U_val);
|
alpar@9
|
817 xfree(csa->U_diag);
|
alpar@9
|
818 xfree(csa->phi_min);
|
alpar@9
|
819 xfree(csa->best_x);
|
alpar@9
|
820 xfree(csa->best_y);
|
alpar@9
|
821 xfree(csa->best_z);
|
alpar@9
|
822 xfree(csa->dx_aff);
|
alpar@9
|
823 xfree(csa->dy_aff);
|
alpar@9
|
824 xfree(csa->dz_aff);
|
alpar@9
|
825 xfree(csa->dx_cc);
|
alpar@9
|
826 xfree(csa->dy_cc);
|
alpar@9
|
827 xfree(csa->dz_cc);
|
alpar@9
|
828 return;
|
alpar@9
|
829 }
|
alpar@9
|
830
|
alpar@9
|
831 /***********************************************************************
|
alpar@9
|
832 * ipm_main - main interior-point method routine
|
alpar@9
|
833 *
|
alpar@9
|
834 * This is a main routine of the primal-dual interior-point method.
|
alpar@9
|
835 *
|
alpar@9
|
836 * The routine ipm_main returns one of the following codes:
|
alpar@9
|
837 *
|
alpar@9
|
838 * 0 - optimal solution found;
|
alpar@9
|
839 * 1 - problem has no feasible (primal or dual) solution;
|
alpar@9
|
840 * 2 - no convergence;
|
alpar@9
|
841 * 3 - iteration limit exceeded;
|
alpar@9
|
842 * 4 - numeric instability on solving Newtonian system.
|
alpar@9
|
843 *
|
alpar@9
|
844 * In case of non-zero return code the routine returns the best point,
|
alpar@9
|
845 * which has been reached during optimization. */
|
alpar@9
|
846
|
alpar@9
|
847 static int ipm_main(struct csa *csa)
|
alpar@9
|
848 { int m = csa->m;
|
alpar@9
|
849 int n = csa->n;
|
alpar@9
|
850 int i, j, status;
|
alpar@9
|
851 double temp;
|
alpar@9
|
852 /* choose initial point using Mehrotra's heuristic */
|
alpar@9
|
853 if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
854 xprintf("Guessing initial point...\n");
|
alpar@9
|
855 initial_point(csa);
|
alpar@9
|
856 /* main loop starts here */
|
alpar@9
|
857 if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
858 xprintf("Optimization begins...\n");
|
alpar@9
|
859 for (;;)
|
alpar@9
|
860 { /* perform basic computations at the current point */
|
alpar@9
|
861 basic_info(csa);
|
alpar@9
|
862 /* save initial value of rmu */
|
alpar@9
|
863 if (csa->iter == 0) csa->rmu0 = csa->rmu;
|
alpar@9
|
864 /* accumulate values of min(phi[k]) and save the best point */
|
alpar@9
|
865 xassert(csa->iter <= ITER_MAX);
|
alpar@9
|
866 if (csa->iter == 0 || csa->phi_min[csa->iter-1] > csa->phi)
|
alpar@9
|
867 { csa->phi_min[csa->iter] = csa->phi;
|
alpar@9
|
868 csa->best_iter = csa->iter;
|
alpar@9
|
869 for (j = 1; j <= n; j++) csa->best_x[j] = csa->x[j];
|
alpar@9
|
870 for (i = 1; i <= m; i++) csa->best_y[i] = csa->y[i];
|
alpar@9
|
871 for (j = 1; j <= n; j++) csa->best_z[j] = csa->z[j];
|
alpar@9
|
872 csa->best_obj = csa->obj;
|
alpar@9
|
873 }
|
alpar@9
|
874 else
|
alpar@9
|
875 csa->phi_min[csa->iter] = csa->phi_min[csa->iter-1];
|
alpar@9
|
876 /* display information at the current point */
|
alpar@9
|
877 if (csa->parm->msg_lev >= GLP_MSG_ON)
|
alpar@9
|
878 xprintf("%3d: obj = %17.9e; rpi = %8.1e; rdi = %8.1e; gap ="
|
alpar@9
|
879 " %8.1e\n", csa->iter, csa->obj, csa->rpi, csa->rdi,
|
alpar@9
|
880 csa->gap);
|
alpar@9
|
881 /* check if the current point is optimal */
|
alpar@9
|
882 if (csa->rpi < 1e-8 && csa->rdi < 1e-8 && csa->gap < 1e-8)
|
alpar@9
|
883 { if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
884 xprintf("OPTIMAL SOLUTION FOUND\n");
|
alpar@9
|
885 status = 0;
|
alpar@9
|
886 break;
|
alpar@9
|
887 }
|
alpar@9
|
888 /* check if the problem has no feasible solution */
|
alpar@9
|
889 temp = 1e5 * csa->phi_min[csa->iter];
|
alpar@9
|
890 if (temp < 1e-8) temp = 1e-8;
|
alpar@9
|
891 if (csa->phi >= temp)
|
alpar@9
|
892 { if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
893 xprintf("PROBLEM HAS NO FEASIBLE PRIMAL/DUAL SOLUTION\n")
|
alpar@9
|
894 ;
|
alpar@9
|
895 status = 1;
|
alpar@9
|
896 break;
|
alpar@9
|
897 }
|
alpar@9
|
898 /* check for very slow convergence or divergence */
|
alpar@9
|
899 if (((csa->rpi >= 1e-8 || csa->rdi >= 1e-8) && csa->rmu /
|
alpar@9
|
900 csa->rmu0 >= 1e6) ||
|
alpar@9
|
901 (csa->iter >= 30 && csa->phi_min[csa->iter] >= 0.5 *
|
alpar@9
|
902 csa->phi_min[csa->iter - 30]))
|
alpar@9
|
903 { if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
904 xprintf("NO CONVERGENCE; SEARCH TERMINATED\n");
|
alpar@9
|
905 status = 2;
|
alpar@9
|
906 break;
|
alpar@9
|
907 }
|
alpar@9
|
908 /* check for maximal number of iterations */
|
alpar@9
|
909 if (csa->iter == ITER_MAX)
|
alpar@9
|
910 { if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
911 xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
|
alpar@9
|
912 status = 3;
|
alpar@9
|
913 break;
|
alpar@9
|
914 }
|
alpar@9
|
915 /* start the next iteration */
|
alpar@9
|
916 csa->iter++;
|
alpar@9
|
917 /* factorize normal equation system */
|
alpar@9
|
918 for (j = 1; j <= n; j++) csa->D[j] = csa->x[j] / csa->z[j];
|
alpar@9
|
919 decomp_NE(csa);
|
alpar@9
|
920 /* compute the next point using Mehrotra's predictor-corrector
|
alpar@9
|
921 technique */
|
alpar@9
|
922 if (make_step(csa))
|
alpar@9
|
923 { if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
924 xprintf("NUMERIC INSTABILITY; SEARCH TERMINATED\n");
|
alpar@9
|
925 status = 4;
|
alpar@9
|
926 break;
|
alpar@9
|
927 }
|
alpar@9
|
928 }
|
alpar@9
|
929 /* restore the best point */
|
alpar@9
|
930 if (status != 0)
|
alpar@9
|
931 { for (j = 1; j <= n; j++) csa->x[j] = csa->best_x[j];
|
alpar@9
|
932 for (i = 1; i <= m; i++) csa->y[i] = csa->best_y[i];
|
alpar@9
|
933 for (j = 1; j <= n; j++) csa->z[j] = csa->best_z[j];
|
alpar@9
|
934 if (csa->parm->msg_lev >= GLP_MSG_ALL)
|
alpar@9
|
935 xprintf("Best point %17.9e was reached on iteration %d\n",
|
alpar@9
|
936 csa->best_obj, csa->best_iter);
|
alpar@9
|
937 }
|
alpar@9
|
938 /* return to the calling program */
|
alpar@9
|
939 return status;
|
alpar@9
|
940 }
|
alpar@9
|
941
|
alpar@9
|
942 /***********************************************************************
|
alpar@9
|
943 * NAME
|
alpar@9
|
944 *
|
alpar@9
|
945 * ipm_solve - core LP solver based on the interior-point method
|
alpar@9
|
946 *
|
alpar@9
|
947 * SYNOPSIS
|
alpar@9
|
948 *
|
alpar@9
|
949 * #include "glpipm.h"
|
alpar@9
|
950 * int ipm_solve(glp_prob *P, const glp_iptcp *parm);
|
alpar@9
|
951 *
|
alpar@9
|
952 * DESCRIPTION
|
alpar@9
|
953 *
|
alpar@9
|
954 * The routine ipm_solve is a core LP solver based on the primal-dual
|
alpar@9
|
955 * interior-point method.
|
alpar@9
|
956 *
|
alpar@9
|
957 * The routine assumes the following standard formulation of LP problem
|
alpar@9
|
958 * to be solved:
|
alpar@9
|
959 *
|
alpar@9
|
960 * minimize
|
alpar@9
|
961 *
|
alpar@9
|
962 * F = c[0] + c[1]*x[1] + c[2]*x[2] + ... + c[n]*x[n]
|
alpar@9
|
963 *
|
alpar@9
|
964 * subject to linear constraints
|
alpar@9
|
965 *
|
alpar@9
|
966 * a[1,1]*x[1] + a[1,2]*x[2] + ... + a[1,n]*x[n] = b[1]
|
alpar@9
|
967 *
|
alpar@9
|
968 * a[2,1]*x[1] + a[2,2]*x[2] + ... + a[2,n]*x[n] = b[2]
|
alpar@9
|
969 *
|
alpar@9
|
970 * . . . . . .
|
alpar@9
|
971 *
|
alpar@9
|
972 * a[m,1]*x[1] + a[m,2]*x[2] + ... + a[m,n]*x[n] = b[m]
|
alpar@9
|
973 *
|
alpar@9
|
974 * and non-negative variables
|
alpar@9
|
975 *
|
alpar@9
|
976 * x[1] >= 0, x[2] >= 0, ..., x[n] >= 0
|
alpar@9
|
977 *
|
alpar@9
|
978 * where:
|
alpar@9
|
979 * F is the objective function;
|
alpar@9
|
980 * x[1], ..., x[n] are (structural) variables;
|
alpar@9
|
981 * c[0] is a constant term of the objective function;
|
alpar@9
|
982 * c[1], ..., c[n] are objective coefficients;
|
alpar@9
|
983 * a[1,1], ..., a[m,n] are constraint coefficients;
|
alpar@9
|
984 * b[1], ..., b[n] are right-hand sides.
|
alpar@9
|
985 *
|
alpar@9
|
986 * The solution is three vectors x, y, and z, which are stored by the
|
alpar@9
|
987 * routine in the arrays x, y, and z, respectively. These vectors
|
alpar@9
|
988 * correspond to the best primal-dual point found during optimization.
|
alpar@9
|
989 * They are approximate solution of the following system (which is the
|
alpar@9
|
990 * Karush-Kuhn-Tucker optimality conditions):
|
alpar@9
|
991 *
|
alpar@9
|
992 * A*x = b (primal feasibility condition)
|
alpar@9
|
993 *
|
alpar@9
|
994 * A'*y + z = c (dual feasibility condition)
|
alpar@9
|
995 *
|
alpar@9
|
996 * x'*z = 0 (primal-dual complementarity condition)
|
alpar@9
|
997 *
|
alpar@9
|
998 * x >= 0, z >= 0 (non-negativity condition)
|
alpar@9
|
999 *
|
alpar@9
|
1000 * where:
|
alpar@9
|
1001 * x[1], ..., x[n] are primal (structural) variables;
|
alpar@9
|
1002 * y[1], ..., y[m] are dual variables (Lagrange multipliers) for
|
alpar@9
|
1003 * equality constraints;
|
alpar@9
|
1004 * z[1], ..., z[n] are dual variables (Lagrange multipliers) for
|
alpar@9
|
1005 * non-negativity constraints.
|
alpar@9
|
1006 *
|
alpar@9
|
1007 * RETURNS
|
alpar@9
|
1008 *
|
alpar@9
|
1009 * 0 LP has been successfully solved.
|
alpar@9
|
1010 *
|
alpar@9
|
1011 * GLP_ENOCVG
|
alpar@9
|
1012 * No convergence.
|
alpar@9
|
1013 *
|
alpar@9
|
1014 * GLP_EITLIM
|
alpar@9
|
1015 * Iteration limit exceeded.
|
alpar@9
|
1016 *
|
alpar@9
|
1017 * GLP_EINSTAB
|
alpar@9
|
1018 * Numeric instability on solving Newtonian system.
|
alpar@9
|
1019 *
|
alpar@9
|
1020 * In case of non-zero return code the routine returns the best point,
|
alpar@9
|
1021 * which has been reached during optimization. */
|
alpar@9
|
1022
|
alpar@9
|
1023 int ipm_solve(glp_prob *P, const glp_iptcp *parm)
|
alpar@9
|
1024 { struct csa _dsa, *csa = &_dsa;
|
alpar@9
|
1025 int m = P->m;
|
alpar@9
|
1026 int n = P->n;
|
alpar@9
|
1027 int nnz = P->nnz;
|
alpar@9
|
1028 GLPROW *row;
|
alpar@9
|
1029 GLPCOL *col;
|
alpar@9
|
1030 GLPAIJ *aij;
|
alpar@9
|
1031 int i, j, loc, ret, *A_ind, *A_ptr;
|
alpar@9
|
1032 double dir, *A_val, *b, *c, *x, *y, *z;
|
alpar@9
|
1033 xassert(m > 0);
|
alpar@9
|
1034 xassert(n > 0);
|
alpar@9
|
1035 /* allocate working arrays */
|
alpar@9
|
1036 A_ptr = xcalloc(1+m+1, sizeof(int));
|
alpar@9
|
1037 A_ind = xcalloc(1+nnz, sizeof(int));
|
alpar@9
|
1038 A_val = xcalloc(1+nnz, sizeof(double));
|
alpar@9
|
1039 b = xcalloc(1+m, sizeof(double));
|
alpar@9
|
1040 c = xcalloc(1+n, sizeof(double));
|
alpar@9
|
1041 x = xcalloc(1+n, sizeof(double));
|
alpar@9
|
1042 y = xcalloc(1+m, sizeof(double));
|
alpar@9
|
1043 z = xcalloc(1+n, sizeof(double));
|
alpar@9
|
1044 /* prepare rows and constraint coefficients */
|
alpar@9
|
1045 loc = 1;
|
alpar@9
|
1046 for (i = 1; i <= m; i++)
|
alpar@9
|
1047 { row = P->row[i];
|
alpar@9
|
1048 xassert(row->type == GLP_FX);
|
alpar@9
|
1049 b[i] = row->lb * row->rii;
|
alpar@9
|
1050 A_ptr[i] = loc;
|
alpar@9
|
1051 for (aij = row->ptr; aij != NULL; aij = aij->r_next)
|
alpar@9
|
1052 { A_ind[loc] = aij->col->j;
|
alpar@9
|
1053 A_val[loc] = row->rii * aij->val * aij->col->sjj;
|
alpar@9
|
1054 loc++;
|
alpar@9
|
1055 }
|
alpar@9
|
1056 }
|
alpar@9
|
1057 A_ptr[m+1] = loc;
|
alpar@9
|
1058 xassert(loc-1 == nnz);
|
alpar@9
|
1059 /* prepare columns and objective coefficients */
|
alpar@9
|
1060 if (P->dir == GLP_MIN)
|
alpar@9
|
1061 dir = +1.0;
|
alpar@9
|
1062 else if (P->dir == GLP_MAX)
|
alpar@9
|
1063 dir = -1.0;
|
alpar@9
|
1064 else
|
alpar@9
|
1065 xassert(P != P);
|
alpar@9
|
1066 c[0] = dir * P->c0;
|
alpar@9
|
1067 for (j = 1; j <= n; j++)
|
alpar@9
|
1068 { col = P->col[j];
|
alpar@9
|
1069 xassert(col->type == GLP_LO && col->lb == 0.0);
|
alpar@9
|
1070 c[j] = dir * col->coef * col->sjj;
|
alpar@9
|
1071 }
|
alpar@9
|
1072 /* allocate and initialize the common storage area */
|
alpar@9
|
1073 csa->m = m;
|
alpar@9
|
1074 csa->n = n;
|
alpar@9
|
1075 csa->A_ptr = A_ptr;
|
alpar@9
|
1076 csa->A_ind = A_ind;
|
alpar@9
|
1077 csa->A_val = A_val;
|
alpar@9
|
1078 csa->b = b;
|
alpar@9
|
1079 csa->c = c;
|
alpar@9
|
1080 csa->x = x;
|
alpar@9
|
1081 csa->y = y;
|
alpar@9
|
1082 csa->z = z;
|
alpar@9
|
1083 csa->parm = parm;
|
alpar@9
|
1084 initialize(csa);
|
alpar@9
|
1085 /* solve LP with the interior-point method */
|
alpar@9
|
1086 ret = ipm_main(csa);
|
alpar@9
|
1087 /* deallocate the common storage area */
|
alpar@9
|
1088 terminate(csa);
|
alpar@9
|
1089 /* determine solution status */
|
alpar@9
|
1090 if (ret == 0)
|
alpar@9
|
1091 { /* optimal solution found */
|
alpar@9
|
1092 P->ipt_stat = GLP_OPT;
|
alpar@9
|
1093 ret = 0;
|
alpar@9
|
1094 }
|
alpar@9
|
1095 else if (ret == 1)
|
alpar@9
|
1096 { /* problem has no feasible (primal or dual) solution */
|
alpar@9
|
1097 P->ipt_stat = GLP_NOFEAS;
|
alpar@9
|
1098 ret = 0;
|
alpar@9
|
1099 }
|
alpar@9
|
1100 else if (ret == 2)
|
alpar@9
|
1101 { /* no convergence */
|
alpar@9
|
1102 P->ipt_stat = GLP_INFEAS;
|
alpar@9
|
1103 ret = GLP_ENOCVG;
|
alpar@9
|
1104 }
|
alpar@9
|
1105 else if (ret == 3)
|
alpar@9
|
1106 { /* iteration limit exceeded */
|
alpar@9
|
1107 P->ipt_stat = GLP_INFEAS;
|
alpar@9
|
1108 ret = GLP_EITLIM;
|
alpar@9
|
1109 }
|
alpar@9
|
1110 else if (ret == 4)
|
alpar@9
|
1111 { /* numeric instability on solving Newtonian system */
|
alpar@9
|
1112 P->ipt_stat = GLP_INFEAS;
|
alpar@9
|
1113 ret = GLP_EINSTAB;
|
alpar@9
|
1114 }
|
alpar@9
|
1115 else
|
alpar@9
|
1116 xassert(ret != ret);
|
alpar@9
|
1117 /* store row solution components */
|
alpar@9
|
1118 for (i = 1; i <= m; i++)
|
alpar@9
|
1119 { row = P->row[i];
|
alpar@9
|
1120 row->pval = row->lb;
|
alpar@9
|
1121 row->dval = dir * y[i] * row->rii;
|
alpar@9
|
1122 }
|
alpar@9
|
1123 /* store column solution components */
|
alpar@9
|
1124 P->ipt_obj = P->c0;
|
alpar@9
|
1125 for (j = 1; j <= n; j++)
|
alpar@9
|
1126 { col = P->col[j];
|
alpar@9
|
1127 col->pval = x[j] * col->sjj;
|
alpar@9
|
1128 col->dval = dir * z[j] / col->sjj;
|
alpar@9
|
1129 P->ipt_obj += col->coef * col->pval;
|
alpar@9
|
1130 }
|
alpar@9
|
1131 /* free working arrays */
|
alpar@9
|
1132 xfree(A_ptr);
|
alpar@9
|
1133 xfree(A_ind);
|
alpar@9
|
1134 xfree(A_val);
|
alpar@9
|
1135 xfree(b);
|
alpar@9
|
1136 xfree(c);
|
alpar@9
|
1137 xfree(x);
|
alpar@9
|
1138 xfree(y);
|
alpar@9
|
1139 xfree(z);
|
alpar@9
|
1140 return ret;
|
alpar@9
|
1141 }
|
alpar@9
|
1142
|
alpar@9
|
1143 /* eof */
|