rev |
line source |
alpar@9
|
1 /* glplib03.c (miscellaneous library routines) */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpenv.h"
|
alpar@9
|
26 #include "glplib.h"
|
alpar@9
|
27
|
alpar@9
|
28 /***********************************************************************
|
alpar@9
|
29 * NAME
|
alpar@9
|
30 *
|
alpar@9
|
31 * str2int - convert character string to value of int type
|
alpar@9
|
32 *
|
alpar@9
|
33 * SYNOPSIS
|
alpar@9
|
34 *
|
alpar@9
|
35 * #include "glplib.h"
|
alpar@9
|
36 * int str2int(const char *str, int *val);
|
alpar@9
|
37 *
|
alpar@9
|
38 * DESCRIPTION
|
alpar@9
|
39 *
|
alpar@9
|
40 * The routine str2int converts the character string str to a value of
|
alpar@9
|
41 * integer type and stores the value into location, which the parameter
|
alpar@9
|
42 * val points to (in the case of error content of this location is not
|
alpar@9
|
43 * changed).
|
alpar@9
|
44 *
|
alpar@9
|
45 * RETURNS
|
alpar@9
|
46 *
|
alpar@9
|
47 * The routine returns one of the following error codes:
|
alpar@9
|
48 *
|
alpar@9
|
49 * 0 - no error;
|
alpar@9
|
50 * 1 - value out of range;
|
alpar@9
|
51 * 2 - character string is syntactically incorrect. */
|
alpar@9
|
52
|
alpar@9
|
53 int str2int(const char *str, int *_val)
|
alpar@9
|
54 { int d, k, s, val = 0;
|
alpar@9
|
55 /* scan optional sign */
|
alpar@9
|
56 if (str[0] == '+')
|
alpar@9
|
57 s = +1, k = 1;
|
alpar@9
|
58 else if (str[0] == '-')
|
alpar@9
|
59 s = -1, k = 1;
|
alpar@9
|
60 else
|
alpar@9
|
61 s = +1, k = 0;
|
alpar@9
|
62 /* check for the first digit */
|
alpar@9
|
63 if (!isdigit((unsigned char)str[k])) return 2;
|
alpar@9
|
64 /* scan digits */
|
alpar@9
|
65 while (isdigit((unsigned char)str[k]))
|
alpar@9
|
66 { d = str[k++] - '0';
|
alpar@9
|
67 if (s > 0)
|
alpar@9
|
68 { if (val > INT_MAX / 10) return 1;
|
alpar@9
|
69 val *= 10;
|
alpar@9
|
70 if (val > INT_MAX - d) return 1;
|
alpar@9
|
71 val += d;
|
alpar@9
|
72 }
|
alpar@9
|
73 else
|
alpar@9
|
74 { if (val < INT_MIN / 10) return 1;
|
alpar@9
|
75 val *= 10;
|
alpar@9
|
76 if (val < INT_MIN + d) return 1;
|
alpar@9
|
77 val -= d;
|
alpar@9
|
78 }
|
alpar@9
|
79 }
|
alpar@9
|
80 /* check for terminator */
|
alpar@9
|
81 if (str[k] != '\0') return 2;
|
alpar@9
|
82 /* conversion has been done */
|
alpar@9
|
83 *_val = val;
|
alpar@9
|
84 return 0;
|
alpar@9
|
85 }
|
alpar@9
|
86
|
alpar@9
|
87 /***********************************************************************
|
alpar@9
|
88 * NAME
|
alpar@9
|
89 *
|
alpar@9
|
90 * str2num - convert character string to value of double type
|
alpar@9
|
91 *
|
alpar@9
|
92 * SYNOPSIS
|
alpar@9
|
93 *
|
alpar@9
|
94 * #include "glplib.h"
|
alpar@9
|
95 * int str2num(const char *str, double *val);
|
alpar@9
|
96 *
|
alpar@9
|
97 * DESCRIPTION
|
alpar@9
|
98 *
|
alpar@9
|
99 * The routine str2num converts the character string str to a value of
|
alpar@9
|
100 * double type and stores the value into location, which the parameter
|
alpar@9
|
101 * val points to (in the case of error content of this location is not
|
alpar@9
|
102 * changed).
|
alpar@9
|
103 *
|
alpar@9
|
104 * RETURNS
|
alpar@9
|
105 *
|
alpar@9
|
106 * The routine returns one of the following error codes:
|
alpar@9
|
107 *
|
alpar@9
|
108 * 0 - no error;
|
alpar@9
|
109 * 1 - value out of range;
|
alpar@9
|
110 * 2 - character string is syntactically incorrect. */
|
alpar@9
|
111
|
alpar@9
|
112 int str2num(const char *str, double *_val)
|
alpar@9
|
113 { int k;
|
alpar@9
|
114 double val;
|
alpar@9
|
115 /* scan optional sign */
|
alpar@9
|
116 k = (str[0] == '+' || str[0] == '-' ? 1 : 0);
|
alpar@9
|
117 /* check for decimal point */
|
alpar@9
|
118 if (str[k] == '.')
|
alpar@9
|
119 { k++;
|
alpar@9
|
120 /* a digit should follow it */
|
alpar@9
|
121 if (!isdigit((unsigned char)str[k])) return 2;
|
alpar@9
|
122 k++;
|
alpar@9
|
123 goto frac;
|
alpar@9
|
124 }
|
alpar@9
|
125 /* integer part should start with a digit */
|
alpar@9
|
126 if (!isdigit((unsigned char)str[k])) return 2;
|
alpar@9
|
127 /* scan integer part */
|
alpar@9
|
128 while (isdigit((unsigned char)str[k])) k++;
|
alpar@9
|
129 /* check for decimal point */
|
alpar@9
|
130 if (str[k] == '.') k++;
|
alpar@9
|
131 frac: /* scan optional fraction part */
|
alpar@9
|
132 while (isdigit((unsigned char)str[k])) k++;
|
alpar@9
|
133 /* check for decimal exponent */
|
alpar@9
|
134 if (str[k] == 'E' || str[k] == 'e')
|
alpar@9
|
135 { k++;
|
alpar@9
|
136 /* scan optional sign */
|
alpar@9
|
137 if (str[k] == '+' || str[k] == '-') k++;
|
alpar@9
|
138 /* a digit should follow E, E+ or E- */
|
alpar@9
|
139 if (!isdigit((unsigned char)str[k])) return 2;
|
alpar@9
|
140 }
|
alpar@9
|
141 /* scan optional exponent part */
|
alpar@9
|
142 while (isdigit((unsigned char)str[k])) k++;
|
alpar@9
|
143 /* check for terminator */
|
alpar@9
|
144 if (str[k] != '\0') return 2;
|
alpar@9
|
145 /* perform conversion */
|
alpar@9
|
146 { char *endptr;
|
alpar@9
|
147 val = strtod(str, &endptr);
|
alpar@9
|
148 if (*endptr != '\0') return 2;
|
alpar@9
|
149 }
|
alpar@9
|
150 /* check for overflow */
|
alpar@9
|
151 if (!(-DBL_MAX <= val && val <= +DBL_MAX)) return 1;
|
alpar@9
|
152 /* check for underflow */
|
alpar@9
|
153 if (-DBL_MIN < val && val < +DBL_MIN) val = 0.0;
|
alpar@9
|
154 /* conversion has been done */
|
alpar@9
|
155 *_val = val;
|
alpar@9
|
156 return 0;
|
alpar@9
|
157 }
|
alpar@9
|
158
|
alpar@9
|
159 /***********************************************************************
|
alpar@9
|
160 * NAME
|
alpar@9
|
161 *
|
alpar@9
|
162 * strspx - remove all spaces from character string
|
alpar@9
|
163 *
|
alpar@9
|
164 * SYNOPSIS
|
alpar@9
|
165 *
|
alpar@9
|
166 * #include "glplib.h"
|
alpar@9
|
167 * char *strspx(char *str);
|
alpar@9
|
168 *
|
alpar@9
|
169 * DESCRIPTION
|
alpar@9
|
170 *
|
alpar@9
|
171 * The routine strspx removes all spaces from the character string str.
|
alpar@9
|
172 *
|
alpar@9
|
173 * RETURNS
|
alpar@9
|
174 *
|
alpar@9
|
175 * The routine returns a pointer to the character string.
|
alpar@9
|
176 *
|
alpar@9
|
177 * EXAMPLES
|
alpar@9
|
178 *
|
alpar@9
|
179 * strspx(" Errare humanum est ") => "Errarehumanumest"
|
alpar@9
|
180 *
|
alpar@9
|
181 * strspx(" ") => "" */
|
alpar@9
|
182
|
alpar@9
|
183 char *strspx(char *str)
|
alpar@9
|
184 { char *s, *t;
|
alpar@9
|
185 for (s = t = str; *s; s++) if (*s != ' ') *t++ = *s;
|
alpar@9
|
186 *t = '\0';
|
alpar@9
|
187 return str;
|
alpar@9
|
188 }
|
alpar@9
|
189
|
alpar@9
|
190 /***********************************************************************
|
alpar@9
|
191 * NAME
|
alpar@9
|
192 *
|
alpar@9
|
193 * strtrim - remove trailing spaces from character string
|
alpar@9
|
194 *
|
alpar@9
|
195 * SYNOPSIS
|
alpar@9
|
196 *
|
alpar@9
|
197 * #include "glplib.h"
|
alpar@9
|
198 * char *strtrim(char *str);
|
alpar@9
|
199 *
|
alpar@9
|
200 * DESCRIPTION
|
alpar@9
|
201 *
|
alpar@9
|
202 * The routine strtrim removes trailing spaces from the character
|
alpar@9
|
203 * string str.
|
alpar@9
|
204 *
|
alpar@9
|
205 * RETURNS
|
alpar@9
|
206 *
|
alpar@9
|
207 * The routine returns a pointer to the character string.
|
alpar@9
|
208 *
|
alpar@9
|
209 * EXAMPLES
|
alpar@9
|
210 *
|
alpar@9
|
211 * strtrim("Errare humanum est ") => "Errare humanum est"
|
alpar@9
|
212 *
|
alpar@9
|
213 * strtrim(" ") => "" */
|
alpar@9
|
214
|
alpar@9
|
215 char *strtrim(char *str)
|
alpar@9
|
216 { char *t;
|
alpar@9
|
217 for (t = strrchr(str, '\0') - 1; t >= str; t--)
|
alpar@9
|
218 { if (*t != ' ') break;
|
alpar@9
|
219 *t = '\0';
|
alpar@9
|
220 }
|
alpar@9
|
221 return str;
|
alpar@9
|
222 }
|
alpar@9
|
223
|
alpar@9
|
224 /***********************************************************************
|
alpar@9
|
225 * NAME
|
alpar@9
|
226 *
|
alpar@9
|
227 * strrev - reverse character string
|
alpar@9
|
228 *
|
alpar@9
|
229 * SYNOPSIS
|
alpar@9
|
230 *
|
alpar@9
|
231 * #include "glplib.h"
|
alpar@9
|
232 * char *strrev(char *s);
|
alpar@9
|
233 *
|
alpar@9
|
234 * DESCRIPTION
|
alpar@9
|
235 *
|
alpar@9
|
236 * The routine strrev changes characters in a character string s to the
|
alpar@9
|
237 * reverse order, except the terminating null character.
|
alpar@9
|
238 *
|
alpar@9
|
239 * RETURNS
|
alpar@9
|
240 *
|
alpar@9
|
241 * The routine returns the pointer s.
|
alpar@9
|
242 *
|
alpar@9
|
243 * EXAMPLES
|
alpar@9
|
244 *
|
alpar@9
|
245 * strrev("") => ""
|
alpar@9
|
246 *
|
alpar@9
|
247 * strrev("Today is Monday") => "yadnoM si yadoT" */
|
alpar@9
|
248
|
alpar@9
|
249 char *strrev(char *s)
|
alpar@9
|
250 { int i, j;
|
alpar@9
|
251 char t;
|
alpar@9
|
252 for (i = 0, j = strlen(s)-1; i < j; i++, j--)
|
alpar@9
|
253 t = s[i], s[i] = s[j], s[j] = t;
|
alpar@9
|
254 return s;
|
alpar@9
|
255 }
|
alpar@9
|
256
|
alpar@9
|
257 /***********************************************************************
|
alpar@9
|
258 * NAME
|
alpar@9
|
259 *
|
alpar@9
|
260 * gcd - find greatest common divisor of two integers
|
alpar@9
|
261 *
|
alpar@9
|
262 * SYNOPSIS
|
alpar@9
|
263 *
|
alpar@9
|
264 * #include "glplib.h"
|
alpar@9
|
265 * int gcd(int x, int y);
|
alpar@9
|
266 *
|
alpar@9
|
267 * RETURNS
|
alpar@9
|
268 *
|
alpar@9
|
269 * The routine gcd returns gcd(x, y), the greatest common divisor of
|
alpar@9
|
270 * the two positive integers given.
|
alpar@9
|
271 *
|
alpar@9
|
272 * ALGORITHM
|
alpar@9
|
273 *
|
alpar@9
|
274 * The routine gcd is based on Euclid's algorithm.
|
alpar@9
|
275 *
|
alpar@9
|
276 * REFERENCES
|
alpar@9
|
277 *
|
alpar@9
|
278 * Don Knuth, The Art of Computer Programming, Vol.2: Seminumerical
|
alpar@9
|
279 * Algorithms, 3rd Edition, Addison-Wesley, 1997. Section 4.5.2: The
|
alpar@9
|
280 * Greatest Common Divisor, pp. 333-56. */
|
alpar@9
|
281
|
alpar@9
|
282 int gcd(int x, int y)
|
alpar@9
|
283 { int r;
|
alpar@9
|
284 xassert(x > 0 && y > 0);
|
alpar@9
|
285 while (y > 0)
|
alpar@9
|
286 r = x % y, x = y, y = r;
|
alpar@9
|
287 return x;
|
alpar@9
|
288 }
|
alpar@9
|
289
|
alpar@9
|
290 /***********************************************************************
|
alpar@9
|
291 * NAME
|
alpar@9
|
292 *
|
alpar@9
|
293 * gcdn - find greatest common divisor of n integers
|
alpar@9
|
294 *
|
alpar@9
|
295 * SYNOPSIS
|
alpar@9
|
296 *
|
alpar@9
|
297 * #include "glplib.h"
|
alpar@9
|
298 * int gcdn(int n, int x[]);
|
alpar@9
|
299 *
|
alpar@9
|
300 * RETURNS
|
alpar@9
|
301 *
|
alpar@9
|
302 * The routine gcdn returns gcd(x[1], x[2], ..., x[n]), the greatest
|
alpar@9
|
303 * common divisor of n positive integers given, n > 0.
|
alpar@9
|
304 *
|
alpar@9
|
305 * BACKGROUND
|
alpar@9
|
306 *
|
alpar@9
|
307 * The routine gcdn is based on the following identity:
|
alpar@9
|
308 *
|
alpar@9
|
309 * gcd(x, y, z) = gcd(gcd(x, y), z).
|
alpar@9
|
310 *
|
alpar@9
|
311 * REFERENCES
|
alpar@9
|
312 *
|
alpar@9
|
313 * Don Knuth, The Art of Computer Programming, Vol.2: Seminumerical
|
alpar@9
|
314 * Algorithms, 3rd Edition, Addison-Wesley, 1997. Section 4.5.2: The
|
alpar@9
|
315 * Greatest Common Divisor, pp. 333-56. */
|
alpar@9
|
316
|
alpar@9
|
317 int gcdn(int n, int x[])
|
alpar@9
|
318 { int d, j;
|
alpar@9
|
319 xassert(n > 0);
|
alpar@9
|
320 for (j = 1; j <= n; j++)
|
alpar@9
|
321 { xassert(x[j] > 0);
|
alpar@9
|
322 if (j == 1)
|
alpar@9
|
323 d = x[1];
|
alpar@9
|
324 else
|
alpar@9
|
325 d = gcd(d, x[j]);
|
alpar@9
|
326 if (d == 1) break;
|
alpar@9
|
327 }
|
alpar@9
|
328 return d;
|
alpar@9
|
329 }
|
alpar@9
|
330
|
alpar@9
|
331 /***********************************************************************
|
alpar@9
|
332 * NAME
|
alpar@9
|
333 *
|
alpar@9
|
334 * lcm - find least common multiple of two integers
|
alpar@9
|
335 *
|
alpar@9
|
336 * SYNOPSIS
|
alpar@9
|
337 *
|
alpar@9
|
338 * #include "glplib.h"
|
alpar@9
|
339 * int lcm(int x, int y);
|
alpar@9
|
340 *
|
alpar@9
|
341 * RETURNS
|
alpar@9
|
342 *
|
alpar@9
|
343 * The routine lcm returns lcm(x, y), the least common multiple of the
|
alpar@9
|
344 * two positive integers given. In case of integer overflow the routine
|
alpar@9
|
345 * returns zero.
|
alpar@9
|
346 *
|
alpar@9
|
347 * BACKGROUND
|
alpar@9
|
348 *
|
alpar@9
|
349 * The routine lcm is based on the following identity:
|
alpar@9
|
350 *
|
alpar@9
|
351 * lcm(x, y) = (x * y) / gcd(x, y) = x * [y / gcd(x, y)],
|
alpar@9
|
352 *
|
alpar@9
|
353 * where gcd(x, y) is the greatest common divisor of x and y. */
|
alpar@9
|
354
|
alpar@9
|
355 int lcm(int x, int y)
|
alpar@9
|
356 { xassert(x > 0);
|
alpar@9
|
357 xassert(y > 0);
|
alpar@9
|
358 y /= gcd(x, y);
|
alpar@9
|
359 if (x > INT_MAX / y) return 0;
|
alpar@9
|
360 return x * y;
|
alpar@9
|
361 }
|
alpar@9
|
362
|
alpar@9
|
363 /***********************************************************************
|
alpar@9
|
364 * NAME
|
alpar@9
|
365 *
|
alpar@9
|
366 * lcmn - find least common multiple of n integers
|
alpar@9
|
367 *
|
alpar@9
|
368 * SYNOPSIS
|
alpar@9
|
369 *
|
alpar@9
|
370 * #include "glplib.h"
|
alpar@9
|
371 * int lcmn(int n, int x[]);
|
alpar@9
|
372 *
|
alpar@9
|
373 * RETURNS
|
alpar@9
|
374 *
|
alpar@9
|
375 * The routine lcmn returns lcm(x[1], x[2], ..., x[n]), the least
|
alpar@9
|
376 * common multiple of n positive integers given, n > 0. In case of
|
alpar@9
|
377 * integer overflow the routine returns zero.
|
alpar@9
|
378 *
|
alpar@9
|
379 * BACKGROUND
|
alpar@9
|
380 *
|
alpar@9
|
381 * The routine lcmn is based on the following identity:
|
alpar@9
|
382 *
|
alpar@9
|
383 * lcmn(x, y, z) = lcm(lcm(x, y), z),
|
alpar@9
|
384 *
|
alpar@9
|
385 * where lcm(x, y) is the least common multiple of x and y. */
|
alpar@9
|
386
|
alpar@9
|
387 int lcmn(int n, int x[])
|
alpar@9
|
388 { int m, j;
|
alpar@9
|
389 xassert(n > 0);
|
alpar@9
|
390 for (j = 1; j <= n; j++)
|
alpar@9
|
391 { xassert(x[j] > 0);
|
alpar@9
|
392 if (j == 1)
|
alpar@9
|
393 m = x[1];
|
alpar@9
|
394 else
|
alpar@9
|
395 m = lcm(m, x[j]);
|
alpar@9
|
396 if (m == 0) break;
|
alpar@9
|
397 }
|
alpar@9
|
398 return m;
|
alpar@9
|
399 }
|
alpar@9
|
400
|
alpar@9
|
401 /***********************************************************************
|
alpar@9
|
402 * NAME
|
alpar@9
|
403 *
|
alpar@9
|
404 * round2n - round floating-point number to nearest power of two
|
alpar@9
|
405 *
|
alpar@9
|
406 * SYNOPSIS
|
alpar@9
|
407 *
|
alpar@9
|
408 * #include "glplib.h"
|
alpar@9
|
409 * double round2n(double x);
|
alpar@9
|
410 *
|
alpar@9
|
411 * RETURNS
|
alpar@9
|
412 *
|
alpar@9
|
413 * Given a positive floating-point value x the routine round2n returns
|
alpar@9
|
414 * 2^n such that |x - 2^n| is minimal.
|
alpar@9
|
415 *
|
alpar@9
|
416 * EXAMPLES
|
alpar@9
|
417 *
|
alpar@9
|
418 * round2n(10.1) = 2^3 = 8
|
alpar@9
|
419 * round2n(15.3) = 2^4 = 16
|
alpar@9
|
420 * round2n(0.01) = 2^(-7) = 0.0078125
|
alpar@9
|
421 *
|
alpar@9
|
422 * BACKGROUND
|
alpar@9
|
423 *
|
alpar@9
|
424 * Let x = f * 2^e, where 0.5 <= f < 1 is a normalized fractional part,
|
alpar@9
|
425 * e is an integer exponent. Then, obviously, 0.5 * 2^e <= x < 2^e, so
|
alpar@9
|
426 * if x - 0.5 * 2^e <= 2^e - x, we choose 0.5 * 2^e = 2^(e-1), and 2^e
|
alpar@9
|
427 * otherwise. The latter condition can be written as 2 * x <= 1.5 * 2^e
|
alpar@9
|
428 * or 2 * f * 2^e <= 1.5 * 2^e or, finally, f <= 0.75. */
|
alpar@9
|
429
|
alpar@9
|
430 double round2n(double x)
|
alpar@9
|
431 { int e;
|
alpar@9
|
432 double f;
|
alpar@9
|
433 xassert(x > 0.0);
|
alpar@9
|
434 f = frexp(x, &e);
|
alpar@9
|
435 return ldexp(1.0, f <= 0.75 ? e-1 : e);
|
alpar@9
|
436 }
|
alpar@9
|
437
|
alpar@9
|
438 /***********************************************************************
|
alpar@9
|
439 * NAME
|
alpar@9
|
440 *
|
alpar@9
|
441 * fp2rat - convert floating-point number to rational number
|
alpar@9
|
442 *
|
alpar@9
|
443 * SYNOPSIS
|
alpar@9
|
444 *
|
alpar@9
|
445 * #include "glplib.h"
|
alpar@9
|
446 * int fp2rat(double x, double eps, double *p, double *q);
|
alpar@9
|
447 *
|
alpar@9
|
448 * DESCRIPTION
|
alpar@9
|
449 *
|
alpar@9
|
450 * Given a floating-point number 0 <= x < 1 the routine fp2rat finds
|
alpar@9
|
451 * its "best" rational approximation p / q, where p >= 0 and q > 0 are
|
alpar@9
|
452 * integer numbers, such that |x - p / q| <= eps.
|
alpar@9
|
453 *
|
alpar@9
|
454 * RETURNS
|
alpar@9
|
455 *
|
alpar@9
|
456 * The routine fp2rat returns the number of iterations used to achieve
|
alpar@9
|
457 * the specified precision eps.
|
alpar@9
|
458 *
|
alpar@9
|
459 * EXAMPLES
|
alpar@9
|
460 *
|
alpar@9
|
461 * For x = sqrt(2) - 1 = 0.414213562373095 and eps = 1e-6 the routine
|
alpar@9
|
462 * gives p = 408 and q = 985, where 408 / 985 = 0.414213197969543.
|
alpar@9
|
463 *
|
alpar@9
|
464 * BACKGROUND
|
alpar@9
|
465 *
|
alpar@9
|
466 * It is well known that every positive real number x can be expressed
|
alpar@9
|
467 * as the following continued fraction:
|
alpar@9
|
468 *
|
alpar@9
|
469 * x = b[0] + a[1]
|
alpar@9
|
470 * ------------------------
|
alpar@9
|
471 * b[1] + a[2]
|
alpar@9
|
472 * -----------------
|
alpar@9
|
473 * b[2] + a[3]
|
alpar@9
|
474 * ----------
|
alpar@9
|
475 * b[3] + ...
|
alpar@9
|
476 *
|
alpar@9
|
477 * where:
|
alpar@9
|
478 *
|
alpar@9
|
479 * a[k] = 1, k = 0, 1, 2, ...
|
alpar@9
|
480 *
|
alpar@9
|
481 * b[k] = floor(x[k]), k = 0, 1, 2, ...
|
alpar@9
|
482 *
|
alpar@9
|
483 * x[0] = x,
|
alpar@9
|
484 *
|
alpar@9
|
485 * x[k] = 1 / frac(x[k-1]), k = 1, 2, 3, ...
|
alpar@9
|
486 *
|
alpar@9
|
487 * To find the "best" rational approximation of x the routine computes
|
alpar@9
|
488 * partial fractions f[k] by dropping after k terms as follows:
|
alpar@9
|
489 *
|
alpar@9
|
490 * f[k] = A[k] / B[k],
|
alpar@9
|
491 *
|
alpar@9
|
492 * where:
|
alpar@9
|
493 *
|
alpar@9
|
494 * A[-1] = 1, A[0] = b[0], B[-1] = 0, B[0] = 1,
|
alpar@9
|
495 *
|
alpar@9
|
496 * A[k] = b[k] * A[k-1] + a[k] * A[k-2],
|
alpar@9
|
497 *
|
alpar@9
|
498 * B[k] = b[k] * B[k-1] + a[k] * B[k-2].
|
alpar@9
|
499 *
|
alpar@9
|
500 * Once the condition
|
alpar@9
|
501 *
|
alpar@9
|
502 * |x - f[k]| <= eps
|
alpar@9
|
503 *
|
alpar@9
|
504 * has been satisfied, the routine reports p = A[k] and q = B[k] as the
|
alpar@9
|
505 * final answer.
|
alpar@9
|
506 *
|
alpar@9
|
507 * In the table below here is some statistics obtained for one million
|
alpar@9
|
508 * random numbers uniformly distributed in the range [0, 1).
|
alpar@9
|
509 *
|
alpar@9
|
510 * eps max p mean p max q mean q max k mean k
|
alpar@9
|
511 * -------------------------------------------------------------
|
alpar@9
|
512 * 1e-1 8 1.6 9 3.2 3 1.4
|
alpar@9
|
513 * 1e-2 98 6.2 99 12.4 5 2.4
|
alpar@9
|
514 * 1e-3 997 20.7 998 41.5 8 3.4
|
alpar@9
|
515 * 1e-4 9959 66.6 9960 133.5 10 4.4
|
alpar@9
|
516 * 1e-5 97403 211.7 97404 424.2 13 5.3
|
alpar@9
|
517 * 1e-6 479669 669.9 479670 1342.9 15 6.3
|
alpar@9
|
518 * 1e-7 1579030 2127.3 3962146 4257.8 16 7.3
|
alpar@9
|
519 * 1e-8 26188823 6749.4 26188824 13503.4 19 8.2
|
alpar@9
|
520 *
|
alpar@9
|
521 * REFERENCES
|
alpar@9
|
522 *
|
alpar@9
|
523 * W. B. Jones and W. J. Thron, "Continued Fractions: Analytic Theory
|
alpar@9
|
524 * and Applications," Encyclopedia on Mathematics and Its Applications,
|
alpar@9
|
525 * Addison-Wesley, 1980. */
|
alpar@9
|
526
|
alpar@9
|
527 int fp2rat(double x, double eps, double *p, double *q)
|
alpar@9
|
528 { int k;
|
alpar@9
|
529 double xk, Akm1, Ak, Bkm1, Bk, ak, bk, fk, temp;
|
alpar@9
|
530 if (!(0.0 <= x && x < 1.0))
|
alpar@9
|
531 xerror("fp2rat: x = %g; number out of range\n", x);
|
alpar@9
|
532 for (k = 0; ; k++)
|
alpar@9
|
533 { xassert(k <= 100);
|
alpar@9
|
534 if (k == 0)
|
alpar@9
|
535 { /* x[0] = x */
|
alpar@9
|
536 xk = x;
|
alpar@9
|
537 /* A[-1] = 1 */
|
alpar@9
|
538 Akm1 = 1.0;
|
alpar@9
|
539 /* A[0] = b[0] = floor(x[0]) = 0 */
|
alpar@9
|
540 Ak = 0.0;
|
alpar@9
|
541 /* B[-1] = 0 */
|
alpar@9
|
542 Bkm1 = 0.0;
|
alpar@9
|
543 /* B[0] = 1 */
|
alpar@9
|
544 Bk = 1.0;
|
alpar@9
|
545 }
|
alpar@9
|
546 else
|
alpar@9
|
547 { /* x[k] = 1 / frac(x[k-1]) */
|
alpar@9
|
548 temp = xk - floor(xk);
|
alpar@9
|
549 xassert(temp != 0.0);
|
alpar@9
|
550 xk = 1.0 / temp;
|
alpar@9
|
551 /* a[k] = 1 */
|
alpar@9
|
552 ak = 1.0;
|
alpar@9
|
553 /* b[k] = floor(x[k]) */
|
alpar@9
|
554 bk = floor(xk);
|
alpar@9
|
555 /* A[k] = b[k] * A[k-1] + a[k] * A[k-2] */
|
alpar@9
|
556 temp = bk * Ak + ak * Akm1;
|
alpar@9
|
557 Akm1 = Ak, Ak = temp;
|
alpar@9
|
558 /* B[k] = b[k] * B[k-1] + a[k] * B[k-2] */
|
alpar@9
|
559 temp = bk * Bk + ak * Bkm1;
|
alpar@9
|
560 Bkm1 = Bk, Bk = temp;
|
alpar@9
|
561 }
|
alpar@9
|
562 /* f[k] = A[k] / B[k] */
|
alpar@9
|
563 fk = Ak / Bk;
|
alpar@9
|
564 #if 0
|
alpar@9
|
565 print("%.*g / %.*g = %.*g", DBL_DIG, Ak, DBL_DIG, Bk, DBL_DIG,
|
alpar@9
|
566 fk);
|
alpar@9
|
567 #endif
|
alpar@9
|
568 if (fabs(x - fk) <= eps) break;
|
alpar@9
|
569 }
|
alpar@9
|
570 *p = Ak;
|
alpar@9
|
571 *q = Bk;
|
alpar@9
|
572 return k;
|
alpar@9
|
573 }
|
alpar@9
|
574
|
alpar@9
|
575 /***********************************************************************
|
alpar@9
|
576 * NAME
|
alpar@9
|
577 *
|
alpar@9
|
578 * jday - convert calendar date to Julian day number
|
alpar@9
|
579 *
|
alpar@9
|
580 * SYNOPSIS
|
alpar@9
|
581 *
|
alpar@9
|
582 * #include "glplib.h"
|
alpar@9
|
583 * int jday(int d, int m, int y);
|
alpar@9
|
584 *
|
alpar@9
|
585 * DESCRIPTION
|
alpar@9
|
586 *
|
alpar@9
|
587 * The routine jday converts a calendar date, Gregorian calendar, to
|
alpar@9
|
588 * corresponding Julian day number j.
|
alpar@9
|
589 *
|
alpar@9
|
590 * From the given day d, month m, and year y, the Julian day number j
|
alpar@9
|
591 * is computed without using tables.
|
alpar@9
|
592 *
|
alpar@9
|
593 * The routine is valid for 1 <= y <= 4000.
|
alpar@9
|
594 *
|
alpar@9
|
595 * RETURNS
|
alpar@9
|
596 *
|
alpar@9
|
597 * The routine jday returns the Julian day number, or negative value if
|
alpar@9
|
598 * the specified date is incorrect.
|
alpar@9
|
599 *
|
alpar@9
|
600 * REFERENCES
|
alpar@9
|
601 *
|
alpar@9
|
602 * R. G. Tantzen, Algorithm 199: conversions between calendar date and
|
alpar@9
|
603 * Julian day number, Communications of the ACM, vol. 6, no. 8, p. 444,
|
alpar@9
|
604 * Aug. 1963. */
|
alpar@9
|
605
|
alpar@9
|
606 int jday(int d, int m, int y)
|
alpar@9
|
607 { int c, ya, j, dd;
|
alpar@9
|
608 if (!(1 <= d && d <= 31 && 1 <= m && m <= 12 && 1 <= y &&
|
alpar@9
|
609 y <= 4000))
|
alpar@9
|
610 { j = -1;
|
alpar@9
|
611 goto done;
|
alpar@9
|
612 }
|
alpar@9
|
613 if (m >= 3) m -= 3; else m += 9, y--;
|
alpar@9
|
614 c = y / 100;
|
alpar@9
|
615 ya = y - 100 * c;
|
alpar@9
|
616 j = (146097 * c) / 4 + (1461 * ya) / 4 + (153 * m + 2) / 5 + d +
|
alpar@9
|
617 1721119;
|
alpar@9
|
618 jdate(j, &dd, NULL, NULL);
|
alpar@9
|
619 if (d != dd) j = -1;
|
alpar@9
|
620 done: return j;
|
alpar@9
|
621 }
|
alpar@9
|
622
|
alpar@9
|
623 /***********************************************************************
|
alpar@9
|
624 * NAME
|
alpar@9
|
625 *
|
alpar@9
|
626 * jdate - convert Julian day number to calendar date
|
alpar@9
|
627 *
|
alpar@9
|
628 * SYNOPSIS
|
alpar@9
|
629 *
|
alpar@9
|
630 * #include "glplib.h"
|
alpar@9
|
631 * void jdate(int j, int *d, int *m, int *y);
|
alpar@9
|
632 *
|
alpar@9
|
633 * DESCRIPTION
|
alpar@9
|
634 *
|
alpar@9
|
635 * The routine jdate converts a Julian day number j to corresponding
|
alpar@9
|
636 * calendar date, Gregorian calendar.
|
alpar@9
|
637 *
|
alpar@9
|
638 * The day d, month m, and year y are computed without using tables and
|
alpar@9
|
639 * stored in corresponding locations.
|
alpar@9
|
640 *
|
alpar@9
|
641 * The routine is valid for 1721426 <= j <= 3182395.
|
alpar@9
|
642 *
|
alpar@9
|
643 * RETURNS
|
alpar@9
|
644 *
|
alpar@9
|
645 * If the conversion is successful, the routine returns zero, otherwise
|
alpar@9
|
646 * non-zero.
|
alpar@9
|
647 *
|
alpar@9
|
648 * REFERENCES
|
alpar@9
|
649 *
|
alpar@9
|
650 * R. G. Tantzen, Algorithm 199: conversions between calendar date and
|
alpar@9
|
651 * Julian day number, Communications of the ACM, vol. 6, no. 8, p. 444,
|
alpar@9
|
652 * Aug. 1963. */
|
alpar@9
|
653
|
alpar@9
|
654 int jdate(int j, int *_d, int *_m, int *_y)
|
alpar@9
|
655 { int d, m, y, ret = 0;
|
alpar@9
|
656 if (!(1721426 <= j && j <= 3182395))
|
alpar@9
|
657 { ret = 1;
|
alpar@9
|
658 goto done;
|
alpar@9
|
659 }
|
alpar@9
|
660 j -= 1721119;
|
alpar@9
|
661 y = (4 * j - 1) / 146097;
|
alpar@9
|
662 j = (4 * j - 1) % 146097;
|
alpar@9
|
663 d = j / 4;
|
alpar@9
|
664 j = (4 * d + 3) / 1461;
|
alpar@9
|
665 d = (4 * d + 3) % 1461;
|
alpar@9
|
666 d = (d + 4) / 4;
|
alpar@9
|
667 m = (5 * d - 3) / 153;
|
alpar@9
|
668 d = (5 * d - 3) % 153;
|
alpar@9
|
669 d = (d + 5) / 5;
|
alpar@9
|
670 y = 100 * y + j;
|
alpar@9
|
671 if (m <= 9) m += 3; else m -= 9, y++;
|
alpar@9
|
672 if (_d != NULL) *_d = d;
|
alpar@9
|
673 if (_m != NULL) *_m = m;
|
alpar@9
|
674 if (_y != NULL) *_y = y;
|
alpar@9
|
675 done: return ret;
|
alpar@9
|
676 }
|
alpar@9
|
677
|
alpar@9
|
678 #if 0
|
alpar@9
|
679 int main(void)
|
alpar@9
|
680 { int jbeg, jend, j, d, m, y;
|
alpar@9
|
681 jbeg = jday(1, 1, 1);
|
alpar@9
|
682 jend = jday(31, 12, 4000);
|
alpar@9
|
683 for (j = jbeg; j <= jend; j++)
|
alpar@9
|
684 { xassert(jdate(j, &d, &m, &y) == 0);
|
alpar@9
|
685 xassert(jday(d, m, y) == j);
|
alpar@9
|
686 }
|
alpar@9
|
687 xprintf("Routines jday and jdate work correctly.\n");
|
alpar@9
|
688 return 0;
|
alpar@9
|
689 }
|
alpar@9
|
690 #endif
|
alpar@9
|
691
|
alpar@9
|
692 /* eof */
|