rev |
line source |
alpar@9
|
1 /* glplpf.h (LP basis factorization, Schur complement version) */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #ifndef GLPLPF_H
|
alpar@9
|
26 #define GLPLPF_H
|
alpar@9
|
27
|
alpar@9
|
28 #include "glpscf.h"
|
alpar@9
|
29 #include "glpluf.h"
|
alpar@9
|
30
|
alpar@9
|
31 /***********************************************************************
|
alpar@9
|
32 * The structure LPF defines the factorization of the basis mxm matrix
|
alpar@9
|
33 * B, where m is the number of rows in corresponding problem instance.
|
alpar@9
|
34 *
|
alpar@9
|
35 * This factorization is the following septet:
|
alpar@9
|
36 *
|
alpar@9
|
37 * [B] = (L0, U0, R, S, C, P, Q), (1)
|
alpar@9
|
38 *
|
alpar@9
|
39 * and is based on the following main equality:
|
alpar@9
|
40 *
|
alpar@9
|
41 * ( B F^) ( B0 F ) ( L0 0 ) ( U0 R )
|
alpar@9
|
42 * ( ) = P ( ) Q = P ( ) ( ) Q, (2)
|
alpar@9
|
43 * ( G^ H^) ( G H ) ( S I ) ( 0 C )
|
alpar@9
|
44 *
|
alpar@9
|
45 * where:
|
alpar@9
|
46 *
|
alpar@9
|
47 * B is the current basis matrix (not stored);
|
alpar@9
|
48 *
|
alpar@9
|
49 * F^, G^, H^ are some additional matrices (not stored);
|
alpar@9
|
50 *
|
alpar@9
|
51 * B0 is some initial basis matrix (not stored);
|
alpar@9
|
52 *
|
alpar@9
|
53 * F, G, H are some additional matrices (not stored);
|
alpar@9
|
54 *
|
alpar@9
|
55 * P, Q are permutation matrices (stored in both row- and column-like
|
alpar@9
|
56 * formats);
|
alpar@9
|
57 *
|
alpar@9
|
58 * L0, U0 are some matrices that defines a factorization of the initial
|
alpar@9
|
59 * basis matrix B0 = L0 * U0 (stored in an invertable form);
|
alpar@9
|
60 *
|
alpar@9
|
61 * R is a matrix defined from L0 * R = F, so R = inv(L0) * F (stored in
|
alpar@9
|
62 * a column-wise sparse format);
|
alpar@9
|
63 *
|
alpar@9
|
64 * S is a matrix defined from S * U0 = G, so S = G * inv(U0) (stored in
|
alpar@9
|
65 * a row-wise sparse format);
|
alpar@9
|
66 *
|
alpar@9
|
67 * C is the Schur complement for matrix (B0 F G H). It is defined from
|
alpar@9
|
68 * S * R + C = H, so C = H - S * R = H - G * inv(U0) * inv(L0) * F =
|
alpar@9
|
69 * = H - G * inv(B0) * F. Matrix C is stored in an invertable form.
|
alpar@9
|
70 *
|
alpar@9
|
71 * REFERENCES
|
alpar@9
|
72 *
|
alpar@9
|
73 * 1. M.A.Saunders, "LUSOL: A basis package for constrained optimiza-
|
alpar@9
|
74 * tion," SCCM, Stanford University, 2006.
|
alpar@9
|
75 *
|
alpar@9
|
76 * 2. M.A.Saunders, "Notes 5: Basis Updates," CME 318, Stanford Univer-
|
alpar@9
|
77 * sity, Spring 2006.
|
alpar@9
|
78 *
|
alpar@9
|
79 * 3. M.A.Saunders, "Notes 6: LUSOL---a Basis Factorization Package,"
|
alpar@9
|
80 * ibid. */
|
alpar@9
|
81
|
alpar@9
|
82 typedef struct LPF LPF;
|
alpar@9
|
83
|
alpar@9
|
84 struct LPF
|
alpar@9
|
85 { /* LP basis factorization */
|
alpar@9
|
86 int valid;
|
alpar@9
|
87 /* the factorization is valid only if this flag is set */
|
alpar@9
|
88 /*--------------------------------------------------------------*/
|
alpar@9
|
89 /* initial basis matrix B0 */
|
alpar@9
|
90 int m0_max;
|
alpar@9
|
91 /* maximal value of m0 (increased automatically, if necessary) */
|
alpar@9
|
92 int m0;
|
alpar@9
|
93 /* the order of B0 */
|
alpar@9
|
94 LUF *luf;
|
alpar@9
|
95 /* LU-factorization of B0 */
|
alpar@9
|
96 /*--------------------------------------------------------------*/
|
alpar@9
|
97 /* current basis matrix B */
|
alpar@9
|
98 int m;
|
alpar@9
|
99 /* the order of B */
|
alpar@9
|
100 double *B; /* double B[1+m*m]; */
|
alpar@9
|
101 /* B in dense format stored by rows and used only for debugging;
|
alpar@9
|
102 normally this array is not allocated */
|
alpar@9
|
103 /*--------------------------------------------------------------*/
|
alpar@9
|
104 /* augmented matrix (B0 F G H) of the order m0+n */
|
alpar@9
|
105 int n_max;
|
alpar@9
|
106 /* maximal number of additional rows and columns */
|
alpar@9
|
107 int n;
|
alpar@9
|
108 /* current number of additional rows and columns */
|
alpar@9
|
109 /*--------------------------------------------------------------*/
|
alpar@9
|
110 /* m0xn matrix R in column-wise format */
|
alpar@9
|
111 int *R_ptr; /* int R_ptr[1+n_max]; */
|
alpar@9
|
112 /* R_ptr[j], 1 <= j <= n, is a pointer to j-th column */
|
alpar@9
|
113 int *R_len; /* int R_len[1+n_max]; */
|
alpar@9
|
114 /* R_len[j], 1 <= j <= n, is the length of j-th column */
|
alpar@9
|
115 /*--------------------------------------------------------------*/
|
alpar@9
|
116 /* nxm0 matrix S in row-wise format */
|
alpar@9
|
117 int *S_ptr; /* int S_ptr[1+n_max]; */
|
alpar@9
|
118 /* S_ptr[i], 1 <= i <= n, is a pointer to i-th row */
|
alpar@9
|
119 int *S_len; /* int S_len[1+n_max]; */
|
alpar@9
|
120 /* S_len[i], 1 <= i <= n, is the length of i-th row */
|
alpar@9
|
121 /*--------------------------------------------------------------*/
|
alpar@9
|
122 /* Schur complement C of the order n */
|
alpar@9
|
123 SCF *scf; /* SCF scf[1:n_max]; */
|
alpar@9
|
124 /* factorization of the Schur complement */
|
alpar@9
|
125 /*--------------------------------------------------------------*/
|
alpar@9
|
126 /* matrix P of the order m0+n */
|
alpar@9
|
127 int *P_row; /* int P_row[1+m0_max+n_max]; */
|
alpar@9
|
128 /* P_row[i] = j means that P[i,j] = 1 */
|
alpar@9
|
129 int *P_col; /* int P_col[1+m0_max+n_max]; */
|
alpar@9
|
130 /* P_col[j] = i means that P[i,j] = 1 */
|
alpar@9
|
131 /*--------------------------------------------------------------*/
|
alpar@9
|
132 /* matrix Q of the order m0+n */
|
alpar@9
|
133 int *Q_row; /* int Q_row[1+m0_max+n_max]; */
|
alpar@9
|
134 /* Q_row[i] = j means that Q[i,j] = 1 */
|
alpar@9
|
135 int *Q_col; /* int Q_col[1+m0_max+n_max]; */
|
alpar@9
|
136 /* Q_col[j] = i means that Q[i,j] = 1 */
|
alpar@9
|
137 /*--------------------------------------------------------------*/
|
alpar@9
|
138 /* Sparse Vector Area (SVA) is a set of locations intended to
|
alpar@9
|
139 store sparse vectors which represent columns of matrix R and
|
alpar@9
|
140 rows of matrix S; each location is a doublet (ind, val), where
|
alpar@9
|
141 ind is an index, val is a numerical value of a sparse vector
|
alpar@9
|
142 element; in the whole each sparse vector is a set of adjacent
|
alpar@9
|
143 locations defined by a pointer to its first element and its
|
alpar@9
|
144 length, i.e. the number of its elements */
|
alpar@9
|
145 int v_size;
|
alpar@9
|
146 /* the SVA size, in locations; locations are numbered by integers
|
alpar@9
|
147 1, 2, ..., v_size, and location 0 is not used */
|
alpar@9
|
148 int v_ptr;
|
alpar@9
|
149 /* pointer to the first available location */
|
alpar@9
|
150 int *v_ind; /* int v_ind[1+v_size]; */
|
alpar@9
|
151 /* v_ind[k], 1 <= k <= v_size, is the index field of location k */
|
alpar@9
|
152 double *v_val; /* double v_val[1+v_size]; */
|
alpar@9
|
153 /* v_val[k], 1 <= k <= v_size, is the value field of location k */
|
alpar@9
|
154 /*--------------------------------------------------------------*/
|
alpar@9
|
155 double *work1; /* double work1[1+m0+n_max]; */
|
alpar@9
|
156 /* working array */
|
alpar@9
|
157 double *work2; /* double work2[1+m0+n_max]; */
|
alpar@9
|
158 /* working array */
|
alpar@9
|
159 };
|
alpar@9
|
160
|
alpar@9
|
161 /* return codes: */
|
alpar@9
|
162 #define LPF_ESING 1 /* singular matrix */
|
alpar@9
|
163 #define LPF_ECOND 2 /* ill-conditioned matrix */
|
alpar@9
|
164 #define LPF_ELIMIT 3 /* update limit reached */
|
alpar@9
|
165
|
alpar@9
|
166 #define lpf_create_it _glp_lpf_create_it
|
alpar@9
|
167 LPF *lpf_create_it(void);
|
alpar@9
|
168 /* create LP basis factorization */
|
alpar@9
|
169
|
alpar@9
|
170 #define lpf_factorize _glp_lpf_factorize
|
alpar@9
|
171 int lpf_factorize(LPF *lpf, int m, const int bh[], int (*col)
|
alpar@9
|
172 (void *info, int j, int ind[], double val[]), void *info);
|
alpar@9
|
173 /* compute LP basis factorization */
|
alpar@9
|
174
|
alpar@9
|
175 #define lpf_ftran _glp_lpf_ftran
|
alpar@9
|
176 void lpf_ftran(LPF *lpf, double x[]);
|
alpar@9
|
177 /* perform forward transformation (solve system B*x = b) */
|
alpar@9
|
178
|
alpar@9
|
179 #define lpf_btran _glp_lpf_btran
|
alpar@9
|
180 void lpf_btran(LPF *lpf, double x[]);
|
alpar@9
|
181 /* perform backward transformation (solve system B'*x = b) */
|
alpar@9
|
182
|
alpar@9
|
183 #define lpf_update_it _glp_lpf_update_it
|
alpar@9
|
184 int lpf_update_it(LPF *lpf, int j, int bh, int len, const int ind[],
|
alpar@9
|
185 const double val[]);
|
alpar@9
|
186 /* update LP basis factorization */
|
alpar@9
|
187
|
alpar@9
|
188 #define lpf_delete_it _glp_lpf_delete_it
|
alpar@9
|
189 void lpf_delete_it(LPF *lpf);
|
alpar@9
|
190 /* delete LP basis factorization */
|
alpar@9
|
191
|
alpar@9
|
192 #endif
|
alpar@9
|
193
|
alpar@9
|
194 /* eof */
|