lemon-project-template-glpk

annotate deps/glpk/src/glpmat.h @ 9:33de93886c88

Import GLPK 4.47
author Alpar Juttner <alpar@cs.elte.hu>
date Sun, 06 Nov 2011 20:59:10 +0100
parents
children
rev   line source
alpar@9 1 /* glpmat.h (linear algebra routines) */
alpar@9 2
alpar@9 3 /***********************************************************************
alpar@9 4 * This code is part of GLPK (GNU Linear Programming Kit).
alpar@9 5 *
alpar@9 6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@9 7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
alpar@9 8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@9 9 * E-mail: <mao@gnu.org>.
alpar@9 10 *
alpar@9 11 * GLPK is free software: you can redistribute it and/or modify it
alpar@9 12 * under the terms of the GNU General Public License as published by
alpar@9 13 * the Free Software Foundation, either version 3 of the License, or
alpar@9 14 * (at your option) any later version.
alpar@9 15 *
alpar@9 16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@9 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@9 18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@9 19 * License for more details.
alpar@9 20 *
alpar@9 21 * You should have received a copy of the GNU General Public License
alpar@9 22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@9 23 ***********************************************************************/
alpar@9 24
alpar@9 25 #ifndef GLPMAT_H
alpar@9 26 #define GLPMAT_H
alpar@9 27
alpar@9 28 /***********************************************************************
alpar@9 29 * FULL-VECTOR STORAGE
alpar@9 30 *
alpar@9 31 * For a sparse vector x having n elements, ne of which are non-zero,
alpar@9 32 * the full-vector storage format uses two arrays x_ind and x_vec, which
alpar@9 33 * are set up as follows:
alpar@9 34 *
alpar@9 35 * x_ind is an integer array of length [1+ne]. Location x_ind[0] is
alpar@9 36 * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
alpar@9 37 * non-zero elements in vector x.
alpar@9 38 *
alpar@9 39 * x_vec is a floating-point array of length [1+n]. Location x_vec[0]
alpar@9 40 * is not used, and locations x_vec[1], ..., x_vec[n] contain numeric
alpar@9 41 * values of ALL elements in vector x, including its zero elements.
alpar@9 42 *
alpar@9 43 * Let, for example, the following sparse vector x be given:
alpar@9 44 *
alpar@9 45 * (0, 1, 0, 0, 2, 3, 0, 4)
alpar@9 46 *
alpar@9 47 * Then the arrays are:
alpar@9 48 *
alpar@9 49 * x_ind = { X; 2, 5, 6, 8 }
alpar@9 50 *
alpar@9 51 * x_vec = { X; 0, 1, 0, 0, 2, 3, 0, 4 }
alpar@9 52 *
alpar@9 53 * COMPRESSED-VECTOR STORAGE
alpar@9 54 *
alpar@9 55 * For a sparse vector x having n elements, ne of which are non-zero,
alpar@9 56 * the compressed-vector storage format uses two arrays x_ind and x_vec,
alpar@9 57 * which are set up as follows:
alpar@9 58 *
alpar@9 59 * x_ind is an integer array of length [1+ne]. Location x_ind[0] is
alpar@9 60 * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of
alpar@9 61 * non-zero elements in vector x.
alpar@9 62 *
alpar@9 63 * x_vec is a floating-point array of length [1+ne]. Location x_vec[0]
alpar@9 64 * is not used, and locations x_vec[1], ..., x_vec[ne] contain numeric
alpar@9 65 * values of corresponding non-zero elements in vector x.
alpar@9 66 *
alpar@9 67 * Let, for example, the following sparse vector x be given:
alpar@9 68 *
alpar@9 69 * (0, 1, 0, 0, 2, 3, 0, 4)
alpar@9 70 *
alpar@9 71 * Then the arrays are:
alpar@9 72 *
alpar@9 73 * x_ind = { X; 2, 5, 6, 8 }
alpar@9 74 *
alpar@9 75 * x_vec = { X; 1, 2, 3, 4 }
alpar@9 76 *
alpar@9 77 * STORAGE-BY-ROWS
alpar@9 78 *
alpar@9 79 * For a sparse matrix A, which has m rows, n columns, and ne non-zero
alpar@9 80 * elements the storage-by-rows format uses three arrays A_ptr, A_ind,
alpar@9 81 * and A_val, which are set up as follows:
alpar@9 82 *
alpar@9 83 * A_ptr is an integer array of length [1+m+1] also called "row pointer
alpar@9 84 * array". It contains the relative starting positions of each row of A
alpar@9 85 * in the arrays A_ind and A_val, i.e. element A_ptr[i], 1 <= i <= m,
alpar@9 86 * indicates where row i begins in the arrays A_ind and A_val. If all
alpar@9 87 * elements in row i are zero, then A_ptr[i] = A_ptr[i+1]. Location
alpar@9 88 * A_ptr[0] is not used, location A_ptr[1] must contain 1, and location
alpar@9 89 * A_ptr[m+1] must contain ne+1 that indicates the position after the
alpar@9 90 * last element in the arrays A_ind and A_val.
alpar@9 91 *
alpar@9 92 * A_ind is an integer array of length [1+ne]. Location A_ind[0] is not
alpar@9 93 * used, and locations A_ind[1], ..., A_ind[ne] contain column indices
alpar@9 94 * of (non-zero) elements in matrix A.
alpar@9 95 *
alpar@9 96 * A_val is a floating-point array of length [1+ne]. Location A_val[0]
alpar@9 97 * is not used, and locations A_val[1], ..., A_val[ne] contain numeric
alpar@9 98 * values of non-zero elements in matrix A.
alpar@9 99 *
alpar@9 100 * Non-zero elements of matrix A are stored contiguously, and the rows
alpar@9 101 * of matrix A are stored consecutively from 1 to m in the arrays A_ind
alpar@9 102 * and A_val. The elements in each row of A may be stored in any order
alpar@9 103 * in A_ind and A_val. Note that elements with duplicate column indices
alpar@9 104 * are not allowed.
alpar@9 105 *
alpar@9 106 * Let, for example, the following sparse matrix A be given:
alpar@9 107 *
alpar@9 108 * | 11 . 13 . . . |
alpar@9 109 * | 21 22 . 24 . . |
alpar@9 110 * | . 32 33 . . . |
alpar@9 111 * | . . 43 44 . 46 |
alpar@9 112 * | . . . . . . |
alpar@9 113 * | 61 62 . . . 66 |
alpar@9 114 *
alpar@9 115 * Then the arrays are:
alpar@9 116 *
alpar@9 117 * A_ptr = { X; 1, 3, 6, 8, 11, 11; 14 }
alpar@9 118 *
alpar@9 119 * A_ind = { X; 1, 3; 4, 2, 1; 2, 3; 4, 3, 6; 1, 2, 6 }
alpar@9 120 *
alpar@9 121 * A_val = { X; 11, 13; 24, 22, 21; 32, 33; 44, 43, 46; 61, 62, 66 }
alpar@9 122 *
alpar@9 123 * PERMUTATION MATRICES
alpar@9 124 *
alpar@9 125 * Let P be a permutation matrix of the order n. It is represented as
alpar@9 126 * an integer array P_per of length [1+n+n] as follows: if p[i,j] = 1,
alpar@9 127 * then P_per[i] = j and P_per[n+j] = i. Location P_per[0] is not used.
alpar@9 128 *
alpar@9 129 * Let A' = P*A. If i-th row of A corresponds to i'-th row of A', then
alpar@9 130 * P_per[i'] = i and P_per[n+i] = i'.
alpar@9 131 *
alpar@9 132 * References:
alpar@9 133 *
alpar@9 134 * 1. Gustavson F.G. Some basic techniques for solving sparse systems of
alpar@9 135 * linear equations. In Rose and Willoughby (1972), pp. 41-52.
alpar@9 136 *
alpar@9 137 * 2. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard.
alpar@9 138 * University of Tennessee (2001). */
alpar@9 139
alpar@9 140 #define check_fvs _glp_mat_check_fvs
alpar@9 141 int check_fvs(int n, int nnz, int ind[], double vec[]);
alpar@9 142 /* check sparse vector in full-vector storage format */
alpar@9 143
alpar@9 144 #define check_pattern _glp_mat_check_pattern
alpar@9 145 int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
alpar@9 146 /* check pattern of sparse matrix */
alpar@9 147
alpar@9 148 #define transpose _glp_mat_transpose
alpar@9 149 void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
alpar@9 150 int AT_ptr[], int AT_ind[], double AT_val[]);
alpar@9 151 /* transpose sparse matrix */
alpar@9 152
alpar@9 153 #define adat_symbolic _glp_mat_adat_symbolic
alpar@9 154 int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
alpar@9 155 int S_ptr[]);
alpar@9 156 /* compute S = P*A*D*A'*P' (symbolic phase) */
alpar@9 157
alpar@9 158 #define adat_numeric _glp_mat_adat_numeric
alpar@9 159 void adat_numeric(int m, int n, int P_per[],
alpar@9 160 int A_ptr[], int A_ind[], double A_val[], double D_diag[],
alpar@9 161 int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
alpar@9 162 /* compute S = P*A*D*A'*P' (numeric phase) */
alpar@9 163
alpar@9 164 #define min_degree _glp_mat_min_degree
alpar@9 165 void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
alpar@9 166 /* minimum degree ordering */
alpar@9 167
alpar@9 168 #define amd_order1 _glp_mat_amd_order1
alpar@9 169 void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]);
alpar@9 170 /* approximate minimum degree ordering (AMD) */
alpar@9 171
alpar@9 172 #define symamd_ord _glp_mat_symamd_ord
alpar@9 173 void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]);
alpar@9 174 /* approximate minimum degree ordering (SYMAMD) */
alpar@9 175
alpar@9 176 #define chol_symbolic _glp_mat_chol_symbolic
alpar@9 177 int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
alpar@9 178 /* compute Cholesky factorization (symbolic phase) */
alpar@9 179
alpar@9 180 #define chol_numeric _glp_mat_chol_numeric
alpar@9 181 int chol_numeric(int n,
alpar@9 182 int A_ptr[], int A_ind[], double A_val[], double A_diag[],
alpar@9 183 int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
alpar@9 184 /* compute Cholesky factorization (numeric phase) */
alpar@9 185
alpar@9 186 #define u_solve _glp_mat_u_solve
alpar@9 187 void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
alpar@9 188 double U_diag[], double x[]);
alpar@9 189 /* solve upper triangular system U*x = b */
alpar@9 190
alpar@9 191 #define ut_solve _glp_mat_ut_solve
alpar@9 192 void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
alpar@9 193 double U_diag[], double x[]);
alpar@9 194 /* solve lower triangular system U'*x = b */
alpar@9 195
alpar@9 196 #endif
alpar@9 197
alpar@9 198 /* eof */