rev |
line source |
alpar@9
|
1 /* glpscf.c (Schur complement factorization) */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpenv.h"
|
alpar@9
|
26 #include "glpscf.h"
|
alpar@9
|
27 #define xfault xerror
|
alpar@9
|
28
|
alpar@9
|
29 #define _GLPSCF_DEBUG 0
|
alpar@9
|
30
|
alpar@9
|
31 #define eps 1e-10
|
alpar@9
|
32
|
alpar@9
|
33 /***********************************************************************
|
alpar@9
|
34 * NAME
|
alpar@9
|
35 *
|
alpar@9
|
36 * scf_create_it - create Schur complement factorization
|
alpar@9
|
37 *
|
alpar@9
|
38 * SYNOPSIS
|
alpar@9
|
39 *
|
alpar@9
|
40 * #include "glpscf.h"
|
alpar@9
|
41 * SCF *scf_create_it(int n_max);
|
alpar@9
|
42 *
|
alpar@9
|
43 * DESCRIPTION
|
alpar@9
|
44 *
|
alpar@9
|
45 * The routine scf_create_it creates the factorization of matrix C,
|
alpar@9
|
46 * which initially has no rows and columns.
|
alpar@9
|
47 *
|
alpar@9
|
48 * The parameter n_max specifies the maximal order of matrix C to be
|
alpar@9
|
49 * factorized, 1 <= n_max <= 32767.
|
alpar@9
|
50 *
|
alpar@9
|
51 * RETURNS
|
alpar@9
|
52 *
|
alpar@9
|
53 * The routine scf_create_it returns a pointer to the structure SCF,
|
alpar@9
|
54 * which defines the factorization. */
|
alpar@9
|
55
|
alpar@9
|
56 SCF *scf_create_it(int n_max)
|
alpar@9
|
57 { SCF *scf;
|
alpar@9
|
58 #if _GLPSCF_DEBUG
|
alpar@9
|
59 xprintf("scf_create_it: warning: debug mode enabled\n");
|
alpar@9
|
60 #endif
|
alpar@9
|
61 if (!(1 <= n_max && n_max <= 32767))
|
alpar@9
|
62 xfault("scf_create_it: n_max = %d; invalid parameter\n",
|
alpar@9
|
63 n_max);
|
alpar@9
|
64 scf = xmalloc(sizeof(SCF));
|
alpar@9
|
65 scf->n_max = n_max;
|
alpar@9
|
66 scf->n = 0;
|
alpar@9
|
67 scf->f = xcalloc(1 + n_max * n_max, sizeof(double));
|
alpar@9
|
68 scf->u = xcalloc(1 + n_max * (n_max + 1) / 2, sizeof(double));
|
alpar@9
|
69 scf->p = xcalloc(1 + n_max, sizeof(int));
|
alpar@9
|
70 scf->t_opt = SCF_TBG;
|
alpar@9
|
71 scf->rank = 0;
|
alpar@9
|
72 #if _GLPSCF_DEBUG
|
alpar@9
|
73 scf->c = xcalloc(1 + n_max * n_max, sizeof(double));
|
alpar@9
|
74 #else
|
alpar@9
|
75 scf->c = NULL;
|
alpar@9
|
76 #endif
|
alpar@9
|
77 scf->w = xcalloc(1 + n_max, sizeof(double));
|
alpar@9
|
78 return scf;
|
alpar@9
|
79 }
|
alpar@9
|
80
|
alpar@9
|
81 /***********************************************************************
|
alpar@9
|
82 * The routine f_loc determines location of matrix element F[i,j] in
|
alpar@9
|
83 * the one-dimensional array f. */
|
alpar@9
|
84
|
alpar@9
|
85 static int f_loc(SCF *scf, int i, int j)
|
alpar@9
|
86 { int n_max = scf->n_max;
|
alpar@9
|
87 int n = scf->n;
|
alpar@9
|
88 xassert(1 <= i && i <= n);
|
alpar@9
|
89 xassert(1 <= j && j <= n);
|
alpar@9
|
90 return (i - 1) * n_max + j;
|
alpar@9
|
91 }
|
alpar@9
|
92
|
alpar@9
|
93 /***********************************************************************
|
alpar@9
|
94 * The routine u_loc determines location of matrix element U[i,j] in
|
alpar@9
|
95 * the one-dimensional array u. */
|
alpar@9
|
96
|
alpar@9
|
97 static int u_loc(SCF *scf, int i, int j)
|
alpar@9
|
98 { int n_max = scf->n_max;
|
alpar@9
|
99 int n = scf->n;
|
alpar@9
|
100 xassert(1 <= i && i <= n);
|
alpar@9
|
101 xassert(i <= j && j <= n);
|
alpar@9
|
102 return (i - 1) * n_max + j - i * (i - 1) / 2;
|
alpar@9
|
103 }
|
alpar@9
|
104
|
alpar@9
|
105 /***********************************************************************
|
alpar@9
|
106 * The routine bg_transform applies Bartels-Golub version of gaussian
|
alpar@9
|
107 * elimination to restore triangular structure of matrix U.
|
alpar@9
|
108 *
|
alpar@9
|
109 * On entry matrix U has the following structure:
|
alpar@9
|
110 *
|
alpar@9
|
111 * 1 k n
|
alpar@9
|
112 * 1 * * * * * * * * * *
|
alpar@9
|
113 * . * * * * * * * * *
|
alpar@9
|
114 * . . * * * * * * * *
|
alpar@9
|
115 * . . . * * * * * * *
|
alpar@9
|
116 * k . . . . * * * * * *
|
alpar@9
|
117 * . . . . . * * * * *
|
alpar@9
|
118 * . . . . . . * * * *
|
alpar@9
|
119 * . . . . . . . * * *
|
alpar@9
|
120 * . . . . . . . . * *
|
alpar@9
|
121 * n . . . . # # # # # #
|
alpar@9
|
122 *
|
alpar@9
|
123 * where '#' is a row spike to be eliminated.
|
alpar@9
|
124 *
|
alpar@9
|
125 * Elements of n-th row are passed separately in locations un[k], ...,
|
alpar@9
|
126 * un[n]. On exit the content of the array un is destroyed.
|
alpar@9
|
127 *
|
alpar@9
|
128 * REFERENCES
|
alpar@9
|
129 *
|
alpar@9
|
130 * R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming
|
alpar@9
|
131 * Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */
|
alpar@9
|
132
|
alpar@9
|
133 static void bg_transform(SCF *scf, int k, double un[])
|
alpar@9
|
134 { int n = scf->n;
|
alpar@9
|
135 double *f = scf->f;
|
alpar@9
|
136 double *u = scf->u;
|
alpar@9
|
137 int j, k1, kj, kk, n1, nj;
|
alpar@9
|
138 double t;
|
alpar@9
|
139 xassert(1 <= k && k <= n);
|
alpar@9
|
140 /* main elimination loop */
|
alpar@9
|
141 for (k = k; k < n; k++)
|
alpar@9
|
142 { /* determine location of U[k,k] */
|
alpar@9
|
143 kk = u_loc(scf, k, k);
|
alpar@9
|
144 /* determine location of F[k,1] */
|
alpar@9
|
145 k1 = f_loc(scf, k, 1);
|
alpar@9
|
146 /* determine location of F[n,1] */
|
alpar@9
|
147 n1 = f_loc(scf, n, 1);
|
alpar@9
|
148 /* if |U[k,k]| < |U[n,k]|, interchange k-th and n-th rows to
|
alpar@9
|
149 provide |U[k,k]| >= |U[n,k]| */
|
alpar@9
|
150 if (fabs(u[kk]) < fabs(un[k]))
|
alpar@9
|
151 { /* interchange k-th and n-th rows of matrix U */
|
alpar@9
|
152 for (j = k, kj = kk; j <= n; j++, kj++)
|
alpar@9
|
153 t = u[kj], u[kj] = un[j], un[j] = t;
|
alpar@9
|
154 /* interchange k-th and n-th rows of matrix F to keep the
|
alpar@9
|
155 main equality F * C = U * P */
|
alpar@9
|
156 for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
|
alpar@9
|
157 t = f[kj], f[kj] = f[nj], f[nj] = t;
|
alpar@9
|
158 }
|
alpar@9
|
159 /* now |U[k,k]| >= |U[n,k]| */
|
alpar@9
|
160 /* if U[k,k] is too small in the magnitude, replace U[k,k] and
|
alpar@9
|
161 U[n,k] by exact zero */
|
alpar@9
|
162 if (fabs(u[kk]) < eps) u[kk] = un[k] = 0.0;
|
alpar@9
|
163 /* if U[n,k] is already zero, elimination is not needed */
|
alpar@9
|
164 if (un[k] == 0.0) continue;
|
alpar@9
|
165 /* compute gaussian multiplier t = U[n,k] / U[k,k] */
|
alpar@9
|
166 t = un[k] / u[kk];
|
alpar@9
|
167 /* apply gaussian elimination to nullify U[n,k] */
|
alpar@9
|
168 /* (n-th row of U) := (n-th row of U) - t * (k-th row of U) */
|
alpar@9
|
169 for (j = k+1, kj = kk+1; j <= n; j++, kj++)
|
alpar@9
|
170 un[j] -= t * u[kj];
|
alpar@9
|
171 /* (n-th row of F) := (n-th row of F) - t * (k-th row of F)
|
alpar@9
|
172 to keep the main equality F * C = U * P */
|
alpar@9
|
173 for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
|
alpar@9
|
174 f[nj] -= t * f[kj];
|
alpar@9
|
175 }
|
alpar@9
|
176 /* if U[n,n] is too small in the magnitude, replace it by exact
|
alpar@9
|
177 zero */
|
alpar@9
|
178 if (fabs(un[n]) < eps) un[n] = 0.0;
|
alpar@9
|
179 /* store U[n,n] in a proper location */
|
alpar@9
|
180 u[u_loc(scf, n, n)] = un[n];
|
alpar@9
|
181 return;
|
alpar@9
|
182 }
|
alpar@9
|
183
|
alpar@9
|
184 /***********************************************************************
|
alpar@9
|
185 * The routine givens computes the parameters of Givens plane rotation
|
alpar@9
|
186 * c = cos(teta) and s = sin(teta) such that:
|
alpar@9
|
187 *
|
alpar@9
|
188 * ( c -s ) ( a ) ( r )
|
alpar@9
|
189 * ( ) ( ) = ( ) ,
|
alpar@9
|
190 * ( s c ) ( b ) ( 0 )
|
alpar@9
|
191 *
|
alpar@9
|
192 * where a and b are given scalars.
|
alpar@9
|
193 *
|
alpar@9
|
194 * REFERENCES
|
alpar@9
|
195 *
|
alpar@9
|
196 * G.H.Golub, C.F.Van Loan, "Matrix Computations", 2nd ed. */
|
alpar@9
|
197
|
alpar@9
|
198 static void givens(double a, double b, double *c, double *s)
|
alpar@9
|
199 { double t;
|
alpar@9
|
200 if (b == 0.0)
|
alpar@9
|
201 (*c) = 1.0, (*s) = 0.0;
|
alpar@9
|
202 else if (fabs(a) <= fabs(b))
|
alpar@9
|
203 t = - a / b, (*s) = 1.0 / sqrt(1.0 + t * t), (*c) = (*s) * t;
|
alpar@9
|
204 else
|
alpar@9
|
205 t = - b / a, (*c) = 1.0 / sqrt(1.0 + t * t), (*s) = (*c) * t;
|
alpar@9
|
206 return;
|
alpar@9
|
207 }
|
alpar@9
|
208
|
alpar@9
|
209 /*----------------------------------------------------------------------
|
alpar@9
|
210 * The routine gr_transform applies Givens plane rotations to restore
|
alpar@9
|
211 * triangular structure of matrix U.
|
alpar@9
|
212 *
|
alpar@9
|
213 * On entry matrix U has the following structure:
|
alpar@9
|
214 *
|
alpar@9
|
215 * 1 k n
|
alpar@9
|
216 * 1 * * * * * * * * * *
|
alpar@9
|
217 * . * * * * * * * * *
|
alpar@9
|
218 * . . * * * * * * * *
|
alpar@9
|
219 * . . . * * * * * * *
|
alpar@9
|
220 * k . . . . * * * * * *
|
alpar@9
|
221 * . . . . . * * * * *
|
alpar@9
|
222 * . . . . . . * * * *
|
alpar@9
|
223 * . . . . . . . * * *
|
alpar@9
|
224 * . . . . . . . . * *
|
alpar@9
|
225 * n . . . . # # # # # #
|
alpar@9
|
226 *
|
alpar@9
|
227 * where '#' is a row spike to be eliminated.
|
alpar@9
|
228 *
|
alpar@9
|
229 * Elements of n-th row are passed separately in locations un[k], ...,
|
alpar@9
|
230 * un[n]. On exit the content of the array un is destroyed.
|
alpar@9
|
231 *
|
alpar@9
|
232 * REFERENCES
|
alpar@9
|
233 *
|
alpar@9
|
234 * R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming
|
alpar@9
|
235 * Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */
|
alpar@9
|
236
|
alpar@9
|
237 static void gr_transform(SCF *scf, int k, double un[])
|
alpar@9
|
238 { int n = scf->n;
|
alpar@9
|
239 double *f = scf->f;
|
alpar@9
|
240 double *u = scf->u;
|
alpar@9
|
241 int j, k1, kj, kk, n1, nj;
|
alpar@9
|
242 double c, s;
|
alpar@9
|
243 xassert(1 <= k && k <= n);
|
alpar@9
|
244 /* main elimination loop */
|
alpar@9
|
245 for (k = k; k < n; k++)
|
alpar@9
|
246 { /* determine location of U[k,k] */
|
alpar@9
|
247 kk = u_loc(scf, k, k);
|
alpar@9
|
248 /* determine location of F[k,1] */
|
alpar@9
|
249 k1 = f_loc(scf, k, 1);
|
alpar@9
|
250 /* determine location of F[n,1] */
|
alpar@9
|
251 n1 = f_loc(scf, n, 1);
|
alpar@9
|
252 /* if both U[k,k] and U[n,k] are too small in the magnitude,
|
alpar@9
|
253 replace them by exact zero */
|
alpar@9
|
254 if (fabs(u[kk]) < eps && fabs(un[k]) < eps)
|
alpar@9
|
255 u[kk] = un[k] = 0.0;
|
alpar@9
|
256 /* if U[n,k] is already zero, elimination is not needed */
|
alpar@9
|
257 if (un[k] == 0.0) continue;
|
alpar@9
|
258 /* compute the parameters of Givens plane rotation */
|
alpar@9
|
259 givens(u[kk], un[k], &c, &s);
|
alpar@9
|
260 /* apply Givens rotation to k-th and n-th rows of matrix U */
|
alpar@9
|
261 for (j = k, kj = kk; j <= n; j++, kj++)
|
alpar@9
|
262 { double ukj = u[kj], unj = un[j];
|
alpar@9
|
263 u[kj] = c * ukj - s * unj;
|
alpar@9
|
264 un[j] = s * ukj + c * unj;
|
alpar@9
|
265 }
|
alpar@9
|
266 /* apply Givens rotation to k-th and n-th rows of matrix F
|
alpar@9
|
267 to keep the main equality F * C = U * P */
|
alpar@9
|
268 for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++)
|
alpar@9
|
269 { double fkj = f[kj], fnj = f[nj];
|
alpar@9
|
270 f[kj] = c * fkj - s * fnj;
|
alpar@9
|
271 f[nj] = s * fkj + c * fnj;
|
alpar@9
|
272 }
|
alpar@9
|
273 }
|
alpar@9
|
274 /* if U[n,n] is too small in the magnitude, replace it by exact
|
alpar@9
|
275 zero */
|
alpar@9
|
276 if (fabs(un[n]) < eps) un[n] = 0.0;
|
alpar@9
|
277 /* store U[n,n] in a proper location */
|
alpar@9
|
278 u[u_loc(scf, n, n)] = un[n];
|
alpar@9
|
279 return;
|
alpar@9
|
280 }
|
alpar@9
|
281
|
alpar@9
|
282 /***********************************************************************
|
alpar@9
|
283 * The routine transform restores triangular structure of matrix U.
|
alpar@9
|
284 * It is a driver to the routines bg_transform and gr_transform (see
|
alpar@9
|
285 * comments to these routines above). */
|
alpar@9
|
286
|
alpar@9
|
287 static void transform(SCF *scf, int k, double un[])
|
alpar@9
|
288 { switch (scf->t_opt)
|
alpar@9
|
289 { case SCF_TBG:
|
alpar@9
|
290 bg_transform(scf, k, un);
|
alpar@9
|
291 break;
|
alpar@9
|
292 case SCF_TGR:
|
alpar@9
|
293 gr_transform(scf, k, un);
|
alpar@9
|
294 break;
|
alpar@9
|
295 default:
|
alpar@9
|
296 xassert(scf != scf);
|
alpar@9
|
297 }
|
alpar@9
|
298 return;
|
alpar@9
|
299 }
|
alpar@9
|
300
|
alpar@9
|
301 /***********************************************************************
|
alpar@9
|
302 * The routine estimate_rank estimates the rank of matrix C.
|
alpar@9
|
303 *
|
alpar@9
|
304 * Since all transformations applied to matrix F are non-singular,
|
alpar@9
|
305 * and F is assumed to be well conditioned, from the main equaility
|
alpar@9
|
306 * F * C = U * P it follows that rank(C) = rank(U), where rank(U) is
|
alpar@9
|
307 * estimated as the number of non-zero diagonal elements of U. */
|
alpar@9
|
308
|
alpar@9
|
309 static int estimate_rank(SCF *scf)
|
alpar@9
|
310 { int n_max = scf->n_max;
|
alpar@9
|
311 int n = scf->n;
|
alpar@9
|
312 double *u = scf->u;
|
alpar@9
|
313 int i, ii, inc, rank = 0;
|
alpar@9
|
314 for (i = 1, ii = u_loc(scf, i, i), inc = n_max; i <= n;
|
alpar@9
|
315 i++, ii += inc, inc--)
|
alpar@9
|
316 if (u[ii] != 0.0) rank++;
|
alpar@9
|
317 return rank;
|
alpar@9
|
318 }
|
alpar@9
|
319
|
alpar@9
|
320 #if _GLPSCF_DEBUG
|
alpar@9
|
321 /***********************************************************************
|
alpar@9
|
322 * The routine check_error computes the maximal relative error between
|
alpar@9
|
323 * left- and right-hand sides of the main equality F * C = U * P. (This
|
alpar@9
|
324 * routine is intended only for debugging.) */
|
alpar@9
|
325
|
alpar@9
|
326 static void check_error(SCF *scf, const char *func)
|
alpar@9
|
327 { int n = scf->n;
|
alpar@9
|
328 double *f = scf->f;
|
alpar@9
|
329 double *u = scf->u;
|
alpar@9
|
330 int *p = scf->p;
|
alpar@9
|
331 double *c = scf->c;
|
alpar@9
|
332 int i, j, k;
|
alpar@9
|
333 double d, dmax = 0.0, s, t;
|
alpar@9
|
334 xassert(c != NULL);
|
alpar@9
|
335 for (i = 1; i <= n; i++)
|
alpar@9
|
336 { for (j = 1; j <= n; j++)
|
alpar@9
|
337 { /* compute element (i,j) of product F * C */
|
alpar@9
|
338 s = 0.0;
|
alpar@9
|
339 for (k = 1; k <= n; k++)
|
alpar@9
|
340 s += f[f_loc(scf, i, k)] * c[f_loc(scf, k, j)];
|
alpar@9
|
341 /* compute element (i,j) of product U * P */
|
alpar@9
|
342 k = p[j];
|
alpar@9
|
343 t = (i <= k ? u[u_loc(scf, i, k)] : 0.0);
|
alpar@9
|
344 /* compute the maximal relative error */
|
alpar@9
|
345 d = fabs(s - t) / (1.0 + fabs(t));
|
alpar@9
|
346 if (dmax < d) dmax = d;
|
alpar@9
|
347 }
|
alpar@9
|
348 }
|
alpar@9
|
349 if (dmax > 1e-8)
|
alpar@9
|
350 xprintf("%s: dmax = %g; relative error too large\n", func,
|
alpar@9
|
351 dmax);
|
alpar@9
|
352 return;
|
alpar@9
|
353 }
|
alpar@9
|
354 #endif
|
alpar@9
|
355
|
alpar@9
|
356 /***********************************************************************
|
alpar@9
|
357 * NAME
|
alpar@9
|
358 *
|
alpar@9
|
359 * scf_update_exp - update factorization on expanding C
|
alpar@9
|
360 *
|
alpar@9
|
361 * SYNOPSIS
|
alpar@9
|
362 *
|
alpar@9
|
363 * #include "glpscf.h"
|
alpar@9
|
364 * int scf_update_exp(SCF *scf, const double x[], const double y[],
|
alpar@9
|
365 * double z);
|
alpar@9
|
366 *
|
alpar@9
|
367 * DESCRIPTION
|
alpar@9
|
368 *
|
alpar@9
|
369 * The routine scf_update_exp updates the factorization of matrix C on
|
alpar@9
|
370 * expanding it by adding a new row and column as follows:
|
alpar@9
|
371 *
|
alpar@9
|
372 * ( C x )
|
alpar@9
|
373 * new C = ( )
|
alpar@9
|
374 * ( y' z )
|
alpar@9
|
375 *
|
alpar@9
|
376 * where x[1,...,n] is a new column, y[1,...,n] is a new row, and z is
|
alpar@9
|
377 * a new diagonal element.
|
alpar@9
|
378 *
|
alpar@9
|
379 * If on entry the factorization is empty, the parameters x and y can
|
alpar@9
|
380 * be specified as NULL.
|
alpar@9
|
381 *
|
alpar@9
|
382 * RETURNS
|
alpar@9
|
383 *
|
alpar@9
|
384 * 0 The factorization has been successfully updated.
|
alpar@9
|
385 *
|
alpar@9
|
386 * SCF_ESING
|
alpar@9
|
387 * The factorization has been successfully updated, however, new
|
alpar@9
|
388 * matrix C is singular within working precision. Note that the new
|
alpar@9
|
389 * factorization remains valid.
|
alpar@9
|
390 *
|
alpar@9
|
391 * SCF_ELIMIT
|
alpar@9
|
392 * There is not enough room to expand the factorization, because
|
alpar@9
|
393 * n = n_max. The factorization remains unchanged.
|
alpar@9
|
394 *
|
alpar@9
|
395 * ALGORITHM
|
alpar@9
|
396 *
|
alpar@9
|
397 * We can see that:
|
alpar@9
|
398 *
|
alpar@9
|
399 * ( F 0 ) ( C x ) ( FC Fx ) ( UP Fx )
|
alpar@9
|
400 * ( ) ( ) = ( ) = ( ) =
|
alpar@9
|
401 * ( 0 1 ) ( y' z ) ( y' z ) ( y' z )
|
alpar@9
|
402 *
|
alpar@9
|
403 * ( U Fx ) ( P 0 )
|
alpar@9
|
404 * = ( ) ( ),
|
alpar@9
|
405 * ( y'P' z ) ( 0 1 )
|
alpar@9
|
406 *
|
alpar@9
|
407 * therefore to keep the main equality F * C = U * P we can take:
|
alpar@9
|
408 *
|
alpar@9
|
409 * ( F 0 ) ( U Fx ) ( P 0 )
|
alpar@9
|
410 * new F = ( ), new U = ( ), new P = ( ),
|
alpar@9
|
411 * ( 0 1 ) ( y'P' z ) ( 0 1 )
|
alpar@9
|
412 *
|
alpar@9
|
413 * and eliminate the row spike y'P' in the last row of new U to restore
|
alpar@9
|
414 * its upper triangular structure. */
|
alpar@9
|
415
|
alpar@9
|
416 int scf_update_exp(SCF *scf, const double x[], const double y[],
|
alpar@9
|
417 double z)
|
alpar@9
|
418 { int n_max = scf->n_max;
|
alpar@9
|
419 int n = scf->n;
|
alpar@9
|
420 double *f = scf->f;
|
alpar@9
|
421 double *u = scf->u;
|
alpar@9
|
422 int *p = scf->p;
|
alpar@9
|
423 #if _GLPSCF_DEBUG
|
alpar@9
|
424 double *c = scf->c;
|
alpar@9
|
425 #endif
|
alpar@9
|
426 double *un = scf->w;
|
alpar@9
|
427 int i, ij, in, j, k, nj, ret = 0;
|
alpar@9
|
428 double t;
|
alpar@9
|
429 /* check if the factorization can be expanded */
|
alpar@9
|
430 if (n == n_max)
|
alpar@9
|
431 { /* there is not enough room */
|
alpar@9
|
432 ret = SCF_ELIMIT;
|
alpar@9
|
433 goto done;
|
alpar@9
|
434 }
|
alpar@9
|
435 /* increase the order of the factorization */
|
alpar@9
|
436 scf->n = ++n;
|
alpar@9
|
437 /* fill new zero column of matrix F */
|
alpar@9
|
438 for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)
|
alpar@9
|
439 f[in] = 0.0;
|
alpar@9
|
440 /* fill new zero row of matrix F */
|
alpar@9
|
441 for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)
|
alpar@9
|
442 f[nj] = 0.0;
|
alpar@9
|
443 /* fill new unity diagonal element of matrix F */
|
alpar@9
|
444 f[f_loc(scf, n, n)] = 1.0;
|
alpar@9
|
445 /* compute new column of matrix U, which is (old F) * x */
|
alpar@9
|
446 for (i = 1; i < n; i++)
|
alpar@9
|
447 { /* u[i,n] := (i-th row of old F) * x */
|
alpar@9
|
448 t = 0.0;
|
alpar@9
|
449 for (j = 1, ij = f_loc(scf, i, 1); j < n; j++, ij++)
|
alpar@9
|
450 t += f[ij] * x[j];
|
alpar@9
|
451 u[u_loc(scf, i, n)] = t;
|
alpar@9
|
452 }
|
alpar@9
|
453 /* compute new (spiked) row of matrix U, which is (old P) * y */
|
alpar@9
|
454 for (j = 1; j < n; j++) un[j] = y[p[j]];
|
alpar@9
|
455 /* store new diagonal element of matrix U, which is z */
|
alpar@9
|
456 un[n] = z;
|
alpar@9
|
457 /* expand matrix P */
|
alpar@9
|
458 p[n] = n;
|
alpar@9
|
459 #if _GLPSCF_DEBUG
|
alpar@9
|
460 /* expand matrix C */
|
alpar@9
|
461 /* fill its new column, which is x */
|
alpar@9
|
462 for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)
|
alpar@9
|
463 c[in] = x[i];
|
alpar@9
|
464 /* fill its new row, which is y */
|
alpar@9
|
465 for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)
|
alpar@9
|
466 c[nj] = y[j];
|
alpar@9
|
467 /* fill its new diagonal element, which is z */
|
alpar@9
|
468 c[f_loc(scf, n, n)] = z;
|
alpar@9
|
469 #endif
|
alpar@9
|
470 /* restore upper triangular structure of matrix U */
|
alpar@9
|
471 for (k = 1; k < n; k++)
|
alpar@9
|
472 if (un[k] != 0.0) break;
|
alpar@9
|
473 transform(scf, k, un);
|
alpar@9
|
474 /* estimate the rank of matrices C and U */
|
alpar@9
|
475 scf->rank = estimate_rank(scf);
|
alpar@9
|
476 if (scf->rank != n) ret = SCF_ESING;
|
alpar@9
|
477 #if _GLPSCF_DEBUG
|
alpar@9
|
478 /* check that the factorization is accurate enough */
|
alpar@9
|
479 check_error(scf, "scf_update_exp");
|
alpar@9
|
480 #endif
|
alpar@9
|
481 done: return ret;
|
alpar@9
|
482 }
|
alpar@9
|
483
|
alpar@9
|
484 /***********************************************************************
|
alpar@9
|
485 * The routine solve solves the system C * x = b.
|
alpar@9
|
486 *
|
alpar@9
|
487 * From the main equation F * C = U * P it follows that:
|
alpar@9
|
488 *
|
alpar@9
|
489 * C * x = b => F * C * x = F * b => U * P * x = F * b =>
|
alpar@9
|
490 *
|
alpar@9
|
491 * P * x = inv(U) * F * b => x = P' * inv(U) * F * b.
|
alpar@9
|
492 *
|
alpar@9
|
493 * On entry the array x contains right-hand side vector b. On exit this
|
alpar@9
|
494 * array contains solution vector x. */
|
alpar@9
|
495
|
alpar@9
|
496 static void solve(SCF *scf, double x[])
|
alpar@9
|
497 { int n = scf->n;
|
alpar@9
|
498 double *f = scf->f;
|
alpar@9
|
499 double *u = scf->u;
|
alpar@9
|
500 int *p = scf->p;
|
alpar@9
|
501 double *y = scf->w;
|
alpar@9
|
502 int i, j, ij;
|
alpar@9
|
503 double t;
|
alpar@9
|
504 /* y := F * b */
|
alpar@9
|
505 for (i = 1; i <= n; i++)
|
alpar@9
|
506 { /* y[i] = (i-th row of F) * b */
|
alpar@9
|
507 t = 0.0;
|
alpar@9
|
508 for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)
|
alpar@9
|
509 t += f[ij] * x[j];
|
alpar@9
|
510 y[i] = t;
|
alpar@9
|
511 }
|
alpar@9
|
512 /* y := inv(U) * y */
|
alpar@9
|
513 for (i = n; i >= 1; i--)
|
alpar@9
|
514 { t = y[i];
|
alpar@9
|
515 for (j = n, ij = u_loc(scf, i, n); j > i; j--, ij--)
|
alpar@9
|
516 t -= u[ij] * y[j];
|
alpar@9
|
517 y[i] = t / u[ij];
|
alpar@9
|
518 }
|
alpar@9
|
519 /* x := P' * y */
|
alpar@9
|
520 for (i = 1; i <= n; i++) x[p[i]] = y[i];
|
alpar@9
|
521 return;
|
alpar@9
|
522 }
|
alpar@9
|
523
|
alpar@9
|
524 /***********************************************************************
|
alpar@9
|
525 * The routine tsolve solves the transposed system C' * x = b.
|
alpar@9
|
526 *
|
alpar@9
|
527 * From the main equation F * C = U * P it follows that:
|
alpar@9
|
528 *
|
alpar@9
|
529 * C' * F' = P' * U',
|
alpar@9
|
530 *
|
alpar@9
|
531 * therefore:
|
alpar@9
|
532 *
|
alpar@9
|
533 * C' * x = b => C' * F' * inv(F') * x = b =>
|
alpar@9
|
534 *
|
alpar@9
|
535 * P' * U' * inv(F') * x = b => U' * inv(F') * x = P * b =>
|
alpar@9
|
536 *
|
alpar@9
|
537 * inv(F') * x = inv(U') * P * b => x = F' * inv(U') * P * b.
|
alpar@9
|
538 *
|
alpar@9
|
539 * On entry the array x contains right-hand side vector b. On exit this
|
alpar@9
|
540 * array contains solution vector x. */
|
alpar@9
|
541
|
alpar@9
|
542 static void tsolve(SCF *scf, double x[])
|
alpar@9
|
543 { int n = scf->n;
|
alpar@9
|
544 double *f = scf->f;
|
alpar@9
|
545 double *u = scf->u;
|
alpar@9
|
546 int *p = scf->p;
|
alpar@9
|
547 double *y = scf->w;
|
alpar@9
|
548 int i, j, ij;
|
alpar@9
|
549 double t;
|
alpar@9
|
550 /* y := P * b */
|
alpar@9
|
551 for (i = 1; i <= n; i++) y[i] = x[p[i]];
|
alpar@9
|
552 /* y := inv(U') * y */
|
alpar@9
|
553 for (i = 1; i <= n; i++)
|
alpar@9
|
554 { /* compute y[i] */
|
alpar@9
|
555 ij = u_loc(scf, i, i);
|
alpar@9
|
556 t = (y[i] /= u[ij]);
|
alpar@9
|
557 /* substitute y[i] in other equations */
|
alpar@9
|
558 for (j = i+1, ij++; j <= n; j++, ij++)
|
alpar@9
|
559 y[j] -= u[ij] * t;
|
alpar@9
|
560 }
|
alpar@9
|
561 /* x := F' * y (computed as linear combination of rows of F) */
|
alpar@9
|
562 for (j = 1; j <= n; j++) x[j] = 0.0;
|
alpar@9
|
563 for (i = 1; i <= n; i++)
|
alpar@9
|
564 { t = y[i]; /* coefficient of linear combination */
|
alpar@9
|
565 for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)
|
alpar@9
|
566 x[j] += f[ij] * t;
|
alpar@9
|
567 }
|
alpar@9
|
568 return;
|
alpar@9
|
569 }
|
alpar@9
|
570
|
alpar@9
|
571 /***********************************************************************
|
alpar@9
|
572 * NAME
|
alpar@9
|
573 *
|
alpar@9
|
574 * scf_solve_it - solve either system C * x = b or C' * x = b
|
alpar@9
|
575 *
|
alpar@9
|
576 * SYNOPSIS
|
alpar@9
|
577 *
|
alpar@9
|
578 * #include "glpscf.h"
|
alpar@9
|
579 * void scf_solve_it(SCF *scf, int tr, double x[]);
|
alpar@9
|
580 *
|
alpar@9
|
581 * DESCRIPTION
|
alpar@9
|
582 *
|
alpar@9
|
583 * The routine scf_solve_it solves either the system C * x = b (if tr
|
alpar@9
|
584 * is zero) or the system C' * x = b, where C' is a matrix transposed
|
alpar@9
|
585 * to C (if tr is non-zero). C is assumed to be non-singular.
|
alpar@9
|
586 *
|
alpar@9
|
587 * On entry the array x should contain the right-hand side vector b in
|
alpar@9
|
588 * locations x[1], ..., x[n], where n is the order of matrix C. On exit
|
alpar@9
|
589 * the array x contains the solution vector x in the same locations. */
|
alpar@9
|
590
|
alpar@9
|
591 void scf_solve_it(SCF *scf, int tr, double x[])
|
alpar@9
|
592 { if (scf->rank < scf->n)
|
alpar@9
|
593 xfault("scf_solve_it: singular matrix\n");
|
alpar@9
|
594 if (!tr)
|
alpar@9
|
595 solve(scf, x);
|
alpar@9
|
596 else
|
alpar@9
|
597 tsolve(scf, x);
|
alpar@9
|
598 return;
|
alpar@9
|
599 }
|
alpar@9
|
600
|
alpar@9
|
601 void scf_reset_it(SCF *scf)
|
alpar@9
|
602 { /* reset factorization for empty matrix C */
|
alpar@9
|
603 scf->n = scf->rank = 0;
|
alpar@9
|
604 return;
|
alpar@9
|
605 }
|
alpar@9
|
606
|
alpar@9
|
607 /***********************************************************************
|
alpar@9
|
608 * NAME
|
alpar@9
|
609 *
|
alpar@9
|
610 * scf_delete_it - delete Schur complement factorization
|
alpar@9
|
611 *
|
alpar@9
|
612 * SYNOPSIS
|
alpar@9
|
613 *
|
alpar@9
|
614 * #include "glpscf.h"
|
alpar@9
|
615 * void scf_delete_it(SCF *scf);
|
alpar@9
|
616 *
|
alpar@9
|
617 * DESCRIPTION
|
alpar@9
|
618 *
|
alpar@9
|
619 * The routine scf_delete_it deletes the specified factorization and
|
alpar@9
|
620 * frees all the memory allocated to this object. */
|
alpar@9
|
621
|
alpar@9
|
622 void scf_delete_it(SCF *scf)
|
alpar@9
|
623 { xfree(scf->f);
|
alpar@9
|
624 xfree(scf->u);
|
alpar@9
|
625 xfree(scf->p);
|
alpar@9
|
626 #if _GLPSCF_DEBUG
|
alpar@9
|
627 xfree(scf->c);
|
alpar@9
|
628 #endif
|
alpar@9
|
629 xfree(scf->w);
|
alpar@9
|
630 xfree(scf);
|
alpar@9
|
631 return;
|
alpar@9
|
632 }
|
alpar@9
|
633
|
alpar@9
|
634 /* eof */
|