lemon-project-template-glpk

annotate deps/glpk/src/glpssx02.c @ 9:33de93886c88

Import GLPK 4.47
author Alpar Juttner <alpar@cs.elte.hu>
date Sun, 06 Nov 2011 20:59:10 +0100
parents
children
rev   line source
alpar@9 1 /* glpssx02.c */
alpar@9 2
alpar@9 3 /***********************************************************************
alpar@9 4 * This code is part of GLPK (GNU Linear Programming Kit).
alpar@9 5 *
alpar@9 6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@9 7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
alpar@9 8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@9 9 * E-mail: <mao@gnu.org>.
alpar@9 10 *
alpar@9 11 * GLPK is free software: you can redistribute it and/or modify it
alpar@9 12 * under the terms of the GNU General Public License as published by
alpar@9 13 * the Free Software Foundation, either version 3 of the License, or
alpar@9 14 * (at your option) any later version.
alpar@9 15 *
alpar@9 16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@9 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@9 18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@9 19 * License for more details.
alpar@9 20 *
alpar@9 21 * You should have received a copy of the GNU General Public License
alpar@9 22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@9 23 ***********************************************************************/
alpar@9 24
alpar@9 25 #include "glpenv.h"
alpar@9 26 #include "glpssx.h"
alpar@9 27
alpar@9 28 static void show_progress(SSX *ssx, int phase)
alpar@9 29 { /* this auxiliary routine displays information about progress of
alpar@9 30 the search */
alpar@9 31 int i, def = 0;
alpar@9 32 for (i = 1; i <= ssx->m; i++)
alpar@9 33 if (ssx->type[ssx->Q_col[i]] == SSX_FX) def++;
alpar@9 34 xprintf("%s%6d: %s = %22.15g (%d)\n", phase == 1 ? " " : "*",
alpar@9 35 ssx->it_cnt, phase == 1 ? "infsum" : "objval",
alpar@9 36 mpq_get_d(ssx->bbar[0]), def);
alpar@9 37 #if 0
alpar@9 38 ssx->tm_lag = utime();
alpar@9 39 #else
alpar@9 40 ssx->tm_lag = xtime();
alpar@9 41 #endif
alpar@9 42 return;
alpar@9 43 }
alpar@9 44
alpar@9 45 /*----------------------------------------------------------------------
alpar@9 46 // ssx_phase_I - find primal feasible solution.
alpar@9 47 //
alpar@9 48 // This routine implements phase I of the primal simplex method.
alpar@9 49 //
alpar@9 50 // On exit the routine returns one of the following codes:
alpar@9 51 //
alpar@9 52 // 0 - feasible solution found;
alpar@9 53 // 1 - problem has no feasible solution;
alpar@9 54 // 2 - iterations limit exceeded;
alpar@9 55 // 3 - time limit exceeded.
alpar@9 56 ----------------------------------------------------------------------*/
alpar@9 57
alpar@9 58 int ssx_phase_I(SSX *ssx)
alpar@9 59 { int m = ssx->m;
alpar@9 60 int n = ssx->n;
alpar@9 61 int *type = ssx->type;
alpar@9 62 mpq_t *lb = ssx->lb;
alpar@9 63 mpq_t *ub = ssx->ub;
alpar@9 64 mpq_t *coef = ssx->coef;
alpar@9 65 int *A_ptr = ssx->A_ptr;
alpar@9 66 int *A_ind = ssx->A_ind;
alpar@9 67 mpq_t *A_val = ssx->A_val;
alpar@9 68 int *Q_col = ssx->Q_col;
alpar@9 69 mpq_t *bbar = ssx->bbar;
alpar@9 70 mpq_t *pi = ssx->pi;
alpar@9 71 mpq_t *cbar = ssx->cbar;
alpar@9 72 int *orig_type, orig_dir;
alpar@9 73 mpq_t *orig_lb, *orig_ub, *orig_coef;
alpar@9 74 int i, k, ret;
alpar@9 75 /* save components of the original LP problem, which are changed
alpar@9 76 by the routine */
alpar@9 77 orig_type = xcalloc(1+m+n, sizeof(int));
alpar@9 78 orig_lb = xcalloc(1+m+n, sizeof(mpq_t));
alpar@9 79 orig_ub = xcalloc(1+m+n, sizeof(mpq_t));
alpar@9 80 orig_coef = xcalloc(1+m+n, sizeof(mpq_t));
alpar@9 81 for (k = 1; k <= m+n; k++)
alpar@9 82 { orig_type[k] = type[k];
alpar@9 83 mpq_init(orig_lb[k]);
alpar@9 84 mpq_set(orig_lb[k], lb[k]);
alpar@9 85 mpq_init(orig_ub[k]);
alpar@9 86 mpq_set(orig_ub[k], ub[k]);
alpar@9 87 }
alpar@9 88 orig_dir = ssx->dir;
alpar@9 89 for (k = 0; k <= m+n; k++)
alpar@9 90 { mpq_init(orig_coef[k]);
alpar@9 91 mpq_set(orig_coef[k], coef[k]);
alpar@9 92 }
alpar@9 93 /* build an artificial basic solution, which is primal feasible,
alpar@9 94 and also build an auxiliary objective function to minimize the
alpar@9 95 sum of infeasibilities for the original problem */
alpar@9 96 ssx->dir = SSX_MIN;
alpar@9 97 for (k = 0; k <= m+n; k++) mpq_set_si(coef[k], 0, 1);
alpar@9 98 mpq_set_si(bbar[0], 0, 1);
alpar@9 99 for (i = 1; i <= m; i++)
alpar@9 100 { int t;
alpar@9 101 k = Q_col[i]; /* x[k] = xB[i] */
alpar@9 102 t = type[k];
alpar@9 103 if (t == SSX_LO || t == SSX_DB || t == SSX_FX)
alpar@9 104 { /* in the original problem x[k] has lower bound */
alpar@9 105 if (mpq_cmp(bbar[i], lb[k]) < 0)
alpar@9 106 { /* which is violated */
alpar@9 107 type[k] = SSX_UP;
alpar@9 108 mpq_set(ub[k], lb[k]);
alpar@9 109 mpq_set_si(lb[k], 0, 1);
alpar@9 110 mpq_set_si(coef[k], -1, 1);
alpar@9 111 mpq_add(bbar[0], bbar[0], ub[k]);
alpar@9 112 mpq_sub(bbar[0], bbar[0], bbar[i]);
alpar@9 113 }
alpar@9 114 }
alpar@9 115 if (t == SSX_UP || t == SSX_DB || t == SSX_FX)
alpar@9 116 { /* in the original problem x[k] has upper bound */
alpar@9 117 if (mpq_cmp(bbar[i], ub[k]) > 0)
alpar@9 118 { /* which is violated */
alpar@9 119 type[k] = SSX_LO;
alpar@9 120 mpq_set(lb[k], ub[k]);
alpar@9 121 mpq_set_si(ub[k], 0, 1);
alpar@9 122 mpq_set_si(coef[k], +1, 1);
alpar@9 123 mpq_add(bbar[0], bbar[0], bbar[i]);
alpar@9 124 mpq_sub(bbar[0], bbar[0], lb[k]);
alpar@9 125 }
alpar@9 126 }
alpar@9 127 }
alpar@9 128 /* now the initial basic solution should be primal feasible due
alpar@9 129 to changes of bounds of some basic variables, which turned to
alpar@9 130 implicit artifical variables */
alpar@9 131 /* compute simplex multipliers and reduced costs */
alpar@9 132 ssx_eval_pi(ssx);
alpar@9 133 ssx_eval_cbar(ssx);
alpar@9 134 /* display initial progress of the search */
alpar@9 135 show_progress(ssx, 1);
alpar@9 136 /* main loop starts here */
alpar@9 137 for (;;)
alpar@9 138 { /* display current progress of the search */
alpar@9 139 #if 0
alpar@9 140 if (utime() - ssx->tm_lag >= ssx->out_frq - 0.001)
alpar@9 141 #else
alpar@9 142 if (xdifftime(xtime(), ssx->tm_lag) >= ssx->out_frq - 0.001)
alpar@9 143 #endif
alpar@9 144 show_progress(ssx, 1);
alpar@9 145 /* we do not need to wait until all artificial variables have
alpar@9 146 left the basis */
alpar@9 147 if (mpq_sgn(bbar[0]) == 0)
alpar@9 148 { /* the sum of infeasibilities is zero, therefore the current
alpar@9 149 solution is primal feasible for the original problem */
alpar@9 150 ret = 0;
alpar@9 151 break;
alpar@9 152 }
alpar@9 153 /* check if the iterations limit has been exhausted */
alpar@9 154 if (ssx->it_lim == 0)
alpar@9 155 { ret = 2;
alpar@9 156 break;
alpar@9 157 }
alpar@9 158 /* check if the time limit has been exhausted */
alpar@9 159 #if 0
alpar@9 160 if (ssx->tm_lim >= 0.0 && ssx->tm_lim <= utime() - ssx->tm_beg)
alpar@9 161 #else
alpar@9 162 if (ssx->tm_lim >= 0.0 &&
alpar@9 163 ssx->tm_lim <= xdifftime(xtime(), ssx->tm_beg))
alpar@9 164 #endif
alpar@9 165 { ret = 3;
alpar@9 166 break;
alpar@9 167 }
alpar@9 168 /* choose non-basic variable xN[q] */
alpar@9 169 ssx_chuzc(ssx);
alpar@9 170 /* if xN[q] cannot be chosen, the sum of infeasibilities is
alpar@9 171 minimal but non-zero; therefore the original problem has no
alpar@9 172 primal feasible solution */
alpar@9 173 if (ssx->q == 0)
alpar@9 174 { ret = 1;
alpar@9 175 break;
alpar@9 176 }
alpar@9 177 /* compute q-th column of the simplex table */
alpar@9 178 ssx_eval_col(ssx);
alpar@9 179 /* choose basic variable xB[p] */
alpar@9 180 ssx_chuzr(ssx);
alpar@9 181 /* the sum of infeasibilities cannot be negative, therefore
alpar@9 182 the auxiliary lp problem cannot have unbounded solution */
alpar@9 183 xassert(ssx->p != 0);
alpar@9 184 /* update values of basic variables */
alpar@9 185 ssx_update_bbar(ssx);
alpar@9 186 if (ssx->p > 0)
alpar@9 187 { /* compute p-th row of the inverse inv(B) */
alpar@9 188 ssx_eval_rho(ssx);
alpar@9 189 /* compute p-th row of the simplex table */
alpar@9 190 ssx_eval_row(ssx);
alpar@9 191 xassert(mpq_cmp(ssx->aq[ssx->p], ssx->ap[ssx->q]) == 0);
alpar@9 192 /* update simplex multipliers */
alpar@9 193 ssx_update_pi(ssx);
alpar@9 194 /* update reduced costs of non-basic variables */
alpar@9 195 ssx_update_cbar(ssx);
alpar@9 196 }
alpar@9 197 /* xB[p] is leaving the basis; if it is implicit artificial
alpar@9 198 variable, the corresponding residual vanishes; therefore
alpar@9 199 bounds of this variable should be restored to the original
alpar@9 200 values */
alpar@9 201 if (ssx->p > 0)
alpar@9 202 { k = Q_col[ssx->p]; /* x[k] = xB[p] */
alpar@9 203 if (type[k] != orig_type[k])
alpar@9 204 { /* x[k] is implicit artificial variable */
alpar@9 205 type[k] = orig_type[k];
alpar@9 206 mpq_set(lb[k], orig_lb[k]);
alpar@9 207 mpq_set(ub[k], orig_ub[k]);
alpar@9 208 xassert(ssx->p_stat == SSX_NL || ssx->p_stat == SSX_NU);
alpar@9 209 ssx->p_stat = (ssx->p_stat == SSX_NL ? SSX_NU : SSX_NL);
alpar@9 210 if (type[k] == SSX_FX) ssx->p_stat = SSX_NS;
alpar@9 211 /* nullify the objective coefficient at x[k] */
alpar@9 212 mpq_set_si(coef[k], 0, 1);
alpar@9 213 /* since coef[k] has been changed, we need to compute
alpar@9 214 new reduced cost of x[k], which it will have in the
alpar@9 215 adjacent basis */
alpar@9 216 /* the formula d[j] = cN[j] - pi' * N[j] is used (note
alpar@9 217 that the vector pi is not changed, because it depends
alpar@9 218 on objective coefficients at basic variables, but in
alpar@9 219 the adjacent basis, for which the vector pi has been
alpar@9 220 just recomputed, x[k] is non-basic) */
alpar@9 221 if (k <= m)
alpar@9 222 { /* x[k] is auxiliary variable */
alpar@9 223 mpq_neg(cbar[ssx->q], pi[k]);
alpar@9 224 }
alpar@9 225 else
alpar@9 226 { /* x[k] is structural variable */
alpar@9 227 int ptr;
alpar@9 228 mpq_t temp;
alpar@9 229 mpq_init(temp);
alpar@9 230 mpq_set_si(cbar[ssx->q], 0, 1);
alpar@9 231 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)
alpar@9 232 { mpq_mul(temp, pi[A_ind[ptr]], A_val[ptr]);
alpar@9 233 mpq_add(cbar[ssx->q], cbar[ssx->q], temp);
alpar@9 234 }
alpar@9 235 mpq_clear(temp);
alpar@9 236 }
alpar@9 237 }
alpar@9 238 }
alpar@9 239 /* jump to the adjacent vertex of the polyhedron */
alpar@9 240 ssx_change_basis(ssx);
alpar@9 241 /* one simplex iteration has been performed */
alpar@9 242 if (ssx->it_lim > 0) ssx->it_lim--;
alpar@9 243 ssx->it_cnt++;
alpar@9 244 }
alpar@9 245 /* display final progress of the search */
alpar@9 246 show_progress(ssx, 1);
alpar@9 247 /* restore components of the original problem, which were changed
alpar@9 248 by the routine */
alpar@9 249 for (k = 1; k <= m+n; k++)
alpar@9 250 { type[k] = orig_type[k];
alpar@9 251 mpq_set(lb[k], orig_lb[k]);
alpar@9 252 mpq_clear(orig_lb[k]);
alpar@9 253 mpq_set(ub[k], orig_ub[k]);
alpar@9 254 mpq_clear(orig_ub[k]);
alpar@9 255 }
alpar@9 256 ssx->dir = orig_dir;
alpar@9 257 for (k = 0; k <= m+n; k++)
alpar@9 258 { mpq_set(coef[k], orig_coef[k]);
alpar@9 259 mpq_clear(orig_coef[k]);
alpar@9 260 }
alpar@9 261 xfree(orig_type);
alpar@9 262 xfree(orig_lb);
alpar@9 263 xfree(orig_ub);
alpar@9 264 xfree(orig_coef);
alpar@9 265 /* return to the calling program */
alpar@9 266 return ret;
alpar@9 267 }
alpar@9 268
alpar@9 269 /*----------------------------------------------------------------------
alpar@9 270 // ssx_phase_II - find optimal solution.
alpar@9 271 //
alpar@9 272 // This routine implements phase II of the primal simplex method.
alpar@9 273 //
alpar@9 274 // On exit the routine returns one of the following codes:
alpar@9 275 //
alpar@9 276 // 0 - optimal solution found;
alpar@9 277 // 1 - problem has unbounded solution;
alpar@9 278 // 2 - iterations limit exceeded;
alpar@9 279 // 3 - time limit exceeded.
alpar@9 280 ----------------------------------------------------------------------*/
alpar@9 281
alpar@9 282 int ssx_phase_II(SSX *ssx)
alpar@9 283 { int ret;
alpar@9 284 /* display initial progress of the search */
alpar@9 285 show_progress(ssx, 2);
alpar@9 286 /* main loop starts here */
alpar@9 287 for (;;)
alpar@9 288 { /* display current progress of the search */
alpar@9 289 #if 0
alpar@9 290 if (utime() - ssx->tm_lag >= ssx->out_frq - 0.001)
alpar@9 291 #else
alpar@9 292 if (xdifftime(xtime(), ssx->tm_lag) >= ssx->out_frq - 0.001)
alpar@9 293 #endif
alpar@9 294 show_progress(ssx, 2);
alpar@9 295 /* check if the iterations limit has been exhausted */
alpar@9 296 if (ssx->it_lim == 0)
alpar@9 297 { ret = 2;
alpar@9 298 break;
alpar@9 299 }
alpar@9 300 /* check if the time limit has been exhausted */
alpar@9 301 #if 0
alpar@9 302 if (ssx->tm_lim >= 0.0 && ssx->tm_lim <= utime() - ssx->tm_beg)
alpar@9 303 #else
alpar@9 304 if (ssx->tm_lim >= 0.0 &&
alpar@9 305 ssx->tm_lim <= xdifftime(xtime(), ssx->tm_beg))
alpar@9 306 #endif
alpar@9 307 { ret = 3;
alpar@9 308 break;
alpar@9 309 }
alpar@9 310 /* choose non-basic variable xN[q] */
alpar@9 311 ssx_chuzc(ssx);
alpar@9 312 /* if xN[q] cannot be chosen, the current basic solution is
alpar@9 313 dual feasible and therefore optimal */
alpar@9 314 if (ssx->q == 0)
alpar@9 315 { ret = 0;
alpar@9 316 break;
alpar@9 317 }
alpar@9 318 /* compute q-th column of the simplex table */
alpar@9 319 ssx_eval_col(ssx);
alpar@9 320 /* choose basic variable xB[p] */
alpar@9 321 ssx_chuzr(ssx);
alpar@9 322 /* if xB[p] cannot be chosen, the problem has no dual feasible
alpar@9 323 solution (i.e. unbounded) */
alpar@9 324 if (ssx->p == 0)
alpar@9 325 { ret = 1;
alpar@9 326 break;
alpar@9 327 }
alpar@9 328 /* update values of basic variables */
alpar@9 329 ssx_update_bbar(ssx);
alpar@9 330 if (ssx->p > 0)
alpar@9 331 { /* compute p-th row of the inverse inv(B) */
alpar@9 332 ssx_eval_rho(ssx);
alpar@9 333 /* compute p-th row of the simplex table */
alpar@9 334 ssx_eval_row(ssx);
alpar@9 335 xassert(mpq_cmp(ssx->aq[ssx->p], ssx->ap[ssx->q]) == 0);
alpar@9 336 #if 0
alpar@9 337 /* update simplex multipliers */
alpar@9 338 ssx_update_pi(ssx);
alpar@9 339 #endif
alpar@9 340 /* update reduced costs of non-basic variables */
alpar@9 341 ssx_update_cbar(ssx);
alpar@9 342 }
alpar@9 343 /* jump to the adjacent vertex of the polyhedron */
alpar@9 344 ssx_change_basis(ssx);
alpar@9 345 /* one simplex iteration has been performed */
alpar@9 346 if (ssx->it_lim > 0) ssx->it_lim--;
alpar@9 347 ssx->it_cnt++;
alpar@9 348 }
alpar@9 349 /* display final progress of the search */
alpar@9 350 show_progress(ssx, 2);
alpar@9 351 /* return to the calling program */
alpar@9 352 return ret;
alpar@9 353 }
alpar@9 354
alpar@9 355 /*----------------------------------------------------------------------
alpar@9 356 // ssx_driver - base driver to exact simplex method.
alpar@9 357 //
alpar@9 358 // This routine is a base driver to a version of the primal simplex
alpar@9 359 // method using exact (bignum) arithmetic.
alpar@9 360 //
alpar@9 361 // On exit the routine returns one of the following codes:
alpar@9 362 //
alpar@9 363 // 0 - optimal solution found;
alpar@9 364 // 1 - problem has no feasible solution;
alpar@9 365 // 2 - problem has unbounded solution;
alpar@9 366 // 3 - iterations limit exceeded (phase I);
alpar@9 367 // 4 - iterations limit exceeded (phase II);
alpar@9 368 // 5 - time limit exceeded (phase I);
alpar@9 369 // 6 - time limit exceeded (phase II);
alpar@9 370 // 7 - initial basis matrix is exactly singular.
alpar@9 371 ----------------------------------------------------------------------*/
alpar@9 372
alpar@9 373 int ssx_driver(SSX *ssx)
alpar@9 374 { int m = ssx->m;
alpar@9 375 int *type = ssx->type;
alpar@9 376 mpq_t *lb = ssx->lb;
alpar@9 377 mpq_t *ub = ssx->ub;
alpar@9 378 int *Q_col = ssx->Q_col;
alpar@9 379 mpq_t *bbar = ssx->bbar;
alpar@9 380 int i, k, ret;
alpar@9 381 ssx->tm_beg = xtime();
alpar@9 382 /* factorize the initial basis matrix */
alpar@9 383 if (ssx_factorize(ssx))
alpar@9 384 { xprintf("Initial basis matrix is singular\n");
alpar@9 385 ret = 7;
alpar@9 386 goto done;
alpar@9 387 }
alpar@9 388 /* compute values of basic variables */
alpar@9 389 ssx_eval_bbar(ssx);
alpar@9 390 /* check if the initial basic solution is primal feasible */
alpar@9 391 for (i = 1; i <= m; i++)
alpar@9 392 { int t;
alpar@9 393 k = Q_col[i]; /* x[k] = xB[i] */
alpar@9 394 t = type[k];
alpar@9 395 if (t == SSX_LO || t == SSX_DB || t == SSX_FX)
alpar@9 396 { /* x[k] has lower bound */
alpar@9 397 if (mpq_cmp(bbar[i], lb[k]) < 0)
alpar@9 398 { /* which is violated */
alpar@9 399 break;
alpar@9 400 }
alpar@9 401 }
alpar@9 402 if (t == SSX_UP || t == SSX_DB || t == SSX_FX)
alpar@9 403 { /* x[k] has upper bound */
alpar@9 404 if (mpq_cmp(bbar[i], ub[k]) > 0)
alpar@9 405 { /* which is violated */
alpar@9 406 break;
alpar@9 407 }
alpar@9 408 }
alpar@9 409 }
alpar@9 410 if (i > m)
alpar@9 411 { /* no basic variable violates its bounds */
alpar@9 412 ret = 0;
alpar@9 413 goto skip;
alpar@9 414 }
alpar@9 415 /* phase I: find primal feasible solution */
alpar@9 416 ret = ssx_phase_I(ssx);
alpar@9 417 switch (ret)
alpar@9 418 { case 0:
alpar@9 419 ret = 0;
alpar@9 420 break;
alpar@9 421 case 1:
alpar@9 422 xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n");
alpar@9 423 ret = 1;
alpar@9 424 break;
alpar@9 425 case 2:
alpar@9 426 xprintf("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED\n");
alpar@9 427 ret = 3;
alpar@9 428 break;
alpar@9 429 case 3:
alpar@9 430 xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
alpar@9 431 ret = 5;
alpar@9 432 break;
alpar@9 433 default:
alpar@9 434 xassert(ret != ret);
alpar@9 435 }
alpar@9 436 /* compute values of basic variables (actually only the objective
alpar@9 437 value needs to be computed) */
alpar@9 438 ssx_eval_bbar(ssx);
alpar@9 439 skip: /* compute simplex multipliers */
alpar@9 440 ssx_eval_pi(ssx);
alpar@9 441 /* compute reduced costs of non-basic variables */
alpar@9 442 ssx_eval_cbar(ssx);
alpar@9 443 /* if phase I failed, do not start phase II */
alpar@9 444 if (ret != 0) goto done;
alpar@9 445 /* phase II: find optimal solution */
alpar@9 446 ret = ssx_phase_II(ssx);
alpar@9 447 switch (ret)
alpar@9 448 { case 0:
alpar@9 449 xprintf("OPTIMAL SOLUTION FOUND\n");
alpar@9 450 ret = 0;
alpar@9 451 break;
alpar@9 452 case 1:
alpar@9 453 xprintf("PROBLEM HAS UNBOUNDED SOLUTION\n");
alpar@9 454 ret = 2;
alpar@9 455 break;
alpar@9 456 case 2:
alpar@9 457 xprintf("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED\n");
alpar@9 458 ret = 4;
alpar@9 459 break;
alpar@9 460 case 3:
alpar@9 461 xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
alpar@9 462 ret = 6;
alpar@9 463 break;
alpar@9 464 default:
alpar@9 465 xassert(ret != ret);
alpar@9 466 }
alpar@9 467 done: /* decrease the time limit by the spent amount of time */
alpar@9 468 if (ssx->tm_lim >= 0.0)
alpar@9 469 #if 0
alpar@9 470 { ssx->tm_lim -= utime() - ssx->tm_beg;
alpar@9 471 #else
alpar@9 472 { ssx->tm_lim -= xdifftime(xtime(), ssx->tm_beg);
alpar@9 473 #endif
alpar@9 474 if (ssx->tm_lim < 0.0) ssx->tm_lim = 0.0;
alpar@9 475 }
alpar@9 476 return ret;
alpar@9 477 }
alpar@9 478
alpar@9 479 /* eof */