rev |
line source |
alpar@9
|
1 /* trees.c -- output deflated data using Huffman coding
|
alpar@9
|
2 * Copyright (C) 1995-2010 Jean-loup Gailly
|
alpar@9
|
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
|
alpar@9
|
4 * For conditions of distribution and use, see copyright notice in zlib.h
|
alpar@9
|
5 */
|
alpar@9
|
6
|
alpar@9
|
7 /*
|
alpar@9
|
8 * ALGORITHM
|
alpar@9
|
9 *
|
alpar@9
|
10 * The "deflation" process uses several Huffman trees. The more
|
alpar@9
|
11 * common source values are represented by shorter bit sequences.
|
alpar@9
|
12 *
|
alpar@9
|
13 * Each code tree is stored in a compressed form which is itself
|
alpar@9
|
14 * a Huffman encoding of the lengths of all the code strings (in
|
alpar@9
|
15 * ascending order by source values). The actual code strings are
|
alpar@9
|
16 * reconstructed from the lengths in the inflate process, as described
|
alpar@9
|
17 * in the deflate specification.
|
alpar@9
|
18 *
|
alpar@9
|
19 * REFERENCES
|
alpar@9
|
20 *
|
alpar@9
|
21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
|
alpar@9
|
22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
|
alpar@9
|
23 *
|
alpar@9
|
24 * Storer, James A.
|
alpar@9
|
25 * Data Compression: Methods and Theory, pp. 49-50.
|
alpar@9
|
26 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
|
alpar@9
|
27 *
|
alpar@9
|
28 * Sedgewick, R.
|
alpar@9
|
29 * Algorithms, p290.
|
alpar@9
|
30 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
|
alpar@9
|
31 */
|
alpar@9
|
32
|
alpar@9
|
33 /* @(#) $Id$ */
|
alpar@9
|
34
|
alpar@9
|
35 /* #define GEN_TREES_H */
|
alpar@9
|
36
|
alpar@9
|
37 #include "deflate.h"
|
alpar@9
|
38
|
alpar@9
|
39 #ifdef DEBUG
|
alpar@9
|
40 # include <ctype.h>
|
alpar@9
|
41 #endif
|
alpar@9
|
42
|
alpar@9
|
43 /* ===========================================================================
|
alpar@9
|
44 * Constants
|
alpar@9
|
45 */
|
alpar@9
|
46
|
alpar@9
|
47 #define MAX_BL_BITS 7
|
alpar@9
|
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
|
alpar@9
|
49
|
alpar@9
|
50 #define END_BLOCK 256
|
alpar@9
|
51 /* end of block literal code */
|
alpar@9
|
52
|
alpar@9
|
53 #define REP_3_6 16
|
alpar@9
|
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
|
alpar@9
|
55
|
alpar@9
|
56 #define REPZ_3_10 17
|
alpar@9
|
57 /* repeat a zero length 3-10 times (3 bits of repeat count) */
|
alpar@9
|
58
|
alpar@9
|
59 #define REPZ_11_138 18
|
alpar@9
|
60 /* repeat a zero length 11-138 times (7 bits of repeat count) */
|
alpar@9
|
61
|
alpar@9
|
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
|
alpar@9
|
63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
|
alpar@9
|
64
|
alpar@9
|
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
|
alpar@9
|
66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
|
alpar@9
|
67
|
alpar@9
|
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
|
alpar@9
|
69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
|
alpar@9
|
70
|
alpar@9
|
71 local const uch bl_order[BL_CODES]
|
alpar@9
|
72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
|
alpar@9
|
73 /* The lengths of the bit length codes are sent in order of decreasing
|
alpar@9
|
74 * probability, to avoid transmitting the lengths for unused bit length codes.
|
alpar@9
|
75 */
|
alpar@9
|
76
|
alpar@9
|
77 #define Buf_size (8 * 2*sizeof(char))
|
alpar@9
|
78 /* Number of bits used within bi_buf. (bi_buf might be implemented on
|
alpar@9
|
79 * more than 16 bits on some systems.)
|
alpar@9
|
80 */
|
alpar@9
|
81
|
alpar@9
|
82 /* ===========================================================================
|
alpar@9
|
83 * Local data. These are initialized only once.
|
alpar@9
|
84 */
|
alpar@9
|
85
|
alpar@9
|
86 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
|
alpar@9
|
87
|
alpar@9
|
88 #if defined(GEN_TREES_H) || !defined(STDC)
|
alpar@9
|
89 /* non ANSI compilers may not accept trees.h */
|
alpar@9
|
90
|
alpar@9
|
91 local ct_data static_ltree[L_CODES+2];
|
alpar@9
|
92 /* The static literal tree. Since the bit lengths are imposed, there is no
|
alpar@9
|
93 * need for the L_CODES extra codes used during heap construction. However
|
alpar@9
|
94 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
|
alpar@9
|
95 * below).
|
alpar@9
|
96 */
|
alpar@9
|
97
|
alpar@9
|
98 local ct_data static_dtree[D_CODES];
|
alpar@9
|
99 /* The static distance tree. (Actually a trivial tree since all codes use
|
alpar@9
|
100 * 5 bits.)
|
alpar@9
|
101 */
|
alpar@9
|
102
|
alpar@9
|
103 uch _dist_code[DIST_CODE_LEN];
|
alpar@9
|
104 /* Distance codes. The first 256 values correspond to the distances
|
alpar@9
|
105 * 3 .. 258, the last 256 values correspond to the top 8 bits of
|
alpar@9
|
106 * the 15 bit distances.
|
alpar@9
|
107 */
|
alpar@9
|
108
|
alpar@9
|
109 uch _length_code[MAX_MATCH-MIN_MATCH+1];
|
alpar@9
|
110 /* length code for each normalized match length (0 == MIN_MATCH) */
|
alpar@9
|
111
|
alpar@9
|
112 local int base_length[LENGTH_CODES];
|
alpar@9
|
113 /* First normalized length for each code (0 = MIN_MATCH) */
|
alpar@9
|
114
|
alpar@9
|
115 local int base_dist[D_CODES];
|
alpar@9
|
116 /* First normalized distance for each code (0 = distance of 1) */
|
alpar@9
|
117
|
alpar@9
|
118 #else
|
alpar@9
|
119 # include "trees.h"
|
alpar@9
|
120 #endif /* GEN_TREES_H */
|
alpar@9
|
121
|
alpar@9
|
122 struct static_tree_desc_s {
|
alpar@9
|
123 const ct_data *static_tree; /* static tree or NULL */
|
alpar@9
|
124 const intf *extra_bits; /* extra bits for each code or NULL */
|
alpar@9
|
125 int extra_base; /* base index for extra_bits */
|
alpar@9
|
126 int elems; /* max number of elements in the tree */
|
alpar@9
|
127 int max_length; /* max bit length for the codes */
|
alpar@9
|
128 };
|
alpar@9
|
129
|
alpar@9
|
130 local static_tree_desc static_l_desc =
|
alpar@9
|
131 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
|
alpar@9
|
132
|
alpar@9
|
133 local static_tree_desc static_d_desc =
|
alpar@9
|
134 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
|
alpar@9
|
135
|
alpar@9
|
136 local static_tree_desc static_bl_desc =
|
alpar@9
|
137 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
|
alpar@9
|
138
|
alpar@9
|
139 /* ===========================================================================
|
alpar@9
|
140 * Local (static) routines in this file.
|
alpar@9
|
141 */
|
alpar@9
|
142
|
alpar@9
|
143 local void tr_static_init OF((void));
|
alpar@9
|
144 local void init_block OF((deflate_state *s));
|
alpar@9
|
145 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
|
alpar@9
|
146 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
|
alpar@9
|
147 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
|
alpar@9
|
148 local void build_tree OF((deflate_state *s, tree_desc *desc));
|
alpar@9
|
149 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
|
alpar@9
|
150 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
|
alpar@9
|
151 local int build_bl_tree OF((deflate_state *s));
|
alpar@9
|
152 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
|
alpar@9
|
153 int blcodes));
|
alpar@9
|
154 local void compress_block OF((deflate_state *s, ct_data *ltree,
|
alpar@9
|
155 ct_data *dtree));
|
alpar@9
|
156 local int detect_data_type OF((deflate_state *s));
|
alpar@9
|
157 local unsigned bi_reverse OF((unsigned value, int length));
|
alpar@9
|
158 local void bi_windup OF((deflate_state *s));
|
alpar@9
|
159 local void bi_flush OF((deflate_state *s));
|
alpar@9
|
160 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
|
alpar@9
|
161 int header));
|
alpar@9
|
162
|
alpar@9
|
163 #ifdef GEN_TREES_H
|
alpar@9
|
164 local void gen_trees_header OF((void));
|
alpar@9
|
165 #endif
|
alpar@9
|
166
|
alpar@9
|
167 #ifndef DEBUG
|
alpar@9
|
168 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
|
alpar@9
|
169 /* Send a code of the given tree. c and tree must not have side effects */
|
alpar@9
|
170
|
alpar@9
|
171 #else /* DEBUG */
|
alpar@9
|
172 # define send_code(s, c, tree) \
|
alpar@9
|
173 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
|
alpar@9
|
174 send_bits(s, tree[c].Code, tree[c].Len); }
|
alpar@9
|
175 #endif
|
alpar@9
|
176
|
alpar@9
|
177 /* ===========================================================================
|
alpar@9
|
178 * Output a short LSB first on the stream.
|
alpar@9
|
179 * IN assertion: there is enough room in pendingBuf.
|
alpar@9
|
180 */
|
alpar@9
|
181 #define put_short(s, w) { \
|
alpar@9
|
182 put_byte(s, (uch)((w) & 0xff)); \
|
alpar@9
|
183 put_byte(s, (uch)((ush)(w) >> 8)); \
|
alpar@9
|
184 }
|
alpar@9
|
185
|
alpar@9
|
186 /* ===========================================================================
|
alpar@9
|
187 * Send a value on a given number of bits.
|
alpar@9
|
188 * IN assertion: length <= 16 and value fits in length bits.
|
alpar@9
|
189 */
|
alpar@9
|
190 #ifdef DEBUG
|
alpar@9
|
191 local void send_bits OF((deflate_state *s, int value, int length));
|
alpar@9
|
192
|
alpar@9
|
193 local void send_bits(s, value, length)
|
alpar@9
|
194 deflate_state *s;
|
alpar@9
|
195 int value; /* value to send */
|
alpar@9
|
196 int length; /* number of bits */
|
alpar@9
|
197 {
|
alpar@9
|
198 Tracevv((stderr," l %2d v %4x ", length, value));
|
alpar@9
|
199 Assert(length > 0 && length <= 15, "invalid length");
|
alpar@9
|
200 s->bits_sent += (ulg)length;
|
alpar@9
|
201
|
alpar@9
|
202 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
|
alpar@9
|
203 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
|
alpar@9
|
204 * unused bits in value.
|
alpar@9
|
205 */
|
alpar@9
|
206 if (s->bi_valid > (int)Buf_size - length) {
|
alpar@9
|
207 s->bi_buf |= (ush)value << s->bi_valid;
|
alpar@9
|
208 put_short(s, s->bi_buf);
|
alpar@9
|
209 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
|
alpar@9
|
210 s->bi_valid += length - Buf_size;
|
alpar@9
|
211 } else {
|
alpar@9
|
212 s->bi_buf |= (ush)value << s->bi_valid;
|
alpar@9
|
213 s->bi_valid += length;
|
alpar@9
|
214 }
|
alpar@9
|
215 }
|
alpar@9
|
216 #else /* !DEBUG */
|
alpar@9
|
217
|
alpar@9
|
218 #define send_bits(s, value, length) \
|
alpar@9
|
219 { int len = length;\
|
alpar@9
|
220 if (s->bi_valid > (int)Buf_size - len) {\
|
alpar@9
|
221 int val = value;\
|
alpar@9
|
222 s->bi_buf |= (ush)val << s->bi_valid;\
|
alpar@9
|
223 put_short(s, s->bi_buf);\
|
alpar@9
|
224 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
|
alpar@9
|
225 s->bi_valid += len - Buf_size;\
|
alpar@9
|
226 } else {\
|
alpar@9
|
227 s->bi_buf |= (ush)(value) << s->bi_valid;\
|
alpar@9
|
228 s->bi_valid += len;\
|
alpar@9
|
229 }\
|
alpar@9
|
230 }
|
alpar@9
|
231 #endif /* DEBUG */
|
alpar@9
|
232
|
alpar@9
|
233
|
alpar@9
|
234 /* the arguments must not have side effects */
|
alpar@9
|
235
|
alpar@9
|
236 /* ===========================================================================
|
alpar@9
|
237 * Initialize the various 'constant' tables.
|
alpar@9
|
238 */
|
alpar@9
|
239 local void tr_static_init()
|
alpar@9
|
240 {
|
alpar@9
|
241 #if defined(GEN_TREES_H) || !defined(STDC)
|
alpar@9
|
242 static int static_init_done = 0;
|
alpar@9
|
243 int n; /* iterates over tree elements */
|
alpar@9
|
244 int bits; /* bit counter */
|
alpar@9
|
245 int length; /* length value */
|
alpar@9
|
246 int code; /* code value */
|
alpar@9
|
247 int dist; /* distance index */
|
alpar@9
|
248 ush bl_count[MAX_BITS+1];
|
alpar@9
|
249 /* number of codes at each bit length for an optimal tree */
|
alpar@9
|
250
|
alpar@9
|
251 if (static_init_done) return;
|
alpar@9
|
252
|
alpar@9
|
253 /* For some embedded targets, global variables are not initialized: */
|
alpar@9
|
254 #ifdef NO_INIT_GLOBAL_POINTERS
|
alpar@9
|
255 static_l_desc.static_tree = static_ltree;
|
alpar@9
|
256 static_l_desc.extra_bits = extra_lbits;
|
alpar@9
|
257 static_d_desc.static_tree = static_dtree;
|
alpar@9
|
258 static_d_desc.extra_bits = extra_dbits;
|
alpar@9
|
259 static_bl_desc.extra_bits = extra_blbits;
|
alpar@9
|
260 #endif
|
alpar@9
|
261
|
alpar@9
|
262 /* Initialize the mapping length (0..255) -> length code (0..28) */
|
alpar@9
|
263 length = 0;
|
alpar@9
|
264 for (code = 0; code < LENGTH_CODES-1; code++) {
|
alpar@9
|
265 base_length[code] = length;
|
alpar@9
|
266 for (n = 0; n < (1<<extra_lbits[code]); n++) {
|
alpar@9
|
267 _length_code[length++] = (uch)code;
|
alpar@9
|
268 }
|
alpar@9
|
269 }
|
alpar@9
|
270 Assert (length == 256, "tr_static_init: length != 256");
|
alpar@9
|
271 /* Note that the length 255 (match length 258) can be represented
|
alpar@9
|
272 * in two different ways: code 284 + 5 bits or code 285, so we
|
alpar@9
|
273 * overwrite length_code[255] to use the best encoding:
|
alpar@9
|
274 */
|
alpar@9
|
275 _length_code[length-1] = (uch)code;
|
alpar@9
|
276
|
alpar@9
|
277 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
|
alpar@9
|
278 dist = 0;
|
alpar@9
|
279 for (code = 0 ; code < 16; code++) {
|
alpar@9
|
280 base_dist[code] = dist;
|
alpar@9
|
281 for (n = 0; n < (1<<extra_dbits[code]); n++) {
|
alpar@9
|
282 _dist_code[dist++] = (uch)code;
|
alpar@9
|
283 }
|
alpar@9
|
284 }
|
alpar@9
|
285 Assert (dist == 256, "tr_static_init: dist != 256");
|
alpar@9
|
286 dist >>= 7; /* from now on, all distances are divided by 128 */
|
alpar@9
|
287 for ( ; code < D_CODES; code++) {
|
alpar@9
|
288 base_dist[code] = dist << 7;
|
alpar@9
|
289 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
|
alpar@9
|
290 _dist_code[256 + dist++] = (uch)code;
|
alpar@9
|
291 }
|
alpar@9
|
292 }
|
alpar@9
|
293 Assert (dist == 256, "tr_static_init: 256+dist != 512");
|
alpar@9
|
294
|
alpar@9
|
295 /* Construct the codes of the static literal tree */
|
alpar@9
|
296 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
|
alpar@9
|
297 n = 0;
|
alpar@9
|
298 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
|
alpar@9
|
299 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
|
alpar@9
|
300 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
|
alpar@9
|
301 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
|
alpar@9
|
302 /* Codes 286 and 287 do not exist, but we must include them in the
|
alpar@9
|
303 * tree construction to get a canonical Huffman tree (longest code
|
alpar@9
|
304 * all ones)
|
alpar@9
|
305 */
|
alpar@9
|
306 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
|
alpar@9
|
307
|
alpar@9
|
308 /* The static distance tree is trivial: */
|
alpar@9
|
309 for (n = 0; n < D_CODES; n++) {
|
alpar@9
|
310 static_dtree[n].Len = 5;
|
alpar@9
|
311 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
|
alpar@9
|
312 }
|
alpar@9
|
313 static_init_done = 1;
|
alpar@9
|
314
|
alpar@9
|
315 # ifdef GEN_TREES_H
|
alpar@9
|
316 gen_trees_header();
|
alpar@9
|
317 # endif
|
alpar@9
|
318 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
|
alpar@9
|
319 }
|
alpar@9
|
320
|
alpar@9
|
321 /* ===========================================================================
|
alpar@9
|
322 * Genererate the file trees.h describing the static trees.
|
alpar@9
|
323 */
|
alpar@9
|
324 #ifdef GEN_TREES_H
|
alpar@9
|
325 # ifndef DEBUG
|
alpar@9
|
326 # include <stdio.h>
|
alpar@9
|
327 # endif
|
alpar@9
|
328
|
alpar@9
|
329 # define SEPARATOR(i, last, width) \
|
alpar@9
|
330 ((i) == (last)? "\n};\n\n" : \
|
alpar@9
|
331 ((i) % (width) == (width)-1 ? ",\n" : ", "))
|
alpar@9
|
332
|
alpar@9
|
333 void gen_trees_header()
|
alpar@9
|
334 {
|
alpar@9
|
335 FILE *header = fopen("trees.h", "w");
|
alpar@9
|
336 int i;
|
alpar@9
|
337
|
alpar@9
|
338 Assert (header != NULL, "Can't open trees.h");
|
alpar@9
|
339 fprintf(header,
|
alpar@9
|
340 "/* header created automatically with -DGEN_TREES_H */\n\n");
|
alpar@9
|
341
|
alpar@9
|
342 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
|
alpar@9
|
343 for (i = 0; i < L_CODES+2; i++) {
|
alpar@9
|
344 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
|
alpar@9
|
345 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
|
alpar@9
|
346 }
|
alpar@9
|
347
|
alpar@9
|
348 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
|
alpar@9
|
349 for (i = 0; i < D_CODES; i++) {
|
alpar@9
|
350 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
|
alpar@9
|
351 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
|
alpar@9
|
352 }
|
alpar@9
|
353
|
alpar@9
|
354 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
|
alpar@9
|
355 for (i = 0; i < DIST_CODE_LEN; i++) {
|
alpar@9
|
356 fprintf(header, "%2u%s", _dist_code[i],
|
alpar@9
|
357 SEPARATOR(i, DIST_CODE_LEN-1, 20));
|
alpar@9
|
358 }
|
alpar@9
|
359
|
alpar@9
|
360 fprintf(header,
|
alpar@9
|
361 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
|
alpar@9
|
362 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
|
alpar@9
|
363 fprintf(header, "%2u%s", _length_code[i],
|
alpar@9
|
364 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
|
alpar@9
|
365 }
|
alpar@9
|
366
|
alpar@9
|
367 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
|
alpar@9
|
368 for (i = 0; i < LENGTH_CODES; i++) {
|
alpar@9
|
369 fprintf(header, "%1u%s", base_length[i],
|
alpar@9
|
370 SEPARATOR(i, LENGTH_CODES-1, 20));
|
alpar@9
|
371 }
|
alpar@9
|
372
|
alpar@9
|
373 fprintf(header, "local const int base_dist[D_CODES] = {\n");
|
alpar@9
|
374 for (i = 0; i < D_CODES; i++) {
|
alpar@9
|
375 fprintf(header, "%5u%s", base_dist[i],
|
alpar@9
|
376 SEPARATOR(i, D_CODES-1, 10));
|
alpar@9
|
377 }
|
alpar@9
|
378
|
alpar@9
|
379 fclose(header);
|
alpar@9
|
380 }
|
alpar@9
|
381 #endif /* GEN_TREES_H */
|
alpar@9
|
382
|
alpar@9
|
383 /* ===========================================================================
|
alpar@9
|
384 * Initialize the tree data structures for a new zlib stream.
|
alpar@9
|
385 */
|
alpar@9
|
386 void ZLIB_INTERNAL _tr_init(s)
|
alpar@9
|
387 deflate_state *s;
|
alpar@9
|
388 {
|
alpar@9
|
389 tr_static_init();
|
alpar@9
|
390
|
alpar@9
|
391 s->l_desc.dyn_tree = s->dyn_ltree;
|
alpar@9
|
392 s->l_desc.stat_desc = &static_l_desc;
|
alpar@9
|
393
|
alpar@9
|
394 s->d_desc.dyn_tree = s->dyn_dtree;
|
alpar@9
|
395 s->d_desc.stat_desc = &static_d_desc;
|
alpar@9
|
396
|
alpar@9
|
397 s->bl_desc.dyn_tree = s->bl_tree;
|
alpar@9
|
398 s->bl_desc.stat_desc = &static_bl_desc;
|
alpar@9
|
399
|
alpar@9
|
400 s->bi_buf = 0;
|
alpar@9
|
401 s->bi_valid = 0;
|
alpar@9
|
402 s->last_eob_len = 8; /* enough lookahead for inflate */
|
alpar@9
|
403 #ifdef DEBUG
|
alpar@9
|
404 s->compressed_len = 0L;
|
alpar@9
|
405 s->bits_sent = 0L;
|
alpar@9
|
406 #endif
|
alpar@9
|
407
|
alpar@9
|
408 /* Initialize the first block of the first file: */
|
alpar@9
|
409 init_block(s);
|
alpar@9
|
410 }
|
alpar@9
|
411
|
alpar@9
|
412 /* ===========================================================================
|
alpar@9
|
413 * Initialize a new block.
|
alpar@9
|
414 */
|
alpar@9
|
415 local void init_block(s)
|
alpar@9
|
416 deflate_state *s;
|
alpar@9
|
417 {
|
alpar@9
|
418 int n; /* iterates over tree elements */
|
alpar@9
|
419
|
alpar@9
|
420 /* Initialize the trees. */
|
alpar@9
|
421 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
|
alpar@9
|
422 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
|
alpar@9
|
423 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
|
alpar@9
|
424
|
alpar@9
|
425 s->dyn_ltree[END_BLOCK].Freq = 1;
|
alpar@9
|
426 s->opt_len = s->static_len = 0L;
|
alpar@9
|
427 s->last_lit = s->matches = 0;
|
alpar@9
|
428 }
|
alpar@9
|
429
|
alpar@9
|
430 #define SMALLEST 1
|
alpar@9
|
431 /* Index within the heap array of least frequent node in the Huffman tree */
|
alpar@9
|
432
|
alpar@9
|
433
|
alpar@9
|
434 /* ===========================================================================
|
alpar@9
|
435 * Remove the smallest element from the heap and recreate the heap with
|
alpar@9
|
436 * one less element. Updates heap and heap_len.
|
alpar@9
|
437 */
|
alpar@9
|
438 #define pqremove(s, tree, top) \
|
alpar@9
|
439 {\
|
alpar@9
|
440 top = s->heap[SMALLEST]; \
|
alpar@9
|
441 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
|
alpar@9
|
442 pqdownheap(s, tree, SMALLEST); \
|
alpar@9
|
443 }
|
alpar@9
|
444
|
alpar@9
|
445 /* ===========================================================================
|
alpar@9
|
446 * Compares to subtrees, using the tree depth as tie breaker when
|
alpar@9
|
447 * the subtrees have equal frequency. This minimizes the worst case length.
|
alpar@9
|
448 */
|
alpar@9
|
449 #define smaller(tree, n, m, depth) \
|
alpar@9
|
450 (tree[n].Freq < tree[m].Freq || \
|
alpar@9
|
451 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
|
alpar@9
|
452
|
alpar@9
|
453 /* ===========================================================================
|
alpar@9
|
454 * Restore the heap property by moving down the tree starting at node k,
|
alpar@9
|
455 * exchanging a node with the smallest of its two sons if necessary, stopping
|
alpar@9
|
456 * when the heap property is re-established (each father smaller than its
|
alpar@9
|
457 * two sons).
|
alpar@9
|
458 */
|
alpar@9
|
459 local void pqdownheap(s, tree, k)
|
alpar@9
|
460 deflate_state *s;
|
alpar@9
|
461 ct_data *tree; /* the tree to restore */
|
alpar@9
|
462 int k; /* node to move down */
|
alpar@9
|
463 {
|
alpar@9
|
464 int v = s->heap[k];
|
alpar@9
|
465 int j = k << 1; /* left son of k */
|
alpar@9
|
466 while (j <= s->heap_len) {
|
alpar@9
|
467 /* Set j to the smallest of the two sons: */
|
alpar@9
|
468 if (j < s->heap_len &&
|
alpar@9
|
469 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
|
alpar@9
|
470 j++;
|
alpar@9
|
471 }
|
alpar@9
|
472 /* Exit if v is smaller than both sons */
|
alpar@9
|
473 if (smaller(tree, v, s->heap[j], s->depth)) break;
|
alpar@9
|
474
|
alpar@9
|
475 /* Exchange v with the smallest son */
|
alpar@9
|
476 s->heap[k] = s->heap[j]; k = j;
|
alpar@9
|
477
|
alpar@9
|
478 /* And continue down the tree, setting j to the left son of k */
|
alpar@9
|
479 j <<= 1;
|
alpar@9
|
480 }
|
alpar@9
|
481 s->heap[k] = v;
|
alpar@9
|
482 }
|
alpar@9
|
483
|
alpar@9
|
484 /* ===========================================================================
|
alpar@9
|
485 * Compute the optimal bit lengths for a tree and update the total bit length
|
alpar@9
|
486 * for the current block.
|
alpar@9
|
487 * IN assertion: the fields freq and dad are set, heap[heap_max] and
|
alpar@9
|
488 * above are the tree nodes sorted by increasing frequency.
|
alpar@9
|
489 * OUT assertions: the field len is set to the optimal bit length, the
|
alpar@9
|
490 * array bl_count contains the frequencies for each bit length.
|
alpar@9
|
491 * The length opt_len is updated; static_len is also updated if stree is
|
alpar@9
|
492 * not null.
|
alpar@9
|
493 */
|
alpar@9
|
494 local void gen_bitlen(s, desc)
|
alpar@9
|
495 deflate_state *s;
|
alpar@9
|
496 tree_desc *desc; /* the tree descriptor */
|
alpar@9
|
497 {
|
alpar@9
|
498 ct_data *tree = desc->dyn_tree;
|
alpar@9
|
499 int max_code = desc->max_code;
|
alpar@9
|
500 const ct_data *stree = desc->stat_desc->static_tree;
|
alpar@9
|
501 const intf *extra = desc->stat_desc->extra_bits;
|
alpar@9
|
502 int base = desc->stat_desc->extra_base;
|
alpar@9
|
503 int max_length = desc->stat_desc->max_length;
|
alpar@9
|
504 int h; /* heap index */
|
alpar@9
|
505 int n, m; /* iterate over the tree elements */
|
alpar@9
|
506 int bits; /* bit length */
|
alpar@9
|
507 int xbits; /* extra bits */
|
alpar@9
|
508 ush f; /* frequency */
|
alpar@9
|
509 int overflow = 0; /* number of elements with bit length too large */
|
alpar@9
|
510
|
alpar@9
|
511 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
|
alpar@9
|
512
|
alpar@9
|
513 /* In a first pass, compute the optimal bit lengths (which may
|
alpar@9
|
514 * overflow in the case of the bit length tree).
|
alpar@9
|
515 */
|
alpar@9
|
516 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
|
alpar@9
|
517
|
alpar@9
|
518 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
|
alpar@9
|
519 n = s->heap[h];
|
alpar@9
|
520 bits = tree[tree[n].Dad].Len + 1;
|
alpar@9
|
521 if (bits > max_length) bits = max_length, overflow++;
|
alpar@9
|
522 tree[n].Len = (ush)bits;
|
alpar@9
|
523 /* We overwrite tree[n].Dad which is no longer needed */
|
alpar@9
|
524
|
alpar@9
|
525 if (n > max_code) continue; /* not a leaf node */
|
alpar@9
|
526
|
alpar@9
|
527 s->bl_count[bits]++;
|
alpar@9
|
528 xbits = 0;
|
alpar@9
|
529 if (n >= base) xbits = extra[n-base];
|
alpar@9
|
530 f = tree[n].Freq;
|
alpar@9
|
531 s->opt_len += (ulg)f * (bits + xbits);
|
alpar@9
|
532 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
|
alpar@9
|
533 }
|
alpar@9
|
534 if (overflow == 0) return;
|
alpar@9
|
535
|
alpar@9
|
536 Trace((stderr,"\nbit length overflow\n"));
|
alpar@9
|
537 /* This happens for example on obj2 and pic of the Calgary corpus */
|
alpar@9
|
538
|
alpar@9
|
539 /* Find the first bit length which could increase: */
|
alpar@9
|
540 do {
|
alpar@9
|
541 bits = max_length-1;
|
alpar@9
|
542 while (s->bl_count[bits] == 0) bits--;
|
alpar@9
|
543 s->bl_count[bits]--; /* move one leaf down the tree */
|
alpar@9
|
544 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
|
alpar@9
|
545 s->bl_count[max_length]--;
|
alpar@9
|
546 /* The brother of the overflow item also moves one step up,
|
alpar@9
|
547 * but this does not affect bl_count[max_length]
|
alpar@9
|
548 */
|
alpar@9
|
549 overflow -= 2;
|
alpar@9
|
550 } while (overflow > 0);
|
alpar@9
|
551
|
alpar@9
|
552 /* Now recompute all bit lengths, scanning in increasing frequency.
|
alpar@9
|
553 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
|
alpar@9
|
554 * lengths instead of fixing only the wrong ones. This idea is taken
|
alpar@9
|
555 * from 'ar' written by Haruhiko Okumura.)
|
alpar@9
|
556 */
|
alpar@9
|
557 for (bits = max_length; bits != 0; bits--) {
|
alpar@9
|
558 n = s->bl_count[bits];
|
alpar@9
|
559 while (n != 0) {
|
alpar@9
|
560 m = s->heap[--h];
|
alpar@9
|
561 if (m > max_code) continue;
|
alpar@9
|
562 if ((unsigned) tree[m].Len != (unsigned) bits) {
|
alpar@9
|
563 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
|
alpar@9
|
564 s->opt_len += ((long)bits - (long)tree[m].Len)
|
alpar@9
|
565 *(long)tree[m].Freq;
|
alpar@9
|
566 tree[m].Len = (ush)bits;
|
alpar@9
|
567 }
|
alpar@9
|
568 n--;
|
alpar@9
|
569 }
|
alpar@9
|
570 }
|
alpar@9
|
571 }
|
alpar@9
|
572
|
alpar@9
|
573 /* ===========================================================================
|
alpar@9
|
574 * Generate the codes for a given tree and bit counts (which need not be
|
alpar@9
|
575 * optimal).
|
alpar@9
|
576 * IN assertion: the array bl_count contains the bit length statistics for
|
alpar@9
|
577 * the given tree and the field len is set for all tree elements.
|
alpar@9
|
578 * OUT assertion: the field code is set for all tree elements of non
|
alpar@9
|
579 * zero code length.
|
alpar@9
|
580 */
|
alpar@9
|
581 local void gen_codes (tree, max_code, bl_count)
|
alpar@9
|
582 ct_data *tree; /* the tree to decorate */
|
alpar@9
|
583 int max_code; /* largest code with non zero frequency */
|
alpar@9
|
584 ushf *bl_count; /* number of codes at each bit length */
|
alpar@9
|
585 {
|
alpar@9
|
586 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
|
alpar@9
|
587 ush code = 0; /* running code value */
|
alpar@9
|
588 int bits; /* bit index */
|
alpar@9
|
589 int n; /* code index */
|
alpar@9
|
590
|
alpar@9
|
591 /* The distribution counts are first used to generate the code values
|
alpar@9
|
592 * without bit reversal.
|
alpar@9
|
593 */
|
alpar@9
|
594 for (bits = 1; bits <= MAX_BITS; bits++) {
|
alpar@9
|
595 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
|
alpar@9
|
596 }
|
alpar@9
|
597 /* Check that the bit counts in bl_count are consistent. The last code
|
alpar@9
|
598 * must be all ones.
|
alpar@9
|
599 */
|
alpar@9
|
600 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
|
alpar@9
|
601 "inconsistent bit counts");
|
alpar@9
|
602 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
|
alpar@9
|
603
|
alpar@9
|
604 for (n = 0; n <= max_code; n++) {
|
alpar@9
|
605 int len = tree[n].Len;
|
alpar@9
|
606 if (len == 0) continue;
|
alpar@9
|
607 /* Now reverse the bits */
|
alpar@9
|
608 tree[n].Code = bi_reverse(next_code[len]++, len);
|
alpar@9
|
609
|
alpar@9
|
610 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
|
alpar@9
|
611 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
|
alpar@9
|
612 }
|
alpar@9
|
613 }
|
alpar@9
|
614
|
alpar@9
|
615 /* ===========================================================================
|
alpar@9
|
616 * Construct one Huffman tree and assigns the code bit strings and lengths.
|
alpar@9
|
617 * Update the total bit length for the current block.
|
alpar@9
|
618 * IN assertion: the field freq is set for all tree elements.
|
alpar@9
|
619 * OUT assertions: the fields len and code are set to the optimal bit length
|
alpar@9
|
620 * and corresponding code. The length opt_len is updated; static_len is
|
alpar@9
|
621 * also updated if stree is not null. The field max_code is set.
|
alpar@9
|
622 */
|
alpar@9
|
623 local void build_tree(s, desc)
|
alpar@9
|
624 deflate_state *s;
|
alpar@9
|
625 tree_desc *desc; /* the tree descriptor */
|
alpar@9
|
626 {
|
alpar@9
|
627 ct_data *tree = desc->dyn_tree;
|
alpar@9
|
628 const ct_data *stree = desc->stat_desc->static_tree;
|
alpar@9
|
629 int elems = desc->stat_desc->elems;
|
alpar@9
|
630 int n, m; /* iterate over heap elements */
|
alpar@9
|
631 int max_code = -1; /* largest code with non zero frequency */
|
alpar@9
|
632 int node; /* new node being created */
|
alpar@9
|
633
|
alpar@9
|
634 /* Construct the initial heap, with least frequent element in
|
alpar@9
|
635 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
|
alpar@9
|
636 * heap[0] is not used.
|
alpar@9
|
637 */
|
alpar@9
|
638 s->heap_len = 0, s->heap_max = HEAP_SIZE;
|
alpar@9
|
639
|
alpar@9
|
640 for (n = 0; n < elems; n++) {
|
alpar@9
|
641 if (tree[n].Freq != 0) {
|
alpar@9
|
642 s->heap[++(s->heap_len)] = max_code = n;
|
alpar@9
|
643 s->depth[n] = 0;
|
alpar@9
|
644 } else {
|
alpar@9
|
645 tree[n].Len = 0;
|
alpar@9
|
646 }
|
alpar@9
|
647 }
|
alpar@9
|
648
|
alpar@9
|
649 /* The pkzip format requires that at least one distance code exists,
|
alpar@9
|
650 * and that at least one bit should be sent even if there is only one
|
alpar@9
|
651 * possible code. So to avoid special checks later on we force at least
|
alpar@9
|
652 * two codes of non zero frequency.
|
alpar@9
|
653 */
|
alpar@9
|
654 while (s->heap_len < 2) {
|
alpar@9
|
655 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
|
alpar@9
|
656 tree[node].Freq = 1;
|
alpar@9
|
657 s->depth[node] = 0;
|
alpar@9
|
658 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
|
alpar@9
|
659 /* node is 0 or 1 so it does not have extra bits */
|
alpar@9
|
660 }
|
alpar@9
|
661 desc->max_code = max_code;
|
alpar@9
|
662
|
alpar@9
|
663 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
|
alpar@9
|
664 * establish sub-heaps of increasing lengths:
|
alpar@9
|
665 */
|
alpar@9
|
666 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
|
alpar@9
|
667
|
alpar@9
|
668 /* Construct the Huffman tree by repeatedly combining the least two
|
alpar@9
|
669 * frequent nodes.
|
alpar@9
|
670 */
|
alpar@9
|
671 node = elems; /* next internal node of the tree */
|
alpar@9
|
672 do {
|
alpar@9
|
673 pqremove(s, tree, n); /* n = node of least frequency */
|
alpar@9
|
674 m = s->heap[SMALLEST]; /* m = node of next least frequency */
|
alpar@9
|
675
|
alpar@9
|
676 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
|
alpar@9
|
677 s->heap[--(s->heap_max)] = m;
|
alpar@9
|
678
|
alpar@9
|
679 /* Create a new node father of n and m */
|
alpar@9
|
680 tree[node].Freq = tree[n].Freq + tree[m].Freq;
|
alpar@9
|
681 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
|
alpar@9
|
682 s->depth[n] : s->depth[m]) + 1);
|
alpar@9
|
683 tree[n].Dad = tree[m].Dad = (ush)node;
|
alpar@9
|
684 #ifdef DUMP_BL_TREE
|
alpar@9
|
685 if (tree == s->bl_tree) {
|
alpar@9
|
686 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
|
alpar@9
|
687 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
|
alpar@9
|
688 }
|
alpar@9
|
689 #endif
|
alpar@9
|
690 /* and insert the new node in the heap */
|
alpar@9
|
691 s->heap[SMALLEST] = node++;
|
alpar@9
|
692 pqdownheap(s, tree, SMALLEST);
|
alpar@9
|
693
|
alpar@9
|
694 } while (s->heap_len >= 2);
|
alpar@9
|
695
|
alpar@9
|
696 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
|
alpar@9
|
697
|
alpar@9
|
698 /* At this point, the fields freq and dad are set. We can now
|
alpar@9
|
699 * generate the bit lengths.
|
alpar@9
|
700 */
|
alpar@9
|
701 gen_bitlen(s, (tree_desc *)desc);
|
alpar@9
|
702
|
alpar@9
|
703 /* The field len is now set, we can generate the bit codes */
|
alpar@9
|
704 gen_codes ((ct_data *)tree, max_code, s->bl_count);
|
alpar@9
|
705 }
|
alpar@9
|
706
|
alpar@9
|
707 /* ===========================================================================
|
alpar@9
|
708 * Scan a literal or distance tree to determine the frequencies of the codes
|
alpar@9
|
709 * in the bit length tree.
|
alpar@9
|
710 */
|
alpar@9
|
711 local void scan_tree (s, tree, max_code)
|
alpar@9
|
712 deflate_state *s;
|
alpar@9
|
713 ct_data *tree; /* the tree to be scanned */
|
alpar@9
|
714 int max_code; /* and its largest code of non zero frequency */
|
alpar@9
|
715 {
|
alpar@9
|
716 int n; /* iterates over all tree elements */
|
alpar@9
|
717 int prevlen = -1; /* last emitted length */
|
alpar@9
|
718 int curlen; /* length of current code */
|
alpar@9
|
719 int nextlen = tree[0].Len; /* length of next code */
|
alpar@9
|
720 int count = 0; /* repeat count of the current code */
|
alpar@9
|
721 int max_count = 7; /* max repeat count */
|
alpar@9
|
722 int min_count = 4; /* min repeat count */
|
alpar@9
|
723
|
alpar@9
|
724 if (nextlen == 0) max_count = 138, min_count = 3;
|
alpar@9
|
725 tree[max_code+1].Len = (ush)0xffff; /* guard */
|
alpar@9
|
726
|
alpar@9
|
727 for (n = 0; n <= max_code; n++) {
|
alpar@9
|
728 curlen = nextlen; nextlen = tree[n+1].Len;
|
alpar@9
|
729 if (++count < max_count && curlen == nextlen) {
|
alpar@9
|
730 continue;
|
alpar@9
|
731 } else if (count < min_count) {
|
alpar@9
|
732 s->bl_tree[curlen].Freq += count;
|
alpar@9
|
733 } else if (curlen != 0) {
|
alpar@9
|
734 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
|
alpar@9
|
735 s->bl_tree[REP_3_6].Freq++;
|
alpar@9
|
736 } else if (count <= 10) {
|
alpar@9
|
737 s->bl_tree[REPZ_3_10].Freq++;
|
alpar@9
|
738 } else {
|
alpar@9
|
739 s->bl_tree[REPZ_11_138].Freq++;
|
alpar@9
|
740 }
|
alpar@9
|
741 count = 0; prevlen = curlen;
|
alpar@9
|
742 if (nextlen == 0) {
|
alpar@9
|
743 max_count = 138, min_count = 3;
|
alpar@9
|
744 } else if (curlen == nextlen) {
|
alpar@9
|
745 max_count = 6, min_count = 3;
|
alpar@9
|
746 } else {
|
alpar@9
|
747 max_count = 7, min_count = 4;
|
alpar@9
|
748 }
|
alpar@9
|
749 }
|
alpar@9
|
750 }
|
alpar@9
|
751
|
alpar@9
|
752 /* ===========================================================================
|
alpar@9
|
753 * Send a literal or distance tree in compressed form, using the codes in
|
alpar@9
|
754 * bl_tree.
|
alpar@9
|
755 */
|
alpar@9
|
756 local void send_tree (s, tree, max_code)
|
alpar@9
|
757 deflate_state *s;
|
alpar@9
|
758 ct_data *tree; /* the tree to be scanned */
|
alpar@9
|
759 int max_code; /* and its largest code of non zero frequency */
|
alpar@9
|
760 {
|
alpar@9
|
761 int n; /* iterates over all tree elements */
|
alpar@9
|
762 int prevlen = -1; /* last emitted length */
|
alpar@9
|
763 int curlen; /* length of current code */
|
alpar@9
|
764 int nextlen = tree[0].Len; /* length of next code */
|
alpar@9
|
765 int count = 0; /* repeat count of the current code */
|
alpar@9
|
766 int max_count = 7; /* max repeat count */
|
alpar@9
|
767 int min_count = 4; /* min repeat count */
|
alpar@9
|
768
|
alpar@9
|
769 /* tree[max_code+1].Len = -1; */ /* guard already set */
|
alpar@9
|
770 if (nextlen == 0) max_count = 138, min_count = 3;
|
alpar@9
|
771
|
alpar@9
|
772 for (n = 0; n <= max_code; n++) {
|
alpar@9
|
773 curlen = nextlen; nextlen = tree[n+1].Len;
|
alpar@9
|
774 if (++count < max_count && curlen == nextlen) {
|
alpar@9
|
775 continue;
|
alpar@9
|
776 } else if (count < min_count) {
|
alpar@9
|
777 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
|
alpar@9
|
778
|
alpar@9
|
779 } else if (curlen != 0) {
|
alpar@9
|
780 if (curlen != prevlen) {
|
alpar@9
|
781 send_code(s, curlen, s->bl_tree); count--;
|
alpar@9
|
782 }
|
alpar@9
|
783 Assert(count >= 3 && count <= 6, " 3_6?");
|
alpar@9
|
784 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
|
alpar@9
|
785
|
alpar@9
|
786 } else if (count <= 10) {
|
alpar@9
|
787 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
|
alpar@9
|
788
|
alpar@9
|
789 } else {
|
alpar@9
|
790 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
|
alpar@9
|
791 }
|
alpar@9
|
792 count = 0; prevlen = curlen;
|
alpar@9
|
793 if (nextlen == 0) {
|
alpar@9
|
794 max_count = 138, min_count = 3;
|
alpar@9
|
795 } else if (curlen == nextlen) {
|
alpar@9
|
796 max_count = 6, min_count = 3;
|
alpar@9
|
797 } else {
|
alpar@9
|
798 max_count = 7, min_count = 4;
|
alpar@9
|
799 }
|
alpar@9
|
800 }
|
alpar@9
|
801 }
|
alpar@9
|
802
|
alpar@9
|
803 /* ===========================================================================
|
alpar@9
|
804 * Construct the Huffman tree for the bit lengths and return the index in
|
alpar@9
|
805 * bl_order of the last bit length code to send.
|
alpar@9
|
806 */
|
alpar@9
|
807 local int build_bl_tree(s)
|
alpar@9
|
808 deflate_state *s;
|
alpar@9
|
809 {
|
alpar@9
|
810 int max_blindex; /* index of last bit length code of non zero freq */
|
alpar@9
|
811
|
alpar@9
|
812 /* Determine the bit length frequencies for literal and distance trees */
|
alpar@9
|
813 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
|
alpar@9
|
814 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
|
alpar@9
|
815
|
alpar@9
|
816 /* Build the bit length tree: */
|
alpar@9
|
817 build_tree(s, (tree_desc *)(&(s->bl_desc)));
|
alpar@9
|
818 /* opt_len now includes the length of the tree representations, except
|
alpar@9
|
819 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
|
alpar@9
|
820 */
|
alpar@9
|
821
|
alpar@9
|
822 /* Determine the number of bit length codes to send. The pkzip format
|
alpar@9
|
823 * requires that at least 4 bit length codes be sent. (appnote.txt says
|
alpar@9
|
824 * 3 but the actual value used is 4.)
|
alpar@9
|
825 */
|
alpar@9
|
826 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
|
alpar@9
|
827 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
|
alpar@9
|
828 }
|
alpar@9
|
829 /* Update opt_len to include the bit length tree and counts */
|
alpar@9
|
830 s->opt_len += 3*(max_blindex+1) + 5+5+4;
|
alpar@9
|
831 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
|
alpar@9
|
832 s->opt_len, s->static_len));
|
alpar@9
|
833
|
alpar@9
|
834 return max_blindex;
|
alpar@9
|
835 }
|
alpar@9
|
836
|
alpar@9
|
837 /* ===========================================================================
|
alpar@9
|
838 * Send the header for a block using dynamic Huffman trees: the counts, the
|
alpar@9
|
839 * lengths of the bit length codes, the literal tree and the distance tree.
|
alpar@9
|
840 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
alpar@9
|
841 */
|
alpar@9
|
842 local void send_all_trees(s, lcodes, dcodes, blcodes)
|
alpar@9
|
843 deflate_state *s;
|
alpar@9
|
844 int lcodes, dcodes, blcodes; /* number of codes for each tree */
|
alpar@9
|
845 {
|
alpar@9
|
846 int rank; /* index in bl_order */
|
alpar@9
|
847
|
alpar@9
|
848 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
|
alpar@9
|
849 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
|
alpar@9
|
850 "too many codes");
|
alpar@9
|
851 Tracev((stderr, "\nbl counts: "));
|
alpar@9
|
852 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
|
alpar@9
|
853 send_bits(s, dcodes-1, 5);
|
alpar@9
|
854 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
|
alpar@9
|
855 for (rank = 0; rank < blcodes; rank++) {
|
alpar@9
|
856 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
|
alpar@9
|
857 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
|
alpar@9
|
858 }
|
alpar@9
|
859 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
|
alpar@9
|
860
|
alpar@9
|
861 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
|
alpar@9
|
862 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
|
alpar@9
|
863
|
alpar@9
|
864 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
|
alpar@9
|
865 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
|
alpar@9
|
866 }
|
alpar@9
|
867
|
alpar@9
|
868 /* ===========================================================================
|
alpar@9
|
869 * Send a stored block
|
alpar@9
|
870 */
|
alpar@9
|
871 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
|
alpar@9
|
872 deflate_state *s;
|
alpar@9
|
873 charf *buf; /* input block */
|
alpar@9
|
874 ulg stored_len; /* length of input block */
|
alpar@9
|
875 int last; /* one if this is the last block for a file */
|
alpar@9
|
876 {
|
alpar@9
|
877 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
|
alpar@9
|
878 #ifdef DEBUG
|
alpar@9
|
879 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
|
alpar@9
|
880 s->compressed_len += (stored_len + 4) << 3;
|
alpar@9
|
881 #endif
|
alpar@9
|
882 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
|
alpar@9
|
883 }
|
alpar@9
|
884
|
alpar@9
|
885 /* ===========================================================================
|
alpar@9
|
886 * Send one empty static block to give enough lookahead for inflate.
|
alpar@9
|
887 * This takes 10 bits, of which 7 may remain in the bit buffer.
|
alpar@9
|
888 * The current inflate code requires 9 bits of lookahead. If the
|
alpar@9
|
889 * last two codes for the previous block (real code plus EOB) were coded
|
alpar@9
|
890 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
|
alpar@9
|
891 * the last real code. In this case we send two empty static blocks instead
|
alpar@9
|
892 * of one. (There are no problems if the previous block is stored or fixed.)
|
alpar@9
|
893 * To simplify the code, we assume the worst case of last real code encoded
|
alpar@9
|
894 * on one bit only.
|
alpar@9
|
895 */
|
alpar@9
|
896 void ZLIB_INTERNAL _tr_align(s)
|
alpar@9
|
897 deflate_state *s;
|
alpar@9
|
898 {
|
alpar@9
|
899 send_bits(s, STATIC_TREES<<1, 3);
|
alpar@9
|
900 send_code(s, END_BLOCK, static_ltree);
|
alpar@9
|
901 #ifdef DEBUG
|
alpar@9
|
902 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
|
alpar@9
|
903 #endif
|
alpar@9
|
904 bi_flush(s);
|
alpar@9
|
905 /* Of the 10 bits for the empty block, we have already sent
|
alpar@9
|
906 * (10 - bi_valid) bits. The lookahead for the last real code (before
|
alpar@9
|
907 * the EOB of the previous block) was thus at least one plus the length
|
alpar@9
|
908 * of the EOB plus what we have just sent of the empty static block.
|
alpar@9
|
909 */
|
alpar@9
|
910 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
|
alpar@9
|
911 send_bits(s, STATIC_TREES<<1, 3);
|
alpar@9
|
912 send_code(s, END_BLOCK, static_ltree);
|
alpar@9
|
913 #ifdef DEBUG
|
alpar@9
|
914 s->compressed_len += 10L;
|
alpar@9
|
915 #endif
|
alpar@9
|
916 bi_flush(s);
|
alpar@9
|
917 }
|
alpar@9
|
918 s->last_eob_len = 7;
|
alpar@9
|
919 }
|
alpar@9
|
920
|
alpar@9
|
921 /* ===========================================================================
|
alpar@9
|
922 * Determine the best encoding for the current block: dynamic trees, static
|
alpar@9
|
923 * trees or store, and output the encoded block to the zip file.
|
alpar@9
|
924 */
|
alpar@9
|
925 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
|
alpar@9
|
926 deflate_state *s;
|
alpar@9
|
927 charf *buf; /* input block, or NULL if too old */
|
alpar@9
|
928 ulg stored_len; /* length of input block */
|
alpar@9
|
929 int last; /* one if this is the last block for a file */
|
alpar@9
|
930 {
|
alpar@9
|
931 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
|
alpar@9
|
932 int max_blindex = 0; /* index of last bit length code of non zero freq */
|
alpar@9
|
933
|
alpar@9
|
934 /* Build the Huffman trees unless a stored block is forced */
|
alpar@9
|
935 if (s->level > 0) {
|
alpar@9
|
936
|
alpar@9
|
937 /* Check if the file is binary or text */
|
alpar@9
|
938 if (s->strm->data_type == Z_UNKNOWN)
|
alpar@9
|
939 s->strm->data_type = detect_data_type(s);
|
alpar@9
|
940
|
alpar@9
|
941 /* Construct the literal and distance trees */
|
alpar@9
|
942 build_tree(s, (tree_desc *)(&(s->l_desc)));
|
alpar@9
|
943 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
|
alpar@9
|
944 s->static_len));
|
alpar@9
|
945
|
alpar@9
|
946 build_tree(s, (tree_desc *)(&(s->d_desc)));
|
alpar@9
|
947 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
|
alpar@9
|
948 s->static_len));
|
alpar@9
|
949 /* At this point, opt_len and static_len are the total bit lengths of
|
alpar@9
|
950 * the compressed block data, excluding the tree representations.
|
alpar@9
|
951 */
|
alpar@9
|
952
|
alpar@9
|
953 /* Build the bit length tree for the above two trees, and get the index
|
alpar@9
|
954 * in bl_order of the last bit length code to send.
|
alpar@9
|
955 */
|
alpar@9
|
956 max_blindex = build_bl_tree(s);
|
alpar@9
|
957
|
alpar@9
|
958 /* Determine the best encoding. Compute the block lengths in bytes. */
|
alpar@9
|
959 opt_lenb = (s->opt_len+3+7)>>3;
|
alpar@9
|
960 static_lenb = (s->static_len+3+7)>>3;
|
alpar@9
|
961
|
alpar@9
|
962 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
|
alpar@9
|
963 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
|
alpar@9
|
964 s->last_lit));
|
alpar@9
|
965
|
alpar@9
|
966 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
|
alpar@9
|
967
|
alpar@9
|
968 } else {
|
alpar@9
|
969 Assert(buf != (char*)0, "lost buf");
|
alpar@9
|
970 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
|
alpar@9
|
971 }
|
alpar@9
|
972
|
alpar@9
|
973 #ifdef FORCE_STORED
|
alpar@9
|
974 if (buf != (char*)0) { /* force stored block */
|
alpar@9
|
975 #else
|
alpar@9
|
976 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
|
alpar@9
|
977 /* 4: two words for the lengths */
|
alpar@9
|
978 #endif
|
alpar@9
|
979 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
alpar@9
|
980 * Otherwise we can't have processed more than WSIZE input bytes since
|
alpar@9
|
981 * the last block flush, because compression would have been
|
alpar@9
|
982 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
alpar@9
|
983 * transform a block into a stored block.
|
alpar@9
|
984 */
|
alpar@9
|
985 _tr_stored_block(s, buf, stored_len, last);
|
alpar@9
|
986
|
alpar@9
|
987 #ifdef FORCE_STATIC
|
alpar@9
|
988 } else if (static_lenb >= 0) { /* force static trees */
|
alpar@9
|
989 #else
|
alpar@9
|
990 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
|
alpar@9
|
991 #endif
|
alpar@9
|
992 send_bits(s, (STATIC_TREES<<1)+last, 3);
|
alpar@9
|
993 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
|
alpar@9
|
994 #ifdef DEBUG
|
alpar@9
|
995 s->compressed_len += 3 + s->static_len;
|
alpar@9
|
996 #endif
|
alpar@9
|
997 } else {
|
alpar@9
|
998 send_bits(s, (DYN_TREES<<1)+last, 3);
|
alpar@9
|
999 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
|
alpar@9
|
1000 max_blindex+1);
|
alpar@9
|
1001 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
|
alpar@9
|
1002 #ifdef DEBUG
|
alpar@9
|
1003 s->compressed_len += 3 + s->opt_len;
|
alpar@9
|
1004 #endif
|
alpar@9
|
1005 }
|
alpar@9
|
1006 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
|
alpar@9
|
1007 /* The above check is made mod 2^32, for files larger than 512 MB
|
alpar@9
|
1008 * and uLong implemented on 32 bits.
|
alpar@9
|
1009 */
|
alpar@9
|
1010 init_block(s);
|
alpar@9
|
1011
|
alpar@9
|
1012 if (last) {
|
alpar@9
|
1013 bi_windup(s);
|
alpar@9
|
1014 #ifdef DEBUG
|
alpar@9
|
1015 s->compressed_len += 7; /* align on byte boundary */
|
alpar@9
|
1016 #endif
|
alpar@9
|
1017 }
|
alpar@9
|
1018 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
|
alpar@9
|
1019 s->compressed_len-7*last));
|
alpar@9
|
1020 }
|
alpar@9
|
1021
|
alpar@9
|
1022 /* ===========================================================================
|
alpar@9
|
1023 * Save the match info and tally the frequency counts. Return true if
|
alpar@9
|
1024 * the current block must be flushed.
|
alpar@9
|
1025 */
|
alpar@9
|
1026 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
|
alpar@9
|
1027 deflate_state *s;
|
alpar@9
|
1028 unsigned dist; /* distance of matched string */
|
alpar@9
|
1029 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
|
alpar@9
|
1030 {
|
alpar@9
|
1031 s->d_buf[s->last_lit] = (ush)dist;
|
alpar@9
|
1032 s->l_buf[s->last_lit++] = (uch)lc;
|
alpar@9
|
1033 if (dist == 0) {
|
alpar@9
|
1034 /* lc is the unmatched char */
|
alpar@9
|
1035 s->dyn_ltree[lc].Freq++;
|
alpar@9
|
1036 } else {
|
alpar@9
|
1037 s->matches++;
|
alpar@9
|
1038 /* Here, lc is the match length - MIN_MATCH */
|
alpar@9
|
1039 dist--; /* dist = match distance - 1 */
|
alpar@9
|
1040 Assert((ush)dist < (ush)MAX_DIST(s) &&
|
alpar@9
|
1041 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
|
alpar@9
|
1042 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
|
alpar@9
|
1043
|
alpar@9
|
1044 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
|
alpar@9
|
1045 s->dyn_dtree[d_code(dist)].Freq++;
|
alpar@9
|
1046 }
|
alpar@9
|
1047
|
alpar@9
|
1048 #ifdef TRUNCATE_BLOCK
|
alpar@9
|
1049 /* Try to guess if it is profitable to stop the current block here */
|
alpar@9
|
1050 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
|
alpar@9
|
1051 /* Compute an upper bound for the compressed length */
|
alpar@9
|
1052 ulg out_length = (ulg)s->last_lit*8L;
|
alpar@9
|
1053 ulg in_length = (ulg)((long)s->strstart - s->block_start);
|
alpar@9
|
1054 int dcode;
|
alpar@9
|
1055 for (dcode = 0; dcode < D_CODES; dcode++) {
|
alpar@9
|
1056 out_length += (ulg)s->dyn_dtree[dcode].Freq *
|
alpar@9
|
1057 (5L+extra_dbits[dcode]);
|
alpar@9
|
1058 }
|
alpar@9
|
1059 out_length >>= 3;
|
alpar@9
|
1060 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
|
alpar@9
|
1061 s->last_lit, in_length, out_length,
|
alpar@9
|
1062 100L - out_length*100L/in_length));
|
alpar@9
|
1063 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
|
alpar@9
|
1064 }
|
alpar@9
|
1065 #endif
|
alpar@9
|
1066 return (s->last_lit == s->lit_bufsize-1);
|
alpar@9
|
1067 /* We avoid equality with lit_bufsize because of wraparound at 64K
|
alpar@9
|
1068 * on 16 bit machines and because stored blocks are restricted to
|
alpar@9
|
1069 * 64K-1 bytes.
|
alpar@9
|
1070 */
|
alpar@9
|
1071 }
|
alpar@9
|
1072
|
alpar@9
|
1073 /* ===========================================================================
|
alpar@9
|
1074 * Send the block data compressed using the given Huffman trees
|
alpar@9
|
1075 */
|
alpar@9
|
1076 local void compress_block(s, ltree, dtree)
|
alpar@9
|
1077 deflate_state *s;
|
alpar@9
|
1078 ct_data *ltree; /* literal tree */
|
alpar@9
|
1079 ct_data *dtree; /* distance tree */
|
alpar@9
|
1080 {
|
alpar@9
|
1081 unsigned dist; /* distance of matched string */
|
alpar@9
|
1082 int lc; /* match length or unmatched char (if dist == 0) */
|
alpar@9
|
1083 unsigned lx = 0; /* running index in l_buf */
|
alpar@9
|
1084 unsigned code; /* the code to send */
|
alpar@9
|
1085 int extra; /* number of extra bits to send */
|
alpar@9
|
1086
|
alpar@9
|
1087 if (s->last_lit != 0) do {
|
alpar@9
|
1088 dist = s->d_buf[lx];
|
alpar@9
|
1089 lc = s->l_buf[lx++];
|
alpar@9
|
1090 if (dist == 0) {
|
alpar@9
|
1091 send_code(s, lc, ltree); /* send a literal byte */
|
alpar@9
|
1092 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
|
alpar@9
|
1093 } else {
|
alpar@9
|
1094 /* Here, lc is the match length - MIN_MATCH */
|
alpar@9
|
1095 code = _length_code[lc];
|
alpar@9
|
1096 send_code(s, code+LITERALS+1, ltree); /* send the length code */
|
alpar@9
|
1097 extra = extra_lbits[code];
|
alpar@9
|
1098 if (extra != 0) {
|
alpar@9
|
1099 lc -= base_length[code];
|
alpar@9
|
1100 send_bits(s, lc, extra); /* send the extra length bits */
|
alpar@9
|
1101 }
|
alpar@9
|
1102 dist--; /* dist is now the match distance - 1 */
|
alpar@9
|
1103 code = d_code(dist);
|
alpar@9
|
1104 Assert (code < D_CODES, "bad d_code");
|
alpar@9
|
1105
|
alpar@9
|
1106 send_code(s, code, dtree); /* send the distance code */
|
alpar@9
|
1107 extra = extra_dbits[code];
|
alpar@9
|
1108 if (extra != 0) {
|
alpar@9
|
1109 dist -= base_dist[code];
|
alpar@9
|
1110 send_bits(s, dist, extra); /* send the extra distance bits */
|
alpar@9
|
1111 }
|
alpar@9
|
1112 } /* literal or match pair ? */
|
alpar@9
|
1113
|
alpar@9
|
1114 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
|
alpar@9
|
1115 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
|
alpar@9
|
1116 "pendingBuf overflow");
|
alpar@9
|
1117
|
alpar@9
|
1118 } while (lx < s->last_lit);
|
alpar@9
|
1119
|
alpar@9
|
1120 send_code(s, END_BLOCK, ltree);
|
alpar@9
|
1121 s->last_eob_len = ltree[END_BLOCK].Len;
|
alpar@9
|
1122 }
|
alpar@9
|
1123
|
alpar@9
|
1124 /* ===========================================================================
|
alpar@9
|
1125 * Check if the data type is TEXT or BINARY, using the following algorithm:
|
alpar@9
|
1126 * - TEXT if the two conditions below are satisfied:
|
alpar@9
|
1127 * a) There are no non-portable control characters belonging to the
|
alpar@9
|
1128 * "black list" (0..6, 14..25, 28..31).
|
alpar@9
|
1129 * b) There is at least one printable character belonging to the
|
alpar@9
|
1130 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
|
alpar@9
|
1131 * - BINARY otherwise.
|
alpar@9
|
1132 * - The following partially-portable control characters form a
|
alpar@9
|
1133 * "gray list" that is ignored in this detection algorithm:
|
alpar@9
|
1134 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
|
alpar@9
|
1135 * IN assertion: the fields Freq of dyn_ltree are set.
|
alpar@9
|
1136 */
|
alpar@9
|
1137 local int detect_data_type(s)
|
alpar@9
|
1138 deflate_state *s;
|
alpar@9
|
1139 {
|
alpar@9
|
1140 /* black_mask is the bit mask of black-listed bytes
|
alpar@9
|
1141 * set bits 0..6, 14..25, and 28..31
|
alpar@9
|
1142 * 0xf3ffc07f = binary 11110011111111111100000001111111
|
alpar@9
|
1143 */
|
alpar@9
|
1144 unsigned long black_mask = 0xf3ffc07fUL;
|
alpar@9
|
1145 int n;
|
alpar@9
|
1146
|
alpar@9
|
1147 /* Check for non-textual ("black-listed") bytes. */
|
alpar@9
|
1148 for (n = 0; n <= 31; n++, black_mask >>= 1)
|
alpar@9
|
1149 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
|
alpar@9
|
1150 return Z_BINARY;
|
alpar@9
|
1151
|
alpar@9
|
1152 /* Check for textual ("white-listed") bytes. */
|
alpar@9
|
1153 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
|
alpar@9
|
1154 || s->dyn_ltree[13].Freq != 0)
|
alpar@9
|
1155 return Z_TEXT;
|
alpar@9
|
1156 for (n = 32; n < LITERALS; n++)
|
alpar@9
|
1157 if (s->dyn_ltree[n].Freq != 0)
|
alpar@9
|
1158 return Z_TEXT;
|
alpar@9
|
1159
|
alpar@9
|
1160 /* There are no "black-listed" or "white-listed" bytes:
|
alpar@9
|
1161 * this stream either is empty or has tolerated ("gray-listed") bytes only.
|
alpar@9
|
1162 */
|
alpar@9
|
1163 return Z_BINARY;
|
alpar@9
|
1164 }
|
alpar@9
|
1165
|
alpar@9
|
1166 /* ===========================================================================
|
alpar@9
|
1167 * Reverse the first len bits of a code, using straightforward code (a faster
|
alpar@9
|
1168 * method would use a table)
|
alpar@9
|
1169 * IN assertion: 1 <= len <= 15
|
alpar@9
|
1170 */
|
alpar@9
|
1171 local unsigned bi_reverse(code, len)
|
alpar@9
|
1172 unsigned code; /* the value to invert */
|
alpar@9
|
1173 int len; /* its bit length */
|
alpar@9
|
1174 {
|
alpar@9
|
1175 register unsigned res = 0;
|
alpar@9
|
1176 do {
|
alpar@9
|
1177 res |= code & 1;
|
alpar@9
|
1178 code >>= 1, res <<= 1;
|
alpar@9
|
1179 } while (--len > 0);
|
alpar@9
|
1180 return res >> 1;
|
alpar@9
|
1181 }
|
alpar@9
|
1182
|
alpar@9
|
1183 /* ===========================================================================
|
alpar@9
|
1184 * Flush the bit buffer, keeping at most 7 bits in it.
|
alpar@9
|
1185 */
|
alpar@9
|
1186 local void bi_flush(s)
|
alpar@9
|
1187 deflate_state *s;
|
alpar@9
|
1188 {
|
alpar@9
|
1189 if (s->bi_valid == 16) {
|
alpar@9
|
1190 put_short(s, s->bi_buf);
|
alpar@9
|
1191 s->bi_buf = 0;
|
alpar@9
|
1192 s->bi_valid = 0;
|
alpar@9
|
1193 } else if (s->bi_valid >= 8) {
|
alpar@9
|
1194 put_byte(s, (Byte)s->bi_buf);
|
alpar@9
|
1195 s->bi_buf >>= 8;
|
alpar@9
|
1196 s->bi_valid -= 8;
|
alpar@9
|
1197 }
|
alpar@9
|
1198 }
|
alpar@9
|
1199
|
alpar@9
|
1200 /* ===========================================================================
|
alpar@9
|
1201 * Flush the bit buffer and align the output on a byte boundary
|
alpar@9
|
1202 */
|
alpar@9
|
1203 local void bi_windup(s)
|
alpar@9
|
1204 deflate_state *s;
|
alpar@9
|
1205 {
|
alpar@9
|
1206 if (s->bi_valid > 8) {
|
alpar@9
|
1207 put_short(s, s->bi_buf);
|
alpar@9
|
1208 } else if (s->bi_valid > 0) {
|
alpar@9
|
1209 put_byte(s, (Byte)s->bi_buf);
|
alpar@9
|
1210 }
|
alpar@9
|
1211 s->bi_buf = 0;
|
alpar@9
|
1212 s->bi_valid = 0;
|
alpar@9
|
1213 #ifdef DEBUG
|
alpar@9
|
1214 s->bits_sent = (s->bits_sent+7) & ~7;
|
alpar@9
|
1215 #endif
|
alpar@9
|
1216 }
|
alpar@9
|
1217
|
alpar@9
|
1218 /* ===========================================================================
|
alpar@9
|
1219 * Copy a stored block, storing first the length and its
|
alpar@9
|
1220 * one's complement if requested.
|
alpar@9
|
1221 */
|
alpar@9
|
1222 local void copy_block(s, buf, len, header)
|
alpar@9
|
1223 deflate_state *s;
|
alpar@9
|
1224 charf *buf; /* the input data */
|
alpar@9
|
1225 unsigned len; /* its length */
|
alpar@9
|
1226 int header; /* true if block header must be written */
|
alpar@9
|
1227 {
|
alpar@9
|
1228 bi_windup(s); /* align on byte boundary */
|
alpar@9
|
1229 s->last_eob_len = 8; /* enough lookahead for inflate */
|
alpar@9
|
1230
|
alpar@9
|
1231 if (header) {
|
alpar@9
|
1232 put_short(s, (ush)len);
|
alpar@9
|
1233 put_short(s, (ush)~len);
|
alpar@9
|
1234 #ifdef DEBUG
|
alpar@9
|
1235 s->bits_sent += 2*16;
|
alpar@9
|
1236 #endif
|
alpar@9
|
1237 }
|
alpar@9
|
1238 #ifdef DEBUG
|
alpar@9
|
1239 s->bits_sent += (ulg)len<<3;
|
alpar@9
|
1240 #endif
|
alpar@9
|
1241 while (len--) {
|
alpar@9
|
1242 put_byte(s, *buf++);
|
alpar@9
|
1243 }
|
alpar@9
|
1244 }
|